JP2012177672A - Physical amount measurement device for rotary machine - Google Patents

Physical amount measurement device for rotary machine Download PDF

Info

Publication number
JP2012177672A
JP2012177672A JP2011081393A JP2011081393A JP2012177672A JP 2012177672 A JP2012177672 A JP 2012177672A JP 2011081393 A JP2011081393 A JP 2011081393A JP 2011081393 A JP2011081393 A JP 2011081393A JP 2012177672 A JP2012177672 A JP 2012177672A
Authority
JP
Japan
Prior art keywords
encoder
sensors
characteristic change
directions
detected surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011081393A
Other languages
Japanese (ja)
Other versions
JP5742392B2 (en
Inventor
Ichiu Tanaka
一宇 田中
Eisei Doi
永生 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011081393A priority Critical patent/JP5742392B2/en
Publication of JP2012177672A publication Critical patent/JP2012177672A/en
Application granted granted Critical
Publication of JP5742392B2 publication Critical patent/JP5742392B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize structure for measuring deviations x, y, and z and inclinations φx and φz of five directions of a rotary member to which an encoder 1a is externally engaged and fixed in a state where the number of sensors 10 and 10 to be used by being combined with the encoder 1a is reduced to only three.SOLUTION: As an encoder 1a, the one obtained by forming a plurality of characteristic change combination parts 3a and 3a at equal pitches in the circumferential direction on the outer peripheral surface which is a surface to be detected is used. The respective characteristic change combination parts 3a and 3a consist of a first recessed groove 11a and a second recessed groove 11b inclined to the directions opposite to each other relative to the axial direction of the encoder 1a. Detection parts of three sensors 10 and 10 are made to face each other on the parts where phases in the circumferential direction are different from each other of the outer peripheral surface of the encoder 1a. Thus, deviations x, y, and z and inclinations φx and φz of five directions are able to be calculated on the basis of information to be obtained from output signals of the respective sensors 10 and 10.

Description

本発明は、旋盤、フライス盤、マシニングセンタ等の各種工作機械の主軸や、自動車の車輪支持用転がり軸受ユニットを構成する回転側軌道輪部材等の回転部材に生じる変位や傾き、更には、この回転部材に作用する荷重やモーメントと言った物理量を測定する為に利用する。   The present invention relates to displacements and inclinations generated in rotating members such as main shafts of various machine tools such as lathes, milling machines, machining centers, and rotating bearing members for constituting rolling bearing units for supporting wheels of automobiles. It is used to measure physical quantities such as loads and moments acting on the.

工作機械の主軸は、先端部に工具又は被加工物を取り付けた状態で、この工具又は被加工物に高精度な回転運動を与える、その工作機械で最も主要な軸である。この被加工物の加工時に、前記主軸には、加工抵抗に基づく荷重が加わる。この荷重は、加工送り速度が小さくなる程小さくなり、大きくなる程大きくなる。従って、前記荷重が所定範囲に収まる様に前記加工送り速度を調節すれば、この加工送り速度を、加工能率を確保しつつ、前記工具の耐久性、及び、前記被加工物の品質を確保できる適正範囲に収める事ができる。又、前記加工送り速度等の加工条件を一定とした場合に、前記荷重は、前記工具の切削性(切れ味)が劣化する程大きくなる。従って、前記加工条件との関係で前記荷重の大小を観察すれば、前記工具が寿命に達した事を知る事ができて、寿命に達した不良工具で加工を継続する事による、歩留まりの悪化を防止できる。又、前記荷重を、前記加工条件と関連付けて継続的に観察すれば、工具破損等の事故発生時に、その原因を特定する事が可能になる。   The main axis of a machine tool is the most main axis of the machine tool that gives a highly accurate rotational motion to the tool or workpiece while the tool or workpiece is attached to the tip. During machining of the workpiece, a load based on machining resistance is applied to the main shaft. This load decreases as the machining feed rate decreases and increases as it increases. Therefore, if the machining feed rate is adjusted so that the load falls within a predetermined range, the machining feed rate can ensure the machining efficiency and the durability of the tool and the quality of the workpiece. Can be within the proper range. In addition, when the processing conditions such as the processing feed rate are constant, the load increases as the cutting performance (sharpness) of the tool deteriorates. Therefore, if the magnitude of the load is observed in relation to the machining conditions, it can be known that the tool has reached the end of its life, and the yield is deteriorated by continuing the processing with the defective tool that has reached the end of the life. Can be prevented. Further, if the load is continuously observed in association with the machining conditions, it becomes possible to identify the cause when an accident such as tool breakage occurs.

この様な目的で、工作機械の主軸等の回転軸に加わる荷重を測定する為の装置として従来から、例えば特許文献1に記載された構造のものが知られている。この特許文献1に記載された荷重測定装置は、水晶圧電式の荷重センサを複数個、荷重の作用方向に対して直列に配置し、これら各荷重センサの測定信号に基づいて、切削工具を支持固定した回転軸に加わる荷重(切削抵抗)を測定する様に構成している。この様な特許文献1に記載された荷重測定装置の場合、高価な水晶圧電式の荷重センサを使用する為、荷重測定装置全体としてのコストが嵩む事が避けられない。   For such a purpose, a device having a structure described in Patent Document 1, for example, is conventionally known as a device for measuring a load applied to a rotating shaft such as a main shaft of a machine tool. The load measuring apparatus described in Patent Document 1 includes a plurality of quartz piezoelectric type load sensors arranged in series with respect to the direction of load application, and supports a cutting tool based on measurement signals of these load sensors. The load (cutting resistance) applied to the fixed rotating shaft is measured. In the case of such a load measuring device described in Patent Document 1, since an expensive quartz piezoelectric load sensor is used, it is inevitable that the cost of the load measuring device as a whole increases.

一方、特許文献2には、水晶圧電式の荷重センサに比べて低コストで調達できる、磁気式のエンコーダとセンサとにより構成する、荷重測定装置付転がり軸受ユニットに関する発明が記載されている。例えば特許文献2の段落[0066]〜[0068]には、図10に示す様なエンコーダ1を使用して、このエンコーダ1を同心に支持した回転部材の軸方向に関する変位量、延いてはこの回転部材に加わるアキシアル荷重を測定する技術が記載されている。   On the other hand, Patent Document 2 describes an invention relating to a rolling bearing unit with a load measuring device, which includes a magnetic encoder and sensor, which can be procured at a lower cost than a quartz piezoelectric load sensor. For example, in paragraphs [0066] to [0068] of Patent Document 2, an encoder 1 as shown in FIG. 10 is used, and the amount of displacement in the axial direction of a rotating member that concentrically supports the encoder 1 is extended. A technique for measuring an axial load applied to a rotating member is described.

前記エンコーダ1は、鋼板等の磁性金属板により全体を円筒状に造られている。このエンコーダ1の軸方向中間部には、それぞれが円周方向に所定のピッチで離隔して設けられた第一特性変化部である第一透孔2aと第二特性変化部である第二透孔2bとから成る、複数の特性変化組み合わせ部3、3が、円周方向に関して等ピッチで設けられている。これら各特性変化組み合わせ部3、3を構成する、前記第一透孔2aと前記第二透孔2bとは、前記エンコーダ1の軸方向に対して、互いに逆方向に、同じ角度で傾斜している。別な言い方をすれば、前記第一透孔2aと前記第二透孔2bとの、前記エンコーダ1の軸方向に対する傾斜角度は、絶対値が互いに等しく、且つ、正負の符号(傾斜方向)が互いに逆になっている。この様なエンコーダ1は、工作機械の主軸の如き回転部材の一部に、この回転部材と同心に固定する。これと共に、この回転部材に隣接する部分に設けられた静止部材の一部に、磁気検知式のセンサを支持した状態で、このセンサの検出部を、前記エンコーダ1の外周面に微小隙間を介して近接対向させる。   The encoder 1 is made entirely cylindrical by a magnetic metal plate such as a steel plate. In the intermediate portion in the axial direction of the encoder 1, a first through hole 2a that is a first characteristic changing portion and a second through hole that is a second characteristic changing portion that are provided at a predetermined pitch in the circumferential direction. A plurality of characteristic change combination portions 3 and 3 including holes 2b are provided at equal pitches in the circumferential direction. The first through hole 2a and the second through hole 2b constituting each of the characteristic change combination units 3 and 3 are inclined at the same angle in opposite directions with respect to the axial direction of the encoder 1. Yes. In other words, the inclination angles of the first through-hole 2a and the second through-hole 2b with respect to the axial direction of the encoder 1 have the same absolute value and positive and negative signs (inclination directions). They are opposite to each other. Such an encoder 1 is fixed to a part of a rotating member such as a main shaft of a machine tool concentrically with the rotating member. At the same time, in a state where a magnetic detection type sensor is supported on a part of a stationary member provided in a portion adjacent to the rotating member, the detection unit of the sensor is connected to the outer peripheral surface of the encoder 1 through a minute gap. And make them face each other.

この状態で、前記主軸と共に前記エンコーダ1が回転すると、前記センサの検出部が、被検出面である、このエンコーダ1の外周面を走査する。このエンコーダ1の外周面の磁気特性は、前記第一、第二各透孔2a、2bの存在により円周方向に変化している為、前記エンコーダ1の回転に伴って前記センサの出力信号が変化する。例えば、このセンサの検出部が前記エンコーダ1の外周面のうち、図11の(a)の鎖線イ位置を走査すると、このセンサの出力信号が、この図11の(b)に示す様に変化する。この図11の(b)で、円周方向に隣り合う1対の特性変化組み合わせ部3、3を構成する1対の第一透孔2a、2aに基づいて発生する1対のパルス間の周期を全周期L1とする。又、同じ特性変化組み合わせ部3を構成する第一、第二両透孔2a、2bに基づいて発生する1対のパルス間の周期を部分周期s1とする。前記センサの検出部が前記鎖線イ位置を走査する場合には、この部分周期s1と前記全周期L1との比であるパルス周期比s1/L1は、比較的小さな値となる。これに対して、前記センサの検出部が図11の(a)の鎖線ロ位置を走査すると、このセンサの出力信号が、この図11の(c)に示す様に変化する。そして、部分周期s2と全周期L2との比であるパルス周期比s2/L2は、比較的大きな値となる。 In this state, when the encoder 1 rotates together with the main shaft, the detection unit of the sensor scans the outer peripheral surface of the encoder 1 which is a detected surface. Since the magnetic characteristics of the outer peripheral surface of the encoder 1 change in the circumferential direction due to the presence of the first and second through holes 2a and 2b, the output signal of the sensor changes as the encoder 1 rotates. Change. For example, when the detection unit of this sensor scans the chain line a position in FIG. 11A on the outer peripheral surface of the encoder 1, the output signal of this sensor changes as shown in FIG. 11B. To do. In FIG. 11 (b), a period between a pair of pulses generated based on a pair of first through holes 2a and 2a constituting a pair of characteristic change combination portions 3 and 3 adjacent in the circumferential direction. Is the total period L 1 . Further, the first, second double holes 2a, 2b to the period between a pair of pulses with sub-periods s 1 generated based on configuring the same characteristic change combination unit 3. When the detection unit of the sensor scans the chain line b position, the pulse period ratio s 1 / L 1 , which is the ratio between the partial period s 1 and the total period L 1 , becomes a relatively small value. On the other hand, when the detection unit of the sensor scans the position of the chain line in FIG. 11 (a), the output signal of the sensor changes as shown in FIG. 11 (c). The pulse cycle ratio s 2 / L 2 , which is the ratio between the partial cycle s 2 and the total cycle L 2 , is a relatively large value.

この様に、前記センサの出力信号に関するパルス周期比s/Lは、このセンサの検出部が走査する、前記エンコーダ1の外周面の軸方向位置(被検出面の幅方向位置)により変化する。そして、この軸方向位置は、エンコーダを固定した回転部材の軸方向変位により変化する。従って、前記センサの出力信号を処理する為の演算器に、前記回転部材の軸方向変位量を算出する為の演算式を組み込んだソフトウェアをインストールしておけば、前記演算器により、前記パルス周期比s/Lに基づいて、前記回転部材の軸方向変位量を算出できる。又、この回転部材が、予圧を付与された転がり軸受により回転自在に支持されていた場合、この回転部材の軸方向変位量は、この回転部材に加わるアキシアル荷重の大きさに応じて変化する。言い換えれば、この回転部材に加わるアキシアル荷重と、この回転部材の軸方向変位量との間には、反復・再現性のある相関関係が存在する。そして、この相関関係は、転がり軸受の分野で広く知られている弾性接触理論により計算で求められる他、実験によっても求められる。従って、前記演算器に、前記相関関係を勘案した、前記アキシアル荷重を算出する為の演算式を組み込んだソフトウェアをインストールしておけば、前記演算器により、前記パルス周期比s/Lに基づいて、前記回転部材に加わるアキシアル荷重を算出できる。   As described above, the pulse cycle ratio s / L related to the output signal of the sensor changes depending on the axial position (the width direction position of the detected surface) of the outer peripheral surface of the encoder 1 scanned by the detection unit of the sensor. And this axial position changes with the axial displacement of the rotating member which fixed the encoder. Therefore, if software that incorporates an arithmetic expression for calculating the axial displacement amount of the rotating member is installed in an arithmetic unit for processing the output signal of the sensor, the arithmetic unit calculates the pulse period. Based on the ratio s / L, the axial displacement amount of the rotating member can be calculated. Further, when the rotating member is rotatably supported by a rolling bearing to which a preload is applied, the axial displacement amount of the rotating member changes according to the magnitude of the axial load applied to the rotating member. In other words, there is a reproducible and reproducible correlation between the axial load applied to the rotating member and the axial displacement of the rotating member. And this correlation is calculated | required not only by calculation by the elastic contact theory widely known in the field of a rolling bearing but also by experiment. Therefore, if software that incorporates an arithmetic expression for calculating the axial load in consideration of the correlation is installed in the calculator, the calculator calculates the pulse period ratio s / L based on the pulse period ratio s / L. The axial load applied to the rotating member can be calculated.

ところで、前記主軸の先端部に固定する工具が、例えばフライスやエンドミルである場合、この主軸には、アキシアル荷重も加わるが、それよりも大きな割合でラジアル荷重やモーメントが加わる。従って、この様な場合には、前記アキシアル荷重だけでなく、前記ラジアル荷重やモーメント(或いは、これらに基づいて発生した前記主軸の変位や傾き)を測定して、これらを前述した加工送り速度の調整等に利用する事が、この調整等をより高度に行う観点から好ましいと言える。一方、特許文献3には、回転部材に加わる、アキシアル荷重(変位)と、2方向のラジアル荷重(変位)と、2方向のモーメント(傾き)との、合計5方向の荷重及びモーメント(変位及び傾き)を測定可能な物理量測定装置に関する発明が記載されている。従って、この発明を工作機械に適用すれば、前述した加工送り速度の調整等をより高度に行える。   By the way, when the tool fixed to the front-end | tip part of the said main axis | shaft is a milling machine or an end mill, for example, although an axial load is added to this main axis | shaft, a radial load and a moment are added to a bigger ratio. Therefore, in such a case, not only the axial load but also the radial load and moment (or displacement and inclination of the spindle generated based on them) are measured, and these are measured at the above-mentioned machining feed rate. It can be said that it is preferable to use it for adjustment and the like from the viewpoint of performing this adjustment and the like at a higher level. On the other hand, in Patent Document 3, a total of five directions of load and moment (displacement and displacement) including an axial load (displacement), a radial load (displacement) in two directions, and a moment (tilt) in two directions applied to the rotating member. An invention relating to a physical quantity measuring apparatus capable of measuring (tilt) is described. Therefore, if the present invention is applied to a machine tool, the above-described adjustment of the machining feed rate can be performed at a higher level.

ところが、上述の特許文献3に記載された発明の場合には、エンコーダと組み合わせて使用するセンサの個数を、2個1組のものを3組、合計6個使用する必要がある。この為、これら各センサの費用が嵩む。又、総てのセンサの検出部を、前記エンコーダの被検出面の所定箇所に精度良く対向させる事が難しくなり、その分だけ、生産性が悪化する可能性がある。
尚、本発明に関連する他の先行技術文献として、以下の特許文献4が存在する。
However, in the case of the invention described in the above-mentioned Patent Document 3, it is necessary to use a total of six sensors, two of which are used in combination with three encoders. For this reason, the cost of each of these sensors increases. Further, it becomes difficult to make the detection parts of all the sensors face a predetermined portion of the detection target surface of the encoder with high accuracy, and there is a possibility that productivity is deteriorated accordingly.
In addition, the following patent document 4 exists as another prior art document relevant to this invention.

特開2002−187048号公報JP 2002-187048 A 特開2006−317420号公報JP 2006-317420 A 特開2008−64731号公報JP 2008-64731 A 特開2010−54256号公報JP 2010-54256 A

本発明は、上述の様な事情に鑑み、エンコーダと組み合わせて使用するセンサの個数を6個よりも少なくして、しかも、回転部材の5方向の変位及び傾き(この回転部材に加わる5方向の外力)を測定できる構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention reduces the number of sensors used in combination with the encoder to less than six, and further, the displacement and inclination of the rotating member in five directions (the five directions applied to the rotating member). The invention was invented to realize a structure capable of measuring external force.

本発明の回転機械用物理量測定装置は、回転機械と、エンコーダと、センサと、演算器とを備える。
このうちの回転機械は、回転しない静止部材、及び、それぞれが予圧を付与された複数の転がり軸受により、この静止部材に対して回転自在に支持された回転部材を備える。
又、前記エンコーダは、前記回転部材の一部に支持固定されており、この回転部材と同心の被検出面を有する。この被検出面は、複数の特性変化組み合わせ部を、円周方向に等ピッチで配置したもので、これら各特性変化組み合わせ部はそれぞれ、円周方向に関して所定ピッチで離隔配置された、前記被検出面の幅方向に対する正負の符号をも考慮した傾斜角度が互いに異なる第一特性変化部と第二特性変化部とから成る。
又、前記センサは、その検出部を前記被検出面に対向させた状態で、前記静止部材に支持されている。そして、前記各特性変化部が、前記被検出面のうちで前記検出部が対向する部分を通過する瞬間に、出力信号を変化させる。
更に、前記演算器は、前記センサの出力信号を処理する。
特に、本発明の回転機械用物理量測定装置に於いては、前記センサを3個のみ備えると共に、これら各センサの検出部を、前記被検出面のうちで円周方向の位相が互いに異なる部分に対向させている。又、前記演算器は、前記各センサの出力信号から得られる情報に基づいて、前記静止部材に対する前記エンコーダの、互いに直交する3方向の変位、及び、互いに直交する2方向の傾きのうちの、一部又は全部を算出する機能を有する。
尚、前記被検出面に対する前記各センサの検出部の対向位置は、この被検出面の円周方向等間隔位置とするのが好ましい。
又、前記互いに直交する3方向の変位としては、例えば、互いに直交するx軸、y軸、z軸のうちのy軸を、前記静止部材の中心軸に一致させた三次元直交座標系を設定した場合の、x軸方向の変位xと、y軸方向の変位yと、z軸方向の変位zとを採用する事ができる。又、前記互いに直交する2方向の傾きとしては、前記三次元直交座標系を設定した場合の、x軸周りの傾きφxと、z軸周りの傾きφzとを採用する事ができる。
The physical quantity measuring device for a rotary machine of the present invention includes a rotary machine, an encoder, a sensor, and a calculator.
Among these, the rotating machine includes a stationary member that does not rotate, and a rotating member that is rotatably supported with respect to the stationary member by a plurality of rolling bearings each provided with a preload.
The encoder is supported and fixed to a part of the rotating member and has a detected surface concentric with the rotating member. The detected surface includes a plurality of characteristic change combination portions arranged at equal pitches in the circumferential direction, and each of the characteristic change combination portions is separately arranged at a predetermined pitch in the circumferential direction. It consists of a first characteristic change part and a second characteristic change part that are different in inclination angle in consideration of positive and negative signs with respect to the width direction of the surface.
Further, the sensor is supported by the stationary member in a state where the detection portion faces the detected surface. And each said characteristic change part changes an output signal in the moment of passing through the part which the said detection part opposes among the said to-be-detected surfaces.
Further, the computing unit processes an output signal of the sensor.
In particular, in the physical quantity measuring device for a rotating machine according to the present invention, only three of the sensors are provided, and the detection units of these sensors are arranged in portions where the phases in the circumferential direction are different from each other on the detected surface. They are facing each other. Further, the computing unit is based on the information obtained from the output signals of the sensors, and includes the displacement of the encoder with respect to the stationary member in three orthogonal directions and the inclination in two orthogonal directions. It has a function of calculating part or all of it.
In addition, it is preferable that the opposing position of the detection part of each sensor with respect to the detected surface is a circumferentially equidistant position of the detected surface.
In addition, as the displacement in the three directions orthogonal to each other, for example, a three-dimensional orthogonal coordinate system in which the y-axis of the x-axis, y-axis, and z-axis orthogonal to each other coincides with the central axis of the stationary member is set. In this case, the displacement x in the x-axis direction, the displacement y in the y-axis direction, and the displacement z in the z-axis direction can be employed. As the inclination in the two directions orthogonal to each other, the inclination φ x around the x axis and the inclination φ z around the z axis when the three-dimensional orthogonal coordinate system is set can be adopted.

本発明を実施する場合には、例えば請求項2に記載した発明の様に、前記演算器が前記3方向の変位及び前記2方向の傾きのうちの一部又は全部を算出する際に使用する、前記各センサの出力信号から得られる情報として、これら各センサの出力信号のパルス周期比と、これら各センサの出力信号同士の間に存在する、これら各センサの出力信号中に含まれる前記第一特性変化部に基づいて発生したパルス同士の間の位相差比とを採用する。   When carrying out the present invention, as in the invention described in claim 2, for example, the arithmetic unit is used when calculating a part or all of the displacement in the three directions and the inclination in the two directions. The information obtained from the output signals of the sensors includes the pulse period ratio of the output signals of the sensors and the output signals of the sensors included between the output signals of the sensors. A phase difference ratio between pulses generated based on one characteristic changing unit is employed.

又、本発明を実施する場合に、好ましくは、請求項3に記載した発明の様に、前記被検出面の幅方向に対する前記第一特性変化部の傾斜角度を、零とする。即ち、前記第二特性変化部のみを、前記被検出面の幅方向に対して傾斜させる。   Further, when the present invention is carried out, preferably, the inclination angle of the first characteristic change portion with respect to the width direction of the detected surface is set to zero as in the invention described in claim 3. That is, only the second characteristic changing portion is inclined with respect to the width direction of the detected surface.

更に、本発明を実施する場合に、好ましくは、請求項4に記載した発明の様に、前記演算器に、前記互いに直交する3方向の変位及び互いに直交する2方向の傾きのうちの一部又は全部に基づいて、前記静止部材と前記回転部材との間に作用する外力(例えば、前記三次元直交座標系を設定した場合の、x軸方向の荷重Fx、y軸方向の荷重Fy、z軸方向の荷重Fz、x軸周りのモーメントMx、z軸周りのモーメントMzのうちの一部又は全部)を算出する機能を持たせる。   Further, when the present invention is implemented, preferably, as in the invention described in claim 4, the computing unit includes a part of the displacement in the three orthogonal directions and the inclination in the two orthogonal directions. Alternatively, based on all, an external force acting between the stationary member and the rotating member (for example, the load Fx in the x-axis direction and the load Fy, z in the y-axis direction when the three-dimensional orthogonal coordinate system is set) A function of calculating a part or all of the axial load Fz, the moment Mx around the x-axis, and the moment Mz around the z-axis) is provided.

上述の様に構成する本発明の回転機械用物理量測定装置によれば、静止部材に対するエンコーダ(回転部材のうちでこのエンコーダを支持固定した部分)の、互いに直交する3方向の変位、及び、互いに直交する2方向の傾きのうちの、一部又は全部を求められる。これに加えて、請求項4に記載した発明の場合には、前記静止部材と前記回転部材との間に作用する外力を求められる。特に、本発明の場合には、前記エンコーダと組み合わせて使用するセンサの個数を、3個のみと少なくできる。この為、これら各センサの費用を抑えられる。更には、総てのセンサの検出部を、前記エンコーダの被検出面の所定箇所に精度良く対向させる事が比較的容易となり、その分だけ生産性を良くする事ができる。
又、請求項3に記載した発明の構成を採用すれば、被検出面の幅方向に対する第一、第二両特性変化部の傾斜角度をそれぞれ零としない構成を採用する場合に比べて、前記エンコーダの変位を算出する際の演算量を少なくできる。この為、この変位の演算速度の向上や、前記演算器のスペックダウンによる低コスト化を図れる。
According to the physical quantity measuring device for a rotating machine of the present invention configured as described above, the displacement of the encoder relative to the stationary member (the portion of the rotating member on which the encoder is supported and fixed) in three directions orthogonal to each other, and the mutual A part or all of the inclinations in two orthogonal directions can be obtained. In addition, in the case of the invention described in claim 4, an external force acting between the stationary member and the rotating member is required. In particular, in the case of the present invention, the number of sensors used in combination with the encoder can be reduced to only three. For this reason, the cost of each of these sensors can be suppressed. Furthermore, it becomes relatively easy to make the detection parts of all the sensors face a predetermined portion of the detection surface of the encoder with high accuracy, and the productivity can be improved accordingly.
Further, if the configuration of the invention described in claim 3 is adopted, compared to a case where a configuration in which the inclination angles of both the first and second characteristic change portions with respect to the width direction of the detected surface are not zero is adopted, The amount of calculation when calculating the displacement of the encoder can be reduced. For this reason, it is possible to improve the calculation speed of the displacement and to reduce the cost by reducing the specifications of the calculator.

本発明の実施の形態の第1例を示す断面図。Sectional drawing which shows the 1st example of embodiment of this invention. エンコーダと3個のセンサとの配置関係を示す略斜視図。The schematic perspective view which shows the arrangement | positioning relationship between an encoder and three sensors. エンコーダの被検出面の一部を示す展開図。The expanded view which shows a part of to-be-detected surface of an encoder. センサユニットを取り出して、先端のセンサ装着部を被覆していない状態(a)と被覆した状態(b)とで示す斜視図。The perspective view which takes out a sensor unit and shows in the state (a) which is not coat | covering the sensor mounting part of a front-end | tip, and the state (b) covered. センサの円周方向位置を示す図。The figure which shows the circumferential direction position of a sensor. 1個のセンサの出力信号を、エンコーダに5方向の変位及び傾きが生じる前の状態(a)と後の状態(b)とで示す図。The figure which shows the output signal of one sensor by the state (a) before a displacement and inclination of 5 directions arise in an encoder, and the back state (b). 2個のセンサの出力信号同士の間に位相差が生じている状態を示す図。The figure which shows the state which has produced the phase difference between the output signals of two sensors. 本発明の実施の形態の第2例を示す、エンコーダと3個のセンサとの配置関係を示す略斜視図。The schematic perspective view which shows the 2nd example of embodiment of this invention which shows the arrangement | positioning relationship between an encoder and three sensors. エンコーダの被検出面の一部を示す展開図。The expanded view which shows a part of to-be-detected surface of an encoder. 従来から知られているエンコーダの斜視図。The perspective view of the encoder known conventionally. センサの出力信号に基づいて物理量を測定できる理由を説明する為の模式図。The schematic diagram for demonstrating the reason which can measure a physical quantity based on the output signal of a sensor.

[実施の形態の第1例]
図1〜7により、請求項1、2、4に対応する、本発明の実施の形態の第1例に就いて説明する。本例は、工作機械を構成する、回転部材である主軸4の変位及び傾きと、この主軸4に作用する外力である荷重及びモーメントとを測定する為の構造に、本発明を適用した例である。前記工作機械は、静止部材であるハウジング5の内径側に前記主軸4を、多列転がり軸受ユニット6により回転自在に支持すると共に、電動モータ7により、前記主軸4を回転駆動自在としている。前記多列転がり軸受ユニット6を構成する複数個の転がり軸受8a〜8dのうち、先端寄りに配置した2個の転がり軸受8a、8bと、基端寄りに配置した2個の転がり軸受8c、8dとには、互いに逆向きの接触角を付与すると共に、これら各転がり軸受8a〜8dに、予圧を付与している。
[First example of embodiment]
A first example of an embodiment of the present invention corresponding to claims 1, 2, and 4 will be described with reference to FIGS. This example is an example in which the present invention is applied to a structure for measuring a displacement and an inclination of a main shaft 4 that constitutes a machine tool and a load and a moment that are external forces acting on the main shaft 4. is there. In the machine tool, the main shaft 4 is rotatably supported by a multi-row rolling bearing unit 6 on the inner diameter side of a housing 5 which is a stationary member, and the main shaft 4 is rotatably driven by an electric motor 7. Among the plurality of rolling bearings 8a to 8d constituting the multi-row rolling bearing unit 6, two rolling bearings 8a and 8b arranged near the distal end and two rolling bearings 8c and 8d arranged near the proximal end. In addition to applying contact angles opposite to each other, a preload is applied to each of the rolling bearings 8a to 8d.

前記工作機械の運転時には、前記主軸4の先端部(図1の左端部)に固定した図示しない工具を、適切な回転速度で回転させつつ被加工物に押し付け、この被加工物に、切削等の加工を施す。この様にして加工を施す際に、前記主軸4には、この被加工物に前記工具を押し付ける事の反作用として、各方向の荷重及びモーメントが加わる。本例の構造では、これら各方向の荷重及びモーメントに基づく、前記主軸4の変位及び傾きと、必要に応じてこれら各方向の荷重及びモーメントとを求められる様にしている。この為に本例の構造は、1個のエンコーダ1aと、3個のセンサユニット9と、図示しない演算器とを備える。   During operation of the machine tool, a tool (not shown) fixed to the tip end portion (left end portion in FIG. 1) of the main spindle 4 is pressed against the workpiece while rotating at an appropriate rotation speed, and cutting or the like is applied to the workpiece. The processing of. When machining is performed in this manner, a load and a moment in each direction are applied to the main shaft 4 as a reaction of pressing the tool against the workpiece. In the structure of this example, the displacement and inclination of the main shaft 4 based on the loads and moments in these directions and the loads and moments in these directions as required are obtained. For this purpose, the structure of this example includes one encoder 1a, three sensor units 9, and a calculator (not shown).

このうちのエンコーダ1aは、前記主軸4の中間部先端寄り部分で、前記多列転がり軸受ユニット6を構成する転がり軸受8b、8c同士の間に外嵌固定している。このエンコーダ1aは、内輪間座を兼ねるもので、鋼等の磁性金属により造り、全体を円筒状としている。そして、被検出面である前記エンコーダ1aの外周面の軸方向中央部に、複数の特性変化組み合わせ部3a、3aを、円周方向に関して等ピッチで形成している。これら各特性変化組み合わせ部3a、3aはそれぞれ、円周方向に関して所定ピッチで離隔配置された、第一特性変化部である直線状の第一凹溝11aと、第二特性変化部である直線状の第二凹溝11bとから成る。これら第一凹溝11aと第二凹溝11bとは、前記エンコーダ1aの軸方向に対して、互いに逆方向に、同じ角度で傾斜している。別な言い方をすれば、前記第一透孔2aと前記第二透孔2bとの、前記エンコーダ1aの軸方向に対する傾斜角度は、絶対値が互いに等しく、且つ、正負の符号(傾斜方向)が互いに逆になっている。   Of these, the encoder 1 a is fitted and fixed between the rolling bearings 8 b and 8 c constituting the multi-row rolling bearing unit 6 at the portion near the tip of the intermediate portion of the main shaft 4. The encoder 1a also serves as an inner ring spacer, is made of a magnetic metal such as steel, and has a cylindrical shape as a whole. A plurality of characteristic change combination portions 3a and 3a are formed at equal pitches in the circumferential direction at the axially central portion of the outer peripheral surface of the encoder 1a, which is the detected surface. Each of these characteristic change combination parts 3a and 3a is spaced apart by a predetermined pitch with respect to the circumferential direction and has a linear first concave groove 11a that is a first characteristic change part and a linear shape that is a second characteristic change part. The second concave groove 11b. The first groove 11a and the second groove 11b are inclined at the same angle in opposite directions with respect to the axial direction of the encoder 1a. In other words, the inclination angles of the first through-hole 2a and the second through-hole 2b with respect to the axial direction of the encoder 1a are equal in absolute value and have positive and negative signs (inclination directions). They are opposite to each other.

又、前記3個のセンサユニット9、9はそれぞれ、図4に詳示する様に、合成樹脂製のホルダ12の先端部に、センサ10を包埋して成る。このセンサ10は、検出部を構成するホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子と、永久磁石とから成る。この様な3個のセンサユニット9、9は、それぞれのセンサ10、10の検出部を、前記被検出面の円周方向等間隔の3箇所に近接対向させた状態で、前記ハウジング5に支持固定している。この状態で、前記主軸4と共に前記エンコーダ1aが回転すると、前記各センサ10、10の検出部が、このエンコーダ1の外周面を走査する。このエンコーダ1の外周面の磁気特性は、前記第一、第二各凹溝11a、11bの存在により円周方向に変化している為、前記エンコーダ1aの回転に伴って前記各センサ10、10の出力信号が変化する。   Each of the three sensor units 9 and 9 is formed by embedding a sensor 10 at the tip of a synthetic resin holder 12 as shown in detail in FIG. The sensor 10 includes a magnetic sensing element such as a Hall IC, a Hall element, an MR element, and a GMR element constituting a detection unit, and a permanent magnet. Such three sensor units 9 and 9 are supported by the housing 5 in a state in which the detection portions of the sensors 10 and 10 are close to and opposed to three places at equal intervals in the circumferential direction of the detected surface. It is fixed. In this state, when the encoder 1 a rotates together with the main shaft 4, the detection units of the sensors 10 and 10 scan the outer peripheral surface of the encoder 1. Since the magnetic characteristics of the outer peripheral surface of the encoder 1 change in the circumferential direction due to the presence of the first and second concave grooves 11a and 11b, the sensors 10, 10 are rotated with the rotation of the encoder 1a. Output signal changes.

又、本例の場合には、上述の様なエンコーダ1a及びセンサユニット9、9を組み付けた工作機械に関して、互いに直交するx軸、y軸、z軸から成る三次元座標系を設定している。この三次元座標系のy軸は、前記ハウジング5の中心軸に一致する、図1に於ける左右方向軸としており、同じくx軸は、図1に於ける表裏方向の軸としており、同じくz軸は、図1に於ける上下方向の軸としている。尚、本例の場合、前記主軸4に外力が作用していない中立状態で、この主軸4の中心軸は、前記ハウジング5の中心軸と一致している。この為、この中立状態で、前記主軸4の中心軸は、y軸に一致した軸となる。又、前記三次元座標系の原点Oは、前記中立状態に於ける、前記エンコーダ1aの幾何中心点に配置している。但し、図1では、図示の便宜上、前記原点Oを、y軸上で、前記エンコーダ1aの幾何中心点から左側に大きく外れた位置に配置している。又、y軸を中心とする円周方向位置(角度)θを、図5に示す様に設定している。本例の場合、前記3個のセンサ10、10の検出部は、y軸方向に関して零の位置に配置すると共に、円周方向に関してθ1=0度、θ2=120度、θ3=240度の3箇所に配置している。 In the case of this example, a three-dimensional coordinate system including an x-axis, a y-axis, and a z-axis orthogonal to each other is set for the machine tool in which the encoder 1a and the sensor units 9 and 9 are assembled as described above. . The y-axis of this three-dimensional coordinate system is the left-right direction axis in FIG. 1, which coincides with the central axis of the housing 5, and the x-axis is also the front-back direction axis in FIG. The axis is the axis in the vertical direction in FIG. In the case of this example, the central axis of the main shaft 4 coincides with the central axis of the housing 5 in a neutral state where no external force is applied to the main shaft 4. For this reason, in this neutral state, the central axis of the main shaft 4 is an axis coinciding with the y-axis. The origin O of the three-dimensional coordinate system is located at the geometric center point of the encoder 1a in the neutral state. However, in FIG. 1, for convenience of illustration, the origin O is arranged on the y axis at a position greatly deviated to the left from the geometric center point of the encoder 1a. Further, the circumferential position (angle) θ around the y-axis is set as shown in FIG. In the case of this example, the detection units of the three sensors 10 and 10 are disposed at a zero position in the y-axis direction, and θ 1 = 0 degrees, θ 2 = 120 degrees, and θ 3 = 240 in the circumferential direction. It is arranged in three places.

又、前記演算器は、前記各センサ10、10の出力信号から得られる情報に基づいて、前記ハウジング5に対する前記エンコーダ1aの、x軸方向の変位xと、y軸方向の変位yと、z軸方向の変位zと、x軸周りの傾きφxと、z軸周りの傾きφzとを、所定の演算式により算出する機能を有する。そこで、先ず、この所定の演算式の内容に就いて、以下に説明する。 Further, the computing unit is configured to determine the displacement x in the x-axis direction, the displacement y in the y-axis direction, and the z-direction of the encoder 1a relative to the housing 5 based on information obtained from the output signals of the sensors 10 and 10. It has a function of calculating an axial displacement z, an inclination φ x around the x axis, and an inclination φ z around the z axis by a predetermined arithmetic expression. First, the contents of the predetermined arithmetic expression will be described below.

今、前記エンコーダ1aの外周面のうち、θ1=0度の部分のy軸方向変位をy1とし、θ2=120度の部分のy軸方向変位をy2とし、θ3=240度の部分のy軸方向変位をy3とする。この場合に、これら各変位yi(i=1、2、3)と、前記変位y及び傾きφx、φzとの間には、次の(1)式の関係が成立する。

Figure 2012177672
この(1)式の右辺中のR、δの意味は、それぞれ以下の通りである。
R:被検出面である前記エンコーダ1aの外周面の半径。
δ:前記各センサ10、10の検出部のz軸からのy軸方向のずれ量。
本例の場合、このうちのずれ量δは零(δ=0)である(実際には不可避な寸法誤差や組付誤差がある為、δ≠0となる事も予想されるが、その場合でもδは十分に小さな値となる為、δ=0と仮定しても、その影響を無視できる)。そうすると、前記(1)式は、次の(2)式で表す事ができる。
Figure 2012177672
又、この(2)式を変形して、次の(3)式が得られる。
Figure 2012177672
更に、この(3)式に、θ1=0度、θ2=120度、θ3=240度を代入すると、次の(4)式が得られる。
Figure 2012177672
Now, in the outer peripheral surface of the encoder 1a, the y-axis direction displacement of the portion of θ 1 = 0 ° is y 1 , the y-axis direction displacement of the portion of θ 2 = 120 ° is y 2, and θ 3 = 240 °. The y-axis direction displacement of the portion is assumed to be y 3 . In this case, the relationship of the following equation (1) is established between each displacement y i (i = 1, 2, 3) and the displacement y and the inclinations φ x and φ z .
Figure 2012177672
The meanings of R and δ in the right side of the equation (1) are as follows.
R: radius of the outer peripheral surface of the encoder 1a which is a detected surface.
δ: The amount of deviation in the y-axis direction from the z-axis of the detectors of the sensors 10 and 10.
In the case of this example, the deviation amount δ is zero (δ = 0) (in reality, it is expected that δ ≠ 0 because there are inevitable dimensional errors and assembly errors, but in that case However, since δ is a sufficiently small value, the effect can be ignored even if δ = 0. Then, the formula (1) can be expressed by the following formula (2).
Figure 2012177672
Further, the following equation (3) is obtained by modifying the equation (2).
Figure 2012177672
Further, by substituting θ 1 = 0 degrees, θ 2 = 120 degrees, and θ 3 = 240 degrees into the expression (3), the following expression (4) is obtained.
Figure 2012177672

一方、前記エンコーダ1aに5方向の変位x、y、z及び傾きφx、φzが生じると、これに伴い、前記各センサ10、10の出力信号の位相が、それぞれ図6の(a)→(b)に例示する様に変化する。ここで、この出力信号中に含まれる前記各第一凹溝11a、11aに基づいて発生したパルスp1の位相変化量である、自己位相差kに着目し、この自己位相差kと全周期Lとの比k/Lを、自己位相差比ε(θi)(i=1、2、3)と定義する。この様な自己位相差比ε(θi)と、前記5方向の変位x、y、z及び傾きφx、φzとの間には、次の(5)式の関係が成立する。

Figure 2012177672
この(5)式の右辺中のP、αの意味は、それぞれ以下の通りである。
P:前記エンコーダ1aの円周方向に関する前記各特性変化組み合わせ部3a、3aのピッチ。
α:第一凹溝11a及び第二凹溝11bの、前記エンコーダ1aの軸方向に対する傾斜角度(図示の例では、45度)。
尚、前記(5)式の右辺中のδは、前述した通り、零(δ=0)である。前記各センサ10、10の出力信号に関する自己位相差比ε(0)、ε(120)、ε(240)は、前記(5)式中のθiに、それぞれの配置角度θ1=0度、θ2=120度、θ3=240度を代入すると共に、同式中のα、δに、α=45度、δ=0を代入する事により、次の(6)〜(8)式で表される。
Figure 2012177672
Figure 2012177672
Figure 2012177672
On the other hand, when displacements x, y, z and inclinations φ x , φ z in the five directions are generated in the encoder 1a, the phases of the output signals of the sensors 10, 10 are accordingly changed, as shown in FIG. → Changes as illustrated in (b). Here, paying attention to the self-phase difference k, which is the phase change amount of the pulse p 1 generated based on the first concave grooves 11a, 11a included in the output signal, this self-phase difference k and the entire period The ratio k / L with L is defined as the self phase difference ratio ε (θ i ) (i = 1, 2, 3). The relationship of the following equation (5) is established between such a self-phase difference ratio ε (θ i ) and the displacements x, y, z and inclinations φ x , φ z in the five directions.
Figure 2012177672
The meanings of P and α in the right side of the equation (5) are as follows.
P: The pitch of the characteristic change combination units 3a and 3a in the circumferential direction of the encoder 1a.
α: An inclination angle of the first concave groove 11a and the second concave groove 11b with respect to the axial direction of the encoder 1a (45 degrees in the illustrated example).
Note that δ in the right side of the equation (5) is zero (δ = 0) as described above. The self-phase difference ratios ε (0), ε (120), and ε (240) related to the output signals of the sensors 10 and 10 are set to θ i in the equation (5), and the respective arrangement angles θ 1 = 0 degrees. , Θ 2 = 120 degrees, θ 3 = 240 degrees, and by substituting α = 45 degrees and δ = 0 into α and δ in the same expression, the following expressions (6) to (8) It is represented by
Figure 2012177672
Figure 2012177672
Figure 2012177672

又、前記エンコーダ1aに5方向の変位x、y、z及び傾きφx、φzが生じると、これに伴い、前記3個のセンサ10、10のうちから任意に選択される、2個のセンサ10、10の出力信号同士の間(これら両出力信号中に含まれる前記各第一凹溝11a、11aに基づいて発生したパルスp1、p1同士の間)に、それぞれ図7に例示する様な位相差(相互位相差)mが生じる。ここで、この相互位相差mと全周期Lとの比m/Lを、相互位相差比と定義する。この様な相互位相差比は、前記(6)〜(8)式のうちから任意に選択される、2つの式同士の差を取る事によって、例えば、次の(9)式及び(10)式の様に表す事ができる。

Figure 2012177672
Figure 2012177672
このうちの(9)式は、θ1=0度の位置とθ2=120度の位置とに配置した2個のセンサ10、10の出力信号同士の間の相互位相差比「ε(120)−ε(0)」を表す式であり、前記(10)式は、θ1=0度の位置とθ3=240度の位置とに配置した2個のセンサ10、10の出力信号同士の間の相互位相差比「ε(240)−ε(0)」を表す式である。これら(9)式及び(10)式をまとめて整理すると、次の(11)式が得られる。
Figure 2012177672
更に、この(11)式を変形して、次の(12)式が得られる。
Figure 2012177672
Further, when displacements x, y, z and inclinations φ x , φ z in the five directions occur in the encoder 1a, two of the three sensors 10, 10 are arbitrarily selected accordingly. FIG. 7 illustrates between the output signals of the sensors 10 and 10 (between the pulses p 1 and p 1 generated based on the first concave grooves 11a and 11a included in the output signals). A phase difference (mutual phase difference) m occurs. Here, the ratio m / L between the mutual phase difference m and the total period L is defined as a mutual phase difference ratio. Such a mutual phase difference ratio is obtained by taking the difference between two expressions arbitrarily selected from the expressions (6) to (8), for example, the following expressions (9) and (10): It can be expressed like a formula.
Figure 2012177672
Figure 2012177672
Of these, the expression (9) is obtained by calculating the mutual phase difference ratio “ε (120) between the output signals of the two sensors 10 and 10 arranged at the position θ 1 = 0 degree and the position θ 2 = 120 degrees. ) −ε (0) ”, where the output signals of the two sensors 10 and 10 arranged at the position of θ 1 = 0 degrees and the position of θ 3 = 240 degrees Is a formula representing a mutual phase difference ratio “ε (240) −ε (0)”. When these equations (9) and (10) are arranged together, the following equation (11) is obtained.
Figure 2012177672
Further, this equation (11) is modified to obtain the following equation (12).
Figure 2012177672

本例の場合、前記演算器は、前記各センサ10、10の出力信号から得られる情報に基づいて、前記5方向の変位x、y、z及び傾きφx、φzを、前記(4)式及び前記(12)式により算出する。
この際に、前記演算器は、先ず、前記エンコーダ1aの外周面の円周方向位置θi(i=1、2、3)に於ける変位yi(i=1、2、3)を、同じ円周方向位置θi(i=1、2、3)に存在するセンサ10の出力信号のパルス周期比s/L(図11参照)に基づいて算出する。尚、この際の各変位yi(i=1、2、3)の算出原理は、前述の図10〜11に示した従来構造に於ける軸方向変位の算出原理と同様である。そして、この様に算出した各変位yi(i=1、2、3)を、前記(4)式の右辺に代入する事により、前記変位y及び傾きφx、φzを算出する。
更に、前記演算器は、θ1=0度の位置とθ2=120度の位置とに配置した2個のセンサ10、10の出力信号同士の間の相互位相差比「ε(120)−ε(0)」と、θ1=0度の位置とθ3=240度の位置とに配置した2個のセンサ10、10の出力信号同士の間の相互位相差比「ε(240)−ε(0)」とを、それぞれ対象となる2個のセンサ10、10に関する図7の比m/Lを計算する事により、算出する。そして、この様に算出した各相互位相差比「ε(120)−ε(0)」、「ε(240)−ε(0)」と、前記(4)式により算出した傾きφx、φzとを、それぞれ前記(12)式の右辺に代入する事により、前記変位x、zを算出する。
In the case of this example, the computing unit calculates the displacements x, y, z and inclinations φ x , φ z in the five directions based on information obtained from the output signals of the sensors 10, 10 (4). It calculates with a type | formula and said Formula (12).
At this time, the computing unit first calculates the displacement y i (i = 1, 2, 3) at the circumferential position θ i (i = 1, 2, 3) of the outer peripheral surface of the encoder 1a. Calculation is based on the pulse period ratio s / L (see FIG. 11) of the output signal of the sensor 10 existing at the same circumferential position θ i (i = 1, 2, 3). The calculation principle of each displacement y i (i = 1, 2, 3) at this time is the same as the calculation principle of the axial displacement in the conventional structure shown in FIGS. Then, the displacement y and the inclinations φ x and φ z are calculated by substituting the displacement y i (i = 1, 2, 3) calculated in this way into the right side of the equation (4).
Further, the arithmetic unit calculates the mutual phase difference ratio “ε (120) − between the output signals of the two sensors 10 and 10 disposed at the position of θ 1 = 0 degree and the position of θ 2 = 120 degrees. ε (0) ”and the mutual phase difference ratio“ ε (240) − between the output signals of the two sensors 10 and 10 arranged at the position of θ 1 = 0 ° and the position of θ 3 = 240 °. ε (0) ”is calculated by calculating the ratio m / L of FIG. Then, the mutual phase difference ratios “ε (120) −ε (0)” and “ε (240) −ε (0)” calculated in this way and the inclinations φ x and φ calculated by the above equation (4). The displacements x and z are calculated by substituting z into the right side of the equation (12).

又、上述の様に算出した5方向の変位x、y、z及び傾きφx、φzと、これらに対応する、前記主軸4に作用する5方向の荷重及びモーメント(x軸方向の荷重Fx、y軸方向の荷重Fy、z軸方向の荷重Fz、x軸周りのモーメントMx、z軸周りのモーメントMz)との間には、前記多列転がり軸受ユニット6の剛性等により定まる、所定の関係が成立する。そして、この所定の関係は、転がり軸受の分野で広く知られている弾性接触理論等に基づいて計算により求められる他、実験によっても求められる。従って、前記演算器に、前記所定の関係を表した演算式を組み込んだソフトウェアをインストールしておけば、前記演算器により、前記5方向の変位x、y、z及び傾きφx、φzに基づいて、前記5方向の荷重Fx、Fy、Fz及びモーメントMx、Mzを求められる。尚、この様にして5方向の荷重Fx、Fy、Fz及びモーメントMx、Mzを求める方法に就いては、例えば特許文献3、4に詳しく記載されている為、これ以上の詳しい説明は省略する。 Further, the five-direction displacements x, y, z and inclinations φ x , φ z calculated as described above, and the corresponding five-direction loads and moments acting on the main shaft 4 (the load Fx in the x-axis direction) , The load Fy in the y-axis direction, the load Fz in the z-axis direction, the moment Mx around the x-axis, and the moment Mz around the z-axis) are determined by the rigidity of the multi-row rolling bearing unit 6 and the like. A relationship is established. And this predetermined relationship is calculated | required not only by calculation based on the elastic contact theory etc. widely known in the field of a rolling bearing, but also by experiment. Therefore, if software in which an arithmetic expression representing the predetermined relationship is installed is installed in the computing unit, the computing unit calculates the displacement x, y, z and inclinations φ x , φ z in the five directions. Based on these, the loads Fx, Fy, Fz and moments Mx, Mz in the five directions are obtained. The method for obtaining the loads Fx, Fy, Fz and the moments Mx, Mz in the five directions in this way is described in detail in, for example, Patent Documents 3 and 4, and further detailed description thereof is omitted. .

上述の様に構成する本例の回転機械用物理量測定装置によれば、前記エンコーダ1a(前記主軸4のうちでこのエンコーダ1aを支持固定した部分)の5方向の変位x、y、z及び傾きφx、φzと、前記主軸4に作用する5方向の荷重Fx、Fy、Fz及びモーメントMx、Mzを求められる。特に、本例の場合には、前記エンコーダ1aと組み合わせて使用するセンサ10、10の個数を、3個と少なくできる。この為、これら各センサ10、10の費用を抑えられる。更には、総てのセンサ10、10の検出部を、前記エンコーダ1aの被検出面の所定箇所に精度良く対向させる事が比較的容易となり、その分だけ生産性を良くする事ができる。 According to the physical quantity measuring apparatus for a rotary machine of this example configured as described above, the displacements x, y, z and the inclination in five directions of the encoder 1a (the portion of the main shaft 4 that supports and fixes the encoder 1a). phi x, and phi z, 5 direction of the load Fx which acts on the spindle 4, Fy, Fz and moments Mx, asked to Mz. In particular, in the case of this example, the number of sensors 10, 10 used in combination with the encoder 1a can be reduced to three. For this reason, the expense of each of these sensors 10 and 10 can be suppressed. Furthermore, it becomes relatively easy to make the detection parts of all the sensors 10 and 10 face a predetermined portion of the detection surface of the encoder 1a with high accuracy, and the productivity can be improved accordingly.

[実施の形態の第2例]
図8〜9は、請求項1〜4に対応する、本発明の実施の形態の第2例を示している。本例の場合には、被検出面である、エンコーダ1bの外周面に設けた複数の特性変化組み合わせ部3b、3bの構成が、上述した第1例の場合と若干異なる。即ち、本例の場合には、これら各特性変化組み合わせ部3b、3bを構成する第一、第二両凹溝11c、11dのうち、第二凹溝11d、11dのみを、前記エンコーダ1bの軸方向に対して傾斜した方向に形成しており、第一凹溝11c、11cは、前記エンコーダ1bの軸方向に形成している。即ち、このエンコーダ1bの軸方向に対する前記各第一凹溝11c、11cの傾斜角度を、零としている。
[Second Example of Embodiment]
FIGS. 8-9 has shown the 2nd example of embodiment of this invention corresponding to Claims 1-4. In the case of this example, the configuration of the plurality of characteristic change combination units 3b and 3b provided on the outer peripheral surface of the encoder 1b, which is the detected surface, is slightly different from that of the above-described first example. That is, in the case of this example, only the second concave grooves 11d and 11d among the first and second concave grooves 11c and 11d constituting the characteristic change combination portions 3b and 3b are used as the shaft of the encoder 1b. The first concave grooves 11c and 11c are formed in the axial direction of the encoder 1b. That is, the inclination angle of each of the first concave grooves 11c and 11c with respect to the axial direction of the encoder 1b is set to zero.

又、本例の場合、図示しない演算器は、上述した第1例の場合と同様の手順で、即ち、3個のセンサ10、10の出力信号のパルス周期比に基づいて変位yi(i=1、2、3)を算出した後、前記(4)式を利用して、変位y及び傾きφx、φzを算出する。これと共に、前記各センサ10、10の出力信号中に含まれる、前記各第一凹溝11c、11cに基づいて発生したパルスを利用して、変位x、zを算出する。ここで、本例の場合、前記エンコーダ1bの軸方向に対する前記各第一凹溝11c、11cの傾斜角度αは、零(α=0)である。この為、前記(5)式は、同式中のαに、α=0を代入する事により、次の(5′)式で表す事ができる。

Figure 2012177672
又、この(5′)式中のδが零(δ=0)である事を考慮すると、この(5′)式に基づいて、前記(6)〜(8)式に対応する、次の(6′)〜(8′)式が得られる。
Figure 2012177672
Figure 2012177672
Figure 2012177672
又、これら(6′)〜(8′)式に基づいて、前記前記(9)式及び(10)式に対応する、次の(9′)式及び(10′)式が得られる。
Figure 2012177672
Figure 2012177672
又、これら(9′)式及び(10′)式に基づいて、前記(11)式に対応する、次の(11′)式が得られる。
Figure 2012177672
更に、この(11′)式に基づいて、前記(12)式に対応する、次の(12′)式が得られる。
Figure 2012177672
本例の場合、前記演算器は、前記(12)式の代わりに、この(12′)式を利用して、前記各変位x、zを算出する。 And in this embodiment, calculator, not shown, in the first example of a case similar to the procedure described above, i.e., the displacement y i (i based on the pulse period ratio of the output signals of the three sensors 10, 10 = 1, 2, 3), the displacement y and the inclinations φ x and φ z are calculated using the equation (4). At the same time, displacement x and z are calculated using pulses generated based on the first concave grooves 11c and 11c included in the output signals of the sensors 10 and 10, respectively. Here, in the case of this example, the inclination angle α of each of the first concave grooves 11c and 11c with respect to the axial direction of the encoder 1b is zero (α = 0). Therefore, the above equation (5) can be expressed by the following equation (5 ′) by substituting α = 0 into α in the equation.
Figure 2012177672
Further, considering that δ in the equation (5 ′) is zero (δ = 0), the following corresponding to the equations (6) to (8) based on the equation (5 ′) Equations (6 ′) to (8 ′) are obtained.
Figure 2012177672
Figure 2012177672
Figure 2012177672
Further, based on these equations (6 ′) to (8 ′), the following equations (9 ′) and (10 ′) corresponding to the equations (9) and (10) are obtained.
Figure 2012177672
Figure 2012177672
Further, the following equation (11 ′) corresponding to the equation (11) is obtained based on these equations (9 ′) and (10 ′).
Figure 2012177672
Further, based on the equation (11 ′), the following equation (12 ′) corresponding to the equation (12) is obtained.
Figure 2012177672
In the case of this example, the computing unit calculates the displacements x and z using the equation (12 ′) instead of the equation (12).

この様な本例の回転機械用物理量測定装置の場合、前記各変位x、zを算出する際に利用する、前記(12′)式は、前記(12)式の右辺第2項が省略された式になっている。この為、本例の場合には、上述した第1例の場合と比較して、前記演算器が前記各変位x、zを算出する際の演算量を少なくできる。従って、これら各変位x、zの演算速度の向上や、前記演算器のスペックダウンによる低コスト化を図れる。その他の構成及び作用は、上述した第1例の場合と同様である。   In the case of such a physical quantity measuring device for a rotary machine of this example, the second term on the right side of the equation (12) is omitted in the equation (12 ′) used when calculating the displacements x and z. It is a formula. For this reason, in the case of this example, compared with the case of the 1st example mentioned above, the amount of calculation at the time of the said calculator calculating each said displacement x and z can be decreased. Therefore, it is possible to improve the calculation speed of these displacements x and z and reduce the cost by reducing the specifications of the calculator. Other configurations and operations are the same as those of the first example described above.

尚、上述した各実施の形態では、前記(1)式及び前記(5)式{(5′)式}中のずれ量δを零(δ=0)としたが、設計制約上の理由から、このずれ量δを零にする(或いは、十分に小さくする)事ができない場合には、このずれ量δを含めた状態で、前記(1)式から前記(4)式に相当する式を導出し、且つ、前記(5)式から前記(12)式{前記(5′)式から前記(12′)式}に相当する式を導出すれば良い。   In each of the above-described embodiments, the shift amount δ in the equations (1) and (5) {(5 ')} is zero (δ = 0). If this deviation amount δ cannot be made zero (or sufficiently small), the equations corresponding to the above equations (1) to (4) can be calculated with the deviation amount δ included. In addition, an equation corresponding to the equation (12) {the equation (5 ′) to the equation (12 ′)} may be derived from the equation (5).

又、本発明を実施する場合、磁性材製のエンコーダの被検出面に設ける第一、第二両特性変化部は、凹溝ではなく、例えば透孔や凸部とする事もできる。又、エンコーダは、永久磁石製のもの(被検出面のうち、第一、第二両特性変化部と、それ以外の部分とで、極性を異ならせたもの)を使用する事もできる。この場合には、各センサ側に永久磁石を設ける必要がなくなる。
又、本発明は、工作機械の主軸に関する物理量を測定する構造に限らず、例えば、自動車の車輪支持用転がり軸受ユニットを構成する回転側軌道輪部材に関する物理量を測定する構造に適用する事もできる。
Moreover, when implementing this invention, the 1st, 2nd characteristic change part provided in the to-be-detected surface of the encoder made from a magnetic material can also be made into a through-hole and a convex part, for example instead of a concave groove. The encoder can also be made of a permanent magnet (of the detected surface, the first and second characteristic changing portions and the other portions having different polarities). In this case, it is not necessary to provide a permanent magnet on each sensor side.
Further, the present invention is not limited to a structure that measures a physical quantity related to a spindle of a machine tool, but can be applied to a structure that measures a physical quantity related to a rotating bearing ring member that constitutes a rolling bearing unit for supporting a wheel of an automobile, for example. .

1、1a エンコーダ
2a、2b 透孔
3、3a、3b 特性変化組み合わせ部
4 主軸
5 ハウジング
6 多列転がり軸受ユニット
7 電動モータ
8a〜8d 転がり軸受
9 センサユニット
10 センサ
11a、11b、11c、11d 凹溝
12 ホルダ
DESCRIPTION OF SYMBOLS 1, 1a Encoder 2a, 2b Through-hole 3, 3a, 3b Characteristic change combination part 4 Main shaft 5 Housing 6 Multi-row rolling bearing unit 7 Electric motor 8a-8d Rolling bearing 9 Sensor unit 10 Sensor 11a, 11b, 11c, 11d Groove 12 Holder

Claims (4)

回転しない静止部材、及び、それぞれが予圧を付与された複数の転がり軸受により、この静止部材に対して回転自在に支持された回転部材を備えた回転機械と、この回転部材の一部に支持固定された、この回転部材と同心の被検出面を有するエンコーダと、検出部をこの被検出面に対向させた状態で前記静止部材に支持されたセンサと、このセンサの出力信号を処理する演算器とを備え、
前記エンコーダの被検出面は、複数の特性変化組み合わせ部を、円周方向に等ピッチで配置したもので、これら各特性変化組み合わせ部はそれぞれ、円周方向に関して所定ピッチで離隔配置された、前記被検出面の幅方向に対する正負の符号をも考慮した傾斜角度が互いに異なる第一特性変化部と第二特性変化部とから成るものであり、
前記センサは、前記各特性変化部が前記被検出面のうちで前記検出部が対向する部分を通過する瞬間に出力信号を変化させるものである
回転機械用物理量測定装置に於いて、
前記センサを3個のみ備えると共に、これら各センサの検出部を、前記被検出面のうちで円周方向の位相が互いに異なる部分に対向させており、
前記演算器は、前記各センサの出力信号から得られる情報に基づいて、前記静止部材に対する前記エンコーダの、互いに直交する3方向の変位及び互いに直交する2方向の傾きのうちの一部又は全部を算出する機能を有する事を特徴とする回転機械用物理量測定装置。
A stationary machine that does not rotate, and a rotating machine that includes a rotating member that is rotatably supported with respect to the stationary member by a plurality of rolling bearings each preloaded, and is supported and fixed to a part of the rotating member. An encoder having a detected surface concentric with the rotating member, a sensor supported by the stationary member in a state where the detection unit faces the detected surface, and an arithmetic unit that processes an output signal of the sensor And
The detected surface of the encoder has a plurality of characteristic change combination parts arranged at equal pitches in the circumferential direction, and each of these characteristic change combination parts is arranged separately at a predetermined pitch in the circumferential direction. The first characteristic change part and the second characteristic change part are different from each other in inclination angles in consideration of positive and negative signs with respect to the width direction of the detected surface,
In the physical quantity measuring apparatus for a rotating machine, the sensor changes an output signal at a moment when each of the characteristic changing units passes through a portion of the detected surface that the detecting unit faces.
The sensor includes only three sensors, and the detection unit of each of the sensors is opposed to a portion of the detected surface that has different phases in the circumferential direction.
Based on information obtained from the output signals of the sensors, the computing unit calculates a part or all of the displacement in the three orthogonal directions and the inclination in the two orthogonal directions of the encoder relative to the stationary member. A physical quantity measuring apparatus for a rotating machine characterized by having a function of calculating.
前記演算器が前記3方向の変位及び前記2方向の傾きのうちの一部又は全部を算出する際に使用する、前記各センサの出力信号から得られる情報として、これら各センサの出力信号のパルス周期比と、これら各センサの出力信号同士の間に存在する、これら各センサの出力信号中に含まれる前記第一特性変化部に基づいて発生したパルス同士の間の位相差比とを採用している、請求項1に記載した回転機械用物理量測定装置。   As information obtained from the output signals of the sensors, which is used when the computing unit calculates part or all of the displacements in the three directions and the inclinations in the two directions, the pulses of the output signals of the sensors. The period ratio and the phase difference ratio between the pulses generated based on the first characteristic change part included in the output signals of the sensors, which are present between the output signals of the sensors, are employed. The physical quantity measuring device for a rotary machine according to claim 1. 前記被検出面の幅方向に対する前記第一特性変化部の傾斜角度を零とした、請求項1〜2のうちの何れか1項に記載した回転機械用物理量測定装置。   The physical quantity measuring apparatus for a rotating machine according to any one of claims 1 to 2, wherein an inclination angle of the first characteristic change portion with respect to a width direction of the detected surface is zero. 前記演算器は、前記互いに直交する3方向の変位及び互いに直交する2方向の傾きのうちの一部又は全部に基づいて、前記静止部材と前記回転部材との間に作用する外力を算出する機能を有する、請求項1〜3のうちの何れか1項に記載した回転部材用物理量測定装置。   The computing unit calculates an external force acting between the stationary member and the rotating member based on part or all of the displacement in the three orthogonal directions and the inclination in the two orthogonal directions. The physical quantity measuring device for a rotating member according to any one of claims 1 to 3, comprising:
JP2011081393A 2011-02-04 2011-04-01 Physical quantity measuring device for rotating machine, machine tool, and automobile Active JP5742392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011081393A JP5742392B2 (en) 2011-02-04 2011-04-01 Physical quantity measuring device for rotating machine, machine tool, and automobile

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011023150 2011-02-04
JP2011023150 2011-02-04
JP2011081393A JP5742392B2 (en) 2011-02-04 2011-04-01 Physical quantity measuring device for rotating machine, machine tool, and automobile

Publications (2)

Publication Number Publication Date
JP2012177672A true JP2012177672A (en) 2012-09-13
JP5742392B2 JP5742392B2 (en) 2015-07-01

Family

ID=46979589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011081393A Active JP5742392B2 (en) 2011-02-04 2011-04-01 Physical quantity measuring device for rotating machine, machine tool, and automobile

Country Status (1)

Country Link
JP (1) JP5742392B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109828207A (en) * 2019-03-26 2019-05-31 安徽大学 A kind of three degree of freedom spherical motor posture, moment inspecting rack and detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829439A (en) * 1994-07-19 1996-02-02 Toshiba Corp Turbine monitoring instrument
JP2006317434A (en) * 2005-04-15 2006-11-24 Nsk Ltd Apparatus for measuring displacement and load of rolling bearing unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829439A (en) * 1994-07-19 1996-02-02 Toshiba Corp Turbine monitoring instrument
JP2006317434A (en) * 2005-04-15 2006-11-24 Nsk Ltd Apparatus for measuring displacement and load of rolling bearing unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109828207A (en) * 2019-03-26 2019-05-31 安徽大学 A kind of three degree of freedom spherical motor posture, moment inspecting rack and detection method
CN109828207B (en) * 2019-03-26 2024-05-03 安徽大学 Three-degree-of-freedom spherical motor gesture and moment detection bench and detection method

Also Published As

Publication number Publication date
JP5742392B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP4940937B2 (en) Rotating machine state quantity measuring device
EP1550813B1 (en) Rolling element bearing unit with sensor and hub unit with sensor
JP2009236571A (en) Apparatus and method for measuring rotational accuracy for bearings
JP2007093580A (en) Rolling bearing unit with displacement measuring device, and the rolling bearing unit with load measuring device
JP5742392B2 (en) Physical quantity measuring device for rotating machine, machine tool, and automobile
JP2006337356A (en) Rolling bearing unit with displacement measuring instrument, and rolling bearing unit with load measuring instrument
JP2004270898A (en) Rolling bearing unit with sensor
JP5391969B2 (en) Rotating shaft load measuring device
JP5233509B2 (en) Load measuring device for rolling bearing units
JP2008039155A (en) Rolling bearing unit with state quantity measuring device and assembling method
JP2006292445A (en) Rolling bearing unit with load cell
JP4957357B2 (en) Rotational support device state quantity measuring device
JP2006317434A (en) Apparatus for measuring displacement and load of rolling bearing unit
JP2009001201A (en) Quantity-of-state measuring device for rotary machine
JP2007225106A (en) Rolling bearing unit with state quantity measurement device
JP2006258801A (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device
JP5640831B2 (en) Rotating machine with compression strain measuring device and machine tool
JP5092393B2 (en) Method for assembling state quantity measuring device for rolling bearing unit
JP5552828B2 (en) Load measuring device for machine tools
JP2009103629A (en) State quantity measuring device of rotation support device
JP2007057342A (en) Rolling bearing unit with load measuring device
JP5003397B2 (en) Rotational support device state quantity measuring device
JP5696417B2 (en) Physical quantity measuring device for rotating members
JP2014163903A (en) Encoder
JP5742265B2 (en) Physical quantity measuring device for rotating member, machine tool and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R150 Certificate of patent or registration of utility model

Ref document number: 5742392

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150