JP2018057170A - Controller for alternating electric motor - Google Patents

Controller for alternating electric motor Download PDF

Info

Publication number
JP2018057170A
JP2018057170A JP2016191469A JP2016191469A JP2018057170A JP 2018057170 A JP2018057170 A JP 2018057170A JP 2016191469 A JP2016191469 A JP 2016191469A JP 2016191469 A JP2016191469 A JP 2016191469A JP 2018057170 A JP2018057170 A JP 2018057170A
Authority
JP
Japan
Prior art keywords
axis
voltage
output
command
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016191469A
Other languages
Japanese (ja)
Inventor
大森 洋一
Yoichi Omori
洋一 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2016191469A priority Critical patent/JP2018057170A/en
Publication of JP2018057170A publication Critical patent/JP2018057170A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a stable current control with a torque as a priority when a voltage is saturated.SOLUTION: The controller includes: a q-axis current command limiter which limits a q-axis current command to be a specific value in a current control of a dq-axis by a regular proportional integral amplification; a d-axis current command regulator which regulates a d-axis current deviation to be smaller than the specific value; a limited q-axis integrator for integrating the current error between both the axes when the voltage is saturated; and a d-axis integrator for integrating the current error of the q-axis alone when the voltage is saturated.SELECTED DRAWING: Figure 1

Description

本発明は、交流電動機の電流制御に関するものである。   The present invention relates to current control of an AC motor.

従来の交流電動機の電流制御技術について,図2に基づいて以下に説明する。電流検出器2は,交流電動機1の固定子電流を回転する直交座標であるdq軸上の各成分のd軸電流idとq軸電流iqに変換して出力する。前記d軸は,交流電動機1が誘導電動機の場合に一般的に該電動機の2次鎖交磁束ベクトルの方向に定義され,交流電動機1が永久磁石同期電動機の場合に一般的に該電動機の回転子の永久磁石のN極方向に定義される。電流指令生成器5は,前記dq座標上のd軸電流指令idrとq軸電流指令iqrを生成して出力する。d軸偏差演算器9で得られたidrとidとの偏差iderは,d軸比例ゲイン増幅器11で所定倍に増幅されてd軸比例成分となる。またiderは,d軸積分ゲイン増幅器13で増幅された後に制限付d軸積分器25で制限付で時間積分されてd軸積分成分となる。q軸偏差演算器8で得られたiqrとiqとの偏差iqerは,q軸比例ゲイン増幅器10で所定倍に増幅されてq軸比例成分となる。またiqerは,q軸積分ゲイン増幅器12で増幅された後に制限付q軸積分器17で制限付で時間積分されてq軸積分成分となる。   A conventional current control technique for an AC motor will be described below with reference to FIG. The current detector 2 converts the stator current of the AC motor 1 into a d-axis current id and a q-axis current iq of each component on the dq axis, which are orthogonal coordinates for rotation, and outputs the converted component. The d-axis is generally defined in the direction of the secondary linkage magnetic flux vector of the AC motor 1 when the AC motor 1 is an induction motor, and generally rotates when the AC motor 1 is a permanent magnet synchronous motor. Defined in the north pole direction of the permanent magnet of the child. The current command generator 5 generates and outputs a d-axis current command idr and a q-axis current command iqr on the dq coordinate. The deviation ider between idr and id obtained by the d-axis deviation calculator 9 is amplified by a predetermined factor by the d-axis proportional gain amplifier 11 to become a d-axis proportional component. The ider is amplified by the d-axis integral gain amplifier 13 and then time-integrated by the limited d-axis integrator 25 to become a d-axis integral component. The deviation iqr between iqr and iq obtained by the q-axis deviation calculator 8 is amplified by a predetermined factor by the q-axis proportional gain amplifier 10 to become a q-axis proportional component. Further, iqer is amplified by the q-axis integral gain amplifier 12 and then time-integrated with restriction by the restricted q-axis integrator 17 to become a q-axis integral component.

交流電動機1が誘導電動機の場合の1次側の電圧方程式は(1)式と(2)式で表される。ここで,vdはd軸電圧,vqはq軸電圧,R1は巻線抵抗値,Lσ=L1−M・M/L2,ωは出力角周波数,Mは相互インダクタンス,L1とL2はそれぞれ1次と2次の自己インダクタンス,φ2は2次鎖交磁束の大きさ,pは時間微分を表す。交流電動機1が永久磁石同期電動機の場合の電圧方程式は(3)式と(4)式で表される。ここで,LdとLqはそれぞれd軸とq軸のインダクタンス,φは永久磁石磁束の大きさである。   When the AC motor 1 is an induction motor, the voltage equation on the primary side is expressed by equations (1) and (2). Here, vd is a d-axis voltage, vq is a q-axis voltage, R1 is a winding resistance value, Lσ = L1-M · M / L2, ω is an output angular frequency, M is a mutual inductance, and L1 and L2 are primary. And secondary self-inductance, φ2 is the magnitude of the secondary flux linkage, and p is the time derivative. The voltage equation when the AC motor 1 is a permanent magnet synchronous motor is expressed by the equations (3) and (4). Here, Ld and Lq are the d-axis and q-axis inductances, respectively, and φ is the magnitude of the permanent magnet magnetic flux.

Figure 2018057170
Figure 2018057170
Figure 2018057170
Figure 2018057170
Figure 2018057170
Figure 2018057170
Figure 2018057170
Figure 2018057170

q軸干渉演算器19は,(2)式または(4)式の右辺第3項と第4項を求めて出力する。その際,図2の場合はd軸電流idの代わりにd軸電流指令idrを用いている。d軸干渉演算器20は,(1)式の右辺第3項と第4項または(3)式の右辺第3項を求めて出力する。その際,図2の場合はq軸電流iqの代わりにq軸電流指令iqrを用いている。 The q-axis interference calculator 19 calculates and outputs the third and fourth terms on the right side of the equation (2) or (4). In this case, in the case of FIG. 2, a d-axis current command idr is used instead of the d-axis current id. The d-axis interference calculator 20 calculates and outputs the third term on the right side of the equation (1) and the fourth term on the right side of the equation (4) or (3). At that time, in the case of FIG. 2, the q-axis current command iqr is used instead of the q-axis current iq.

加算器21は,q軸比例ゲイン増幅器10出力と制限付q軸積分器17出力とq軸干渉演算器19出力との和を求めてq軸電圧指令vqrを出力する。加算器22は,d軸比例ゲイン増幅器11出力と制限付d軸積分器25出力とd軸干渉演算器20出力との和を求めてd軸電圧指令vdrを出力する。電圧座標変換器4は,回転しているdq軸座標上の各軸電圧指令であるvdrとvqrを静止したab座標上の各成分電圧指令varとvbrに変換して電力変換器3に出力する。電力変換器3は,入力した電圧指令通りの電圧を交流電動機1に印加するが,該電圧指令の大きさが電力変換器3の出力可能な最大電圧よりも大きければ該最大電圧を交流電動機1に印加する。   The adder 21 calculates the sum of the q-axis proportional gain amplifier 10 output, the restricted q-axis integrator 17 output, and the q-axis interference calculator 19 output, and outputs a q-axis voltage command vqr. The adder 22 calculates the sum of the output of the d-axis proportional gain amplifier 11, the output of the limited d-axis integrator 25, and the output of the d-axis interference calculator 20, and outputs a d-axis voltage command vdr. The voltage coordinate converter 4 converts vdr and vqr, which are axis voltage commands on the rotating dq axis coordinates, into component voltage commands var and vbr on a stationary ab coordinate and outputs them to the power converter 3. . The power converter 3 applies a voltage in accordance with the input voltage command to the AC motor 1. If the magnitude of the voltage command is larger than the maximum voltage that can be output from the power converter 3, the maximum voltage is applied to the AC motor 1. Apply to.

図2に示された電流制御では,a軸成分varとb軸成分vbrまたはd軸成分vdrとq軸成分vqrをもつ電圧指令ベクトルの大きさが電力変換器3の出力可能最大電圧を超えると,指令通りの電圧を交流電動機1に印加できないことになるので,dq軸の片方または両方の電流制御ができなくなる。この問題を解決するために提案されたのが図3に示された特許文献1記載の電流制御である。以下は図3について説明するが,図2と同一部分の説明は省略し,異なる部分のみ説明する。   In the current control shown in FIG. 2, if the magnitude of the voltage command vector having the a-axis component var and the b-axis component vbr or the d-axis component vdr and the q-axis component vqr exceeds the maximum output voltage of the power converter 3. Since the commanded voltage cannot be applied to the AC motor 1, current control of one or both of the dq axes cannot be performed. In order to solve this problem, the current control described in Patent Document 1 shown in FIG. 3 is proposed. 3 will be described below, but the description of the same parts as those in FIG. 2 will be omitted, and only different parts will be described.

制限付q軸積分器17の入力に加算器23によってd軸電流偏差iderをd軸速度比例増幅器14で増幅したものを加算している。d軸速度比例増幅器14は,交流電動機1が誘導電動機ならば(2)式,永久磁石同期電動機ならば(4)式の右辺第3項に基づくもので,その増幅ゲインは角周波数ωに比例したものとなる。同様に,加算器24によってq軸電流偏差iqerをq軸速度比例増幅器15で増幅したものを加算している。q軸速度比例増幅器15は,交流電動機1が誘導電動機ならば(1)式,永久磁石同期電動機ならば(3)式の右辺第3項に基づくもので,その増幅ゲインは角周波数ωに比例したものとなる。加算器24の出力は,制限付d軸積分器25の代わりの制限無しのd軸積分器18に入力される。d軸積分ゲイン増幅器13の入力にはスイッチ16が挿入されており,スイッチ16は,電力変換器3の入力電圧指令の大きさが電力変換器3の出力可能最大電圧より十分に小さい場合にd軸電流偏差ider,そうで無い場合に0を出力する。またq軸干渉演算器19とd軸干渉演算器20を具備していない。   A signal obtained by amplifying the d-axis current deviation ider by the d-axis speed proportional amplifier 14 by the adder 23 is added to the input of the limited q-axis integrator 17. The d-axis speed proportional amplifier 14 is based on the third term on the right side of the equation (2) if the AC motor 1 is an induction motor, and if it is a permanent magnet synchronous motor, the amplification gain is proportional to the angular frequency ω. Will be. Similarly, the adder 24 adds the q-axis current deviation iqer amplified by the q-axis velocity proportional amplifier 15. The q-axis speed proportional amplifier 15 is based on the third term on the right side of the equation (1) if the AC motor 1 is an induction motor, and if it is a permanent magnet synchronous motor, the amplification gain is proportional to the angular frequency ω. Will be. The output of the adder 24 is input to an unrestricted d-axis integrator 18 instead of the limited d-axis integrator 25. A switch 16 is inserted at the input of the d-axis integral gain amplifier 13, and the switch 16 is used when the magnitude of the input voltage command of the power converter 3 is sufficiently smaller than the maximum output possible voltage of the power converter 3. Shaft current deviation ider, otherwise 0 is output. Further, the q-axis interference calculator 19 and the d-axis interference calculator 20 are not provided.

スイッチ16がオフ状態でも,d軸電流偏差はd軸速度比例増幅器14と加算器23を介して制限付q軸積分器17でq軸電圧指令を補正することでd軸電流偏差を0にすることができ,d軸電流制御は実現できる。しかし,電力変換器3の入力電圧指令の大きさが電力変換器3の出力可能最大電圧を超えた電圧飽和状態となると,制限付q軸積分器17の出力は制限値に制限された固定値となるのでd軸電流制御はできなくなる。一方,q軸偏差演算器8出力のq軸電流偏差はq軸速度比例増幅器15と加算器24とd軸積分器18を介してd軸電圧指令を補正することでq軸電流制御は保たれたままとなる。つまり,電圧飽和状態ではd軸電流制御を放棄しq軸電流制御を優先した制御とすることができる。そして,q軸は磁束軸に直交した軸であることから,q軸電流を制御することで交流電動機の1のトルクが制御できるので,電圧が飽和してもトルク制御は維持できることとなる。   Even when the switch 16 is off, the d-axis current deviation is reduced to 0 by correcting the q-axis voltage command by the restricted q-axis integrator 17 via the d-axis speed proportional amplifier 14 and the adder 23. D-axis current control can be realized. However, when the magnitude of the input voltage command of the power converter 3 reaches a voltage saturation state that exceeds the maximum output voltage of the power converter 3, the output of the limited q-axis integrator 17 is a fixed value limited to the limit value. Therefore, d-axis current control cannot be performed. On the other hand, the q-axis current deviation of the output of the q-axis deviation calculator 8 is maintained by correcting the d-axis voltage command via the q-axis velocity proportional amplifier 15, the adder 24, and the d-axis integrator 18. Will remain. That is, in the voltage saturation state, the d-axis current control can be abandoned and the control giving priority to the q-axis current control can be performed. Since the q-axis is an axis orthogonal to the magnetic flux axis, the torque of one of the AC motor can be controlled by controlling the q-axis current, so that the torque control can be maintained even if the voltage is saturated.

特開2003−88193号公報JP 2003-88193 A 特開2003−209997号公報JP 2003-209997 A 特開2012−151931号公報JP 2012-151931 A

解決しようとする問題点は、図2の従来技術においては,電圧が飽和すると両軸または片方軸の制御ができなくなり,交流電動機の所望の出力トルクが得られなくなることである。図3の従来技術では,電圧飽和時となっても,q軸優先制御とすることができて所望の出力トルクが得られるので前記問題点を解決できるが以下の問題がある。   The problem to be solved is that, in the prior art of FIG. 2, when the voltage is saturated, control of both axes or one of the axes cannot be performed, and a desired output torque of the AC motor cannot be obtained. In the prior art shown in FIG. 3, the q-axis priority control can be performed even when the voltage is saturated, and a desired output torque can be obtained. Therefore, the above problem can be solved, but there are the following problems.

図4は,図3の従来技術において,電圧飽和時の電圧指令ベクトルvrやvr1と交流電動機1に印加される電圧ベクトルvやv1を図示している。電圧ベクトルvやv1は,電力変換器3の出力可能最大電圧である電圧出力限界円内に制限されていて,電圧指令ベクトルvrやvr1のq軸成分は電圧飽和により制限付q軸積分器17の制限値vqrlmtに制限されている。このvqrlmtは電力変換器3の出力可能最大電圧以上にする必要がある。図に示されているように電圧飽和状態ではq軸電圧指令は制限値vqrlmtに制限されているのでd軸電圧指令を調整して電圧ベクトルの位相を変化させてq軸電流を制御していることになる。例えば電圧ベクトル位相をΔθ変化させるにはΔvdrのd軸電圧指令の変化が必要になる。誘導電動機の場合は図に示されているように,電圧ベクトルがq軸に近い方向を向いているので,電圧ベクトル位相を変化させるのに必要なd軸電圧指令の変化分は小さくて済む。しかし,永久磁石同期電動機の場合は電圧ベクトルの向きがq軸から大きく離れている場合があることから。電圧ベクトル位相を変化させるのに必要なd軸電圧指令の変化分Δvdrを大きくしなければならない。従って,d軸積分器18の出力範囲を非常に大きくしておく必要があり,その積分ゲインとなるq軸速度比例増幅器15やd軸積分ゲイン増幅器13のゲイン調整が困難となる。また,電圧ベクトルの向きがd軸に近くなるとd軸電圧指令制御では電圧ベクトル位相を制御できなくなり制御不能になってしまう。   FIG. 4 shows voltage command vectors vr and vr1 at the time of voltage saturation and voltage vectors v and v1 applied to the AC motor 1 in the prior art of FIG. The voltage vectors v and v1 are limited within a voltage output limit circle, which is the maximum output voltage of the power converter 3, and the q-axis component of the voltage command vectors vr and vr1 is limited by the voltage saturation and the q-axis integrator 17 is limited. The limit value is vqrlmt. This vqrlmt needs to be equal to or higher than the maximum output voltage of the power converter 3. As shown in the figure, since the q-axis voltage command is limited to the limit value vqrlmt in the voltage saturation state, the d-axis voltage command is adjusted to change the phase of the voltage vector to control the q-axis current. It will be. For example, in order to change the voltage vector phase by Δθ, it is necessary to change the d-axis voltage command of Δvdr. In the case of an induction motor, as shown in the figure, since the voltage vector is oriented in the direction close to the q-axis, the amount of change in the d-axis voltage command required to change the voltage vector phase is small. However, in the case of a permanent magnet synchronous motor, the direction of the voltage vector may be far away from the q axis. The change Δvdr in the d-axis voltage command necessary to change the voltage vector phase must be increased. Therefore, it is necessary to make the output range of the d-axis integrator 18 very large, and it is difficult to adjust the gain of the q-axis velocity proportional amplifier 15 and the d-axis integral gain amplifier 13 that become the integral gain. Further, when the direction of the voltage vector is close to the d-axis, the voltage vector phase cannot be controlled by the d-axis voltage command control, and the control becomes impossible.

特許文献2では,上記問題点を解決するために,交流電動機の一次鎖交磁束ベクトルと一致するM軸とそれに直交するT軸を導入し,dq軸の代わりにMT軸で図3と同様な構成としているが,以下の問題がある。T軸電流優先制御とすることができるが,dq軸電流指令から回転座標変換によってMT軸電流指令を得た場合は,電圧飽和によってq軸電流が指令と一致しなくなり,所望のトルクが得られなくなる。また電流の急変によりd軸から見たM軸の位相が急変することがある。その際に各軸の電圧指令はその位相に見合った値に急変させる必要がある。しかし積分器の出力は急変できないので,MT軸の位相が急変した場合は電流制御が不安定となることがある。   In Patent Document 2, in order to solve the above problem, an M axis that coincides with the primary linkage magnetic flux vector of an AC motor and a T axis that is orthogonal to the M axis are introduced, and the MT axis is replaced with the MT axis in the same manner as in FIG. The configuration has the following problems. T-axis current priority control can be used, but when the MT-axis current command is obtained from the dq-axis current command by rotating coordinate conversion, the q-axis current does not match the command due to voltage saturation, and the desired torque can be obtained. Disappear. Also, the M-axis phase viewed from the d-axis may change suddenly due to a sudden change in current. At that time, it is necessary to suddenly change the voltage command of each axis to a value corresponding to the phase. However, since the output of the integrator cannot change suddenly, current control may become unstable if the phase of the MT axis changes suddenly.

図3に示す従来技術において,例えば交流電動機が誘導電動機の場合に,回転速度が上昇するに従ってd軸電流は自動的に減少するが所望のトルクを出力し続けるためにq軸電流指令は大きくしなければならない。しかし誘導電動機は印加電圧制限下では停動トルクが存在するのでq軸電流を大きくしてもトルクが大きくならない状態に陥ることがあり,発散状態となり制御不能となってしまう。また永久磁石同期電動機の場合は,電圧ベクトルがd軸に近づきすぎる場合があり,そうすると上述のように制御不能となってしまう。   In the prior art shown in FIG. 3, for example, when the AC motor is an induction motor, the d-axis current automatically decreases as the rotational speed increases, but the q-axis current command is increased to keep outputting the desired torque. There must be. However, since the induction motor has a stationary torque under the applied voltage limit, even if the q-axis current is increased, the torque may not be increased, resulting in a divergence state and the control becomes impossible. In the case of a permanent magnet synchronous motor, the voltage vector may be too close to the d-axis, which makes control impossible as described above.

図3に示す従来技術で電圧飽和によりd軸電流制御が放棄された状態において,d軸偏差演算器9の出力は大きな値となりd軸比例ゲイン増幅器11の出力が大きくなり,それを補正するようにd軸積分器18は動作する。よってd軸電流指令の急変はq軸電流制御の大きな外乱となり制御が不安定となってしまう。   In the state where the d-axis current control is abandoned due to voltage saturation in the prior art shown in FIG. 3, the output of the d-axis deviation calculator 9 becomes a large value, the output of the d-axis proportional gain amplifier 11 becomes large, and it is corrected. In addition, the d-axis integrator 18 operates. Therefore, a sudden change in the d-axis current command becomes a large disturbance in the q-axis current control and the control becomes unstable.

本発明は、上記問題点を解決するために,交流電動機の電流制御において,交流電動機の固定子電流を回転する直交座標であるdq軸上の各成分のd軸電流とq軸電流に変換して出力する電流検出器と,静止座標系での電圧指令を入力し,該電圧指令が出力可能な最大電圧よりも小さければ前記電圧指令通りの電圧を前記交流電動機に印加し,前記電圧指令の大きさが前記出力可能な最大電圧よりも大きければ,前記最大電圧の大きさの電圧を前記交流電動機に印加する電力変換器と,前記dq座標上のd軸電流指令とq軸電流指令を生成して出力する電流指令生成器と,前記電流指令生成器出力のd軸電流指令と前記電流検出器のd軸電流との差を得るd軸偏差演算器と,前記電流指令生成器出力のq軸電流指令と前記電流検出器のq軸電流との差を得るq軸偏差演算器と,前記d軸偏差演算器出力を比例ゲイン倍するd軸比例ゲイン増幅器と,前記q軸偏差演算器出力を比例ゲイン倍するq軸比例ゲイン増幅器と,前記電圧指令が所定値よりも小さい場合は前記d軸偏差演算器出力を選択し,前記電圧指令が所定値よりも大きい場合は0を選択して出力するスイッチと,前記スイッチ出力を積分ゲイン倍するd軸積分ゲイン増幅器と,前記q軸偏差演算器出力を積分ゲイン倍するq軸積分ゲイン増幅器と,前記d軸偏差演算器出力を前記dq軸の回転角周波数に比例したゲインで増幅するd軸速度比例増幅器と,前記q軸偏差演算器出力を前記dq軸の回転角周波数に比例したゲインで増幅するq軸速度比例増幅器と,前記q軸積分ゲイン増幅器出力と前記d軸速度比例増幅器出力の和を制限付きで積分する制限付q軸積分器と,前記d軸積分ゲイン増幅器出力と前記q軸速度比例増幅器出力の和を積分するd軸積分器と,前記交流電動機のq軸上の電圧特性式のd軸電流に係る項を,前記d軸電流指令で演算するq軸干渉演算器と,前記交流電動機のd軸上の電圧特性式のq軸電流に係る項を,前記q軸電流指令を用いて演算するd軸干渉演算器と,前記q軸比例ゲイン増幅器出力と前記q軸積分器出力と前記q軸干渉演算器出力との和のq軸電圧指令と,前記d軸比例ゲイン増幅器出力と前記d軸積分器出力と前記d軸干渉演算器出力との和のd軸電圧指令から前記静止座標系での電圧指令を求める電圧座標変換器を具備する。   In order to solve the above problems, the present invention converts the stator current of an AC motor into a d-axis current and a q-axis current of each component on the dq axis, which is an orthogonal coordinate for rotating, in the current control of the AC motor. If the voltage command is smaller than the maximum voltage that can be output, a voltage according to the voltage command is applied to the AC motor. If the magnitude is larger than the maximum voltage that can be output, a power converter that applies a voltage of the magnitude of the maximum voltage to the AC motor, and a d-axis current command and a q-axis current command on the dq coordinate are generated. A current command generator for output, a d-axis deviation calculator for obtaining a difference between the d-axis current command of the current command generator output and the d-axis current of the current detector, and q of the current command generator output Axis current command and q-axis power of the current detector A q-axis deviation calculator for obtaining a difference between the output, a d-axis proportional gain amplifier for multiplying the output of the d-axis deviation calculator by a proportional gain, a q-axis proportional gain amplifier for multiplying the output of the q-axis deviation calculator by a proportional gain, When the voltage command is smaller than a predetermined value, the d-axis deviation calculator output is selected. When the voltage command is larger than the predetermined value, a switch is selected and output, and the switch output is multiplied by an integral gain. A d-axis integral gain amplifier, a q-axis integral gain amplifier that multiplies the q-axis deviation calculator output by an integral gain, and amplifies the d-axis deviation calculator output with a gain proportional to the rotational angular frequency of the dq axis. An axial velocity proportional amplifier, a q-axis velocity proportional amplifier that amplifies the q-axis deviation calculator output with a gain proportional to the rotational angular frequency of the dq-axis, the q-axis integral gain amplifier output, and the d-axis velocity proportional amplifier A limited q-axis integrator that integrates the sum of forces with a limit, a d-axis integrator that integrates the sum of the d-axis integral gain amplifier output and the q-axis speed proportional amplifier output, and the q-axis of the AC motor A term relating to the d-axis current in the voltage characteristic equation of q is a q-axis interference computing unit that calculates the d-axis current command and a term relating to the q-axis current in the voltage characteristic equation on the d-axis of the AC motor. A d-axis interference calculator that calculates using an axis current command, a q-axis voltage command that is the sum of the q-axis proportional gain amplifier output, the q-axis integrator output, and the q-axis interference calculator output, and the d-axis A voltage coordinate converter that obtains a voltage command in the stationary coordinate system from a d-axis voltage command that is the sum of a proportional gain amplifier output, the d-axis integrator output, and the d-axis interference calculator output;

また前記d軸電流から高周波成分を除去したものに所定値を加算した第2d軸電流指令と,前記電流指令生成器出力のd軸電流指令とを比較して,負の方向に大きい方を選択して出力するd軸電流指令調整器を具備し,前記d軸電流指令の代わりに該d軸電流指令調整器出力を前記d軸偏差演算器や前記q軸干渉演算器の入力とする。   The second d-axis current command obtained by adding a predetermined value to the d-axis current from which the high-frequency component is removed is compared with the d-axis current command output from the current command generator, and the larger one in the negative direction is selected. The d-axis current command adjuster is output, and the output of the d-axis current command adjuster is used as an input to the d-axis deviation calculator and the q-axis interference calculator instead of the d-axis current command.

また前記d軸電圧指令と前記q軸電圧指令を成分とする電圧指令ベクトルの前記d軸からの位相の制限値である電圧ベクトル位相制限値と前記最大電圧とから前記q軸電流指令の制限値を求めて,前記q軸電流指令を該制限値に制限して前記q軸偏差演算器や前記d軸干渉演算器に出力するq軸電流指令制限器を具備する。   Further, the limit value of the q-axis current command from the voltage vector phase limit value which is a limit value of the phase from the d-axis of the voltage command vector having the d-axis voltage command and the q-axis voltage command as components, and the maximum voltage. And a q-axis current command limiter that limits the q-axis current command to the limit value and outputs it to the q-axis deviation calculator and the d-axis interference calculator.

図3に示されている従来技術にd軸干渉演算器とq軸干渉演算器とを組み合わせることで制限付q軸積分器の制限値を小さくすることができ,それによって永久磁石同期電動機のように電圧ベクトルの向きがq軸から大きく離れている場合でも電圧ベクトル位相を変化させるのに必要なd軸電圧指令の変化分Δvdrを小さくすることができる。   The limit value of the limited q-axis integrator can be reduced by combining the d-axis interference calculator and the q-axis interference calculator with the prior art shown in FIG. Even when the direction of the voltage vector is far away from the q-axis, the change Δvdr in the d-axis voltage command necessary for changing the voltage vector phase can be reduced.

またd軸電流指令調整器により,d軸電流指令とd軸電流との偏差を所定値以下にすることができ,電流指令生成器出力のd軸電流指令が急変してもq軸電流制御への影響を小さくすることができる。   In addition, the d-axis current command adjuster can reduce the deviation between the d-axis current command and the d-axis current to a predetermined value or less, and even if the d-axis current command output from the current command generator changes suddenly, the q-axis current control is performed. The influence of can be reduced.

またq軸電流指令制限器により,永久磁石同期電動機の場合は電圧指令ベクトルがd軸に近づきすることを制限することができ,d軸電圧指令の調整で電圧ベクトル位相の調整ができなくなることを防ぐことができる。誘導電動機の場合に,回転速度が上昇するに従ってd軸電流は自動的に減少し所望のトルクを出力し続けるためにq軸電流指令を大きくしなければならないが,印加電圧制限下での停動トルクによってq軸電流を大きくしてもトルクが出なくなり制御不能状態に陥ることがある。しかし,q軸電流指令制限器で適切な値に制限することで制御不能状態になることを防止することができる。   The q-axis current command limiter can limit the voltage command vector from approaching the d-axis in the case of a permanent magnet synchronous motor, and the voltage vector phase cannot be adjusted by adjusting the d-axis voltage command. Can be prevented. In the case of an induction motor, the d-axis current automatically decreases as the rotational speed increases, and the q-axis current command must be increased in order to continue to output the desired torque. Even if the q-axis current is increased by torque, torque may not be generated and the control may be disabled. However, it is possible to prevent an uncontrollable state by limiting to an appropriate value with the q-axis current command limiter.

電流制御の本発明の実施例を示した説明図である。(実施例1)It is explanatory drawing which showed the Example of this invention of current control. Example 1 電流制御の従来技術例1の説明図である。It is explanatory drawing of the prior art example 1 of electric current control. 電流制御の従来技術例2の説明図である。It is explanatory drawing of the prior art example 2 of electric current control. 従来技術の電圧ベクトルと各電圧指令の関係を図示したものである。The relationship between the voltage vector of a prior art and each voltage command is shown in figure. 本発明の電圧ベクトルと各電圧指令の関係を図示したものである。The relationship between the voltage vector of this invention and each voltage command is shown in figure.

本発明の交流電動機の電流制御技術の実施例を図1に示し,この図に基づいて本発明の実施例を説明する。なお,図3と同一部分については説明を省略し,異なる点のq軸電流指令制限器6とd軸電流指令調整器7とq軸干渉演算器19とd軸干渉演算器20について説明する。   An embodiment of the current control technique for an AC motor of the present invention is shown in FIG. 1, and the embodiment of the present invention will be described based on this figure. The description of the same parts as in FIG. 3 will be omitted, and the q-axis current command limiter 6, d-axis current command adjuster 7, q-axis interference calculator 19 and d-axis interference calculator 20 will be described.

q軸干渉演算器19は,図2の場合と同様に(2)式や(4)式の右辺第3項と第4項を求めて出力する。その際,図1の場合はd軸電流idの代わりにd軸電流指令idrrを用いているが,d軸電流idでもよい。d軸干渉演算器20は,(1)式の右辺第3項と第4項を,または(3)式の右辺第3項を求めて出力する。その際,図1の場合はq軸電流iqの代わりにq軸電流指令iqrrを用いているが,q軸電流iqでもよい。このq軸干渉演算器19とd軸干渉演算器20により,定常状態では,制限付q軸積分器17やd軸積分器18は巻線抵抗値R1による電圧降下分だけを補償すればよいことになり,その値は比較的小さいので,制限付q軸積分器17の制限値を図5のvqlmtのように小さく設定できる。すると図5に示されているように電圧ベクトルvがq軸より離れていても電圧ベクトル位相を変化させるためのd軸電圧指令の変化分Δvdrを小さくすることができる。従って,d軸積分器18の出力範囲小さくすることができ,その積分ゲインとなるq軸速度比例増幅器15やd軸積分ゲイン増幅器13のゲイン調整が簡単となる。   The q-axis interference computing unit 19 obtains and outputs the third and fourth terms on the right side of the equations (2) and (4) as in the case of FIG. At this time, in the case of FIG. 1, the d-axis current command idrr is used instead of the d-axis current id, but the d-axis current id may be used. The d-axis interference calculator 20 calculates and outputs the third and fourth terms on the right side of equation (1) or the third term on the right side of equation (3). In this case, in the case of FIG. 1, the q-axis current command iqrr is used instead of the q-axis current iq, but the q-axis current iq may be used. With the q-axis interference calculator 19 and the d-axis interference calculator 20, the restricted q-axis integrator 17 and the d-axis integrator 18 need only compensate for the voltage drop due to the winding resistance value R1. Since the value is relatively small, the limit value of the limited q-axis integrator 17 can be set as small as vqlmt in FIG. Then, as shown in FIG. 5, even if the voltage vector v is away from the q-axis, the change Δvdr of the d-axis voltage command for changing the voltage vector phase can be reduced. Therefore, the output range of the d-axis integrator 18 can be reduced, and the gain adjustment of the q-axis speed proportional amplifier 15 and the d-axis integral gain amplifier 13 serving as the integral gain is simplified.

次にq軸電流指令制限器6の動作について説明する。q軸電流指令制限器6は,電圧ベクトル位相制限値θvxと電力変換器3が出力可能な最大電圧Emとを入力してq軸電流制限値を求め,その値にq軸電流指令を制限して新しいq軸電流指令iqrrとして出力する。交流電動機1が永久磁石同期電動機の場合は,前記q軸電流制限値を,d軸と電圧指令ベクトルとの位相差をθvxに制限するために用いる。   Next, the operation of the q-axis current command limiter 6 will be described. The q-axis current command limiter 6 obtains the q-axis current limit value by inputting the voltage vector phase limit value θvx and the maximum voltage Em that the power converter 3 can output, and limits the q-axis current command to that value. Is output as a new q-axis current command iqrr. When the AC motor 1 is a permanent magnet synchronous motor, the q-axis current limit value is used to limit the phase difference between the d-axis and the voltage command vector to θvx.

Figure 2018057170
Figure 2018057170
Figure 2018057170
Figure 2018057170
Figure 2018057170
Figure 2018057170
Figure 2018057170
Figure 2018057170

電圧ベクトルの大きさを電力変換器3の出力可能最大電圧Emとし,位相をθvxとすると電圧は(5)式で表される。また電流制限値をImとすると制限状態では(6)式で表すことができる。定常状態でp=0とし,R1を無視した(3)式と(4)式に(5)式と(6)式を代入すると(7)式の関係式を得ることができる。この式は,電圧位相をθvxとするには電流ベクトルの大きさをImに制限すればいいことを表している。従って,電力変換器3の出力可能最大電圧Emと位相差制限値θvxとから(7)式で電流ベクトルの大きさ制限値Imを求め(8)式でq軸電流制限値iqlmtを求め,iqlmtでq軸電流指令を制限すれば,電圧指令ベクトルのd軸からの位相差をθvx〜π−θvxの間に制限することができ,電圧指令ベクトルがd軸に近づくことを防ぐことができ,電流制御不能状態に陥ることを防ぐことができる。   If the magnitude of the voltage vector is the maximum voltage Em that can be output from the power converter 3 and the phase is θvx, the voltage is expressed by equation (5). If the current limit value is Im, it can be expressed by equation (6) in the limited state. By substituting Eqs. (5) and (6) into Eqs. (3) and (4) with p = 0 in a steady state and ignoring R1, the relational expression of Eq. (7) can be obtained. This expression indicates that the magnitude of the current vector should be limited to Im in order to set the voltage phase to θvx. Therefore, the current vector magnitude limit value Im is obtained from the maximum output voltage Em of the power converter 3 and the phase difference limit value θvx by the equation (7), and the q-axis current limit value iqlmt is obtained by the equation (8). If the q-axis current command is limited at, the phase difference of the voltage command vector from the d-axis can be limited between θvx and π−θvx, and the voltage command vector can be prevented from approaching the d-axis, It can be prevented that the current control is disabled.

交流電動機1が誘導電動機の場合は,定常状態でp=0とし,R1を無視した(1)式と(2)式に(5)式を代入し,またφ2=M・idとしてトルク式に代入して,最大トルクを得る条件を導出するとθvx=π/4またはθvx=3・π/4が得られる。よって,θvx=π/4として(9)式でq軸電流制限値iqlmtを求め,iqlmtでq軸電流指令を制限すれば,停動トルクを超えることによる電流制御不能状態に陥ることを防ぐことができる。なお,R1を無視したことやその他定数の誤差を考慮して,θvxはπ/4よりも大きな値に設定することが望ましい。   When AC motor 1 is an induction motor, p = 0 is set in a steady state, R1 is ignored, (5) is substituted into Eqs. (1) and (2), and φ2 = M · id. Substituting and deriving the condition for obtaining the maximum torque yields θvx = π / 4 or θvx = 3 · π / 4. Therefore, if θvx = π / 4 and the q-axis current limit value iqlmt is obtained by the equation (9) and the q-axis current command is limited by iqlmt, the current control cannot be prevented from exceeding due to exceeding the stall torque. Can do. In consideration of ignoring R1 and other constant errors, it is desirable to set θvx to a value larger than π / 4.

Figure 2018057170
Figure 2018057170

次にd軸電流指令調整器7の動作について説明する。d軸電流指令調整器7は,d軸電流idの高周波成分を除いたものに所定値Δidを加えたものとd軸電流指令idrとから負の方向に大きいものを選択して新しいd軸電流指令idrrとして出力する。これによってd軸偏差演算器9で得られたidrrとidとの偏差iderは,Δidより大きくなることがなくなる。すると電圧飽和状態で電流指令生成器5出力のd軸電流指令idrがidよりも大きい範囲で急変しても全く電流制御には影響しなくなる。   Next, the operation of the d-axis current command adjuster 7 will be described. The d-axis current command adjuster 7 selects a new d-axis current by selecting a value obtained by removing a high-frequency component of the d-axis current id and adding a predetermined value Δid and a d-axis current command idr that is larger in the negative direction. Output as command idrr. As a result, the deviation ider between idrr and id obtained by the d-axis deviation calculator 9 does not become larger than Δid. Then, even if the d-axis current command idr output from the current command generator 5 suddenly changes in a voltage saturation state in a range larger than id, the current control is not affected at all.

交流電動機の制御装置において,電圧飽和状態となってもトルク制御優先での電流制御を安定に継続することができ,また電動機速度の上昇や電力変換器の電源電圧低下などでより電圧飽和度が向上してもq軸電流指令を的確に制限することで制御不能状態を避けることができるので,誘導電動機や永久磁石同期電動機による全てのドライブシステムに本発明を適用でき,速度や電源電圧の運転許容範囲を広げることができるようになる。   In AC motor control devices, current control with priority on torque control can be continued stably even when voltage saturation occurs, and voltage saturation is further increased due to an increase in motor speed and a decrease in power supply voltage of the power converter. Even if it is improved, it is possible to avoid the uncontrollable state by accurately limiting the q-axis current command. Therefore, the present invention can be applied to all drive systems using induction motors or permanent magnet synchronous motors, and operation of speed and power supply voltage can be performed. The allowable range can be expanded.

1 交流電動機
2 電流検出器
3 電力変換器
4 電圧座標変換器
5 電流指令生成器
6 q軸電流指令制限器
7 d軸電流指令調整器
8 q軸偏差演算器
9 d軸偏差演算器
10 q軸比例ゲイン増幅器
11 d軸比例ゲイン増幅器
12 q軸積分ゲイン増幅器
13 d軸積分ゲイン増幅器
14 d軸速度比例増幅器
15 q軸速度比例増幅器
16 スイッチ
17 制限付q軸積分器
18 d軸積分器
19 q軸干渉演算器
20 d軸干渉演算器
21,22,23,24 加算器
25 制限付d軸積分器
DESCRIPTION OF SYMBOLS 1 AC motor 2 Current detector 3 Power converter 4 Voltage coordinate converter 5 Current command generator 6 q-axis current command limiter 7 d-axis current command adjuster 8 q-axis deviation calculator 9 d-axis deviation calculator 10 q-axis Proportional gain amplifier 11 d-axis proportional gain amplifier 12 q-axis integral gain amplifier 13 d-axis integral gain amplifier 14 d-axis velocity proportional amplifier 15 q-axis velocity proportional amplifier 16 switch 17 restricted q-axis integrator 18 d-axis integrator 19 q-axis Interference calculator 20 d-axis interference calculator 21, 22, 23, 24 Adder 25 Limited d-axis integrator

Claims (3)

交流電動機の固定子電流を回転する直交座標であるdq軸上の各成分のd軸電流とq軸電流に変換して出力する電流検出器と,
静止座標系での電圧指令を入力し,該電圧指令が出力可能な最大電圧よりも小さければ前記電圧指令通りの電圧を前記交流電動機に印加し,前記電圧指令の大きさが前記出力可能な最大電圧よりも大きければ,前記最大電圧の大きさの電圧を前記交流電動機に印加する電力変換器と,
前記dq座標上のd軸電流指令とq軸電流指令を生成して出力する電流指令生成器と,
前記電流指令生成器出力のd軸電流指令と前記電流検出器のd軸電流との差を得るd軸偏差演算器と,
前記電流指令生成器出力のq軸電流指令と前記電流検出器のq軸電流との差を得るq軸偏差演算器と,
前記d軸偏差演算器出力を比例ゲイン倍するd軸比例ゲイン増幅器と,
前記q軸偏差演算器出力を比例ゲイン倍するq軸比例ゲイン増幅器と,
前記電圧指令が所定値よりも小さい場合は前記d軸偏差演算器出力を選択し,前記電圧指令が所定値よりも大きい場合は0を選択して出力するスイッチと,
前記スイッチ出力を積分ゲイン倍するd軸積分ゲイン増幅器と,
前記q軸偏差演算器出力を積分ゲイン倍するq軸積分ゲイン増幅器と,
前記d軸偏差演算器出力を前記dq軸の回転角周波数に比例したゲインで増幅するd軸速度比例増幅器と,
前記q軸偏差演算器出力を前記dq軸の回転角周波数に比例したゲインで増幅するq軸速度比例増幅器と,
前記q軸積分ゲイン増幅器出力と前記d軸速度比例増幅器出力の和を制限付きで積分する制限付q軸積分器と,
前記d軸積分ゲイン増幅器出力と前記q軸速度比例増幅器出力の和を積分するd軸積分器と,
前記交流電動機のq軸上の電圧特性式のd軸電流に係る項を,前記d軸電流指令で演算するq軸干渉演算器と,
前記交流電動機のd軸上の電圧特性式のq軸電流に係る項を,前記q軸電流指令を用いて演算するd軸干渉演算器と,
前記q軸比例ゲイン増幅器出力と前記q軸積分器出力と前記q軸干渉演算器出力との和のq軸電圧指令と,前記d軸比例ゲイン増幅器出力と前記d軸積分器出力と前記d軸干渉演算器出力との和のd軸電圧指令から前記静止座標系での電圧指令を求める電圧座標変換器とからなることを特徴とする交流電動機の制御装置。
A current detector that converts and outputs a d-axis current and a q-axis current of each component on the dq axis, which are orthogonal coordinates for rotating the stator current of the AC motor,
When a voltage command in a stationary coordinate system is input and the voltage command is smaller than the maximum voltage that can be output, a voltage according to the voltage command is applied to the AC motor, and the magnitude of the voltage command is the maximum that can be output. A power converter that applies a voltage of the maximum voltage magnitude to the AC motor if greater than a voltage;
A current command generator for generating and outputting a d-axis current command and a q-axis current command on the dq coordinate;
A d-axis deviation calculator for obtaining a difference between the d-axis current command of the current command generator output and the d-axis current of the current detector;
A q-axis deviation calculator for obtaining a difference between a q-axis current command of the current command generator output and a q-axis current of the current detector;
A d-axis proportional gain amplifier for multiplying the d-axis deviation calculator output by a proportional gain;
A q-axis proportional gain amplifier for multiplying the q-axis deviation calculator output by a proportional gain;
A switch that selects and outputs the d-axis deviation calculator output when the voltage command is smaller than a predetermined value, and selects and outputs 0 when the voltage command is larger than the predetermined value;
A d-axis integral gain amplifier for multiplying the switch output by an integral gain;
A q-axis integral gain amplifier for multiplying the q-axis deviation calculator output by an integral gain;
A d-axis velocity proportional amplifier that amplifies the d-axis deviation calculator output with a gain proportional to the rotational angular frequency of the dq axis;
A q-axis velocity proportional amplifier that amplifies the q-axis deviation calculator output with a gain proportional to the rotational angular frequency of the dq axis;
A restricted q-axis integrator that integrates the sum of the q-axis integral gain amplifier output and the d-axis velocity proportional amplifier output with restriction;
A d-axis integrator for integrating the sum of the d-axis integral gain amplifier output and the q-axis velocity proportional amplifier output;
A q-axis interference calculator for calculating a term related to the d-axis current in the voltage characteristic equation on the q-axis of the AC motor by the d-axis current command;
A d-axis interference computing unit that computes a term related to the q-axis current of the voltage characteristic equation on the d-axis of the AC motor using the q-axis current command;
The q-axis voltage command of the sum of the q-axis proportional gain amplifier output, the q-axis integrator output, and the q-axis interference calculator output, the d-axis proportional gain amplifier output, the d-axis integrator output, and the d-axis A control apparatus for an AC motor, comprising: a voltage coordinate converter that obtains a voltage command in the stationary coordinate system from a d-axis voltage command that is the sum of the interference calculator output.
前記d軸電流から高周波成分を除去したものに所定値を加算した第2d軸電流指令と,前記電流指令生成器出力のd軸電流指令とを比較して,負の方向に大きい方を選択して出力するd軸電流指令調整器を具備し,前記d軸電流指令の代わりに該d軸電流指令調整器出力を前記d軸偏差演算器や前記q軸干渉演算器の入力とすることを特徴とする
請求項1記載の交流電動機の制御装置。
The second d-axis current command obtained by adding a predetermined value to the d-axis current from which the high-frequency component is removed is compared with the d-axis current command output from the current command generator, and the larger one in the negative direction is selected. Output d-axis current command adjuster, and the output of the d-axis current command regulator is used as an input to the d-axis deviation calculator or the q-axis interference calculator instead of the d-axis current command. The control device for an AC motor according to claim 1.
前記d軸電圧指令と前記q軸電圧指令を成分とする電圧指令ベクトルの前記d軸からの位相の制限値である電圧ベクトル位相制限値と前記最大電圧とから前記q軸電流指令の制限値を求めて,前記q軸電流指令を該制限値に制限して前記q軸偏差演算器や前記d軸干渉演算器に出力するq軸電流指令制限器を具備することを特徴とする請求項1および2記載の交流電動機の制御装置。
The limit value of the q-axis current command is obtained from the voltage vector phase limit value, which is a limit value of the phase from the d-axis of the voltage command vector having the d-axis voltage command and the q-axis voltage command as components, and the maximum voltage. And a q-axis current command limiter that limits the q-axis current command to the limit value and outputs the command to the q-axis deviation calculator and the d-axis interference calculator. 2. The control apparatus for an AC motor according to 2.
JP2016191469A 2016-09-29 2016-09-29 Controller for alternating electric motor Pending JP2018057170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016191469A JP2018057170A (en) 2016-09-29 2016-09-29 Controller for alternating electric motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016191469A JP2018057170A (en) 2016-09-29 2016-09-29 Controller for alternating electric motor

Publications (1)

Publication Number Publication Date
JP2018057170A true JP2018057170A (en) 2018-04-05

Family

ID=61834367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016191469A Pending JP2018057170A (en) 2016-09-29 2016-09-29 Controller for alternating electric motor

Country Status (1)

Country Link
JP (1) JP2018057170A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110957953A (en) * 2018-09-25 2020-04-03 欧姆龙(上海)有限公司 Control device and control method for alternating current motor
JP2020124024A (en) * 2019-01-30 2020-08-13 東洋電機製造株式会社 Motor controller
JP2020167820A (en) * 2019-03-29 2020-10-08 三菱電機株式会社 Control device for ac rotary electric machine
JP2020202641A (en) * 2019-06-07 2020-12-17 キヤノン株式会社 Motor drive device and image forming apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110957953A (en) * 2018-09-25 2020-04-03 欧姆龙(上海)有限公司 Control device and control method for alternating current motor
CN110957953B (en) * 2018-09-25 2022-12-20 欧姆龙(上海)有限公司 Control device and control method for alternating current motor
JP2020124024A (en) * 2019-01-30 2020-08-13 東洋電機製造株式会社 Motor controller
JP7194320B2 (en) 2019-01-30 2022-12-22 東洋電機製造株式会社 motor controller
JP2020167820A (en) * 2019-03-29 2020-10-08 三菱電機株式会社 Control device for ac rotary electric machine
JP2020202641A (en) * 2019-06-07 2020-12-17 キヤノン株式会社 Motor drive device and image forming apparatus

Similar Documents

Publication Publication Date Title
JP5957704B2 (en) Electric motor control device
JP5948613B2 (en) Motor control device
US20040135533A1 (en) Speed control device for ac electric motor
JP5717808B2 (en) Current control device for synchronous motor
KR100374662B1 (en) Apparatus for controlling synchronous motor
JP2013055788A (en) Speed control device for ac motor
JP2018057170A (en) Controller for alternating electric motor
EP2869461A1 (en) Motor controller
JPH02254987A (en) Method and apparatus for control of induction motor
JP4725011B2 (en) V / f control device for permanent magnet synchronous motor
JP2010172060A (en) Vector controller for permanent magnet motor, vector control system for permanent magnet motor, and screw compressor
JP5284895B2 (en) Winding field synchronous machine controller
JP7194320B2 (en) motor controller
JP6391096B2 (en) AC motor current control device
JP2006217762A (en) Ac motor driving device
JP3622547B2 (en) Control device for synchronous motor
JP2001190093A (en) Control device of print magnet type synchronous motor
JP6417881B2 (en) Induction motor controller
JP3534722B2 (en) Motor control device
JP5930071B2 (en) Motor control device and motor control method
JP4051601B2 (en) Variable speed control device for electric motor
JPWO2005025049A1 (en) Rotating machine control device
JP5517983B2 (en) AC rotating machine control device
CN110890854A (en) Synchronous motor control device
JP7013847B2 (en) Motor control device