JP2012205434A - Control device of ac rotary machine - Google Patents

Control device of ac rotary machine Download PDF

Info

Publication number
JP2012205434A
JP2012205434A JP2011069084A JP2011069084A JP2012205434A JP 2012205434 A JP2012205434 A JP 2012205434A JP 2011069084 A JP2011069084 A JP 2011069084A JP 2011069084 A JP2011069084 A JP 2011069084A JP 2012205434 A JP2012205434 A JP 2012205434A
Authority
JP
Japan
Prior art keywords
command
calculating
current
phase
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011069084A
Other languages
Japanese (ja)
Other versions
JP5517983B2 (en
Inventor
Takahiko Kobayashi
貴彦 小林
Mitsuru Ishizuka
充 石塚
Akira Satake
彰 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011069084A priority Critical patent/JP5517983B2/en
Publication of JP2012205434A publication Critical patent/JP2012205434A/en
Application granted granted Critical
Publication of JP5517983B2 publication Critical patent/JP5517983B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control device of an AC rotary machine capable of improving torque responsiveness constrained by a mechanical response of a speed control system.SOLUTION: A control device of an AC rotary machine comprises: power conversion means 3 for outputting an AC voltage to an AC rotary machine 2; current detection means 4 for detecting a current flowing in the AC rotary machine 2; current operation means 5 for converting the detected current to a current on rotating two-axis coordinates; torque operation means 8 for operating an output torque output by the AC rotary machine 2 based on the current on the rotating two-axis coordinates; frequency command calculation means 9 for calculating a frequency command based on the deviation between the torque command and the output torque; a compensator 10 which calculates a frequency compensation amount for frequency command compensation based on the torque command; phase calculation means 6 for calculating a phase of a control coordinate axis set on the rotating two-axis coordinates based on the frequency command after the compensation; and voltage command calculation means 7 for calculating a voltage command to be output to the power conversion means based on the frequency command after the compensation and the phase of the control coordinate axis.

Description

この発明は、交流回転機を駆動する電力変換手段を備えた交流回転機の制御装置に関するものである。   The present invention relates to a control device for an AC rotating machine provided with power conversion means for driving the AC rotating machine.

インバータをはじめとする電力変換手段により交流回転機を駆動する際は、一般に機械的応答より電気的応答が速いことから、通常、外部から速度指令を入力し、交流回転機の速度を制御する速度制御系をメジャーループ、交流回転機の相巻線に流れる相電流の電流を制御する電流制御系をマイナーループとするカスケード構成の制御系が用いられる。
しかし、外部から所望のトルクあるいは電力指令を入力してトルクや電力を制御する制御系の場合は、外部からトルク(または電力)指令を与えてフィードバック制御を行うと、急激な速度上昇や交流回転機の機械的な制限速度を超える等の望ましくない事象が発生する。これを改善するため、さらに速度(周波数)を制御するループを追加する制御構成、すなわちトルク(または電力)制御系をメジャーループ、速度(周波数)制御系をマイナーループとするカスケード構成の制御系が提案されている(例えば、特許文献1参照)。
When an AC rotating machine is driven by power conversion means such as an inverter, the electrical response is generally faster than the mechanical response. Therefore, a speed command is usually input from the outside to control the speed of the AC rotating machine. A cascade control system is used in which the control system is a major loop, and the current control system that controls the phase current flowing in the phase winding of the AC rotating machine is a minor loop.
However, in the case of a control system that controls torque and power by inputting a desired torque or power command from the outside, if a torque (or power) command is given from the outside and feedback control is performed, rapid speed increase or AC rotation Undesirable events occur, such as exceeding the machine's mechanical speed limit. In order to improve this, a control configuration in which a loop for controlling the speed (frequency) is further added, that is, a control system having a cascade configuration in which the torque (or power) control system is a major loop and the speed (frequency) control system is a minor loop. It has been proposed (see, for example, Patent Document 1).

特許第4503764号公報(段落[0024]〜[0026]、図5)Japanese Patent No. 4503764 (paragraphs [0024] to [0026], FIG. 5)

特許文献1の装置では、メジャーループであるトルク(または電力)制御系の応答が、マイナーループの速度制御系の機械的な応答以下に制限されるため、所望のトルク(または電力)制御系の応答が得られない可能性があり、高加速レートで加速したり、起動直後から高トルク駆動で運転したりすることが困難となる問題点があった。   In the device of Patent Document 1, the response of the torque (or power) control system that is a major loop is limited to the mechanical response or less of the speed control system of the minor loop. There is a possibility that a response may not be obtained, and there is a problem that it is difficult to accelerate at a high acceleration rate or to operate at a high torque drive immediately after startup.

この発明は、上記のような問題点を解決するためになされたものであり、速度制御系の機械的応答で制約されていたトルク(または電力)の応答性を改善できる交流回転機の制御装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and is a control device for an AC rotary machine that can improve the response of torque (or electric power) restricted by the mechanical response of the speed control system. The purpose is to provide.

この発明に係る交流回転機の制御装置は、外部からトルク指令を受ける交流回転機の制御装置において、交流回転機へ交流電圧を出力する電力変換手段と、交流回転機に流れる電流を検出する電流検出手段と、電流検出手段が検出する電流を回転二軸座標上の電流へ変換する電流演算手段と、回転二軸座標上の電流に基づいて交流回転機が出力する出力トルクを演算するトルク演算手段と、トルク指令とトルク演算手段が演算した出力トルクとの偏差に基づいて周波数指令を演算する周波数指令演算手段と、周波数指令を補正する周波数補償量をトルク指令に基づいて演算する補償器と、補正後の周波数指令に基づいて回転二軸座標上に設定した制御座標軸の位相を演算する位相演算手段と、補正後の周波数指令と制御座標軸の位相とに基づいて、電力変換手段に出力する電圧指令を演算する電圧指令演算手段とを備えるものである。   An AC rotary machine control device according to the present invention is an AC rotary machine control device that receives a torque command from the outside, and a power conversion unit that outputs an AC voltage to the AC rotary machine, and a current that detects a current flowing through the AC rotary machine. Detecting means; current calculating means for converting the current detected by the current detecting means into current on the rotating biaxial coordinates; and torque calculating for calculating the output torque output from the AC rotating machine based on the current on the rotating biaxial coordinates. Means, a frequency command calculating means for calculating a frequency command based on a deviation between the torque command and the output torque calculated by the torque calculating means, a compensator for calculating a frequency compensation amount for correcting the frequency command based on the torque command, , Based on the phase calculation means for calculating the phase of the control coordinate axis set on the rotating biaxial coordinate based on the corrected frequency command, and on the basis of the corrected frequency command and the phase of the control coordinate axis. Te, in which and a voltage command calculation means for calculating a voltage command to be output to the power conversion means.

また、この発明に係る交流回転機の制御装置は、外部からトルク指令を受ける交流回転機の制御装置において、交流回転機へ交流電圧を出力する電力変換手段と、交流回転機に流れる電流を検出する電流検出手段と、電流検出手段が検出する電流を回転二軸座標上の電流へ変換する電流演算手段と、回転二軸座標上の電流に基づいて交流回転機が出力する出力トルクを演算するトルク演算手段と、トルク指令とトルク演算手段が演算する出力トルクとの偏差に基づいて周波数指令を演算する周波数指令演算手段と、回転二軸座標上に設定した制御座標軸の位相を補正する位相補償量をトルク指令に基づいて演算する補償器と、周波数指令と位相補償量に基づいて制御座標軸の位相を演算する位相演算手段と、周波数指令と補正後の制御座標軸の位相とに基づいて、電力変換手段に出力する電圧指令を演算する電圧指令演算手段とを備えるものである。   Also, the control device for an AC rotating machine according to the present invention is a control device for an AC rotating machine that receives a torque command from the outside, and that detects power flowing in the AC rotating machine and power conversion means for outputting an AC voltage to the AC rotating machine. Current detecting means, current calculating means for converting the current detected by the current detecting means into current on the rotating biaxial coordinates, and output torque output from the AC rotating machine based on the current on the rotating biaxial coordinates Phase compensation for correcting the phase of the control coordinate axis set on the rotating biaxial coordinates, the torque computing means, the frequency command computing means for computing the frequency command based on the deviation between the torque command and the output torque computed by the torque computing means Compensator for calculating the amount based on the torque command, phase calculating means for calculating the phase of the control coordinate axis based on the frequency command and the phase compensation amount, and the control coordinate axis after the frequency command and correction Based on the phase, in which and a voltage command calculation means for calculating a voltage command to be output to the power conversion means.

また、この発明に係る交流回転機の制御装置は、外部から電力指令を受ける交流回転機の制御装置において、交流回転機へ交流電圧を出力する電力変換手段と、交流回転機に流れる電流を検出する電流検出手段と、電流検出手段が検出する電流を回転二軸座標上の電流へ変換する電流演算手段と、回転二軸座標上の電圧指令と回転二軸座標上の電流に基づいて交流回転機が出力する出力電力を演算する電力演算手段と、電力指令と電力演算手段が演算する出力電力との偏差に基づいて周波数指令を演算する周波数指令演算手段と、周波数指令を補正する周波数補償量を電力指令に基づいて演算する補償器と、補正後の周波数指令に基づいて回転二軸座標上に設定した制御座標軸の位相を演算する位相演算手段と、補正後の周波数指令と制御座標軸の位相とに基づいて電力変換手段に出力する電圧指令および電力演算手段に出力する回転二軸座標上の電圧指令を演算する電圧指令演算手段とを備えるものである。   The control device for an AC rotating machine according to the present invention is a control device for an AC rotating machine that receives an electric power command from the outside, and that detects power flowing in the AC rotating machine and power conversion means for outputting an AC voltage to the AC rotating machine. Current detection means, current calculation means for converting the current detected by the current detection means into current on the rotating biaxial coordinates, AC rotation based on the voltage command on the rotating biaxial coordinates and the current on the rotating biaxial coordinates Power calculating means for calculating the output power output from the machine, frequency command calculating means for calculating a frequency command based on a deviation between the power command and the output power calculated by the power calculating means, and a frequency compensation amount for correcting the frequency command A compensator that calculates the phase of the control coordinate axis set on the rotating biaxial coordinate based on the corrected frequency command, the corrected frequency command and the control seat. Based on the axis of the phase in which and a voltage command calculation means for calculating a voltage command on the rotation two-axis coordinate output to voltage command and power computing means outputs to the power converter.

また、この発明に係る交流回転機の制御装置は、外部から電力指令を受ける交流回転機の制御装置において、交流回転機へ交流電圧を出力する電力変換手段と、交流回転機に流れる電流を検出する電流検出手段と、電流検出手段が検出する電流を回転二軸座標上の電流へ変換する電流演算手段と、回転二軸座標上の電圧指令と回転二軸座標上の電流に基づいて交流回転機が出力する出力電力を演算する電力演算手段と、電力指令と電力演算手段が演算する出力電力との偏差に基づいて周波数指令を演算する周波数指令演算手段と、回転二軸座標上に設定した制御座標軸の位相を補正する位相補償量を電力指令に基づいて演算する補償器と、周波数指令と位相補償量に基づいて制御座標軸の位相を演算する位相演算手段と、周波数指令と補正後の制御座標軸の位相とに基づいて、電力変換手段に出力する電圧指令および電力演算手段に出力する回転二軸座標上の電圧指令を演算する電圧指令演算手段とを備えるものである。   The control device for an AC rotating machine according to the present invention is a control device for an AC rotating machine that receives an electric power command from the outside, and that detects power flowing in the AC rotating machine and power conversion means for outputting an AC voltage to the AC rotating machine. Current detection means, current calculation means for converting the current detected by the current detection means into current on the rotating biaxial coordinates, AC rotation based on the voltage command on the rotating biaxial coordinates and the current on the rotating biaxial coordinates Power calculation means for calculating the output power output by the machine, frequency command calculation means for calculating the frequency command based on the deviation between the power command and the output power calculated by the power calculation means, and set on the rotating biaxial coordinates Compensator for calculating the phase compensation amount for correcting the phase of the control coordinate axis based on the power command, phase calculating means for calculating the phase of the control coordinate axis based on the frequency command and the phase compensation amount, and the frequency command and after correction Based on the phase of the control coordinate axes, in which and a voltage command calculation means for calculating a voltage command on the rotation two-axis coordinate output to voltage command and power computing means outputs to the power converter.

この発明に係る交流回転機の制御装置は、交流回転機へ交流電圧を出力する電力変換手段と、交流回転機に流れる電流を検出する電流検出手段と、検出電流を回転二軸座標上の電流へ変換する電流演算手段と、回転二軸座標上の電流に基づいて交流回転機が出力する出力トルクを演算するトルク演算手段と、トルク指令と出力トルクとの偏差に基づいて周波数指令を演算する周波数指令演算手段と、周波数指令を補正する周波数補償量をトルク指令に基づいて演算する補償器と、補正後の周波数指令に基づいて回転二軸座標上に設定した制御座標軸の位相を演算する位相演算手段と、補正後の周波数指令と制御座標軸の位相とに基づいて、電力変換手段に出力する電圧指令を演算する電圧指令演算手段とを備えるものであるため、従来の構成では速度制御系の機械的応答で制約されていたトルク応答性を向上することができる。   The control apparatus for an AC rotating machine according to the present invention includes a power conversion unit that outputs an AC voltage to the AC rotating machine, a current detecting unit that detects a current flowing through the AC rotating machine, and a current detected on a rotating biaxial coordinate. Current calculating means for converting to torque, torque calculating means for calculating the output torque output from the AC rotating machine based on the current on the rotating biaxial coordinates, and calculating the frequency command based on the deviation between the torque command and the output torque A frequency command calculating means, a compensator for calculating a frequency compensation amount for correcting the frequency command based on the torque command, and a phase for calculating the phase of the control coordinate axis set on the rotating biaxial coordinate based on the corrected frequency command Since it comprises a calculation means, and a voltage command calculation means for calculating a voltage command to be output to the power conversion means based on the corrected frequency command and the phase of the control coordinate axis, the conventional configuration It can improve the torque response that has been constrained by the mechanical response of the speed control system.

また、この発明に係る交流回転機の制御装置は、交流回転機へ交流電圧を出力する電力変換手段と、交流回転機に流れる電流を検出する電流検出手段と、検出電流を回転二軸座標上の電流へ変換する電流演算手段と、回転二軸座標上の電流に基づいて交流回転機が出力する出力トルクを演算するトルク演算手段と、トルク指令と出力トルクとの偏差に基づいて周波数指令を演算する周波数指令演算手段と、回転二軸座標上に設定した制御座標軸の位相を補正する位相補償量をトルク指令に基づいて演算する補償器と、周波数指令と位相補償量に基づいて制御座標軸の位相を演算する位相演算手段と、周波数指令と補正後の制御座標軸の位相とに基づいて、電力変換手段に出力する電圧指令を演算する電圧指令演算手段とを備えるものであるため、従来の構成では速度制御系の機械的応答で制約されていたトルク応答性を向上することができる。   The control device for an AC rotating machine according to the present invention includes a power conversion unit that outputs an AC voltage to the AC rotating machine, a current detecting unit that detects a current flowing through the AC rotating machine, and a detected current on a rotating biaxial coordinate. Current calculating means for converting the current into torque, torque calculating means for calculating the output torque output from the AC rotating machine based on the current on the rotating biaxial coordinates, and a frequency command based on the deviation between the torque command and the output torque. A frequency command calculating means for calculating, a compensator for calculating a phase compensation amount for correcting the phase of the control coordinate axis set on the rotating biaxial coordinate based on the torque command, and a control coordinate axis based on the frequency command and the phase compensation amount. Phase calculation means for calculating the phase, and voltage command calculation means for calculating a voltage command to be output to the power conversion means based on the frequency command and the phase of the corrected control coordinate axis. , In the conventional configuration can be improved torque response that has been constrained by the mechanical response of the speed control system.

また、この発明に係る交流回転機の制御装置は、交流回転機へ交流電圧を出力する電力変換手段と、交流回転機に流れる電流を検出する電流検出手段と、検出電流を回転二軸座標上の電流へ変換する電流演算手段と、回転二軸座標上の電圧指令と回転二軸座標上の電流に基づいて交流回転機が出力する出力電力を演算する電力演算手段と、電力指令と出力電力との偏差に基づいて周波数指令を演算する周波数指令演算手段と、周波数指令を補正する周波数補償量を電力指令に基づいて演算する補償器と、補正後の周波数指令に基づいて回転二軸座標上に設定した制御座標軸の位相を演算する位相演算手段と、補正後の周波数指令と制御座標軸の位相とに基づいて電力変換手段に出力する電圧指令および電力演算手段に出力する回転二軸座標上の電圧指令を演算する電圧指令演算手段とを備えるものであるため、従来の構成では速度制御系の機械的応答で制約されていた電力応答性を向上することができる。   The control device for an AC rotating machine according to the present invention includes a power conversion unit that outputs an AC voltage to the AC rotating machine, a current detecting unit that detects a current flowing through the AC rotating machine, and a detected current on a rotating biaxial coordinate. Current calculation means for converting the current into current, power calculation means for calculating the output power output from the AC rotating machine based on the voltage command on the rotating biaxial coordinates and the current on the rotating biaxial coordinates, the power command and the output power A frequency command calculation means for calculating a frequency command based on the deviation from the frequency, a compensator for calculating a frequency compensation amount for correcting the frequency command based on the power command, and a rotational biaxial coordinate based on the corrected frequency command. Phase calculation means for calculating the phase of the control coordinate axis set in the above, a voltage command output to the power conversion means based on the corrected frequency command and the phase of the control coordinate axis, and on the rotating biaxial coordinate output to the power calculation means For those and a voltage command calculating means for calculating a voltage command, in the conventional configuration can improve the power responsiveness that has been constrained by the mechanical response of the speed control system.

また、この発明に係る交流回転機の制御装置は、交流回転機へ交流電圧を出力する電力変換手段と、交流回転機に流れる電流を検出する電流検出手段と、検出電流を回転二軸座標上の電流へ変換する電流演算手段と、回転二軸座標上の電圧指令と回転二軸座標上の電流に基づいて交流回転機が出力する出力電力を演算する電力演算手段と、電力指令と出力電力との偏差に基づいて周波数指令を演算する周波数指令演算手段と、回転二軸座標上に設定した制御座標軸の位相を補正する位相補償量を電力指令に基づいて演算する補償器と、周波数指令と位相補償量に基づいて制御座標軸の位相を演算する位相演算手段と、周波数指令と補正後の制御座標軸の位相とに基づいて、電力変換手段に出力する電圧指令および電力演算手段に出力する回転二軸座標上の電圧指令を演算する電圧指令演算手段とを備えるものであるため、従来の構成では速度制御系の機械的応答で制約されていた電力応答性を向上することができる。   The control device for an AC rotating machine according to the present invention includes a power conversion unit that outputs an AC voltage to the AC rotating machine, a current detecting unit that detects a current flowing through the AC rotating machine, and a detected current on a rotating biaxial coordinate. Current calculation means for converting the current into current, power calculation means for calculating the output power output from the AC rotating machine based on the voltage command on the rotating biaxial coordinates and the current on the rotating biaxial coordinates, the power command and the output power A frequency command calculating means for calculating a frequency command based on the deviation from the control unit, a compensator for calculating a phase compensation amount for correcting the phase of the control coordinate axis set on the rotating biaxial coordinate based on the power command, a frequency command, Phase calculation means for calculating the phase of the control coordinate axis based on the phase compensation amount, and voltage command output to the power conversion means and rotation output to the power calculation means based on the frequency command and the corrected phase of the control coordinate axis For those and a voltage command calculation means for calculating a voltage command of the on-axis coordinates, in the conventional configuration can improve the power responsiveness that has been constrained by the mechanical response of the speed control system.

この発明の実施の形態1の交流回転機の制御装置に係るシステム構成図である。1 is a system configuration diagram according to a control device for an AC rotary machine of Embodiment 1 of the present invention. この発明の実施の形態2の交流回転機の制御装置に係るシステム構成図である。It is a system block diagram which concerns on the control apparatus of the alternating current rotating machine of Embodiment 2 of this invention. この発明の実施の形態3の交流回転機の制御装置に係るシステム構成図である。It is a system block diagram which concerns on the control apparatus of the alternating current rotating machine of Embodiment 3 of this invention. この発明の実施の形態4の交流回転機の制御装置に係るシステム構成図である。It is a system block diagram which concerns on the control apparatus of the alternating current rotating machine of Embodiment 4 of this invention. この発明の実施の形態4の交流回転機の制御装置に係る第2補償器の構成図である。It is a block diagram of the 2nd compensator which concerns on the control apparatus of the alternating current rotating machine of Embodiment 4 of this invention. この発明の実施の形態4の交流回転機の制御装置に係る応用例のシステム構成図である。It is a system block diagram of the application example which concerns on the control apparatus of the alternating current rotating machine of Embodiment 4 of this invention. この発明の実施の形態5の交流回転機の制御装置に係るシステム構成図の構造図である。It is a structure figure of the system block diagram which concerns on the control apparatus of the alternating current rotating machine of Embodiment 5 of this invention. この発明の実施の形態6の交流回転機の制御装置に係るシステム構成図である。It is a system block diagram which concerns on the control apparatus of the alternating current rotating machine of Embodiment 6 of this invention.

実施の形態1.
実施の形態1は、トルク制御系に補償器を設けて、短時間で周波数指令を補正することで、トルク応答性を向上させる本発明の交流回転機の制御装置に関するものである。
以下、本願発明の実施の形態1について、交流回転機の制御装置に係るシステム構成図である図1に基づいて説明する。
Embodiment 1 FIG.
The first embodiment relates to a control device for an AC rotating machine according to the present invention that improves torque response by providing a compensator in a torque control system and correcting a frequency command in a short time.
Hereinafter, Embodiment 1 of the present invention will be described with reference to FIG. 1 which is a system configuration diagram related to a control device for an AC rotating machine.

まず、本願発明の実施の形態1に係る交流回転機の制御装置のシステム構成について説明する。
図1は、本発明の実施の形態1に係る交流回転機の制御装置1と交流回転機2を含む交流回転機制御システムの構成を表したものである。
以下、交流回転機2として、主に三相同期機を例に挙げて説明するが、本発明は「三相」「同期機」に限定されるものではなく、その他、他の相数(三相以外の二相回転機等)や同期機とは異なる回転機(例えば誘導機)であっても同様に適用できる。また、本発明の交流回転機は、「交流電動機」「交流発電機」のいずれにも適用できる。
First, the system configuration of the control device for an AC rotating machine according to Embodiment 1 of the present invention will be described.
FIG. 1 shows the configuration of an AC rotating machine control system including an AC rotating machine control device 1 and an AC rotating machine 2 according to Embodiment 1 of the present invention.
Hereinafter, the AC rotating machine 2 will be described mainly by taking a three-phase synchronous machine as an example, but the present invention is not limited to “three-phase” and “synchronous machine”, and other numbers of phases (three The same applies to a rotating machine (for example, an induction machine) different from a synchronous machine or a two-phase rotating machine other than the phase). The AC rotating machine of the present invention can be applied to both “AC motor” and “AC generator”.

図1において、交流回転機の制御装置1は、インバータをはじめとする電力変換手段3と、電流検出手段4と、電流演算手段5と、位相演算手段6と、電圧指令演算手段7と、トルク演算手段8と、周波数指令演算手段9および補償器10から構成されている。   In FIG. 1, an AC rotating machine control device 1 includes an inverter and other power conversion means 3, current detection means 4, current calculation means 5, phase calculation means 6, voltage command calculation means 7, torque It comprises an arithmetic means 8, a frequency command arithmetic means 9 and a compensator 10.

次に、本発明の実施の形態1に係る交流回転機の制御装置1の機能および動作について、図1のシステム構成図を用いて説明する。
電力変換手段3は、記載されていない電源から直流電源の供給を受け、後述の電圧指令演算手段7から出力される三相電圧指令Vu*、Vv*、Vw*に基づいて三相電圧Vu、Vv、Vwを出力し、交流回転機2を駆動する。
なお、前記の記載されていない電源から直流電源を供給する手段として、例えば、直接直流電圧を出力する電源あるいは電池等の手段、単相あるいは三相の交流電源を公知のコンバータあるいは公知のダイオード(ブリッジ)とコンデンサとを用いた整流回路によって直流電圧に変換して直流電源を得る手段がある。
電流検出手段4は、交流回転機2の出力電流Iu、Ivを検出し、残りの一相の電流Iwは検出したIu、Ivに基づいて演算する(Iw=−Iu−Iv)。電流検出手段4は、図1に示すように2つの相だけに設けても、三相全てに設けても良い。
電流演算手段5は、電流検出手段4で検出した交流回転機2の出力電流Iu、Iv、Iwと後述の位相演算手段6から出力される回転二軸座標(以下dq軸と称す)上に設定した制御座標軸の位相θに基づいて、dq軸上の電流Id、Iqへ座標変換する。
出力電流Iu、Iv、Iwを、dq軸上の電流Id、Iqへ座標変換する式は(1)式である。
Next, functions and operations of the control device 1 for an AC rotating machine according to Embodiment 1 of the present invention will be described with reference to the system configuration diagram of FIG.
The power conversion means 3 receives a DC power supply from a power supply not described, and based on three-phase voltage commands Vu *, Vv *, Vw * output from a voltage command calculation means 7 described later, the three-phase voltage Vu, Vv and Vw are output and the AC rotating machine 2 is driven.
As a means for supplying a DC power from a power supply not described above, for example, a power supply that directly outputs a DC voltage or a means such as a battery, a single-phase or three-phase AC power supply, a known converter or a known diode ( There is a means for obtaining a DC power source by converting it into a DC voltage by a rectifier circuit using a bridge) and a capacitor.
The current detection means 4 detects the output currents Iu and Iv of the AC rotating machine 2, and the remaining one-phase current Iw is calculated based on the detected Iu and Iv (Iw = −Iu−Iv). The current detection means 4 may be provided in only two phases as shown in FIG. 1 or in all three phases.
The current calculation means 5 is set on the output currents Iu, Iv, Iw of the AC rotating machine 2 detected by the current detection means 4 and the rotating biaxial coordinates (hereinafter referred to as dq axes) output from the phase calculation means 6 described later. Based on the phase θ of the control coordinate axis, the coordinates are converted into currents Id and Iq on the dq axis.
The equation for coordinate-converting the output currents Iu, Iv, Iw to the currents Id, Iq on the dq axis is equation (1).

Figure 2012205434
Figure 2012205434

位相演算手段6は、後述の補正された周波数指令ω1*を積分して、回転二軸座標上に設定した制御座標軸の位相θを求める。位相演算手段6は、電流演算手段5と後述の電圧指令演算手段7へ位相θを出力する。このとき電流検出手段4で検出された出力電流Iu、Iv、Iwの値が、電力変換手段3から出力される三相電圧Vu、Vv、Vwに反映されるまでの制御演算遅れ時間を考慮し、電流演算手段5へ出力する位相と電圧指令演算手段7へ出力する位相を異なる値にしても良い。この場合、電流演算手段5へ出力する位相をθx、電圧指令演算手段7へ出力する位相をθyとした時、θx=∫ω1dt(=θ)、θy=θx+θd(θd:制御演算遅れ時間に基づく位相補正量)となる。
電圧指令演算手段7は、後述の補正された周波数指令ω1*とdq軸上の電流Id、Iqおよび位相θとに基づいて三相電圧指令Vu*、Vv*、Vw*を演算する。
三相電圧指令Vu*、Vv*、Vw*を演算する方法として、一旦dq軸上の電圧指令Vd*、Vq*を演算し、Vd*、Vq*を位相θとに基づいて三相電圧指令Vu*、Vv*、Vw*へ座標変換する方法を以下に説明する。
The phase calculation means 6 integrates a corrected frequency command ω1 *, which will be described later, to determine the phase θ of the control coordinate axis set on the rotating biaxial coordinates. The phase calculation means 6 outputs the phase θ to the current calculation means 5 and the voltage command calculation means 7 described later. At this time, the control calculation delay time until the values of the output currents Iu, Iv, Iw detected by the current detection unit 4 are reflected in the three-phase voltages Vu, Vv, Vw output from the power conversion unit 3 is taken into consideration. The phase output to the current calculation means 5 and the phase output to the voltage command calculation means 7 may be different values. In this case, θx = ∫ω1dt (= θ), θy = θx + θd (θd: based on control calculation delay time) where θx is the phase output to the current calculation means 5 and θy is the phase output to the voltage command calculation means 7. Phase correction amount).
The voltage command calculation means 7 calculates three-phase voltage commands Vu *, Vv *, and Vw * based on a corrected frequency command ω1 *, which will be described later, and currents Id and Iq on the dq axis and phase θ.
As a method of calculating the three-phase voltage commands Vu *, Vv *, and Vw *, the voltage commands Vd * and Vq * on the dq axis are once calculated and the three-phase voltage commands are calculated based on the phase θ and Vd * and Vq *. A method for converting the coordinates to Vu *, Vv *, and Vw * will be described below.

電圧指令Vd*、Vq*を演算する方法の例として、例えば、公知のV/F一定制御と同様の周波数指令ω1*に比例係数(K0とする)を掛けた項に、交流回転機の巻線抵抗Rにおける電圧降下分と電機子反作用に起因する電圧降下分を加減した値にする方法がある。これを数式で表すと(2)、(3)式となる。   As an example of a method for calculating the voltage commands Vd * and Vq *, for example, a term obtained by multiplying a frequency command ω1 *, which is similar to the known V / F constant control, by a proportional coefficient (K0) is used. There is a method in which the voltage drop in the line resistance R and the voltage drop caused by the armature reaction are adjusted to a value. This can be expressed by equations (2) and (3).

Figure 2012205434
Figure 2012205434

Figure 2012205434
Figure 2012205434

ただし、Ld、Lqは、dq軸上のインダクタンス、K1、K2は補正係数を表す。
(2)、(3)式に対して、さらなる安定化のために、(4)、(5)式のように安定化補償電圧Vcd、Vcqを加えても良い。
この安定化補償電圧Vcd、Vcqの例として、交流回転機の形状に起因して発生するような基本波周波数の整数倍の周波数電流の歪みを補償する電圧、あるいは、インバータをはじめとする電力変換手段3のデッドタイム等に起因する電圧誤差を補償する電圧等、制御系をより安定化させるために補償する電圧がある。また、後述する三相電圧指令への座標変換後に補償する方式でも良い。
However, Ld and Lq represent inductances on the dq axis, and K1 and K2 represent correction coefficients.
In order to further stabilize the equations (2) and (3), stabilization compensation voltages Vcd and Vcq may be added as in equations (4) and (5).
Examples of the stabilization compensation voltages Vcd and Vcq include a voltage that compensates for distortion of a frequency current that is an integral multiple of the fundamental frequency as generated due to the shape of the AC rotating machine, or power conversion including an inverter. There is a voltage that is compensated to further stabilize the control system, such as a voltage that compensates for a voltage error caused by the dead time of the means 3. Further, a method of compensating after coordinate conversion to a three-phase voltage command described later may be used.

Figure 2012205434
Figure 2012205434

Figure 2012205434
Figure 2012205434

さらに、(2)、(3)式において、各式の第1項で振動的となり不安定化の要因となることや、電流検出環境のノイズからの影響を抑制するため、演算に用いるdq軸上の電流Id、Iqは、適切な応答に調整したフィルタに通した値を使用しても良い。   Further, in the equations (2) and (3), the dq axis used in the calculation is used to suppress the influence of noise in the current detection environment and the vibration in the first term of each equation. As the currents Id and Iq above, values passed through a filter adjusted to an appropriate response may be used.

(2)、(3)式(あるいは(4)、(5)式)で得られた電圧指令Vd*、Vq*と位相θ(θの代わりに前記θyでも良い)とに基づいて、三相電圧指令Vu*、Vv*、Vw*へ座標変換する。
この座標変換式は(6)式となる。
Based on the voltage commands Vd *, Vq * obtained by the equations (2), (3) (or (4), (5)) and the phase θ (θy may be substituted for θ) Coordinates are converted to voltage commands Vu *, Vv *, and Vw *.
This coordinate conversion formula is the formula (6).

Figure 2012205434
Figure 2012205434

トルク演算手段8は、dq軸上の電流の内q軸電流Iqを用いて交流回転機出力トルクτを演算する。出力トルク演算式は(7)式となる。   The torque calculation means 8 calculates the AC rotating machine output torque τ using the q-axis current Iq of the current on the dq axis. The output torque calculation formula is the formula (7).

Figure 2012205434
Figure 2012205434

ただし、Ktはq軸電流Iqに対する発生トルクの比を表すトルク定数と呼ばれるパラメータで、回転機夫々に固有の値である。このKtは、交流回転機が界磁磁束を持つ回転機であれば、永久磁石や界磁巻線によって作り出される界磁磁束φと回転機極対数Pmによって決まる値である。   However, Kt is a parameter called a torque constant that represents the ratio of the generated torque to the q-axis current Iq, and is a value specific to each rotating machine. If the AC rotating machine is a rotating machine having a field magnetic flux, Kt is a value determined by the field magnetic flux φ created by a permanent magnet or field winding and the number Pm of rotating machine pole pairs.

また、実施の形態1では、Ktは出力トルク演算にq軸電流Iqのみを用いているが、交流回転機が磁気的突極性を持つ同期機であれば、d軸電流Idの値も使用して(8)式にしたがって出力トルクτを演算しても良い。   In the first embodiment, Kt uses only the q-axis current Iq for calculating the output torque. However, if the AC rotating machine is a synchronous machine having magnetic saliency, the value of the d-axis current Id is also used. Then, the output torque τ may be calculated according to the equation (8).

Figure 2012205434
Figure 2012205434

周波数指令演算手段9は、交流回転機制御システム外部から入力されるトルク指令τ*とトルク演算手段8で演算された出力トルクτとの偏差に基づいて、周波数指令ω*を出力する。具体的には、トルク指令τ*と出力トルクτとの偏差Δτ(=τ*−τ)を加減算器11で演算し、偏差Δτを入力とする公知の比例積分(PI)制御演算を行い、比例積分演算出力ω0を求め、このω0に所定の周波数設定値ωsetを加えた値を最終的に周波数指令ω*として出力する。   The frequency command calculation means 9 outputs a frequency command ω * based on the deviation between the torque command τ * input from the outside of the AC rotating machine control system and the output torque τ calculated by the torque calculation means 8. Specifically, a deviation Δτ (= τ * −τ) between the torque command τ * and the output torque τ is calculated by the adder / subtractor 11, and a known proportional integration (PI) control calculation using the deviation Δτ as an input is performed. A proportional-integral calculation output ω0 is obtained, and a value obtained by adding a predetermined frequency set value ωset to ω0 is finally output as a frequency command ω *.

具体的には、出力トルクがトルク指令に達していないτ*>τの場合、Δτ>0となり、周波数設定値ωsetに対して出力トルクを上げるように比例積分演算出力ω0を増やす動作となる。また、出力トルクがトルク指令を超えたτ>τ*の場合、Δτ<0となり、周波数設定値ωsetに対して出力トルクを下げるように比例積分演算出力ω0を減らす動作となる。
この演算を数式で表すと(9)式となる。
Specifically, when τ *> τ where the output torque has not reached the torque command, Δτ> 0, and the operation of increasing the proportional integral calculation output ω0 so as to increase the output torque with respect to the frequency set value ωset is performed. When τ> τ * when the output torque exceeds the torque command, Δτ <0, and the proportional-integral calculation output ω0 is decreased so as to decrease the output torque with respect to the frequency setting value ωset.
When this calculation is expressed by a mathematical formula, the formula (9) is obtained.

Figure 2012205434
Figure 2012205434

ただし、Kcpは、比例積分(PI)制御演算の比例ゲイン、Kciは比例積分(PI)制御演算の積分ゲイン、sはラプラス演算子である。なお、Kcp=0、すなわち積分(I)制御演算のみを行うようにしても良い。   Here, Kcp is a proportional gain of proportional integral (PI) control calculation, Kci is an integral gain of proportional integral (PI) control calculation, and s is a Laplace operator. Note that Kcp = 0, that is, only integral (I) control calculation may be performed.

このように周波数指令ω*を設定すれば、出力トルクτがトルク指令τ*に追従しながら、かつ、所定の周波数設定値ωsetを中心とした周波数補償が行われるため、周波数設定値ωsetから大きく逸脱することなく、交流回転機2を駆動(加減速)することできる。   If the frequency command ω * is set in this way, the output torque τ follows the torque command τ *, and frequency compensation is performed with a predetermined frequency set value ωset as the center. The AC rotating machine 2 can be driven (accelerated / decelerated) without deviating.

補償器10は、トルク指令τ*に基づいて周波数補償量Δωcを演算する。補償器10は、短時間で周波数指令ω*を調整するように、入力に対して主に比例制御、あるいは微分制御、さらにはその両方を組み合わせた制御演算を行う。
補償器10で行われる演算を数式で表すと(10)式となる。
The compensator 10 calculates the frequency compensation amount Δωc based on the torque command τ *. The compensator 10 mainly performs proportional control or differential control on the input, or a control operation that combines both so as to adjust the frequency command ω * in a short time.
When the calculation performed by the compensator 10 is expressed by a mathematical formula, the formula (10) is obtained.

Figure 2012205434
Figure 2012205434

ただし、Ktpは比例微分(PD)制御演算の比例ゲイン、Ktdは比例積分(PD)制御演算の微分ゲイン、sはラプラス演算子である。なお、Ktp、Ktdの何れか0であっても良い。   Here, Ktp is a proportional gain of proportional differential (PD) control calculation, Ktd is a differential gain of proportional integral (PD) control calculation, and s is a Laplace operator. Note that either Ktp or Ktd may be 0.

補償器10で演算された周波数補償量Δωcは、加減算器12において周波数指令ω*と加算されて、補正された周波数指令ω1*(=ω*+Δωc)となる。周波数指令ω1*は位相演算手段6と電圧指令演算手段7に入力される。   The frequency compensation amount Δωc calculated by the compensator 10 is added to the frequency command ω * by the adder / subtractor 12 to become a corrected frequency command ω1 * (= ω * + Δωc). The frequency command ω 1 * is input to the phase calculation means 6 and the voltage command calculation means 7.

トルク制御系によるフィードバック制御構成では、トルク応答を高くするのは容易ではないが、この補償器10を追加し、周波数補償量Δωcに基づく周波数指令ω*の補正を行うことで、短時間で周波数指令ω*を調整することができるため、トルク応答性が向上する。   In the feedback control configuration by the torque control system, it is not easy to increase the torque response, but by adding this compensator 10 and correcting the frequency command ω * based on the frequency compensation amount Δωc, the frequency can be shortened in a short time. Since the command ω * can be adjusted, the torque response is improved.

以上説明したように、実施の形態1に係る交流回転機の制御装置1では、トルク制御系に補償器10を追加したので、短時間で周波数指令ω*を調整することができ、従来の構成では速度制御系の機械的応答で制約されていたトルク応答性の向上が可能となり、所望のトルク追従性が得られる効果がある。   As described above, in the AC rotating machine control device 1 according to the first embodiment, the compensator 10 is added to the torque control system, so the frequency command ω * can be adjusted in a short time, and the conventional configuration In this case, it is possible to improve the torque response that is restricted by the mechanical response of the speed control system, and there is an effect that desired torque followability can be obtained.

実施の形態2.
実施の形態2は、トルク制御系に補償器を設けて、短時間で制御座標軸の位相θを調整することで、トルク応答性を向上させる本発明の交流回転機の制御装置に関するものである。
Embodiment 2. FIG.
The second embodiment relates to a control device for an AC rotating machine according to the present invention that improves torque response by providing a compensator in a torque control system and adjusting the phase θ of a control coordinate axis in a short time.

図2は、本発明の実施の形態2に係る交流回転機の制御装置21と交流回転機2を含む交流回転機制御システムの構成を表したものである。図2において、図1と同一あるいは相当部分には、同一の符号を付している。
本願発明の実施の形態2について、実施の形態1に係る交流回転機の制御装置1と異なる位相補償量Δθcを演算する補償器23と位相補償量Δθcが入力される位相演算手段22の機能、動作を中心に、図2のシステム構成図を用いて説明する。
FIG. 2 shows the configuration of an AC rotating machine control system including the AC rotating machine control device 21 and the AC rotating machine 2 according to Embodiment 2 of the present invention. In FIG. 2, the same or corresponding parts as in FIG.
Regarding the second embodiment of the present invention, the function of the compensator 23 for calculating the phase compensation amount Δθc different from the control device 1 for the AC rotating machine according to the first embodiment and the function of the phase calculation means 22 to which the phase compensation amount Δθc is input, The operation will be mainly described with reference to the system configuration diagram of FIG.

本実施の形態2では、補償器23によりトルク指令τ*に基づいて位相補償量Δθcを演算する点と、周波数指令ω1*を積分することで得られる位相に位相補償量Δθcを加算し、回転二軸座標上に設定した制御座標軸の位相θを補正する点が実施の形態1と異なる。この点以外は、実施の形態1と同一の構成である。   In the second embodiment, the phase compensation amount Δθc is added to the phase obtained by integrating the frequency command ω1 * and the point at which the compensator 23 calculates the phase compensation amount Δθc based on the torque command τ *. The difference from the first embodiment is that the phase θ of the control coordinate axis set on the biaxial coordinate is corrected. Except this point, the configuration is the same as that of the first embodiment.

補償器23は、トルク指令τ*に基づいて位相補償量Δθcを演算する。本補償器23は、実施の形態1の補償器10と同様に、トルク応答性の向上が目的であり、短時間で回転二軸座標上に設定した制御座標軸の位相θを調整する(主に位相を進ませる)。
具体的には、入力に対して主に比例制御、あるいは微分制御、さらにはその両方を組み合わせた制御演算を行う。補償器23で行われる演算を数式で表すと(11)式となる。
The compensator 23 calculates the phase compensation amount Δθc based on the torque command τ *. Similar to the compensator 10 of the first embodiment, the compensator 23 is intended to improve torque response, and adjusts the phase θ of the control coordinate axis set on the rotating biaxial coordinate in a short time (mainly Advance the phase).
Specifically, control calculation is performed mainly for proportional control, differential control, or a combination of both. When the calculation performed by the compensator 23 is expressed by a mathematical formula, the formula (11) is obtained.

Figure 2012205434
Figure 2012205434

ただし、Ktp1は比例微分(PD)制御演算の比例ゲイン、Ktd1は比例積分(PD)制御演算の微分ゲイン、sはラプラス演算子である。なお、Ktp1、Ktd1の何れか0であっても良い。   However, Ktp1 is a proportional gain of proportional differential (PD) control calculation, Ktd1 is a differential gain of proportional integral (PD) control calculation, and s is a Laplace operator. Note that either Ktp1 or Ktd1 may be 0.

位相演算手段22は、周波数指令ω*を積分して、さらに位相補償量Δθcを加えることにより、回転二軸座標上に設定した制御座標軸の位相θを求める。位相演算手段22は電流演算手段5と後述の電圧指令演算手段7へ補正後の位相θを出力するが、実施の形態1同様に、電流検出手段4で検出された出力電流Iu、Iv、Iwの値が電力変換手段3から出力される三相電圧Vu、Vv、Vwに反映されるまでの制御演算遅れ時間を考慮し、電流演算手段5へ出力する位相と電圧指令演算手段7へ出力する位相を異なる値にしても良い。この場合、電流演算手段5へ出力する位相をθx、電圧指令演算手段7へ出力する位相をθyとした時、θx=∫ω1dt+Δθc(=θ)、θy=θx+θd(θd:制御演算遅れ時間に基づく位相補正量)となる。   The phase calculation means 22 integrates the frequency command ω * and further adds a phase compensation amount Δθc to obtain the phase θ of the control coordinate axis set on the rotating biaxial coordinates. The phase calculating means 22 outputs the corrected phase θ to the current calculating means 5 and the voltage command calculating means 7 described later, but the output currents Iu, Iv, Iw detected by the current detecting means 4 are the same as in the first embodiment. In consideration of the control calculation delay time until the value is reflected in the three-phase voltages Vu, Vv and Vw output from the power conversion means 3, the phase output to the current calculation means 5 and the voltage output to the voltage command calculation means 7 are output. The phase may be a different value. In this case, θx = ∫ω1dt + Δθc (= θ), θy = θx + θd (θd: based on the control calculation delay time, where θx is the phase output to the current calculation means 5 and θy is the phase output to the voltage command calculation means 7. Phase correction amount).

トルク制御系によるフィードバック制御構成では、トルク応答を高くするのは容易ではないが、この補償器23を追加し、位相補償量Δθcに基づく回転二軸座標上に設定した制御座標軸の位相θの補正を行うことで、短時間で制御座標軸の位相θを調整できるため、トルク応答性が向上する。   In the feedback control configuration using the torque control system, it is not easy to increase the torque response, but this compensator 23 is added to correct the phase θ of the control coordinate axis set on the rotating biaxial coordinate based on the phase compensation amount Δθc. Since the phase θ of the control coordinate axis can be adjusted in a short time, the torque response is improved.

実施の形態2では、実施の形態1で説明した周波数指令ω*に対して補償する補償器は設けていないが、本実施の形態2の構成に加えて、実施の形態1で説明したような周波数指令ω*に対して周波数補償量Δωc分を補償する補償器を追加する構成とすることもできる。   In the second embodiment, a compensator that compensates for the frequency command ω * described in the first embodiment is not provided. However, in addition to the configuration of the second embodiment, as described in the first embodiment. A compensator that compensates the frequency compensation amount Δωc for the frequency command ω * may be added.

以上説明したように、実施の形態2に係る交流回転機の制御装置21では、トルク制御系に補償器23を追加したので、短時間で制御座標軸の位相θを調整することができ、従来の構成では速度制御系の機械的応答で制約されていたトルク応答性の向上が可能となり、所望のトルク追従性が得られる効果がある。   As described above, in the control device 21 for an AC rotating machine according to the second embodiment, the compensator 23 is added to the torque control system, so that the phase θ of the control coordinate axis can be adjusted in a short time. With the configuration, it is possible to improve the torque response that is limited by the mechanical response of the speed control system, and there is an effect that desired torque followability can be obtained.

実施の形態3.
実施の形態3は、実施の形態2の交流回転機の制御装置21に対して、トルク指令と負荷角の関係から制御座標軸の位相θを調整する構成とした交流回転機の制御装置に関するものである。
Embodiment 3 FIG.
The third embodiment relates to a control device for an AC rotating machine configured to adjust the phase θ of the control coordinate axis from the relationship between the torque command and the load angle with respect to the control device 21 for the AC rotating machine of the second embodiment. is there.

図3は、本発明の実施の形態3に係る交流回転機の制御装置31と交流回転機2を含む交流回転機制御システムの構成を表したものである。図3において、図2と同一あるいは相当部分には、同一の符号を付している。
本願発明の実施の形態3について、実施の形態2に係る交流回転機の制御装置21と異なる電圧指令演算手段32と補償器33の機能、動作を中心に、図3のシステム構成図を用いて説明する。
FIG. 3 shows the configuration of an AC rotating machine control system including the AC rotating machine control device 31 and the AC rotating machine 2 according to Embodiment 3 of the present invention. In FIG. 3, the same or corresponding parts as those in FIG.
With respect to the third embodiment of the present invention, the system configuration diagram of FIG. 3 is used focusing on the functions and operations of the voltage command calculation means 32 and the compensator 33 which are different from the control device 21 of the AC rotating machine according to the second embodiment. explain.

電圧指令演算手段32は、実施の形態2における電圧指令演算手段7と演算内容は同じであるが、補償器33へdq軸上の電圧指令Vd*、Vq*を出力する点が異なる。   The voltage command calculation means 32 has the same calculation contents as the voltage command calculation means 7 in the second embodiment, but differs in that voltage commands Vd * and Vq * on the dq axis are output to the compensator 33.

補償器33は、トルク指令τ*と負荷角δとに基づいて位相補償量Δθcを演算する。負荷角δとは、q軸に対するd軸電圧(Vd)ベクトルとq軸電圧(Vq)ベクトルの合成ベクトルとの成す角であり、(12)式の関係により得られる。
この負荷角δによって、トルクの操作が可能であることが一般的に知られている。
The compensator 33 calculates the phase compensation amount Δθc based on the torque command τ * and the load angle δ. The load angle δ is an angle formed by a d-axis voltage (Vd) vector with respect to the q-axis and a combined vector of the q-axis voltage (Vq) vector, and is obtained by the relationship of Expression (12).
It is generally known that torque can be manipulated by the load angle δ.

Figure 2012205434
Figure 2012205434

したがって、電圧指令演算手段32において(2)、(3)式(あるいは(4)、(5)式)で演算されるdq軸上の電圧指令Vd*、Vq*に基づいて負荷角δを演算し、予め求めておいたトルク指令τ*と負荷角δとの関係から、適切な位相補償量Δθcを求める。あるいは、負荷角δそのものの値を位相補償量Δθcとしても良い。   Therefore, the load angle δ is calculated based on the voltage commands Vd * and Vq * on the dq axis calculated by the equations (2), (3) (or (4), (5)) in the voltage command calculating means 32. Then, an appropriate phase compensation amount Δθc is obtained from the relationship between the previously obtained torque command τ * and the load angle δ. Alternatively, the value of the load angle δ itself may be used as the phase compensation amount Δθc.

トルク制御系によるフィードバック制御構成では、トルク応答を高くするのは容易ではないが、この補償器33を追加し、実施の形態2とは異なる演算により得られた位相補償量Δθcに基づく回転二軸座標上に設定した制御座標軸の位相θの補正を行うことで、短時間で前記制御座標軸の位相θを調整することができるため、トルク応答性が向上する。   In the feedback control configuration by the torque control system, it is not easy to increase the torque response, but this compensator 33 is added, and the rotating biaxial based on the phase compensation amount Δθc obtained by the calculation different from the second embodiment By correcting the phase θ of the control coordinate axis set on the coordinates, the phase θ of the control coordinate axis can be adjusted in a short time, so that torque response is improved.

以上説明したように、実施の形態3に係る交流回転機の制御装置31では、トルク制御系に補償器33を追加したので、短時間で制御座標軸の位相θを調整することができ、従来の構成では速度制御系の機械的応答で制約されていたトルク応答性の向上が可能となり、所望の出力トルク追従性が得られる効果がある。   As described above, in the control device 31 for an AC rotary machine according to the third embodiment, the compensator 33 is added to the torque control system, so that the phase θ of the control coordinate axis can be adjusted in a short time. With the configuration, it is possible to improve the torque response that is restricted by the mechanical response of the speed control system, and the desired output torque followability can be obtained.

実施の形態4.
実施の形態4は、実施の形態1の交流回転機の制御装置1に対して、さらに第2補償器を設けて、出力トルクや電流の振動を抑制し安定した制御が可能な交流回転機の制御装置に関するものである。
Embodiment 4 FIG.
In the fourth embodiment, a second compensator is further provided with respect to the control device 1 for the AC rotating machine of the first embodiment, and the AC rotating machine is capable of stable control by suppressing output torque and current vibration. The present invention relates to a control device.

図4は、本発明の実施の形態4に係る交流回転機の制御装置41と交流回転機2を含む交流回転機制御システムの構成を表したものである。図5は、交流回転機の制御装置41の構成機器である第2補償器の構成図である。
図4において、図1と同一あるいは相当部分には、同一の符号を付している。
本願発明の実施の形態4について、実施の形態1に係る交流回転機の制御装置1に追加された第2補償器42の機能、動作を中心に、図4のシステム構成図および図5の構成図を用いて説明する。
FIG. 4 shows the configuration of an AC rotating machine control system including the AC rotating machine control device 41 and the AC rotating machine 2 according to Embodiment 4 of the present invention. FIG. 5 is a configuration diagram of a second compensator that is a component device of the control device 41 of the AC rotating machine.
In FIG. 4, the same or corresponding parts as in FIG.
Regarding the fourth embodiment of the present invention, the system configuration diagram of FIG. 4 and the configuration of FIG. 5 centering on the function and operation of the second compensator 42 added to the control device 1 for an AC rotating machine according to the first embodiment. This will be described with reference to the drawings.

第2補償器42は、電流を所望の値に制御する電流偏差に基づく比例積分(PI)制御系を構成しない場合における負荷変化時や急加速時に発生する振動、脱調現象およびオーバーシュートによる過電流現象を抑制する機能を有する。実施の形態1の補償器10による周波数補償動作に加えて、第2補償器42をさらに追加することで、出力トルクτに影響するq軸電流Iqに基づいて新たな補償を行う。   The second compensator 42 is an overshoot due to vibration, step-out phenomenon, and overshoot that occurs during load change or sudden acceleration when a proportional integral (PI) control system based on current deviation that controls current to a desired value is not configured. It has a function to suppress current phenomenon. In addition to the frequency compensation operation by the compensator 10 of the first embodiment, a second compensator 42 is further added to perform new compensation based on the q-axis current Iq that affects the output torque τ.

図5において、第2補償器42は、第1フィルタ44と第2フィルタ45の2つのローパスフィルタとから構成される。第2フィルタ45の遮断周波数は、第1フィルタ44の遮断周波数の1/10〜1/100程度に設定される。
第1フィルタ44は、q軸電流Iqの高周波数成分を低減させ、Iqf1を出力する。第2フィルタ45は、Iqf1に対して、さらに低い周波数成分を減衰させたIqf2を出力する。
In FIG. 5, the second compensator 42 includes two low-pass filters, a first filter 44 and a second filter 45. The cutoff frequency of the second filter 45 is set to about 1/10 to 1/100 of the cutoff frequency of the first filter 44.
The first filter 44 reduces the high frequency component of the q-axis current Iq and outputs Iqf1. The second filter 45 outputs Iqf2 in which a lower frequency component is attenuated with respect to Iqf1.

フィルタリングした値Iqf1とIqf2の差分に所定の比例ゲインKfを乗算した値を第2補償器42の出力である第2周波数補償量Δωc2とし、加減算器43において、周波数指令ω*と周波数補償量Δωcとの加算値から第2周波数補償量Δωc2を減算する。
すなわち、q軸電流Iqに含まれる電力変換手段3起因の電流高周波成分のような高い周波数成分と、直流成分および低周波成分とを除去した比較的駆動周波数帯域(周波数指令ω*)に近接した周波数成分のみに基づいて周波数指令ω*に対する周波数補償を行う。
第2補償器42と加減算器43で行われる演算を数式で表すと(13)、(14)式となる。
A value obtained by multiplying the difference between the filtered values Iqf1 and Iqf2 by a predetermined proportional gain Kf is set as a second frequency compensation amount Δωc2 that is the output of the second compensator 42. The second frequency compensation amount Δωc2 is subtracted from the added value.
That is, it is close to a relatively driving frequency band (frequency command ω *) in which a high frequency component such as a current high frequency component caused by the power conversion means 3 included in the q-axis current Iq and a direct current component and a low frequency component are removed. Frequency compensation for the frequency command ω * is performed based only on the frequency component.
The calculations performed by the second compensator 42 and the adder / subtractor 43 are expressed by equations (13) and (14).

Figure 2012205434
Figure 2012205434

Figure 2012205434
Figure 2012205434

実施の形態4の交流回転機の制御装置41は、実施の形態1の交流回転機の制御装置1の構成に第2補償器42を追加したものであるが、実施の形態2(あるいは実施の形態3)の交流回転機の制御装置21(あるいは31)に第2補償器42を追加することもできる。
実施の形態2の交流回転機の制御装置21に第2補償器42を追加した交流回転機の制御装置51のシステム構成を図6に示す。
The AC rotating machine control device 41 according to the fourth embodiment is obtained by adding a second compensator 42 to the configuration of the AC rotating machine control device 1 according to the first embodiment. The second compensator 42 may be added to the control device 21 (or 31) of the AC rotating machine of the third form).
FIG. 6 shows a system configuration of an AC rotating machine control device 51 in which a second compensator 42 is added to the AC rotating machine control device 21 of the second embodiment.

以上説明したように、実施の形態4に係る交流回転機の制御装置41では、実施の形態1に係る交流回転機の制御装置1に、第2補償器42を追加したので、実施の形態1の効果、すなわち、従来の構成では速度制御系の機械的応答で制約されていたトルク応答性の向上が可能となり、所望のトルク追従性が得られる効果に加えて、さらに出力トルクや電流の振動を抑制し、脱調を防止して安定した制御が実現可能になる効果がある。   As described above, in the AC rotating machine control device 41 according to the fourth embodiment, the second compensator 42 is added to the AC rotating machine control device 1 according to the first embodiment. In other words, in addition to the effect of obtaining the desired torque follow-up, it is possible to improve the torque response, which is limited by the mechanical response of the speed control system in the conventional configuration. Is suppressed, and step-out is prevented and stable control can be realized.

実施の形態5.
実施の形態5は、電力制御系に補償器を設けて、短時間で周波数指令を補正することで、電力応答性を向上させる本発明の交流回転機の制御装置に関するものである。
図7は、本発明の実施の形態5に係る交流回転機の制御装置61と交流回転機2を含む交流回転機制御システムの構成を表したものである。図7において、図1と同一あるいは相当部分には、同一の符号を付している。
本発明の実施の形態5に係る交流回転機の制御装置61の機能および動作について、図7のシステム構成図を用いて説明する。
Embodiment 5 FIG.
Embodiment 5 relates to a control device for an AC rotating machine according to the present invention that improves power response by providing a compensator in a power control system and correcting a frequency command in a short time.
FIG. 7 shows the configuration of an AC rotating machine control system including the AC rotating machine control device 61 and the AC rotating machine 2 according to Embodiment 5 of the present invention. In FIG. 7, the same or corresponding parts as those in FIG.
The function and operation of the AC rotary machine control device 61 according to Embodiment 5 of the present invention will be described with reference to the system configuration diagram of FIG.

図7において、交流回転機の制御装置61は、インバータをはじめとする電力変換手段3と、電流検出手段4と、電流演算手段5と、位相演算手段6と、電圧指令演算手段63と、電力演算手段62と、周波数指令演算手段64、補償器65とから構成される。
これらの機能、動作について以下に説明する。
交流回転機の制御装置61は、電力変換手段3と、電流検出手段4と、電流演算手段5と、位相演算手段6に関しては、実施の形態1と同一であるため説明を省略し、電力演算手段62、電圧指令演算手段63、周波数指令演算手段64および補償器65の機能、動作を中心に説明する。
In FIG. 7, the control device 61 of the AC rotating machine includes power conversion means 3 including an inverter, current detection means 4, current calculation means 5, phase calculation means 6, voltage command calculation means 63, power The calculation means 62, the frequency command calculation means 64, and the compensator 65 are comprised.
These functions and operations will be described below.
The control device 61 of the AC rotating machine is the same as that in the first embodiment with respect to the power conversion means 3, the current detection means 4, the current calculation means 5, and the phase calculation means 6, and therefore the description thereof is omitted. The function and operation of the means 62, voltage command calculation means 63, frequency command calculation means 64 and compensator 65 will be mainly described.

電圧指令演算手段63は、実施の形態1における電圧指令演算手段7と演算内容は同じであるが、(2)、(3)式(あるいは(4)、(5)式)で演算されるdq軸上の電圧指令Vd*、Vq*を後述の電力演算手段62へ出力する点と、交流回転機2の演算回転速度ωrを演算し、除算器67へ出力する点が異なる。   The voltage command calculation means 63 has the same calculation content as the voltage command calculation means 7 in the first embodiment, but is calculated by equations (2), (3) (or (4), (5)). The difference is that the voltage commands Vd * and Vq * on the shaft are output to the power calculation means 62 described later, and the calculation rotational speed ωr of the AC rotating machine 2 is calculated and output to the divider 67.

交流回転機2の演算回転速度ωrは、交流回転機2が同期回転機であれば、電圧指令演算手段63へ入力される補正された周波数指令ω1*と一致し、この周波数ω1*をそのまま、あるいは適切な補正を加えた上で除算器67へ出力される。
交流回転機2が誘導回転機であれば、周波数ω1*に対してすべり周波数相当分の周波数補正を加えた上で除算器67へ出力される。
If the AC rotary machine 2 is a synchronous rotary machine, the calculated rotational speed ωr of the AC rotary machine 2 coincides with the corrected frequency command ω1 * input to the voltage command calculation means 63, and this frequency ω1 * is used as it is. Alternatively, it is output to the divider 67 after appropriate correction.
If the AC rotating machine 2 is an induction rotating machine, it is output to the divider 67 after frequency correction corresponding to the slip frequency is added to the frequency ω1 *.

電力演算手段62は、dq軸上の電圧指令Vd*、Vq*とdq軸上の電流Id、Iqとを用いて、交流回転機出力電力Pを演算する。出力電力Pの演算式は(15)式となる。   The power calculation means 62 calculates the AC rotating machine output power P using the voltage commands Vd * and Vq * on the dq axis and the currents Id and Iq on the dq axis. The calculation formula of the output power P is the formula (15).

Figure 2012205434
Figure 2012205434

周波数指令演算手段64は、交流回転機制御システム外部から入力される電力指令P*と電力演算手段62で演算された出力電力Pとの偏差ΔPを演算回転速度ωrで除算した値に基づいて周波数指令ω*を出力する。
具体的には、電力指令P*と出力電力Pの偏差ΔP(=P*−P)を加減算器66で演算し、除算器67で偏差ΔPを演算回転速度ωrで除算する。この値は実施の形態1のΔτに相当し、この入力に対して公知の比例積分(PI)制御演算を行い、比例積分演算出力ω0を求め、このω0に所定の周波数設定値ωsetを加えた値を最終的に周波数指令ω*として出力する。
The frequency command calculation means 64 has a frequency based on a value obtained by dividing the deviation ΔP between the power command P * input from the outside of the AC rotating machine control system and the output power P calculated by the power calculation means 62 by the calculated rotation speed ωr. Command ω * is output.
Specifically, the deviation ΔP (= P * −P) between the power command P * and the output power P is calculated by the adder / subtractor 66, and the deviation ΔP is divided by the calculated rotation speed ωr by the divider 67. This value corresponds to Δτ of the first embodiment. A known proportional integration (PI) control calculation is performed on this input to obtain a proportional integration calculation output ω0, and a predetermined frequency set value ωset is added to ω0. The value is finally output as a frequency command ω *.

具体的には、出力電力が電力指令に達していないP*>Pの場合、ΔP>0となり、周波数設定値ωsetに対して出力電力を上げるようにω0を増やす動作となる。また、出力電力が電力指令を超えたP>P*の場合、ΔP<0となり、周波数設定値ωsetに対して出力電力を下げるようにω0を減らす動作となる。
この演算を数式で表すと(16)式となる。
Specifically, when P *> P where the output power does not reach the power command, ΔP> 0, and the operation is performed to increase ω0 so as to increase the output power with respect to the frequency setting value ωset. When P> P * where the output power exceeds the power command, ΔP <0, and the operation is performed to reduce ω0 so as to decrease the output power with respect to the frequency set value ωset.
This calculation is expressed by equation (16).

Figure 2012205434
Figure 2012205434

ただし、Kcp1は比例積分(PI)制御演算の比例ゲイン、Kci1は比例積分(PI)制御演算の積分ゲイン、sはラプラス演算子である。なお、Kcp1=0、すなわち積分(I)制御演算のみを行うようにしても良い。   However, Kcp1 is a proportional gain of proportional integral (PI) control calculation, Kci1 is an integral gain of proportional integral (PI) control calculation, and s is a Laplace operator. Note that Kcp1 = 0, that is, only integral (I) control calculation may be performed.

このように周波数指令ω*を設定すれば、出力電力Pが電力指令P*に追従しながら、かつ、所定の周波数設定値ωsetを中心とした周波数補償が行われるため、周波数設定値ωsetから大きく逸脱することなく、交流回転機2を駆動することできる。   If the frequency command ω * is set in this manner, the output power P follows the power command P * and frequency compensation is performed with a predetermined frequency set value ωset as the center. The AC rotating machine 2 can be driven without deviating.

補償器65は、電力指令P*に基づいて周波数補償量Δωcを演算する。本補償器65は、短時間で周波数指令ω*を調整するように、入力に対して主に比例制御、あるいは微分制御、さらにはその両方を組み合わせた制御演算を行う。補償器65で行われる演算を数式で表すと(17)式となる。   The compensator 65 calculates the frequency compensation amount Δωc based on the power command P *. The compensator 65 mainly performs proportional control or differential control on the input, or a control operation that combines both so as to adjust the frequency command ω * in a short time. When the calculation performed by the compensator 65 is expressed by an equation, the equation (17) is obtained.

Figure 2012205434
Figure 2012205434

ただし、Ktp2は比例微分(PD)制御演算の比例ゲイン、Ktd2は比例積分(PD)制御演算の微分ゲイン、sはラプラス演算子である。
なお、Ktp2、Ktd2の何れか0であっても良い。
Here, Ktp2 is a proportional gain of proportional differential (PD) control calculation, Ktd2 is a differential gain of proportional integral (PD) control calculation, and s is a Laplace operator.
Note that either Ktp2 or Ktd2 may be 0.

補償器65で演算された周波数補償量Δωcは、加減算器12において周波数指令ω*と加算されて、補正された周波数指令ω1*(=ω*+Δωc)となる。周波数指令ω1*は実施の形態1と同様に位相演算手段6と電圧指令演算手段63に入力される。   The frequency compensation amount Δωc calculated by the compensator 65 is added to the frequency command ω * by the adder / subtractor 12 to become a corrected frequency command ω1 * (= ω * + Δωc). The frequency command ω1 * is input to the phase calculation means 6 and the voltage command calculation means 63 as in the first embodiment.

電力制御系によるフィードバック制御構成では、電力応答を高くするのは容易ではないが、この補償器65を追加し、周波数補償量Δωcに基づく周波数指令ω*の補正を行うことで、短時間で周波数指令ω*を調整することができるため、電力応答性が向上する。   In the feedback control configuration by the power control system, it is not easy to increase the power response, but by adding this compensator 65 and correcting the frequency command ω * based on the frequency compensation amount Δωc, the frequency response can be shortened in a short time. Since the command ω * can be adjusted, the power response is improved.

実施の形態5の交流回転機の制御装置61に、実施の形態4で説明した第2補償器42を追加することもできる。   The second compensator 42 described in the fourth embodiment can be added to the control device 61 for the AC rotating machine of the fifth embodiment.

また、実施の形態5の交流回転機の制御装置61では、周波数指令演算手段64は、外部から入力される電力指令P*と電力演算手段62で演算された出力電力Pとの偏差ΔPを演算回転速度ωrで除算した値に基づいて周波数指令ω*を出力する構成としたが、偏差ΔPを直接に周波数指令演算手段に入力し、周波数指令ω*を演算する構成とすることもできる。   In the AC rotary machine control device 61 according to the fifth embodiment, the frequency command calculation means 64 calculates the deviation ΔP between the power command P * input from the outside and the output power P calculated by the power calculation means 62. The frequency command ω * is output based on the value divided by the rotational speed ωr. However, the deviation ΔP may be directly input to the frequency command calculation means to calculate the frequency command ω *.

以上説明したように、実施の形態5に係る交流回転機の制御装置61では、電力制御系に補償器65を追加したので、短時間で周波数指令ω*を調整することができ、従来の構成では速度制御系の機械的応答で制約されていた電力応答の向上性が可能となる効果がある。
また、実施の形態5に係る交流回転機の制御装置61では、偏差ΔPを演算回転速度ωrで除算した値に基づいて周波数指令ω*を出力する構成としているため、出力電力の応答性を回転速度に依らず一定にできる効果もある。
As described above, in the AC rotary machine control device 61 according to the fifth embodiment, the compensator 65 is added to the power control system, so the frequency command ω * can be adjusted in a short time, and the conventional configuration Then, there is an effect that it is possible to improve the power response, which is limited by the mechanical response of the speed control system.
In addition, in the AC rotating machine control device 61 according to Embodiment 5, the frequency command ω * is output based on the value obtained by dividing the deviation ΔP by the calculated rotational speed ωr, so that the response of the output power is rotated. There is also an effect that can be made constant regardless of the speed.

実施の形態6.
実施の形態6は、電力制御系に補償器を設けて、短時間で制御座標軸の位相θを調整することで、電力応答性を向上させる本発明の交流回転機の制御装置に関するものである。
図8は、本発明の実施の形態6に係る交流回転機の制御装置71と交流回転機2を含む交流回転機制御システムの構成を表したものである。図8において、図7と同一あるいは相当部分には、同一の符号を付している。
本願発明の実施の形態6について、実施の形態5に係る交流回転機の制御装置61と異なる電力指令P*に基づいて位相補償量Δθcを演算する補償器72の機能、動作を中心に、図8のシステム構成図を用いて説明する。
Embodiment 6 FIG.
Embodiment 6 relates to a control device for an AC rotating machine according to the present invention that improves power response by providing a compensator in a power control system and adjusting the phase θ of a control coordinate axis in a short time.
FIG. 8 shows the configuration of an AC rotating machine control system including the AC rotating machine control device 71 and the AC rotating machine 2 according to Embodiment 6 of the present invention. In FIG. 8, the same or corresponding parts as in FIG.
With respect to the sixth embodiment of the present invention, the figure mainly focuses on the function and operation of the compensator 72 that calculates the phase compensation amount Δθc based on the power command P * different from the control device 61 for the AC rotating machine according to the fifth embodiment. This will be described with reference to FIG.

補償器72は、電力指令P*に基づいて位相補償量Δθcを演算する。本補償器72は、実施の形態5の補償器65と同様に、電力応答性の向上が目的であり、短時間で回転二軸座標上に設定した制御座標軸の位相θを調整する(主に位相を進ませる)。
具体的には、入力に対して主に比例制御、あるいは微分制御、さらにはその両方を組み合わせた制御演算を行う。補償器72で行われる演算を数式で表すと(18)式となる。
The compensator 72 calculates the phase compensation amount Δθc based on the power command P *. Similar to the compensator 65 of the fifth embodiment, the compensator 72 is intended to improve the power response, and adjusts the phase θ of the control coordinate axis set on the rotating biaxial coordinate in a short time (mainly Advance the phase).
Specifically, control calculation is performed mainly for proportional control, differential control, or a combination of both. When the calculation performed by the compensator 72 is expressed by a mathematical expression, the following expression (18) is obtained.

Figure 2012205434
Figure 2012205434

ただし、Ktp3は比例微分(PD)制御演算の比例ゲイン、Ktd3は比例積分(PD)制御演算の微分ゲイン、sはラプラス演算子である。なお、Ktp3、Ktd3の何れか0であっても良い。   Here, Ktp3 is a proportional gain of proportional differential (PD) control calculation, Ktd3 is a differential gain of proportional integral (PD) control calculation, and s is a Laplace operator. Note that either Ktp3 or Ktd3 may be 0.

電力制御系によるフィードバック制御構成では、電力応答を高くするのは容易ではないが、この補償器72を追加することで、位相補償量Δθcに基づく回転二軸座標上に設定した制御座標軸の位相θの補正を行うことで、短時間で制御座標軸の位相θを調整できるため、電力応答性が向上する。   In the feedback control configuration by the power control system, it is not easy to increase the power response, but by adding this compensator 72, the phase θ of the control coordinate axis set on the rotating biaxial coordinate based on the phase compensation amount Δθc. Since the phase θ of the control coordinate axis can be adjusted in a short time by performing the correction, power responsiveness is improved.

実施の形態6の交流回転機の制御装置71において、補償器72は、実施の形態3に示したように負荷角δに基づいて位相補償量Δθcを演算する構成とすることができる。
また、実施の形態6の交流回転機の制御装置71に実施の形態4に示した第2補償器42を追加する構成とすることもできる。
In the control device 71 for an AC rotary machine of the sixth embodiment, the compensator 72 can be configured to calculate the phase compensation amount Δθc based on the load angle δ as shown in the third embodiment.
Further, the second compensator 42 shown in the fourth embodiment may be added to the control device 71 for the AC rotating machine of the sixth embodiment.

また、実施の形態6の交流回転機の制御装置71では、周波数指令演算手段64は、外部から入力される電力指令P*と電力演算手段62で演算された出力電力Pとの偏差ΔPを演算回転速度ωrで除算した値に基づいて周波数指令ω*を出力する構成としたが、偏差ΔPを直接に周波数指令演算手段に入力し、周波数指令ω*を演算する構成とすることもできる。   In the AC rotating machine control device 71 of the sixth embodiment, the frequency command calculation means 64 calculates a deviation ΔP between the power command P * input from the outside and the output power P calculated by the power calculation means 62. The frequency command ω * is output based on the value divided by the rotational speed ωr. However, the deviation ΔP may be directly input to the frequency command calculation means to calculate the frequency command ω *.

以上説明したように、実施の形態6に係る交流回転機の制御装置71では、電力制御系に補償器72を追加したので、短時間で制御座標軸の位相θを調整することができ、従来の構成では速度制御系の機械的応答で制約されていた電力応答性の向上が可能となる効果がある。
また、実施の形態6に係る交流回転機の制御装置71では、偏差ΔPを演算回転速度ωrで除算した値に基づいて周波数指令ω*を出力する構成としているため、出力電力の応答性を回転速度に依らず一定にできる効果もある。
As described above, in the AC rotating machine control device 71 according to the sixth embodiment, the compensator 72 is added to the power control system, so that the phase θ of the control coordinate axis can be adjusted in a short time, and the conventional In the configuration, there is an effect that it is possible to improve the power responsiveness restricted by the mechanical response of the speed control system.
Further, in the AC rotating machine control device 71 according to the sixth embodiment, the frequency command ω * is output based on the value obtained by dividing the deviation ΔP by the calculated rotational speed ωr. There is also an effect that can be made constant regardless of the speed.

1,21,31,41,51,61,71 交流回転機の制御装置、2 交流回転機、3 電力変換手段、4 電流検出手段、5 電流演算手段、6,22 位相演算手段、
7,32,63 電圧指令演算手段、8 トルク演算手段、
9,64 周波数指令演算手段、10,23,33,65,72 補償器、
11,12,43,52,66 加減算器、42 第2補償器、67 除算器。
1, 21, 31, 41, 51, 61, 71 AC rotary machine control device, 2 AC rotary machine, 3 power conversion means, 4 current detection means, 5 current calculation means, 6, 22 phase calculation means,
7, 32, 63 Voltage command calculation means, 8 Torque calculation means,
9, 64 Frequency command calculation means 10, 23, 33, 65, 72 compensator,
11, 12, 43, 52, 66 Adder / Subtractor, 42 Second compensator, 67 Divider.

Claims (8)

外部からトルク指令を受ける交流回転機の制御装置において、
交流回転機へ交流電圧を出力する電力変換手段と、
前記交流回転機に流れる電流を検出する電流検出手段と、
前記電流検出手段が検出する電流を回転二軸座標上の電流へ変換する電流演算手段と、
前記回転二軸座標上の電流に基づいて前記交流回転機が出力する出力トルクを演算するトルク演算手段と、
前記トルク指令と前記トルク演算手段が演算した前記出力トルクとの偏差に基づいて周波数指令を演算する周波数指令演算手段と、
前記周波数指令を補正する周波数補償量を前記トルク指令に基づいて演算する補償器と、
前記補正後の周波数指令に基づいて前記回転二軸座標上に設定した制御座標軸の位相を演算する位相演算手段と、
前記補正後の周波数指令と前記制御座標軸の位相とに基づいて、前記電力変換手段に出力する電圧指令を演算する電圧指令演算手段と、
を備えた交流回転機の制御装置。
In the control device for an AC rotating machine that receives a torque command from the outside,
Power conversion means for outputting an AC voltage to an AC rotating machine;
Current detecting means for detecting a current flowing in the AC rotating machine;
Current calculation means for converting the current detected by the current detection means into a current on a rotating biaxial coordinate;
Torque calculating means for calculating an output torque output from the AC rotating machine based on the current on the rotating biaxial coordinates;
Frequency command calculating means for calculating a frequency command based on a deviation between the torque command and the output torque calculated by the torque calculating means;
A compensator for calculating a frequency compensation amount for correcting the frequency command based on the torque command;
Phase calculating means for calculating the phase of the control coordinate axis set on the rotating biaxial coordinate based on the corrected frequency command;
Based on the corrected frequency command and the phase of the control coordinate axis, a voltage command calculation unit that calculates a voltage command to be output to the power conversion unit;
AC rotary machine control device.
外部からトルク指令を受ける交流回転機の制御装置において、
交流回転機へ交流電圧を出力する電力変換手段と、
前記交流回転機に流れる電流を検出する電流検出手段と、
前記電流検出手段が検出する電流を回転二軸座標上の電流へ変換する電流演算手段と、
前記回転二軸座標上の電流に基づいて前記交流回転機が出力する出力トルクを演算するトルク演算手段と、
前記トルク指令と前記トルク演算手段が演算する前記出力トルクとの偏差に基づいて周波数指令を演算する周波数指令演算手段と、
前記回転二軸座標上に設定した制御座標軸の位相を補正する位相補償量を前記トルク指令に基づいて演算する補償器と、
前記周波数指令と前記位相補償量に基づいて前記制御座標軸の位相を演算する位相演算手段と、
前記周波数指令と前記補正後の制御座標軸の位相とに基づいて、前記電力変換手段に出力する電圧指令を演算する電圧指令演算手段と、
を備えた交流回転機の制御装置。
In the control device for an AC rotating machine that receives a torque command from the outside,
Power conversion means for outputting an AC voltage to an AC rotating machine;
Current detecting means for detecting a current flowing in the AC rotating machine;
Current calculation means for converting the current detected by the current detection means into a current on a rotating biaxial coordinate;
Torque calculating means for calculating an output torque output from the AC rotating machine based on the current on the rotating biaxial coordinates;
Frequency command calculating means for calculating a frequency command based on a deviation between the torque command and the output torque calculated by the torque calculating means;
A compensator for calculating a phase compensation amount for correcting the phase of the control coordinate axis set on the rotating biaxial coordinate based on the torque command;
Phase calculating means for calculating the phase of the control coordinate axis based on the frequency command and the phase compensation amount;
Based on the frequency command and the phase of the corrected control coordinate axis, a voltage command calculation unit that calculates a voltage command to be output to the power conversion unit;
AC rotary machine control device.
前記補償器は、さらに前記電圧指令演算手段で演算する前記回転二軸座標上の電圧指令に基づいて負荷角を演算し、前記トルク指令と前記負荷角に基づいて位相補償量を演算する請求項2に記載の交流回転機の制御装置。 The compensator further calculates a load angle based on a voltage command on the rotating biaxial coordinates calculated by the voltage command calculation means, and calculates a phase compensation amount based on the torque command and the load angle. 2. The control apparatus for an AC rotating machine according to 2. 外部から電力指令を受ける交流回転機の制御装置において、
交流回転機へ交流電圧を出力する電力変換手段と、
前記交流回転機に流れる電流を検出する電流検出手段と、
前記電流検出手段が検出する電流を回転二軸座標上の電流へ変換する電流演算手段と、
前記回転二軸座標上の電圧指令と前記回転二軸座標上の電流に基づいて前記交流回転機が出力する出力電力を演算する電力演算手段と、
前記電力指令と前記電力演算手段が演算する前記出力電力との偏差に基づいて周波数指令を演算する周波数指令演算手段と、
前記周波数指令を補正する周波数補償量を前記電力指令に基づいて演算する補償器と、
前記補正後の周波数指令に基づいて前記回転二軸座標上に設定した制御座標軸の位相を演算する位相演算手段と、
前記補正後の周波数指令と前記制御座標軸の位相とに基づいて前記電力変換手段に出力する電圧指令および前記電力演算手段に出力する前記回転二軸座標上の前記電圧指令を演算する電圧指令演算手段と、
を備えた交流回転機の制御装置。
In a control device for an AC rotating machine that receives an electric power command from the outside,
Power conversion means for outputting an AC voltage to an AC rotating machine;
Current detecting means for detecting a current flowing in the AC rotating machine;
Current calculation means for converting the current detected by the current detection means into a current on a rotating biaxial coordinate;
Power calculating means for calculating output power output from the AC rotating machine based on the voltage command on the rotating biaxial coordinates and the current on the rotating biaxial coordinates;
Frequency command calculation means for calculating a frequency command based on a deviation between the power command and the output power calculated by the power calculation means;
A compensator for calculating a frequency compensation amount for correcting the frequency command based on the power command;
Phase calculating means for calculating the phase of the control coordinate axis set on the rotating biaxial coordinate based on the corrected frequency command;
Based on the corrected frequency command and the phase of the control coordinate axis, a voltage command to be output to the power conversion unit and a voltage command calculation unit to calculate the voltage command on the rotating biaxial coordinates to be output to the power calculation unit When,
AC rotary machine control device.
外部から電力指令を受ける交流回転機の制御装置において、
交流回転機へ交流電圧を出力する電力変換手段と、
前記交流回転機に流れる電流を検出する電流検出手段と、
前記電流検出手段が検出する電流を回転二軸座標上の電流へ変換する電流演算手段と、
前記回転二軸座標上の電圧指令と前記回転二軸座標上の電流に基づいて前記交流回転機が出力する出力電力を演算する電力演算手段と、
前記電力指令と前記電力演算手段が演算する前記出力電力との偏差に基づいて周波数指令を演算する周波数指令演算手段と、
前記回転二軸座標上に設定した制御座標軸の位相を補正する位相補償量を前記電力指令に基づいて演算する補償器と、
前記周波数指令と前記位相補償量に基づいて前記制御座標軸の位相を演算する位相演算手段と、
前記周波数指令と前記補正後の制御座標軸の位相とに基づいて、前記電力変換手段に出力する電圧指令および前記電力演算手段に出力する前記回転二軸座標上の電圧指令を演算する電圧指令演算手段と、
を備えた交流回転機の制御装置。
In a control device for an AC rotating machine that receives an electric power command from the outside,
Power conversion means for outputting an AC voltage to an AC rotating machine;
Current detecting means for detecting a current flowing in the AC rotating machine;
Current calculation means for converting the current detected by the current detection means into a current on a rotating biaxial coordinate;
Power calculating means for calculating output power output from the AC rotating machine based on the voltage command on the rotating biaxial coordinates and the current on the rotating biaxial coordinates;
Frequency command calculation means for calculating a frequency command based on a deviation between the power command and the output power calculated by the power calculation means;
A compensator for calculating a phase compensation amount for correcting the phase of the control coordinate axis set on the rotating biaxial coordinate based on the power command;
Phase calculating means for calculating the phase of the control coordinate axis based on the frequency command and the phase compensation amount;
Based on the frequency command and the phase of the corrected control coordinate axis, a voltage command calculation unit that calculates a voltage command output to the power conversion unit and a voltage command on the rotating biaxial coordinate output to the power calculation unit When,
AC rotary machine control device.
前記補償器は、さらに前記電圧指令演算手段で演算する前記回転二軸座標上の電圧指令に基づいて負荷角を演算し、前記電力指令と前記負荷角に基づいて位相補償量を演算する請求項5に記載の交流回転機の制御装置。 The compensator further calculates a load angle based on a voltage command on the rotating biaxial coordinates calculated by the voltage command calculation means, and calculates a phase compensation amount based on the power command and the load angle. 5. The control device for an AC rotating machine according to 5. 前記電圧指令演算手段で交流回転機の演算回転速度を演算し、前記電力指令と前記電力演算手段が演算する前記出力電力との偏差を前記演算回転速度で除算して、トルク偏差を算出する除算器を追加し、前記周波数指令演算手段は前記トルク偏差に基づいて前記周波数指令を演算する構成とした請求項4ないし6のいずれか1項に記載の交流回転機の制御装置。 A division for calculating a torque deviation by calculating a calculation rotation speed of the AC rotating machine by the voltage command calculation means, and dividing a deviation between the power command and the output power calculated by the power calculation means by the calculation rotation speed. The controller for an AC rotating machine according to any one of claims 4 to 6, wherein a controller is added, and the frequency command calculation means calculates the frequency command based on the torque deviation. 前記回転二軸座標上の電流に基づいて、前記周波数指令演算手段が演算した周波数指令に近接した周波数成分からなる第2周波数補償量を演算する第2補償器を追加し、前記第2周波数補償量に基づいて前記周波数指令を補正する請求項1ないし7のいずれか1項に記載の交流回転機の制御装置。 A second compensator for calculating a second frequency compensation amount composed of a frequency component close to the frequency command calculated by the frequency command calculation means is added based on the current on the rotating biaxial coordinates, and the second frequency compensation The control device for an AC rotating machine according to any one of claims 1 to 7, wherein the frequency command is corrected based on a quantity.
JP2011069084A 2011-03-28 2011-03-28 AC rotating machine control device Active JP5517983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011069084A JP5517983B2 (en) 2011-03-28 2011-03-28 AC rotating machine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011069084A JP5517983B2 (en) 2011-03-28 2011-03-28 AC rotating machine control device

Publications (2)

Publication Number Publication Date
JP2012205434A true JP2012205434A (en) 2012-10-22
JP5517983B2 JP5517983B2 (en) 2014-06-11

Family

ID=47185844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011069084A Active JP5517983B2 (en) 2011-03-28 2011-03-28 AC rotating machine control device

Country Status (1)

Country Link
JP (1) JP5517983B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018057131A (en) * 2016-09-28 2018-04-05 サンケン電気株式会社 Flywheel power storage system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018057131A (en) * 2016-09-28 2018-04-05 サンケン電気株式会社 Flywheel power storage system

Also Published As

Publication number Publication date
JP5517983B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
JP3840905B2 (en) Synchronous motor drive device
JP5413400B2 (en) AC motor control device
JP4507493B2 (en) AC motor speed control device
JP5633551B2 (en) AC motor control device
WO2012014526A1 (en) Control apparatus of ac rotating machine
WO2016121237A1 (en) Inverter control device and motor drive system
JP6118157B2 (en) Motor speed control device
JPWO2008047438A1 (en) Vector controller for permanent magnet synchronous motor
JPH1127999A (en) Estimating method for induced electromotive force for induction motor, speed estimating method, shaft deviation correcting method and induction motor control equipment
JP4797074B2 (en) Vector control device for permanent magnet motor, vector control system for permanent magnet motor, and screw compressor
JP4583257B2 (en) AC rotating machine control device
JP4650110B2 (en) Electric motor control device
JP6115392B2 (en) Motor control device
JP5284895B2 (en) Winding field synchronous machine controller
JP2018057170A (en) Controller for alternating electric motor
JP4639832B2 (en) AC motor drive device
JP5517983B2 (en) AC rotating machine control device
JP6391096B2 (en) AC motor current control device
US7042193B2 (en) Control apparatus for rotating machine
JP7251424B2 (en) INVERTER DEVICE AND INVERTER DEVICE CONTROL METHOD
JP6742967B2 (en) Motor control device
JP4051601B2 (en) Variable speed control device for electric motor
JP4635964B2 (en) Synchronous motor drive device
JP2012175776A (en) Motor controller and motor drive system
JP2011229252A (en) Controller for ac rotating machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140401

R150 Certificate of patent or registration of utility model

Ref document number: 5517983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250