JP2007225106A - Rolling bearing unit with state quantity measurement device - Google Patents

Rolling bearing unit with state quantity measurement device Download PDF

Info

Publication number
JP2007225106A
JP2007225106A JP2006245012A JP2006245012A JP2007225106A JP 2007225106 A JP2007225106 A JP 2007225106A JP 2006245012 A JP2006245012 A JP 2006245012A JP 2006245012 A JP2006245012 A JP 2006245012A JP 2007225106 A JP2007225106 A JP 2007225106A
Authority
JP
Japan
Prior art keywords
sensors
encoder
state quantity
sensor
rolling bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006245012A
Other languages
Japanese (ja)
Other versions
JP2007225106A5 (en
Inventor
Kengun Ten
建軍 展
Kinji Yugawa
謹次 湯川
Koichiro Ono
浩一郎 小野
Tsutomu Hibi
勉 日比
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006245012A priority Critical patent/JP2007225106A/en
Publication of JP2007225106A publication Critical patent/JP2007225106A/en
Publication of JP2007225106A5 publication Critical patent/JP2007225106A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inexpensive rolling bearing unit with a load measurement device. <P>SOLUTION: A cylindrical encoder 4 with magnetic characteristics of a circumferential surface being a detection object surface changed alternately and at equal intervals in a circumferential direction is externally fitted and fixed to an intermediate part of a hub 2. Detection parts of both first and second sensors 7 and 8 respectively supported to an outer wheel 1 are faced to parts, within the circumferential surface of the encoder 4, having circumferential phases different from each other by 180°. Based on the phase difference present between output signals of both the first and second sensors 7 and 8, a radial load in a direction perpendicular to the arrangement direction of both the first and second sensors 7 and 8 is measured in use. By employing such a structure, the above problem is solved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明に係る状態量測定装置付転がり軸受ユニットは、自動車等の車両の車輪を懸架装置に対して回転自在に支持すると共に、この車輪に加わる荷重の大きさを測定して、車両の安定運行の確保に利用する。或は、各種工作機械の主軸を支持する為の転がり軸受ユニットに組み込んで、この主軸に加わる荷重を測定し、工具の送り速度等を適切に調節する為に利用する。   The rolling bearing unit with a state quantity measuring device according to the present invention supports the wheel of a vehicle such as an automobile so as to be rotatable with respect to the suspension device, and measures the magnitude of the load applied to the wheel, thereby stably operating the vehicle. Use to secure. Alternatively, it is incorporated in a rolling bearing unit for supporting the spindles of various machine tools, is used for measuring the load applied to the spindle and adjusting the feed rate of the tool appropriately.

例えば自動車の車輪は懸架装置に対し、複列アンギュラ型等の転がり軸受ユニットにより、回転自在に支持する。又、自動車の走行安定性を確保する為に、例えば非特許文献1に記載されている様な、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)、更には、電子制御式ビークルスタビリティコントロールシステム(ESC)等の車両用走行安定化装置が使用されている。この様な各種車両用走行安定化装置を制御する為には、車輪の回転速度、車体に加わる各方向の加速度等を表す信号が必要になる。そして、より高度の制御を行なう為には、車輪を介して上記転がり軸受ユニットに加わる荷重(例えばラジアル荷重とアキシアル荷重との一方又は双方)の大きさを知る事が好ましい場合がある。   For example, a wheel of an automobile is rotatably supported by a rolling bearing unit such as a double-row angular type with respect to a suspension device. In order to ensure the running stability of the automobile, for example, as described in Non-Patent Document 1, an antilock brake system (ABS), a traction control system (TCS), and an electronically controlled vehicle stability A vehicle travel stabilization device such as a control system (ESC) is used. In order to control such various vehicle running stabilization devices, signals representing the rotational speed of the wheels, acceleration in each direction applied to the vehicle body, and the like are required. In order to perform higher-level control, it may be preferable to know the magnitude of a load (for example, one or both of a radial load and an axial load) applied to the rolling bearing unit via a wheel.

この様な事情に鑑みて、特許文献1には、複列アンギュラ型の玉軸受ユニットである転がり軸受ユニットを構成する1対の列の玉の公転速度に基づいて、この転がり軸受ユニットに加わるラジアル荷重又はアキシアル荷重を測定する、状態量測定装置付転がり軸受ユニットに関する発明が記載されている。この様な特許文献1に記載された状態量測定装置付転がり軸受ユニットは、上記両列の玉の公転速度を、これら各玉を保持した1対の保持器の回転速度として求め、これら両列の玉の公転速度に基づいて、上記ラジアル荷重又はアキシアル荷重を算出する。この様な従来構造の場合、上記各玉の転動面と上記両保持器のポケットの内面との間に不可避的に存在する隙間に起因して、上記両列の玉の公転速度と上記両保持器の回転速度との間に、微妙なずれが生じる場合がある。この為、上記ラジアル荷重又はアキシアル荷重を精度良く求める為には、改良の余地がある。   In view of such circumstances, Patent Document 1 discloses a radial applied to a rolling bearing unit based on the revolution speed of a pair of balls constituting a rolling bearing unit which is a double-row angular ball bearing unit. An invention relating to a rolling bearing unit with a state quantity measuring device for measuring a load or an axial load is described. Such a rolling bearing unit with a state quantity measuring device described in Patent Document 1 obtains the revolution speed of the balls in both rows as the rotation speed of a pair of cages holding these balls. Based on the revolution speed of the ball, the radial load or the axial load is calculated. In the case of such a conventional structure, due to a gap inevitably existing between the rolling surface of each ball and the inner surfaces of the pockets of both cages, the revolution speed of the balls in both rows and the both There may be a slight deviation between the rotational speed of the cage. For this reason, in order to obtain | require the said radial load or axial load accurately, there is room for improvement.

一方、この様な測定精度に関する不都合を生じない構造として、特許文献2、3には、外輪に支持した非接触式の変位センサと、ハブに外嵌固定した被検出リングとにより、この外輪に対するこのハブの径方向変位を測定し、この測定値に基づいて、このハブに加わるラジアル荷重を求める構造が記載されている。この様な特許文献2、3に記載された構造の場合、上記径方向変位は僅かである為、上記ラジアル荷重を精度良く求める為には、上記変位センサとして、高精度のものを使用する必要がある。ところが、高精度の非接触式センサは高価である為、状態量測定装置付転がり軸受ユニット全体としてのコストが嵩む事が避けられない。
尚、本発明に関連する他の先行技術文献として、特許文献4がある。
On the other hand, as a structure that does not cause such inconvenience related to measurement accuracy, Patent Documents 2 and 3 disclose that a non-contact type displacement sensor supported on an outer ring and a detected ring that is externally fixed to a hub are used to detect the outer ring. A structure is described in which the radial displacement of the hub is measured and the radial load applied to the hub is determined based on the measured value. In the case of such structures described in Patent Documents 2 and 3, since the radial displacement is slight, it is necessary to use a high-precision displacement sensor as the displacement sensor in order to obtain the radial load with high accuracy. There is. However, since a highly accurate non-contact sensor is expensive, it is inevitable that the cost of the entire rolling bearing unit with a state quantity measuring device increases.
In addition, there exists patent document 4 as another prior art document relevant to this invention.

特開2005−31063号公報JP 2005-31063 A 特開2001−21577号公報JP 2001-21577 A 特開2004−3918号公報Japanese Patent Laid-Open No. 2004-3918 特開2000−55928号公報JP 2000-55928 A 青山元男著、「レッドバッジスーパー図解シリーズ/クルマの最新メカがわかる本」、p.138−139、p.146−149、株式会社三推社/株式会社講談社、平成13年12月20日Motoo Aoyama, “Red Badge Super Illustrated Series / A book that shows the latest mechanics of cars”, p. 138-139, p. 146-149, Sangensha Co., Ltd./Kodansha Co., Ltd., December 20, 2001

本発明の状態量測定装置付転がり軸受ユニットは、上述の様な事情に鑑み、ラジアル荷重の測定精度を十分に確保でき、しかも低コストで造れる構造を実現すべく発明したものである。   The rolling bearing unit with a state quantity measuring device of the present invention has been invented to realize a structure that can sufficiently secure the measurement accuracy of the radial load and can be manufactured at a low cost in view of the above-described circumstances.

本発明の状態量測定装置付転がり軸受ユニットのうち、請求項1に記載したものは、転がり軸受ユニットと、状態量測定装置とを備える。
このうちの転がり軸受ユニットは、静止側周面に静止側軌道を有し、使用時にも回転しない静止側軌道輪と、回転側周面に回転側軌道を有し、使用時に回転する回転側軌道輪と、上記静止側軌道と上記回転側軌道との間に転動自在に設けられた複数個の転動体とを備える。
又、上記状態量測定装置は、エンコーダと、センサ装置と、演算器とを備える。
このうちのエンコーダは、上記回転側軌道輪又はこの回転側軌道輪と共に回転及び変位する回転部材の一部に支持されると共に、この回転側軌道輪又はこの回転部材と同心の被検出面を有する。そして、この被検出面の特性を円周方向に関して交互に且つ等間隔で変化させると共に、円周方向に隣り合う特性同士の境界線をそれぞれ、上記被検出面の幅方向に対して平行にする。
又、上記センサ装置は、使用時にも回転しない部分に支持されると共に、複数個のセンサを備える。そして、これら各センサは、それぞれの検出部を、上記エンコーダの被検出面のうち、円周方向の位相が互いに異なる部分に対向させ、且つ、上記被検出面の特性変化に対応してそれぞれの出力信号を変化させる。
又、上記演算器は、上記各センサの出力信号同士の間に存在する位相差に基づいて、上記両軌道輪同士の間の状態量を算出する機能を有する。
尚、本発明を実施する場合には、上記エンコーダの周面に被検出面を設けると共に、この被検出面に上記各センサの検出部を径方向に対向させる構成と、上記エンコーダの側面に被検出面を設けると共に、この被検出面に上記各センサの検出部を軸方向に対向させる構成とのうちの、どちらの構成を採用しても良い。
Among the rolling bearing units with a state quantity measuring device according to the present invention, the one described in claim 1 includes a rolling bearing unit and a state quantity measuring device.
Of these, the rolling bearing unit has a stationary track on the stationary peripheral surface and does not rotate even when in use, and a rotating track that has a rotating track on the rotating peripheral surface and rotates in use. A ring, and a plurality of rolling elements provided between the stationary track and the rotating track so as to freely roll.
The state quantity measuring device includes an encoder, a sensor device, and a calculator.
Of these, the encoder is supported by a part of the rotating raceway or the rotating member rotating and displacing with the rotating raceway, and has a detected surface concentric with the rotating raceway or the rotating member. . Then, the characteristics of the detected surface are changed alternately and at equal intervals in the circumferential direction, and the boundary lines between the characteristics adjacent to each other in the circumferential direction are parallel to the width direction of the detected surface. .
The sensor device is supported by a portion that does not rotate during use, and includes a plurality of sensors. Each of these sensors has its detection unit opposed to a portion of the detected surface of the encoder that has a different phase in the circumferential direction, and each sensor corresponds to a change in the characteristics of the detected surface. Change the output signal.
The computing unit has a function of calculating a state quantity between the two race rings based on a phase difference existing between output signals of the sensors.
In carrying out the present invention, a surface to be detected is provided on the peripheral surface of the encoder, and the detection portion of each sensor is radially opposed to the surface to be detected, and the side surface of the encoder is covered. Either a configuration in which a detection surface is provided and the detection portion of each sensor is opposed to the detection surface in the axial direction may be employed.

又、上述の請求項1に記載した状態量測定装置付転がり軸受ユニットを実施する場合に、好ましくは、請求項2に記載した様に、演算器が算出する状態量を、静止側軌道輪に対するエンコーダの径方向変位とする。
又、この様な請求項2に記載した発明を実施する場合に、好ましくは、請求項3に記載した様に、演算器に、算出した径方向変位に基づいて、静止側軌道輪と回転側軌道輪との間に加わるラジアル荷重を算出する機能を持たせる。
或は、請求項4に記載した様に、エンコーダを、回転側軌道輪又はこの回転側軌道輪と共に回転及び変位する回転部材の一部で、この回転側軌道輪と静止側軌道輪との中心軸同士が互いに傾斜した場合に交差する点から軸方向に外れた位置(例えば上記回転側軌道輪の軸方向端部)に支持固定する。これと共に、演算器に、算出した径方向変位に基づいて、上記静止側軌道輪と上記回転側軌道輪との間に加わる、この静止側軌道輪の中心軸に対して径方向にずれた位置から入力されたアキシアル荷重を算出する機能を持たせる。
Further, when the rolling bearing unit with a state quantity measuring device described in claim 1 described above is implemented, preferably, as described in claim 2, the state quantity calculated by the computing unit is set for the stationary side race ring. This is the radial displacement of the encoder.
Further, when carrying out the invention described in claim 2, preferably, as described in claim 3, the calculator has a stationary-side bearing ring and a rotating side based on the calculated radial displacement. Provide a function to calculate the radial load applied to the bearing ring.
Alternatively, as described in claim 4, the encoder is a part of a rotating member that rotates and displaces together with the rotating raceway or the rotating raceway, and the center of the rotating raceway and the stationary raceway. The shaft is supported and fixed at a position deviated in the axial direction from the point of intersection when the shafts are inclined to each other (for example, the axial end of the rotating side raceway). At the same time, based on the calculated radial displacement, the calculator adds between the stationary side raceway and the rotation side raceway, a position shifted in the radial direction with respect to the central axis of the stationary side raceway. The function to calculate the axial load input from is provided.

又、上述の請求項1に記載した状態量測定装置付転がり軸受ユニットを実施する場合に、好ましくは、請求項5に記載した様に、演算器が算出する状態量を、静止側軌道輪と回転側軌道輪との間に加わるラジアル荷重とする。
或は、請求項6に記載した様に、エンコーダを、回転側軌道輪又はこの回転側軌道輪と共に回転及び変位する回転部材の一部で、この回転側軌道輪と静止側軌道輪との中心軸同士が互いに傾斜した場合に交差する点から軸方向に外れた位置に支持固定する。これと共に、演算器が算出する状態量を、上記静止側軌道輪と上記回転側軌道輪との間に加わる、この静止側軌道輪の中心軸に対して径方向にずれた位置から入力されたアキシアル荷重とする。
Further, when the rolling bearing unit with a state quantity measuring device described in claim 1 described above is implemented, preferably, as described in claim 5, the state quantity calculated by the computing unit is set as a stationary side ring. Radial load applied to the rotating side raceway.
Alternatively, as described in claim 6, the encoder is a part of a rotating member that rotates and displaces together with the rotating raceway or the rotating raceway, and the center between the rotating raceway and the stationary raceway. It is supported and fixed at a position deviated in the axial direction from the point of intersection when the axes are inclined to each other. At the same time, the state quantity calculated by the calculator is input between the stationary side raceway and the rotation side raceway from a position radially displaced with respect to the central axis of the stationary side raceway. Use axial load.

又、上述の請求項1〜6に記載した発明を実施する場合に、好ましくは、請求項7に記載した構成を採用する。この請求項7に記載した構成の場合、センサ装置は、複数個のセンサとして、3個のセンサを備える。これと共に、これら3個のセンサの検出部を、エンコーダの被検出面の円周方向等間隔の3個所に対向させる。   Moreover, when implementing the invention described in claims 1 to 6, the configuration described in claim 7 is preferably employed. In the case of the configuration described in claim 7, the sensor device includes three sensors as a plurality of sensors. At the same time, the detection units of these three sensors are opposed to three portions at equal intervals in the circumferential direction of the detection target surface of the encoder.

又、上述の請求項2〜5に記載した発明を実施する場合に、好ましくは、請求項8に記載した構成を採用し、上述の請求項6に記載した発明を実施する場合に、好ましくは、請求項9に記載した構成を採用する。これら請求項8、9に記載した構成の場合、
センサ装置は、複数個のセンサとして、第一センサ及び第二センサを備える。そして、これら第一、第二両センサの検出部を、上記エンコーダの被検出面のうち、円周方向の位相が互いに180度異なる部分に対向させる。
更に、請求項8に記載した構成の場合、演算器は、上記第一、第二両センサの出力信号同士の間に存在する位相差に基づいて、径方向変位又はラジアル荷重のうち、上記第一、第二両センサの検出部の配設方向(これら両検出部同士を結ぶ直線の方向)と直角方向の成分を算出する。
一方、請求項9に記載した構成の場合、演算器は、上記第一、第二両センサの出力信号同士の間に存在する位相差に基づいて、静止側軌道輪と回転側軌道輪との間に加わる、この静止側軌道輪の中心軸に対し上記第一、第二両センサの検出部の配設方向と直角方向にずれた位置から入力されたアキシアル荷重を算出する。
Moreover, when implementing the invention described in claims 2 to 5, preferably, the configuration described in claim 8 is adopted, and when implementing the invention described in claim 6 above, preferably The configuration described in claim 9 is employed. In the case of the structure described in these claims 8 and 9,
The sensor device includes a first sensor and a second sensor as a plurality of sensors. And the detection part of both these 1st and 2nd sensors is made to oppose the part from which the phase of the circumferential direction differs 180 degree | times among the to-be-detected surfaces of the said encoder.
Furthermore, in the case of the configuration described in claim 8, the computing unit is configured to calculate the first of the radial displacement or the radial load based on the phase difference existing between the output signals of the first and second sensors. The components in the direction perpendicular to the arrangement direction of the detection parts of the first and second sensors (the direction of the straight line connecting the two detection parts) are calculated.
On the other hand, in the case of the configuration described in claim 9, the computing unit determines whether the stationary bearing ring and the rotating bearing ring are based on the phase difference existing between the output signals of the first and second sensors. An axial load input from a position shifted in a direction perpendicular to the direction of arrangement of the detection portions of the first and second sensors with respect to the central axis of the stationary side raceway is calculated.

又、上述の請求項2〜5に記載した発明を実施する場合に、好ましくは、請求項10に記載した構成を採用し、上述の請求項6に記載した発明を実施する場合に、好ましくは、請求項11に記載した構成を採用する。これら請求項10、11に記載した構成の場合、
センサ装置は、複数個のセンサとして、第一センサ及び第二センサと、第三センサ及び第四センサとを備える。そして、このうちの第一、第二両センサの検出部を、上記エンコーダの被検出面のうち、円周方向の位相が互いに180度異なる部分に対向させる。これと共に、上記第三、第四両センサの検出部を、上記エンコーダの被検出面のうち、円周方向の位相が互いに180度異なる部分であって、且つ、上記第一、第二両センサの検出部を対向させる部分に対しそれぞれ円周方向の位相が90度ずれた部分に対向させる。
更に、請求項10に記載した構成の場合、演算器は、第一〜第三の機能を有する。このうちの第一の機能では、上記第一、第二両センサの出力信号同士の間に存在する位相差に基づいて、径方向変位とラジアル荷重とのうちの何れか一方の状態量のうち、上記第一、第二両センサの検出部の配設方向と直角方向の成分を算出する。又、第二の機能では、上記第三、第四両センサの出力信号同士の間に存在する位相差に基づいて、上記一方の状態量のうち、上記第三、第四両センサの検出部の配設方向と直角方向の成分を算出する。更に、第三の機能では、これら第一、第二の両機能により算出した、上記2つの直角方向の成分に基づいて、上記一方の状態量の向き及び大きさを算出する。
一方、請求項11に記載した構成の場合、演算器は、上記第一、第二両センサの出力信号同士の間に存在する位相差と、上記第三、第四両センサの出力信号同士の間に存在する位相差とに基づいて、アキシアル荷重を算出する機能を有する。
Moreover, when implementing the invention described in claims 2 to 5 above, preferably, the configuration described in claim 10 is adopted, and when implementing the invention described in claim 6 above, preferably The configuration described in claim 11 is employed. In the case of the structure described in these claims 10 and 11,
The sensor device includes a first sensor and a second sensor, a third sensor and a fourth sensor as a plurality of sensors. And the detection part of both the 1st and 2nd sensors of these is made to oppose the part from which the phase of the circumferential direction differs 180 degree | times among the to-be-detected surfaces of the said encoder. At the same time, the detection portions of the third and fourth sensors are portions of the detected surface of the encoder that are 180 degrees apart from each other in the circumferential direction, and both the first and second sensors. Each of the detection parts is opposed to a part where the circumferential phase is shifted by 90 degrees.
Furthermore, in the case of the structure described in claim 10, the computing unit has first to third functions. Of these, the first function is based on the phase difference existing between the output signals of the first and second sensors, and the state quantity of either one of the radial displacement and the radial load. The component in the direction perpendicular to the arrangement direction of the detection portions of both the first and second sensors is calculated. In the second function, based on the phase difference existing between the output signals of the third and fourth sensors, the detection unit of the third and fourth sensors out of the one state quantity. The component in the direction perpendicular to the arrangement direction is calculated. Furthermore, in the third function, the direction and magnitude of the one state quantity are calculated based on the two perpendicular components calculated by the first and second functions.
On the other hand, in the case of the configuration described in claim 11, the computing unit calculates the phase difference existing between the output signals of the first and second sensors and the output signals of the third and fourth sensors. It has a function of calculating an axial load based on a phase difference existing between them.

又、上述の請求項1〜11に記載した発明を実施する場合に、好ましくは、請求項12に記載した様に、転がり軸受ユニットを、自動車の車輪支持用ハブユニットとする。そして、使用状態で静止側軌道輪を自動車の懸架装置に支持し、回転側軌道輪であるハブに車輪を結合固定する。   When carrying out the inventions described in the above first to eleventh aspects, preferably, as described in the twelfth aspect, the rolling bearing unit is a hub unit for supporting a wheel of an automobile. Then, in use, the stationary side race is supported by the suspension device of the automobile, and the wheel is coupled and fixed to the hub that is the rotation side race.

上述の様に、本発明の状態量測定装置付転がり軸受ユニットによれば、複数個のセンサの出力信号同士の間に存在する位相差に基づいて、両軌道輪同士の間の状態量{例えば、静止側軌道輪に対するエンコーダの径方向変位(請求項2)、両軌道輪同士の間に加わるラジアル荷重(請求項5)、静止側軌道輪の中心軸に対して径方向にずれた位置から両軌道輪同士の間に加わるアキシアル荷重(請求項6)等}を算出できる。即ち、これら両軌道輪同士の間に上記ラジアル荷重や上記アキシアル荷重が加わる事により、上記各センサを支持した静止側軌道輪に対して上記エンコーダが径方向に変位すると、これら各センサの出力信号の位相が、それぞれ異なる向きに或は異なる大きさでずれる。この結果、上記各センサの出力信号同士の間に存在する位相差が変化する。そして、この位相差の変化の向き及び大きさは、上記ラジアル荷重や上記アキシアル荷重(静止輪に対するエンコーダの径方向変位)の向き及び大きさに見合ったものとなる。従って、予め、理論計算や実験により、両者の関係を表す式やマップを作成しておけば、この式やマップを利用して、上記位相差の変化の向き及び大きさに基づき、上記ラジアル荷重や上記アキシアル荷重(静止輪に対するエンコーダの径方向変位)の作用方向及び大きさを求める事ができる。   As described above, according to the rolling bearing unit with the state quantity measuring device of the present invention, based on the phase difference existing between the output signals of the plurality of sensors, the state quantity between the two race rings {for example, The radial displacement of the encoder with respect to the stationary side race (Claim 2), the radial load applied between the two races (Claim 5), and the position shifted in the radial direction with respect to the central axis of the stationary side race An axial load applied between the two race rings (claim 6), etc.} can be calculated. That is, when the radial load or the axial load is applied between the two raceways, the encoder is displaced in the radial direction with respect to the stationary raceway supporting the sensors. Are shifted in different directions or with different magnitudes. As a result, the phase difference existing between the output signals of the sensors changes. The direction and magnitude of this phase difference change correspond to the direction and magnitude of the radial load or the axial load (the radial displacement of the encoder with respect to the stationary wheel). Therefore, if formulas and maps representing the relationship between the two are created in advance by theoretical calculations and experiments, the radial load is calculated based on the direction and magnitude of the change in the phase difference using the formulas and maps. And the acting direction and magnitude of the axial load (the radial displacement of the encoder with respect to the stationary wheel) can be obtained.

この様な本発明の効果に就いて、請求項8に記載した発明を例に、より具体的に説明する。この請求項8に記載した発明によれば、第一、第二両センサの出力信号同士の間に存在する位相差に基づいて、両軌道輪同士の間に加わるラジアル荷重(又は静止側軌道輪に対するエンコーダの径方向変位)のうち、上記第一、第二両センサの検出部の配設方向と直角方向の成分を算出できる。即ち、上記両軌道輪同士の間にラジアル荷重が加わる場合、このラジアル荷重に上記直角方向の成分が含まれていると、この直角方向の成分に基づいて、上記第一、第二両センサとエンコーダとが、上記直角方向に相対変位する。この結果、これら両センサの出力信号の位相が互いに逆方向にずれる為、その分だけ、これら両センサの出力信号の位相差が変化する。そして、この位相差の変化の向き及び大きさは、上記直角方向の成分の向き及び大きさ(上記相対変位の向き及び大きさ)に見合ったものとなる。従って、予め、理論計算や実験により、両者の関係を表す式やマップを作成しておけば、この式やマップを利用して、上記位相差の変化の向き及び大きさに基づき、上記直角方向の成分の向き及び大きさを求める事ができる。この様な請求項8に記載した発明の場合、上記両軌道輪同士の間に加わるラジアル荷重の方向が予め分かっている(一定の方向に決まっている)場合には、この一定の方向に上記直角方向を一致させる構成を採用する事により、上記ラジアル荷重の向き及び大きさを正確に求める事ができる。請求項9に記載した発明に就いても、同様である。   The effects of the present invention will be described more specifically by taking the invention described in claim 8 as an example. According to the eighth aspect of the present invention, the radial load applied between the two race rings (or the stationary race ring) based on the phase difference existing between the output signals of the first and second sensors. Of the encoder in the radial direction) can be calculated in a direction perpendicular to the arrangement direction of the detectors of the first and second sensors. That is, when a radial load is applied between the two race rings, if the radial load includes the perpendicular component, the first and second sensors are The encoder is relatively displaced in the perpendicular direction. As a result, the phases of the output signals of these two sensors are shifted in opposite directions, and the phase difference between the output signals of these two sensors changes accordingly. The direction and magnitude of the change in phase difference correspond to the direction and magnitude of the component in the perpendicular direction (the direction and magnitude of the relative displacement). Therefore, if a formula or a map representing the relationship between the two is created in advance by theoretical calculation or experiment, the perpendicular direction is calculated based on the direction and magnitude of the change in the phase difference using the formula or map. The direction and size of the component can be obtained. In the case of the invention described in claim 8, when the direction of the radial load applied between the two race rings is known in advance (determined in a certain direction), By adopting a configuration in which the perpendicular directions are matched, the direction and magnitude of the radial load can be accurately obtained. The same applies to the invention described in claim 9.

又、上述の様な本発明の効果に就いて、請求項10に記載した発明を例に、より具体的に説明する。この請求項10に記載した発明によれば、第一、第二両センサの出力信号同士の間に存在する位相差、及び、第三、第四両センサの出力信号同士の間に存在する位相差に基づいて、それぞれ上記両軌道輪同士の間に加わるラジアル荷重(又は静止側軌道輪に対するエンコーダの径方向変位)のうち、上記第一、第二両センサの検出部の配設方向と直角方向の成分、及び、上記第三、第四両センサの検出部の配設方向と直角方向の成分を測定できる。この為、上記両軌道輪同士の間に加わるラジアル荷重の方向が予め分かっていない(一定の方向に決まっていない)場合でも、上記各直角方向の成分に基づいて、上記ラジアル荷重(又は静止側軌道輪に対するエンコーダの径方向変位)の向き及び大きさを正確に求める事ができる。請求項11に記載した発明により、アキシアル荷重の作用方向及び大きさを求める場合に就いても、同様である。   Further, the effects of the present invention as described above will be described more specifically by taking the invention described in claim 10 as an example. According to the invention described in claim 10, the phase difference existing between the output signals of the first and second sensors and the position existing between the output signals of the third and fourth sensors. Of the radial load (or the radial displacement of the encoder with respect to the stationary side raceway) applied between the two raceways based on the phase difference, it is perpendicular to the direction in which the detectors of the first and second sensors are arranged. The component in the direction and the component in the direction perpendicular to the arrangement direction of the detection units of the third and fourth sensors can be measured. For this reason, even if the direction of the radial load applied between the two races is not known in advance (it is not determined in a certain direction), the radial load (or the stationary side) The direction and magnitude of the encoder's radial displacement relative to the raceway can be accurately determined. The same applies to the case where the action direction and magnitude of the axial load are determined according to the invention described in claim 11.

又、本発明の場合、複数個のセンサ及びエンコーダとして、それぞれ例えば特許文献4等に記載されて従来から広く知られている、回転速度検出装置を構成するセンサ及びエンコーダと同種のものを使用できる。この回転速度検出装置を構成するセンサは、前述した非接触式の変位センサに比べて安価である。この為、本発明の場合には、状態量測定装置付転がり軸受ユニットのコストを十分に抑える事ができる。又、上記複数個のセンサのうちの少なくとも1つのセンサの出力信号に基づいて、回転側軌道輪の回転速度を検出する事ができる為、回転速度検出装置と状態量測定装置とを備えた転がり軸受ユニットを、小型且つ低コストで実現できる。   In the case of the present invention, as the plurality of sensors and encoders, those similar to the sensors and encoders constituting the rotational speed detection device described in, for example, Patent Document 4 and widely known in the past can be used. . The sensor constituting the rotational speed detection device is less expensive than the non-contact displacement sensor described above. For this reason, in the case of this invention, the cost of a rolling bearing unit with a state quantity measuring device can be suppressed sufficiently. In addition, since the rotational speed of the rotating raceway can be detected based on the output signal of at least one of the plurality of sensors, the rolling is provided with a rotational speed detecting device and a state quantity measuring device. The bearing unit can be realized in a small size and at a low cost.

[実施の形態の第1例]
図1〜4は、請求項1、2、3、5、8、12に対応する、本発明の実施の形態の第1例を示している。本例の状態量測定装置付転がり軸受ユニットは、懸架装置に支持された状態で回転しない、静止側軌道輪である外輪1の内径側に、車輪を支持固定した状態でこの車輪と共に回転する、回転側軌道輪であるハブ2を、複数個の転動体3、3を介して回転自在に支持している。尚、これら各転動体3、3には、互いに逆向きの(図示の場合には背面組み合わせ型の)接触角と共に、予圧を付与している。
[First example of embodiment]
1 to 4 show a first example of an embodiment of the present invention corresponding to claims 1, 2, 3, 5, 8, and 12. FIG. The rolling bearing unit with the state quantity measuring device of this example does not rotate while being supported by the suspension device, and rotates together with this wheel while the wheel is supported and fixed to the inner diameter side of the outer ring 1 which is a stationary side race ring. A hub 2 that is a rotation side raceway is rotatably supported via a plurality of rolling elements 3 and 3. Note that a preload is applied to each of the rolling elements 3 and 3 together with contact angles opposite to each other (in the illustrated case, a rear combination type).

そして、上記ハブ2の軸方向中間部で複列に配置された上記各転動体3、3の間部分に、エンコーダ4を外嵌固定している。このエンコーダ4は、軟鋼板等の磁性金属板により全体を円筒状に形成すると共に、被検出面である、外周面の幅方向中間部に、それぞれが軸方向に長いスリット状の透孔5、5と柱部6、6とを、円周方向に関して交互に且つ等間隔で配置している。これにより、上記外周面の幅方向中間部の磁気特性を、円周方向に関して交互に且つ等間隔で変化させている。尚、図2に詳示する様に、円周方向に隣り合う上記各透孔5、5と上記各柱部6、6との境界は、それぞれ上記被検出面の幅方向(上記エンコーダ4の軸方向)に対して平行である。   An encoder 4 is externally fitted and fixed between the rolling elements 3 and 3 arranged in a double row at the intermediate portion in the axial direction of the hub 2. The encoder 4 is formed in a cylindrical shape as a whole by a magnetic metal plate such as a mild steel plate, and has slit-like through holes 5 that are long in the axial direction at the intermediate portion in the width direction of the outer peripheral surface, which is a detected surface. 5 and the column parts 6 and 6 are alternately arranged at equal intervals in the circumferential direction. Thereby, the magnetic characteristics of the intermediate portion in the width direction of the outer peripheral surface are changed alternately and at equal intervals in the circumferential direction. As shown in detail in FIG. 2, the boundary between each of the through holes 5 and 5 and the column portions 6 and 6 adjacent to each other in the circumferential direction is the width direction of the detection surface (the encoder 4). Parallel to the axial direction).

又、上記外輪1の軸方向中間部で複列に配置された上記各転動体3、3同士の間部分の径方向反対側となる2個所位置に、それぞれ第一センサ7と第二センサ8とを支持固定している。これら第一、第二両センサ7、8にはそれぞれ、永久磁石と、検出部を構成する、ホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子とを組み込んでいる。そして、上記外輪1とハブ2との間にラジアル荷重等の外力が作用しておらず、これら外輪1とハブ2とが相対変位していない、中立状態で、上記第一、第二両センサ7、8の検出部を、それぞれ上記エンコーダ4の外周面の幅方向中間部の径方向反対側となる2個所位置(円周方向の位相が互いに180度異なる部分)に近接対向させている。尚、図1、3及び図4の(A)の上下方向は、必ずしも自動車への組み付け状態での上下方向を表すものではない。即ち、本例を実施する場合、自動車への組み付け状態で、上記第一、第二両センサ7、8は、例えば図1、3及び図4の(A)に示す様に、上記エンコーダ4の上下両側に配置する事もできるし、或はこのエンコーダ4の左右両側に配置する事もできる。   Further, the first sensor 7 and the second sensor 8 are respectively provided at two positions on the opposite side in the radial direction of the portion between the rolling elements 3, 3 arranged in a double row at the axially intermediate portion of the outer ring 1. And is supported and fixed. Each of the first and second sensors 7 and 8 incorporates a permanent magnet and a magnetic detection element such as a Hall IC, Hall element, MR element, and GMR element that constitute a detection unit. The first and second sensors are in a neutral state in which no external force such as a radial load is applied between the outer ring 1 and the hub 2 and the outer ring 1 and the hub 2 are not relatively displaced. The detectors 7 and 8 are placed close to and opposed to two positions (parts whose phases in the circumferential direction differ from each other by 180 degrees) on the opposite side in the radial direction of the intermediate portion in the width direction of the outer peripheral surface of the encoder 4. Note that the vertical direction in FIGS. 1, 3 and 4A does not necessarily represent the vertical direction in the assembled state in the automobile. In other words, when the present embodiment is implemented, the first and second sensors 7 and 8 are mounted on the automobile, as shown in FIGS. 1, 3 and 4A, for example. It can be arranged on both upper and lower sides, or can be arranged on both the left and right sides of the encoder 4.

上述の様に構成する本例の状態量測定装置付転がり軸受ユニットの使用時、上記ハブ2に支持固定した車輪と共に、上記エンコーダ4が、例えば図4の(A)の矢印イ方向に回転すると、上記第一、第二両センサ7、8の検出部の近傍を、それぞれ上記エンコーダ4の幅方向中間部に形成した透孔5、5と柱部6、6とが交互に通過する。この結果、上記第一、第二両センサ7、8の検出部を貫く磁束の密度が変化し、図4の(B)に実線で示す様に、上記第一、第二両センサ7、8の出力が変化する。この様にして第一、第二両センサ7、8の出力が変化する周波数は、上記車輪の回転速度に比例する。従って、これら第一、第二両センサ7、8のうちの少なくとも一方のセンサの出力信号に基づいて、上記車輪の回転速度を求める事ができる。   When the rolling bearing unit with a state quantity measuring device of this example configured as described above is used, when the encoder 4 rotates together with the wheel supported and fixed to the hub 2, for example, in the direction of arrow A in FIG. The through-holes 5 and 5 and the column portions 6 and 6 formed in the intermediate portion in the width direction of the encoder 4 alternately pass in the vicinity of the detection portions of the first and second sensors 7 and 8, respectively. As a result, the density of the magnetic flux penetrating the detection portions of the first and second sensors 7 and 8 changes, and as shown by the solid line in FIG. Output changes. The frequency at which the outputs of the first and second sensors 7, 8 change in this way is proportional to the rotational speed of the wheel. Therefore, the rotational speed of the wheel can be determined based on the output signal of at least one of the first and second sensors 7 and 8.

又、本例の場合、上述した中立状態では、図4の(A)に示す様に、上記第一センサ7の検出部に上記各柱部6、6(又は上記各透孔5、5)が対向するタイミングと、上記第二センサ8の検出部に上記各柱部6、6(又は上記各透孔5、5)が対向するタイミングとが、互いに一致する。この為、上述した中立状態では、図4の(B)に実線で示す様に、上記第一、第二両センサ7、8の出力信号の位相が互いに一致する。   Further, in the case of this example, in the neutral state described above, as shown in FIG. 4A, the column portions 6 and 6 (or the respective through holes 5 and 5) are provided on the detection portion of the first sensor 7. And the timing at which the pillars 6 and 6 (or the through holes 5 and 5) face the detection part of the second sensor 8 coincide with each other. For this reason, in the neutral state described above, the phases of the output signals of the first and second sensors 7 and 8 coincide with each other, as indicated by the solid line in FIG.

これに対し、上記外輪1とハブ2との間に(上記エンコーダ4を支持固定したこのハブ2に)、上記第一、第二両センサ7、8の配設方向{図3及び図4の(A)の上下方向}と直角方向{図3及び図4の(A)の左右方向。例えば、図4の(A)の矢印FR の向き}のラジアル荷重が加わると、この図4の(A)に破線で示す様に、上記エンコーダ4が上記第一、第二両センサ7、8に対し、上記矢印FR の向きに変位する。この結果、上記第一センサ7の検出部に上記各柱部6、6(又は上記各透孔5、5)が対向するタイミングと、上記第二センサ8の検出部に上記各柱部6、6(又は上記各透孔5、5)が対向するタイミングとが、互いに逆方向にずれる。この結果、図4の(B)に破線で示す様に、上記第一、第二両センサ7、8の出力信号の位相が互いに逆方向にずれる。例えば、矢印イ方向の回転と矢印FR 方向の変位とが組み合わされた場合には、第一センサ7の出力信号の位相が遅れ、第二センサ8の出力信号の位相が進む。そして、これら遅れと進みとを合計した分だけ、これら第一、第二両センサ7、8の出力信号に位相差が生じる。ここで、この位相差の向き及び大きさは、上記ラジアル荷重(上記第一、第二両センサ7、8を支持した外輪1に対する上記エンコーダ4の径方向変位)の向き及び大きさに見合ったものとなる。従って、上記位相差に基づいて、上記ラジアル荷重(上記径方向変位)の向き及び大きさを求める事ができる。具体的には、自動車への組み付け状態で、上記第一、第二両センサ7、8を上記エンコーダ4の上下両側に配置すれば、前後方向のラジアル荷重(径方向変位)を求める事ができる。又、上記第一、第二両センサ7、8を上記エンコーダ4の左右両側に配置すれば、上下方向のラジアル荷重(径方向変位)を求める事ができる。 On the other hand, between the outer ring 1 and the hub 2 (to the hub 2 that supports and fixes the encoder 4), the arrangement direction of the first and second sensors 7 and 8 {in FIG. 3 and FIG. (A) vertical direction} and a perpendicular direction {the horizontal direction in FIGS. 3 and 4A. For example, when applied the radial load direction} arrow F R of (A) in FIG. 4, as shown by the broken line in (A) of FIG. 4, the encoder 4 is said first, second double sensor 7, 8 to be displaced in the direction of the arrow F R. As a result, the timing at which the pillars 6 and 6 (or the through holes 5 and 5) face the detection part of the first sensor 7, and the pillars 6 and 6 to the detection part of the second sensor 8. 6 (or the respective through-holes 5 and 5) face each other in the opposite directions. As a result, as indicated by a broken line in FIG. 4B, the phases of the output signals of the first and second sensors 7 and 8 are shifted in opposite directions. For example, if the displacement of the rotation arrow F R direction of the arrow b direction are combined, the phase delay of the output signal of the first sensor 7, the phase of the output signal of the second sensor 8 is advanced. A phase difference is generated between the output signals of the first and second sensors 7 and 8 by the sum of the delay and the advance. Here, the direction and magnitude of the phase difference correspond to the direction and magnitude of the radial load (the radial displacement of the encoder 4 with respect to the outer ring 1 that supports the first and second sensors 7 and 8). It will be a thing. Accordingly, the direction and magnitude of the radial load (the radial displacement) can be obtained based on the phase difference. Specifically, when the first and second sensors 7 and 8 are arranged on both the upper and lower sides of the encoder 4 in the assembled state in the automobile, the radial load (radial displacement) in the front-rear direction can be obtained. . If the first and second sensors 7 and 8 are arranged on the left and right sides of the encoder 4, the radial load (radial displacement) in the vertical direction can be obtained.

尚、本例の場合、上記第一、第二両センサ7、8の出力信号(周波数、位相差)に基づいて、前記車輪の回転速度、並びに、上記ラジアル荷重(上記径方向変位)を算出する処理は、図示しない演算器により行なう。この為、この演算器には、予め(上記被検出面の形状・寸法等の幾何学的要因を考慮した)弾性接触理論に基づく計算や実験により調べておいた、上記周波数と上記回転速度との関係、並びに、上記位相差と上記ラジアル荷重(上記径方向変位)との関係を、それぞれ計算式やマップ等の形式で組み込んでおく。尚、本例を実施する場合、上記ラジアル荷重は、上記位相差から直接算出する他、この位相差から上記径方向変位を算出した後、この径方向変位に基づいて算出する事もできる。この場合には、やはり、予め上記径方向変位と上記ラジアル荷重との関係を計算や実験により調べておき、この関係を計算式やマップ等の形式で上記演算器に組み込んでおく。又、本例を実施する場合、回転速度を算出する為の演算器と、ラジアル荷重(径方向変位)を算出する為の演算器とは、共通にしても良いし、別個にしても良い。   In this example, the rotational speed of the wheel and the radial load (the radial displacement) are calculated based on the output signals (frequency and phase difference) of the first and second sensors 7 and 8. The processing to be performed is performed by an arithmetic unit not shown. For this reason, in this computing unit, the frequency and the rotational speed, which have been examined in advance by calculations and experiments based on the elastic contact theory (considering geometric factors such as the shape and dimensions of the detected surface) And the relationship between the phase difference and the radial load (the radial displacement) are incorporated in the form of a calculation formula or a map, respectively. When the present embodiment is implemented, the radial load can be calculated directly from the phase difference, or can be calculated based on the radial displacement after calculating the radial displacement from the phase difference. In this case, the relationship between the radial displacement and the radial load is examined in advance by calculation or experiment, and this relationship is incorporated in the arithmetic unit in the form of a calculation formula or a map. In the case of implementing this example, the computing unit for calculating the rotational speed and the computing unit for calculating the radial load (radial displacement) may be common or may be separate.

何れにしても、本例の場合、上記第一、第二両センサ7、8及びエンコーダ4として、それぞれ従来から知られている回転速度検出装置を構成するセンサ及びエンコーダと同種のものを使用できる。この様な本例の第一、第二両センサ7、8は、前述した非接触式の変位センサに比べて安価である。この為、本例の場合には、状態量測定装置付転がり軸受ユニットのコストを十分に抑える事ができる。又、上記第一、第二両センサ7、8の出力信号に基づいて車輪の回転速度も検出できる為、回転速度検出装置と状態量測定装置とを備えた転がり軸受ユニットを、小型且つ低コストで実現できる。   In any case, in the case of this example, the first and second sensors 7 and 8 and the encoder 4 can be the same type of sensors and encoders that constitute a conventionally known rotational speed detection device. . Such first and second sensors 7 and 8 of this example are less expensive than the non-contact displacement sensor described above. For this reason, in the case of this example, the cost of the rolling bearing unit with the state quantity measuring device can be sufficiently suppressed. Further, since the rotational speed of the wheel can also be detected based on the output signals of the first and second sensors 7, 8, the rolling bearing unit having the rotational speed detection device and the state quantity measuring device can be reduced in size and cost. Can be realized.

[実施の形態の第2例]
次に、図5は、請求項1、2、3、5、10、12に対応する、本発明の実施の形態の第2例を示している。本例の場合には、第一、第二両センサ7、8に加えて、それぞれがこれら第一、第二両センサ7、8と同じ構造を有する、第三センサ9及び第四センサ10を備える。そして、外輪1(図1参照)に支持した上記第一、第二両センサ7、8の検出部を、それぞれハブ2(図1参照)に外嵌固定したエンコーダ4の外周面の上下両端部(円周方向の位相が互いに180度異なる部分)に近接対向させている。これと共に、上記外輪1に支持した、上記第三、第四両センサ9、10の検出部を、それぞれ上記エンコーダ4の外周面の左右両端部(円周方向の位相が互いに180度異なる部分であって、且つ、上記第一、第二両センサ7、8の検出部を対向させる部分に対し、それぞれ円周方向の位相が90度ずれた部分)に対向させている。
[Second Example of Embodiment]
Next, FIG. 5 shows a second example of an embodiment of the present invention corresponding to claims 1, 2, 3, 5, 10 and 12. In the case of this example, in addition to the first and second sensors 7 and 8, the third sensor 9 and the fourth sensor 10, each having the same structure as the first and second sensors 7 and 8, respectively. Prepare. And the upper and lower ends of the outer peripheral surface of the encoder 4 in which the detection parts of the first and second sensors 7 and 8 supported on the outer ring 1 (see FIG. 1) are fitted and fixed to the hub 2 (see FIG. 1), respectively. (The portions in which the phases in the circumferential direction are different from each other by 180 degrees) are close to each other. At the same time, the detection parts of the third and fourth sensors 9 and 10 supported by the outer ring 1 are arranged at the left and right end parts of the outer peripheral surface of the encoder 4 (parts whose phases in the circumferential direction are different from each other by 180 degrees). In addition, each of the first and second sensors 7 and 8 is opposed to a portion where the detection portions are opposed to each other, a portion whose phase in the circumferential direction is shifted by 90 degrees.

上述の様に構成する本例の場合、上記外輪1とハブ2との間にラジアル荷重が加わった場合には、上記第一、第二両センサ7、8の出力信号同士の間に存在する位相差に基づいて、上記ラジアル荷重(上記外輪1に対する上記エンコーダ4の径方向変位)のうち、これら第一、第二両センサ7、8の配設方向(図5の上下方向)と直角方向(図5の左右方向)の成分を測定できる。これと共に、上記第三、第四両センサ9、10の出力信号同士の間に存在する位相差に基づいて、上記ラジアル荷重(上記径方向変位)のうち、これら第三、第四両センサ9、10の配設方向(図5の左右方向)と直角方向(図5の上下方向)の成分を測定できる。この為、これら2つの直角方向の成分に基づいて(これら両成分のベクトル和を求める事で)、上記ラジアル荷重(上記径方向変位)の向き及び大きさを正確に求める事ができる。その他の構成及び作用は、上述した実施の形態の第1例の場合と同様である。   In the case of this example configured as described above, when a radial load is applied between the outer ring 1 and the hub 2, it exists between the output signals of the first and second sensors 7, 8. Based on the phase difference, out of the radial load (the radial displacement of the encoder 4 with respect to the outer ring 1), the direction perpendicular to the direction in which the first and second sensors 7, 8 are arranged (the vertical direction in FIG. 5). The component in the left-right direction in FIG. 5 can be measured. At the same time, based on the phase difference existing between the output signals of the third and fourth sensors 9 and 10, the third and fourth sensors 9 out of the radial load (the radial displacement). 10 components can be measured in the arrangement direction (left-right direction in FIG. 5) and in the direction perpendicular to the vertical direction (FIG. 5). For this reason, the direction and magnitude of the radial load (the radial displacement) can be accurately obtained based on these two components in the perpendicular direction (by obtaining the vector sum of these two components). Other configurations and operations are the same as those in the first example of the embodiment described above.

[実施の形態の第3例]
次に、図6〜7は、請求項1、2、4、6、9、12に対応する、本発明の実施の形態の第3例を示している。上述した第1〜2例では、エンコーダ4を、ハブ2の軸方向中間部に外嵌固定していた。これに対して、本例の場合には、エンコーダ4を、ハブ2の軸方向内端部(図6の右端部)に外嵌固定している。そして、被検出面である、このエンコーダ4の軸方向内半部の外周面のうち、径方向反対側となる2個所位置(円周方向の位相が互いに180度異なる部分)に、それぞれ第一、第二両センサ7、8の検出部を近接対向させている。本例の場合、これら第一、第二両センサ7、8はそれぞれ、外輪1の内端部に固定したカバー11の内面に支持している。又、本例の場合、自動車への組み付け状態で、上記第一、第二両センサ7、8は、図7に示す様に、上記エンコーダ4の左右両側に配置している。従って、図6の上下方向は、自動車への組み付け状態で、水平方向となる。
[Third example of embodiment]
Next, FIGS. 6 to 7 show a third example of an embodiment of the present invention corresponding to claims 1, 2, 4, 6, 9, and 12. In the first and second examples described above, the encoder 4 is fitted and fixed to the intermediate portion in the axial direction of the hub 2. On the other hand, in the case of this example, the encoder 4 is externally fitted and fixed to the axially inner end portion (the right end portion in FIG. 6) of the hub 2. And in the outer peripheral surface of the inner half part of the encoder 4 in the axial direction, which is the detected surface, two first positions (portions where the phases in the circumferential direction are 180 degrees different from each other) on the opposite side in the radial direction respectively. The detection parts of the second sensors 7 and 8 are close to each other. In the case of this example, both the first and second sensors 7 and 8 are supported on the inner surface of the cover 11 fixed to the inner end of the outer ring 1. In the case of this example, the first and second sensors 7 and 8 are disposed on the left and right sides of the encoder 4 as shown in FIG. Accordingly, the vertical direction in FIG. 6 is the horizontal direction in the state of assembly to the automobile.

自動車の車輪支持用転がり軸受ユニットの場合、上記外輪1とハブ2との間に加わるアキシアル荷重は、このハブ2に結合固定した車輪を構成するタイヤの外周面と路面との接地面から入力される。この接地面は、上記外輪1及びハブ2の回転中心よりも径方向外方(鉛直方向下方)に存在する為、上記アキシアル荷重はこれら外輪1とハブ2との間に、純アキシアル荷重としてではなく、これら外輪1及びハブ2の中心軸と上記接地面の中心とを含む(鉛直方向の)仮想平面内での、モーメントを伴って加わる。この様なモーメントが上記外輪1とハブ2との間に加わると、このハブ2の中心軸がこの外輪1の中心軸に対して傾く。そして、この傾きの中心(これら両中心軸同士の交点)は、軸方向に関して、1対の転動体列の間部分となる。この為、上記ハブ2の中心軸が上記外輪1の中心軸に対して傾く事に伴い、このハブ2の軸方向内端部に支持した上記エンコーダ4が、上記第一、第二両センサ7、8に対し、これら第一、第二両センサ7、8の配設方向と直角方向{図6の表裏方向、図7の上下方向(鉛直方向)}に変位する。この結果、前述の図1〜4に示した実施の形態の第1例の場合と同様、上記第一、第二両センサ7、8の出力信号に位相差が生じる。   In the case of a rolling bearing unit for supporting a wheel of an automobile, the axial load applied between the outer ring 1 and the hub 2 is input from the ground contact surface between the outer peripheral surface of the tire and the road surface constituting the wheel coupled and fixed to the hub 2. The Since this ground contact surface exists radially outward (vertically downward) from the center of rotation of the outer ring 1 and the hub 2, the axial load is between the outer ring 1 and the hub 2 as a pure axial load. Rather, it is applied with a moment in a virtual plane (in the vertical direction) including the center axis of the outer ring 1 and the hub 2 and the center of the ground contact surface. When such a moment is applied between the outer ring 1 and the hub 2, the central axis of the hub 2 is inclined with respect to the central axis of the outer ring 1. And the center of this inclination (intersection of these two central axes) is a portion between a pair of rolling element rows in the axial direction. For this reason, as the central axis of the hub 2 is inclined with respect to the central axis of the outer ring 1, the encoder 4 supported on the inner end of the hub 2 in the axial direction has both the first and second sensors 7. , 8 are displaced in a direction perpendicular to the arrangement direction of the first and second sensors 7 and 8 {front and back direction in FIG. 6, up and down direction (vertical direction) in FIG. 7}. As a result, as in the case of the first example of the embodiment shown in FIGS. 1 to 4 described above, a phase difference occurs between the output signals of the first and second sensors 7 and 8.

ここで、この位相差と、上記アキシアル荷重{上記外輪1に対する上記エンコーダ4の径方向変位(鉛直方向変位)又は上記両中心軸同士の傾斜角度}との間には、車輪支持用転がり軸受ユニットのモーメント剛性及び上記被検出面の形状・寸法等の幾何学的要因によって定まる、所定の関係がある。そして、この所定の関係は、転がり軸受ユニットの分野で広く知られている弾性接触理論や幾何学等に基づいて計算により求められる他、実験によっても求められる。従って、上記両センサ7、8の出力信号を処理する図示しない演算器に、上記所定の関係を表した式或はマップを記憶させておけば、上記位相差に基づいて上記アキシアル荷重(上記径方向変位又は上記傾斜角度)を求められる。又、上記径方向変位又は上記傾斜角度と上記アキシアル荷重との関係を表した式或はマップを、上記演算器に記憶させておけば、上記位相差に基づいて上記径方向変位又は上記傾斜角度を算出した後、この径方向変位又は傾斜角度に基づいて上記アキシアル荷重を求める事もできる。   Here, between this phase difference and the axial load {the radial displacement (vertical displacement) of the encoder 4 with respect to the outer ring 1 or the inclination angle between the central axes}, a wheel bearing rolling bearing unit is provided. There is a predetermined relationship determined by geometrical factors such as the moment stiffness of the surface and the shape and size of the surface to be detected. And this predetermined relationship is calculated | required not only by calculation based on the elastic contact theory and geometry etc. which are known widely in the field of a rolling bearing unit, but also by experiment. Therefore, if an arithmetic unit (not shown) that processes the output signals of the sensors 7 and 8 stores an expression or a map that represents the predetermined relationship, the axial load (the diameter) is calculated based on the phase difference. Directional displacement or tilt angle). Further, if an equation or a map representing the relationship between the radial displacement or the inclination angle and the axial load is stored in the computing unit, the radial displacement or the inclination angle based on the phase difference. Then, the axial load can be obtained based on the radial displacement or the inclination angle.

尚、本例の場合も、上記外輪1とハブ2との間にラジアル荷重が加わる事により、この外輪1に対して上記エンコーダ4が径方向に変位する。但し、本例の様に、このエンコーダ4を、上記ハブ2の軸方向内端部に支持固定している構造の場合には、上記アキシアル荷重により生じるエンコーダ4の径方向変位が、上記ラジアル荷重により生じるエンコーダ4の径方向変位よりも、十分に大きくなる。この為、本例の場合には、上記ラジアル荷重の存在に拘わらず、上記アキシアル荷重の測定精度を、実用上十分な程度確保できる。その他の構成及び作用は、前述の図1〜4に示した実施の形態の第1例の場合と同様である。   In the case of this example as well, when a radial load is applied between the outer ring 1 and the hub 2, the encoder 4 is displaced in the radial direction with respect to the outer ring 1. However, when the encoder 4 is supported and fixed to the inner end of the hub 2 in the axial direction as in this example, the radial displacement of the encoder 4 caused by the axial load is the radial load. Is sufficiently larger than the radial displacement of the encoder 4 caused by the above. For this reason, in the case of this example, the measurement accuracy of the axial load can be secured to a practically sufficient level regardless of the presence of the radial load. Other configurations and operations are the same as those in the first example of the embodiment shown in FIGS.

尚、上述した実施の形態の第3例の対象となる、自動車の車輪支持用転がり軸受ユニットの様に、円周方向に関するアキシアル荷重の入力位置(このアキシアル荷重によってエンコーダ4が変位する方向)が決まっている場合には、上述した実施の形態の第3例の様に、2個のセンサ(第一、第二両センサ7、8)を、上記エンコーダ4の変位方向と直角方向に配設する事により、このエンコーダ4の変位及び上記アキシアル荷重を正確に測定できる。これに対し、円周方向に関するアキシアル荷重の入力位置が、運転時に変化する様な転がり軸受ユニットを対象とする場合には、このアキシアル荷重によってエンコーダ4が変位する方向も運転時に変化する為、センサを2個設けただけでは、上記エンコーダ4の変位及び上記アキシアル荷重を正確に測定できない。この場合には、例えば上述の図6〜7に示した構造の様に、静止側軌道輪(ハブ2)の軸方向端部にエンコーダ4を支持固定した構造で、前述の図5に示す様に、このエンコーダ4の被検出面に、第一〜第四センサ7〜10の検出部を対向させる構造(請求項11に記載した構造)を採用する。この様な構造を採用すれば、前述の図5に示した実施の形態の第2例の場合と同様の原理で、上記第一、第二両センサ7、8の出力信号同士の間に存在する位相差と、上記第三、第四両センサ9、10の出力信号同士の間に存在する位相差とに基づき、上記エンコーダ4の径方向変位の向き及び大きさを正確に求められる。この為、円周方向に関するアキシアル荷重の入力位置が運転時に変化しても、このアキシアル荷重の向き及び大きさを、上記両位相差又は上記エンコーダ4の径方向変位の向き及び大きさに基づいて、正確に求められる。   Note that the axial load input position in the circumferential direction (the direction in which the encoder 4 is displaced by this axial load) is the same as the rolling bearing unit for supporting a wheel of an automobile, which is the object of the third example of the above-described embodiment. If determined, two sensors (both first and second sensors 7, 8) are arranged in a direction perpendicular to the displacement direction of the encoder 4 as in the third example of the embodiment described above. By doing so, the displacement of the encoder 4 and the axial load can be measured accurately. On the other hand, when the input position of the axial load in the circumferential direction is intended for a rolling bearing unit that changes during operation, the direction in which the encoder 4 is displaced by the axial load also changes during operation. If only two are provided, the displacement of the encoder 4 and the axial load cannot be measured accurately. In this case, for example, as in the structure shown in FIGS. 6 to 7 described above, the encoder 4 is supported and fixed to the axial end of the stationary side race (hub 2) as shown in FIG. Furthermore, a structure (structure described in claim 11) is adopted in which the detection parts of the first to fourth sensors 7 to 10 are opposed to the detection surface of the encoder 4. If such a structure is adopted, it exists between the output signals of the first and second sensors 7 and 8 on the same principle as in the second example of the embodiment shown in FIG. And the direction and magnitude of the radial displacement of the encoder 4 can be accurately obtained based on the phase difference between the output signals of the third and fourth sensors 9 and 10. For this reason, even if the input position of the axial load in the circumferential direction changes during operation, the direction and magnitude of the axial load is determined based on the phase difference or the direction and magnitude of the radial displacement of the encoder 4. Sought exactly.

[実施の形態の第4例]
次に、図8は、請求項1、2、3、5、7、12に対応する、本発明の実施の形態の第4例を示している。本例の場合も、前述の図1に示した様に、エンコーダ4を、ハブ2の軸方向中間部で複列に配置された各転動体3、3同士の間に外嵌固定している。これと共に、外輪1の軸方向中間部で複列に配置された上記各転動体3、3同士の間部分のうち、円周方向に関して等間隔となる3個所位置に、それぞれ第一〜第三センサ7、8、9を支持固定している。そして、この状態で、図8に示す様に、被検出面である、上記エンコーダ4の外周面のうち、θ=0度の位置に上記第一センサ7の検出部を、θ=120度の位置に上記第二センサ8の検出部を、θ=240度の位置に上記第三センサ9の検出部を、それぞれ近接対向させている。又、本例の場合、上記外輪1とハブ2との間に外力が作用せず、これら外輪1とハブ2とが相対変位していない、中立状態で、上記各第一〜第三センサ7、8、9の出力信号同士の間に存在する位相差が、それぞれ0になる様に、上記被検出面の円周方向に関する特性変化のピッチ(1周期の円周方向長さ)Pを規制(透孔5、5及び柱部6、6の数を、それぞれ3の整数倍と)している。
[Fourth Example of Embodiment]
Next, FIG. 8 shows a fourth example of an embodiment of the present invention corresponding to claims 1, 2, 3, 5, 7 and 12. Also in the case of this example, as shown in FIG. 1 described above, the encoder 4 is externally fixed between the rolling elements 3 and 3 arranged in a double row at the intermediate portion in the axial direction of the hub 2. . At the same time, among the portions between the rolling elements 3, 3 arranged in a double row at the axially intermediate portion of the outer ring 1, the first to third positions are arranged at three positions that are equally spaced in the circumferential direction. Sensors 7, 8, and 9 are supported and fixed. In this state, as shown in FIG. 8, the detection portion of the first sensor 7 is placed at the position of θ = 0 degrees on the outer peripheral surface of the encoder 4 which is the detected surface, and θ = 120 degrees. The detection unit of the second sensor 8 is positioned close to the position, and the detection unit of the third sensor 9 is positioned close to and facing the position θ = 240 degrees. In the case of this example, the external force is not applied between the outer ring 1 and the hub 2, and the first to third sensors 7 are in a neutral state in which the outer ring 1 and the hub 2 are not relatively displaced. , 8 and 9 are regulated such that the phase difference existing between the output signals becomes zero, and the pitch (length in one circumferential direction) P of the characteristic change in the circumferential direction of the detected surface is regulated. (The numbers of the through holes 5, 5 and the column parts 6, 6 are each an integral multiple of 3).

上述の様に構成する本例の場合、上記外輪1とハブ2との間にラジアル荷重が加わる事に伴い、この外輪1(上記各第一〜第三センサ7、8、9の検出部)と上記ハブ2(上記エンコーダ4の被検出面)とが径方向に相対変位すると、これに応じて、上記各第一〜第三センサ7、8、9の出力信号の位相が、それぞれ変化する。ここで、この位相の変化量(自己位相差)を、位相差比(自己位相差比=自己位相差/1周期)ε(θ)(θ=0度、120度、240度)で表す事にする。又、自動車への組み付け状態での、前後方向軸をx軸とし、上記外輪1の中心軸をy軸とし、上下方向軸をz軸とする、三次元直交座標系を考える。そして、上記外輪1に対する上記エンコーダ4の、x軸方向の変位をxとし、z軸方向の変位をzとする。この場合に、上記自己位相差比ε(θ)は、次の(1)式で表す事ができる。

Figure 2007225106
従って、上記各第一〜第三センサ7、8、9に関する自己位相差比ε(0)、ε(120)、ε(240)は、それぞれ上記(1)式に角度θ=0度、120度、240度を代入して、
Figure 2007225106
Figure 2007225106
Figure 2007225106
となる。 In the case of this example configured as described above, a radial load is applied between the outer ring 1 and the hub 2, and this outer ring 1 (detection unit of each of the first to third sensors 7, 8, 9). And the hub 2 (the detected surface of the encoder 4) are displaced relative to each other in the radial direction, the phases of the output signals of the first to third sensors 7, 8, 9 change accordingly. . Here, this phase change amount (self-phase difference) is expressed by a phase-difference ratio (self-phase difference ratio = self-phase difference / 1 period) ε (θ) (θ = 0 degrees, 120 degrees, 240 degrees). To. Also, consider a three-dimensional orthogonal coordinate system in which the front-rear direction axis is the x-axis, the center axis of the outer ring 1 is the y-axis, and the vertical axis is the z-axis in the assembled state in the automobile. The displacement of the encoder 4 with respect to the outer ring 1 in the x-axis direction is x, and the displacement in the z-axis direction is z. In this case, the self-phase difference ratio ε (θ) can be expressed by the following equation (1).
Figure 2007225106
Accordingly, the self-phase difference ratios ε (0), ε (120), and ε (240) related to the first to third sensors 7, 8, and 9 are expressed by the angle θ = 0 °, 120 in the equation (1), respectively. Substituting 240 degrees,
Figure 2007225106
Figure 2007225106
Figure 2007225106
It becomes.

従って、上記第一、第二両センサ7、8の出力信号同士の間に存在する位相差(相互位相差)は、位相差比(相互位相差比=相互位相差/1周期)で表すと、

Figure 2007225106
となる。
又、上記第一、第三両センサ7、9の出力信号同士の間に存在する位相差(相互位相差)は、相互位相差比で表すと、
Figure 2007225106
となる。 Therefore, the phase difference (mutual phase difference) existing between the output signals of the first and second sensors 7 and 8 is expressed by a phase difference ratio (mutual phase difference ratio = mutual phase difference / 1 period). ,
Figure 2007225106
It becomes.
Further, the phase difference (mutual phase difference) existing between the output signals of the first and third sensors 7 and 9 is expressed by a mutual phase difference ratio.
Figure 2007225106
It becomes.

以上の様に、本例の構造の場合には、2つの未知数(変位x、z)に対して2個の関係式{(5)〜(6)式}を得られるから、上記2つの未知数(変位x、z)を、解析的に求める事ができる。即ち、上記2個の関係式{(5)〜(6)式}を行列で表示すると、

Figure 2007225106
となり、これを上記2つの未知数(変位x、z)に就いての式に書き換えると、
Figure 2007225106
となる。この(8)式の右辺中、定数P(被検出面の円周方向に関する特性変化のピッチ)は、本例の構造により決まる定数である。又、2つの相互位相差比「ε(120)−ε(0)」、「ε(240)−ε(0)」は、上記第一〜第三センサ7、8、9の出力信号に基づいて求められる。従って、これら第一〜第三センサ7、8、9の出力信号を処理する図示しない演算器に、上記定数Pを代入した上記(8)式を記憶させておけば、上記2つの相互位相差比に基づいて、上記2つの未知数(変位x、z)を算出できる。そして、これら2方向変位x、zはそれぞれ、上記エンコーダ4の径方向変位のx軸方向成分、z軸方向成分であるから、これら両成分に基づいて、上記エンコーダ4の径方向変位の向き及び大きさを求める事ができる。従って、本例の場合も、このエンコーダ4の径方向変位の向き及び大きさに基づいて、前記ラジアル荷重の向き及び大きさを求める事ができる。又、本例の場合も、上記各第一〜第三センサ7、8、9の出力信号同士の間に存在する位相差と上記ラジアル荷重との関係を、弾性接触理論及び幾何学的要因に基づく計算や実験により求め、この関係を計算式やマップの形式で上記演算器に記憶させておけば、上記各位相差から上記ラジアル荷重を直接求める事もできる。 As described above, in the case of the structure of this example, two relational expressions {(5) to (6)} are obtained for two unknowns (displacement x, z). (Displacement x, z) can be obtained analytically. That is, when the two relational expressions {expressions (5) to (6)} are displayed in a matrix,
Figure 2007225106
And rewriting this into the equation for the two unknowns (displacement x, z)
Figure 2007225106
It becomes. In the right side of the equation (8), the constant P (the pitch of the characteristic change in the circumferential direction of the detected surface) is a constant determined by the structure of this example. The two mutual phase difference ratios “ε (120) −ε (0)” and “ε (240) −ε (0)” are based on the output signals of the first to third sensors 7, 8, and 9. Is required. Therefore, if the above equation (8), in which the constant P is substituted, is stored in an arithmetic unit (not shown) that processes the output signals of the first to third sensors 7, 8, and 9, the two mutual phase differences. Based on the ratio, the two unknowns (displacement x, z) can be calculated. Since these two-direction displacements x and z are an x-axis direction component and a z-axis direction component of the radial displacement of the encoder 4, respectively, the direction of the radial displacement of the encoder 4 and the The size can be determined. Therefore, also in this example, the direction and magnitude of the radial load can be obtained based on the direction and magnitude of the radial displacement of the encoder 4. Also in this example, the relationship between the phase difference existing between the output signals of the first to third sensors 7, 8, 9 and the radial load is based on the elastic contact theory and geometric factors. If the relationship is obtained by calculation or experiment based on this relationship, and the relationship is stored in the computing unit in the form of a calculation formula or a map, the radial load can be directly obtained from the phase differences.

尚、上述した実施の形態の第4例では、エンコーダ4及び第一〜第三センサ7、8、9を、外輪1及びハブ2の軸方向中間部に配置する構成を採用した。これに対し、上記エンコーダ4及び第一〜第三センサ7、8、9を、上記外輪1及びハブ2の軸方向内端部に配置する構成(請求項4、6に記載した構成)を採用すれば、上記各第一〜第三センサ7、8、9の出力信号同士の間に存在する位相差(或はこれら各位相差から算出したエンコーダ4の径方向変位)に基づいて、前述した接地面から入力されて上記外輪1とハブ2との間に加わるアキシアル荷重を求める事ができる。   In the fourth example of the embodiment described above, a configuration is adopted in which the encoder 4 and the first to third sensors 7, 8, 9 are arranged in the intermediate portion in the axial direction of the outer ring 1 and the hub 2. On the other hand, a configuration (configuration described in claims 4 and 6) in which the encoder 4 and the first to third sensors 7, 8, and 9 are arranged at the inner ends in the axial direction of the outer ring 1 and the hub 2 is adopted. Then, based on the phase difference existing between the output signals of the first to third sensors 7, 8, 9 (or the radial displacement of the encoder 4 calculated from these phase differences), the contact described above is performed. An axial load that is input from the ground and applied between the outer ring 1 and the hub 2 can be obtained.

又、上述した実施の形態の第4例で示した、変位x、zを求める計算式は、他の構造でも導き出す事ができる。例えば、図8に示す様に三次元座標(x、y、z)とエンコーダ4との位置関係を設定した場合に、エンコーダ4の外周面のうち、θ=0度の位置(図8の下端部)に第一センサの検出部を、θ=180度の位置(図8の上端部)に第二センサの検出部を、それぞれ近接対向させる構造を考える。この構造の場合、上記第一、第二両センサに対して上記エンコーダ4がx軸方向に変位した場合に生じる、これら第一、第二両センサの出力信号の自己位相差比ε(0)、ε(180)は、それぞれ前記(1)式に角度θ=0度、180度を代入して、

Figure 2007225106
Figure 2007225106
となる。従って、上記第一、第二両センサの出力信号同士の間に存在する位相差(相互位相差)は、位相差比(相互位相差比=相互位相差/1周期)で表すと、
Figure 2007225106
となる。従って、外輪1(図1参照)に対する上記エンコーダ4の変位xは、次の(12)式で表す事ができる。
Figure 2007225106
Further, the calculation formulas for obtaining the displacements x and z shown in the fourth example of the embodiment described above can be derived with other structures. For example, when the positional relationship between the three-dimensional coordinates (x, y, z) and the encoder 4 is set as shown in FIG. 8, the position of θ = 0 degrees on the outer peripheral surface of the encoder 4 (the lower end of FIG. 8). Consider the structure in which the detection unit of the first sensor is close to the position of the first sensor and the detection unit of the second sensor is close to the position θ = 180 degrees (the upper end portion in FIG. 8). In the case of this structure, the self-phase difference ratio ε (0) of the output signals of both the first and second sensors, which occurs when the encoder 4 is displaced in the x-axis direction with respect to the first and second sensors. , Ε (180) are obtained by substituting the angles θ = 0 ° and 180 ° into the equation (1), respectively.
Figure 2007225106
Figure 2007225106
It becomes. Therefore, the phase difference (mutual phase difference) existing between the output signals of the first and second sensors is expressed by a phase difference ratio (mutual phase difference ratio = mutual phase difference / 1 period).
Figure 2007225106
It becomes. Therefore, the displacement x of the encoder 4 with respect to the outer ring 1 (see FIG. 1) can be expressed by the following equation (12).
Figure 2007225106

又、同じく、図8に示す様に三次元座標(x、y、z)とエンコーダ4との位置関係を設定した場合に、エンコーダ4の外周面のうち、θ=90度の位置(図8の左端部)に第一センサの検出部を、θ=270度の位置(図8の右端部)に第二センサの検出部を、それぞれ近接対向させる構造を考える。この構造の場合、上記第一、第二両センサに対して上記エンコーダ4がz軸方向に変位した場合に生じる、これら第一、第二両センサの出力信号の自己位相差比ε(0)、ε(180)は、それぞれ前記(1)式に角度θ=90度、270度を代入して、

Figure 2007225106
Figure 2007225106
となる。従って、上記第一、第二両センサの出力信号同士の間に存在する位相差(相互位相差)は、位相差比(相互位相差比=相互位相差/1周期)で表すと、
Figure 2007225106
となる。従って、外輪1(図1参照)に対する上記エンコーダ4の変位zは、次の(16)式で表す事ができる。
Figure 2007225106
Similarly, when the positional relationship between the three-dimensional coordinates (x, y, z) and the encoder 4 is set as shown in FIG. 8, the position of θ = 90 degrees on the outer peripheral surface of the encoder 4 (FIG. 8). Let us consider a structure in which the detection unit of the first sensor is positioned close to the left end of the second sensor and the detection unit of the second sensor is positioned close to each other at a position of θ = 270 degrees (the right end of FIG. 8). In the case of this structure, the self-phase difference ratio ε (0) of the output signals of both the first and second sensors, which occurs when the encoder 4 is displaced in the z-axis direction with respect to the first and second sensors. , Ε (180) are obtained by substituting the angle θ = 90 degrees and 270 degrees into the equation (1), respectively.
Figure 2007225106
Figure 2007225106
It becomes. Therefore, the phase difference (mutual phase difference) existing between the output signals of the first and second sensors is expressed by a phase difference ratio (mutual phase difference ratio = mutual phase difference / 1 period).
Figure 2007225106
It becomes. Therefore, the displacement z of the encoder 4 with respect to the outer ring 1 (see FIG. 1) can be expressed by the following equation (16).
Figure 2007225106

尚、本発明を実施する場合、エンコーダを単なる磁性材製とする場合には、このエンコーダの被検出面の構成として、透孔と柱部とを円周方向に関して交互に配置する構成の他、例えば凹部と凸部とを円周方向に関して交互に配置する構成を採用する事もできる。又、エンコーダを永久磁石製とし、このエンコーダの被検出面にN極とS極とを円周方向に関して交互に配置する構成を採用する事もできる。この様にエンコーダを永久磁石製とする場合には、センサ装置を構成する複数個のセンサ側に永久磁石を組み込む必要はない。又、本発明に組み込むエンコーダとしては、周面に被検出面を設けたエンコーダに限らず、例えば図9に示す様な、側面に被検出面を設けたエンコーダ4aを使用する事もできる。この様に、側面に被検出面を設けたエンコーダ4aを使用する場合には、図9に示す様に、センサ装置を構成する複数個のセンサ(図示の例では、第一、第二両センサ7、8)の検出部を、それぞれ上記被検出面に対し軸方向に対向させる。   In the case of carrying out the present invention, when the encoder is made of a simple magnetic material, as a configuration of the detection surface of the encoder, in addition to the configuration in which the through holes and the column portions are alternately arranged in the circumferential direction, For example, the structure which arrange | positions a recessed part and a convex part alternately with respect to the circumferential direction is also employable. It is also possible to adopt a configuration in which the encoder is made of a permanent magnet, and the north and south poles are alternately arranged on the detected surface of the encoder in the circumferential direction. In this way, when the encoder is made of a permanent magnet, it is not necessary to incorporate permanent magnets on the plurality of sensors constituting the sensor device. The encoder incorporated in the present invention is not limited to an encoder having a detected surface on the peripheral surface, and an encoder 4a having a detected surface on a side surface as shown in FIG. 9, for example, can also be used. As described above, when the encoder 4a having the detection surface on the side surface is used, as shown in FIG. 9, a plurality of sensors constituting the sensor device (both the first and second sensors in the illustrated example). The detection units 7 and 8) are opposed to the detected surface in the axial direction.

本発明の状態量測定装置付転がり軸受ユニットは、車両の車輪支持用転がり軸受ユニットに限らず、各種機械装置の回転支持部分に組み込まれる転がり軸受ユニットに適用する事ができる。又、本発明は、本発明の構成要素となるエンコーダを既に備えている回転機械(例えば前述した回転速度検出装置付転がり軸受ユニット)に、センサを必要数追加する事によって、構成する事ができる。この場合には、当該回転機械に既に備わっているエンコーダをそのまま使用できる為、このエンコーダ部分に関して、当該回転機械の設計変更を行なう必要がない。   The rolling bearing unit with a state quantity measuring device of the present invention is not limited to a rolling bearing unit for supporting wheels of a vehicle, but can be applied to a rolling bearing unit incorporated in a rotating support portion of various mechanical devices. In addition, the present invention can be configured by adding a necessary number of sensors to a rotating machine (for example, the above-described rolling bearing unit with a rotational speed detection device) that already includes an encoder that is a component of the present invention. . In this case, since the encoder already provided in the rotary machine can be used as it is, it is not necessary to change the design of the rotary machine with respect to the encoder portion.

本発明の実施の形態の第1例を示す断面図。Sectional drawing which shows the 1st example of embodiment of this invention. エンコーダの斜視図。The perspective view of an encoder. エンコーダ及び第一、第二両センサのみを取り出して示す、図1のA−A断面に相当する略図。FIG. 2 is a schematic view corresponding to the AA cross section of FIG. 1, showing only the encoder and the first and second sensors. (A)は、図3と同様の略図、(B)は、ラジアル荷重に基づいて第一、第二両センサの出力信号が変化する状態を説明する為の線図。(A) is a schematic diagram similar to FIG. 3, and (B) is a diagram for explaining a state in which the output signals of both the first and second sensors change based on the radial load. 本発明の実施の形態の第2例を示す、図3と同様の略図。The schematic diagram similar to FIG. 3 which shows the 2nd example of embodiment of this invention. 同第3例を示す断面図。Sectional drawing which shows the 3rd example. エンコーダ及び第一、第二両センサのみを取り出して示す、図6のB−B断面に相当する略図。FIG. 7 is a schematic view corresponding to the BB cross section of FIG. 6, showing only the encoder and the first and second sensors. 本発明の実施の形態の第4例を示す、図3と同様の略図。The schematic diagram similar to FIG. 3 which shows the 4th example of embodiment of this invention. 本発明を実施する場合に採用できる、側面に被検出面を設けたエンコーダを、センサと共に示す、軸方向から見た図。The figure which looked from the axial direction which shows the encoder which can be employ | adopted when implementing this invention and which provided the to-be-detected surface with the sensor.

符号の説明Explanation of symbols

1 外輪
2 ハブ
3 転動体
4 エンコーダ
5 透孔
6 柱部
7 第一センサ
8 第二センサ
9 第三センサ
10 第四センサ
11 カバー
DESCRIPTION OF SYMBOLS 1 Outer ring 2 Hub 3 Rolling element 4 Encoder 5 Through-hole 6 Column part 7 First sensor 8 Second sensor 9 Third sensor 10 Fourth sensor 11 Cover

Claims (12)

転がり軸受ユニットと、状態量測定装置とを備え、
このうちの転がり軸受ユニットは、静止側周面に静止側軌道を有し、使用時にも回転しない静止側軌道輪と、回転側周面に回転側軌道を有し、使用時に回転する回転側軌道輪と、上記静止側軌道と上記回転側軌道との間に転動自在に設けられた複数個の転動体とを備えたものであり、
上記状態量測定装置は、エンコーダと、センサ装置と、演算器とを備え、
このうちのエンコーダは、上記回転側軌道輪又はこの回転側軌道輪と共に回転及び変位する回転部材の一部に支持されると共に、この回転側軌道輪又はこの回転部材と同心の被検出面を有し、この被検出面の特性を円周方向に関して交互に且つ等間隔で変化させると共に、円周方向に隣り合う特性同士の境界線をそれぞれ、上記被検出面の幅方向に対して平行にしたものであり、
上記センサ装置は、使用時にも回転しない部分に支持されると共に、複数個のセンサを備え、これら各センサは、それぞれの検出部を、上記エンコーダの被検出面のうち、円周方向の位相が互いに異なる部分に対向させており、且つ、上記被検出面の特性変化に対応してそれぞれの出力信号を変化させるものであり、
上記演算器は、上記各センサの出力信号同士の間に存在する位相差に基づいて、上記両軌道輪同士の間の状態量を算出する機能を有するものである、
状態量測定装置付転がり軸受ユニット。
A rolling bearing unit and a state quantity measuring device;
Among these, the rolling bearing unit has a stationary side raceway on the stationary side circumferential surface and does not rotate even when used, and a stationary side raceway that has a rotational side raceway on the rotational side circumferential surface and rotates when used. A ring, and a plurality of rolling elements provided between the stationary-side track and the rotating-side track so as to roll freely,
The state quantity measuring device includes an encoder, a sensor device, and a calculator.
Of these, the encoder is supported on a part of the rotating raceway or the rotating member that rotates and displaces with the rotating raceway, and has a detected surface concentric with the rotating raceway or the rotating member. The characteristics of the detected surface are changed alternately and at equal intervals in the circumferential direction, and the boundary lines between the characteristics adjacent in the circumferential direction are parallel to the width direction of the detected surface, respectively. Is,
The sensor device is supported by a portion that does not rotate during use, and includes a plurality of sensors. Each of these sensors has a detection unit having a phase in a circumferential direction on a detection surface of the encoder. It is opposed to different parts, and each output signal is changed in response to the characteristic change of the detected surface,
The arithmetic unit has a function of calculating a state quantity between the two race rings based on a phase difference existing between output signals of the sensors.
Rolling bearing unit with state quantity measuring device.
演算器が算出する状態量が、静止側軌道輪に対するエンコーダの径方向変位である、請求項1に記載した状態量測定装置付転がり軸受ユニット。   The rolling bearing unit with a state quantity measuring device according to claim 1, wherein the state quantity calculated by the computing unit is a radial displacement of the encoder with respect to the stationary side race. 演算器が、算出した径方向変位に基づいて、静止側軌道輪と回転側軌道輪との間に加わるラジアル荷重を算出する機能を有する、請求項2に記載した状態量測定装置付転がり軸受ユニット。   The rolling bearing unit with a state quantity measuring device according to claim 2, wherein the arithmetic unit has a function of calculating a radial load applied between the stationary side raceway and the rotation side raceway based on the calculated radial displacement. . エンコーダが、回転側軌道輪又はこの回転側軌道輪と共に回転及び変位する回転部材の一部で、この回転側軌道輪と静止側軌道輪との中心軸同士が互いに傾斜した場合に交差する点から軸方向に外れた位置に支持固定されており、
演算器が、算出した径方向変位に基づいて、上記静止側軌道輪と上記回転側軌道輪との間に加わる、この静止側軌道輪の中心軸に対して径方向にずれた位置から入力されたアキシアル荷重を算出する機能を有する、
請求項2に記載した状態量測定装置付転がり軸受ユニット。
From the point where the encoder intersects with the rotation-side raceway or a part of the rotating member that rotates and displaces together with the rotation-side raceway, and the central axes of the rotation-side raceway and the stationary-side raceway are inclined to each other. It is supported and fixed at a position deviated in the axial direction,
Based on the calculated radial displacement, an arithmetic unit is input from a position that is added between the stationary side raceway and the rotation side raceway and that is radially displaced with respect to the central axis of the stationary side raceway. Has a function to calculate the axial load,
A rolling bearing unit with a state quantity measuring device according to claim 2.
演算器が算出する状態量が、静止側軌道輪と回転側軌道輪との間に加わるラジアル荷重である、請求項1に記載した状態量測定装置付転がり軸受ユニット。   The rolling bearing unit with a state quantity measuring device according to claim 1, wherein the state quantity calculated by the computing unit is a radial load applied between the stationary side bearing ring and the rotating side bearing ring. エンコーダが、回転側軌道輪又はこの回転側軌道輪と共に回転及び変位する回転部材の一部で、この回転側軌道輪と静止側軌道輪との中心軸同士が互いに傾斜した場合に交差する点から軸方向に外れた位置に支持固定されており、
演算器が算出する状態量が、上記静止側軌道輪と上記回転側軌道輪との間に加わる、この静止側軌道輪の中心軸に対して径方向にずれた位置から入力されたアキシアル荷重である、
請求項1に記載した状態量測定装置付転がり軸受ユニット。
From the point where the encoder intersects with the rotation-side raceway or a part of the rotating member that rotates and displaces together with the rotation-side raceway, and the central axes of the rotation-side raceway and the stationary-side raceway are inclined to each other. It is supported and fixed at a position deviated in the axial direction,
The state quantity calculated by the computing unit is an axial load applied between the stationary side raceway and the rotation side raceway, which is input from a position shifted in the radial direction with respect to the central axis of the stationary side raceway. is there,
A rolling bearing unit with a state quantity measuring device according to claim 1.
センサ装置は、複数個のセンサとして、3個のセンサを備えると共に、これら3個のセンサの検出部を、エンコーダの被検出面の円周方向等間隔の3個所に対向させている、請求項1〜6のうちの何れか1項に記載した状態量測定装置付転がり軸受ユニット。   The sensor device includes three sensors as a plurality of sensors, and the detection units of the three sensors are opposed to three positions at equal intervals in the circumferential direction of the detection target surface of the encoder. The rolling bearing unit with a state quantity measuring device described in any one of 1-6. センサ装置は、複数個のセンサとして、第一センサ及び第二センサを備えると共に、これら第一、第二両センサの検出部を、上記エンコーダの被検出面のうち、円周方向の位相が互いに180度異なる部分に対向させており、
演算器は、上記第一、第二両センサの出力信号同士の間に存在する位相差に基づいて、径方向変位又はラジアル荷重のうち、上記第一、第二両センサの検出部の配設方向と直角方向の成分を算出する、
請求項2〜5のうちの何れか1項に記載した状態量測定装置付転がり軸受ユニット。
The sensor device includes a first sensor and a second sensor as a plurality of sensors, and the detection units of both the first and second sensors are arranged so that their phases in the circumferential direction are out of the detected surfaces of the encoder. It faces the part that is 180 degrees different,
The arithmetic unit is arranged based on the phase difference existing between the output signals of the first and second sensors, and the detectors of the first and second sensors are arranged in the radial displacement or radial load. Calculate the component perpendicular to the direction,
The rolling bearing unit with a state quantity measuring device according to any one of claims 2 to 5.
センサ装置は、複数個のセンサとして、第一センサ及び第二センサを備えると共に、これら第一、第二両センサの検出部を、上記エンコーダの被検出面のうち、円周方向の位相が互いに180度異なる部分に対向させており、
演算器は、上記第一、第二両センサの出力信号同士の間に存在する位相差に基づいて、静止側軌道輪と回転側軌道輪との間に加わる、この静止側軌道輪の中心軸に対し上記第一、第二両センサの検出部の配設方向と直角方向にずれた位置から入力されたアキシアル荷重を算出する、
請求項6に記載した状態量測定装置付転がり軸受ユニット。
The sensor device includes a first sensor and a second sensor as a plurality of sensors, and the detection units of both the first and second sensors are arranged so that their phases in the circumferential direction are out of the detected surfaces of the encoder. It faces the part that is 180 degrees different,
The computing unit is a central axis of the stationary side raceway that is added between the stationary side raceway and the rotation side raceway based on the phase difference existing between the output signals of the first and second sensors. The axial load input from a position shifted in a direction perpendicular to the direction of arrangement of the detection units of the first and second sensors is calculated.
A rolling bearing unit with a state quantity measuring device according to claim 6.
センサ装置は、複数個のセンサとして、第一センサ及び第二センサと、第三センサ及び第四センサとを備え、このうちの第一、第二両センサの検出部を、上記エンコーダの被検出面のうち、円周方向の位相が互いに180度異なる部分に対向させると共に、上記第三、第四両センサの検出部を、上記エンコーダの被検出面のうち、円周方向の位相が互いに180度異なる部分であって、且つ、上記第一、第二両センサの検出部を対向させる部分に対しそれぞれ円周方向の位相が90度ずれた部分に対向させており、
演算器は、上記第一、第二両センサの出力信号同士の間に存在する位相差に基づいて、径方向変位とラジアル荷重とのうちの何れか一方の状態量のうち、上記第一、第二両センサの検出部の配設方向と直角方向の成分を算出する第一の機能と、上記第三、第四両センサの出力信号同士の間に存在する位相差に基づいて、上記一方の状態量のうち、上記第三、第四両センサの検出部の配設方向と直角方向の成分を算出する第二の機能と、これら第一、第二の両機能により算出した、上記2つの直角方向の成分に基づいて、上記一方の状態量の向き及び大きさを算出する第三の機能とを有する、
請求項2〜5のうちの何れか1項に記載した状態量測定装置付転がり軸受ユニット。
The sensor device includes a first sensor, a second sensor, a third sensor, and a fourth sensor as a plurality of sensors, and the detection units of both the first and second sensors are detected by the encoder. The surfaces of the third and fourth sensors are opposed to portions of the surface that are 180 ° different from each other in the circumferential direction, and the phases in the circumferential direction of the detected surfaces of the encoder are 180 °. It is a portion that is different from each other and is opposed to a portion in which the phase in the circumferential direction is shifted by 90 degrees with respect to the portion that faces the detection portions of the first and second sensors,
Based on the phase difference that exists between the output signals of the first and second sensors, the computing unit is the first of the state quantities of radial displacement and radial load. Based on the first function for calculating the component in the direction perpendicular to the arrangement direction of the detection portions of the second both sensors and the phase difference existing between the output signals of the third and fourth sensors, Of the state quantities of the second and second sensors, the second function for calculating a component in the direction perpendicular to the arrangement direction of the detection units of the third and fourth sensors, and the two functions calculated by the first and second functions. A third function for calculating the direction and magnitude of the one state quantity based on two perpendicular components;
The rolling bearing unit with a state quantity measuring device according to any one of claims 2 to 5.
センサ装置は、複数個のセンサとして、第一センサ及び第二センサと、第三センサ及び第四センサとを備え、このうちの第一、第二両センサの検出部を、上記エンコーダの被検出面のうち、円周方向の位相が互いに180度異なる部分に対向させると共に、上記第三、第四両センサの検出部を、上記エンコーダの被検出面のうち、円周方向の位相が互いに180度異なる部分であって、且つ、上記第一、第二両センサの検出部を対向させる部分に対しそれぞれ円周方向の位相が90度ずれた部分に対向させており、
演算器は、上記第一、第二両センサの出力信号同士の間に存在する位相差と、上記第三、第四両センサの出力信号同士の間に存在する位相差とに基づいて、アキシアル荷重を算出する機能を有する、
請求項6に記載した状態量測定装置付転がり軸受ユニット。
The sensor device includes a first sensor, a second sensor, a third sensor, and a fourth sensor as a plurality of sensors, and the detection units of both the first and second sensors are detected by the encoder. The surfaces of the third and fourth sensors are opposed to portions of the surface that are 180 ° different from each other in the circumferential direction, and the phases in the circumferential direction of the detected surfaces of the encoder are 180 °. It is a portion that is different from each other and is opposed to a portion in which the phase in the circumferential direction is shifted by 90 degrees with respect to the portion that faces the detection portions of the first and second sensors,
The arithmetic unit is based on the phase difference existing between the output signals of the first and second sensors and the phase difference existing between the output signals of the third and fourth sensors. Has a function to calculate the load,
A rolling bearing unit with a state quantity measuring device according to claim 6.
転がり軸受ユニットが、自動車の車輪支持用ハブユニットであって、使用状態で静止側軌道輪が自動車の懸架装置に支持され、回転側軌道輪であるハブに車輪が結合固定されるものである、請求項1〜11のうちの何れか1項に記載した状態量測定装置付転がり軸受ユニット。   The rolling bearing unit is a hub unit for supporting a wheel of an automobile, and the stationary-side bearing ring is supported by the suspension device of the automobile in use, and the wheel is coupled and fixed to the hub that is the rotating-side bearing ring. The rolling bearing unit with a state quantity measuring device according to any one of claims 1 to 11.
JP2006245012A 2006-01-26 2006-09-11 Rolling bearing unit with state quantity measurement device Pending JP2007225106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006245012A JP2007225106A (en) 2006-01-26 2006-09-11 Rolling bearing unit with state quantity measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006017091 2006-01-26
JP2006245012A JP2007225106A (en) 2006-01-26 2006-09-11 Rolling bearing unit with state quantity measurement device

Publications (2)

Publication Number Publication Date
JP2007225106A true JP2007225106A (en) 2007-09-06
JP2007225106A5 JP2007225106A5 (en) 2009-09-24

Family

ID=38547094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006245012A Pending JP2007225106A (en) 2006-01-26 2006-09-11 Rolling bearing unit with state quantity measurement device

Country Status (1)

Country Link
JP (1) JP2007225106A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128812A (en) * 2006-11-21 2008-06-05 Jtekt Corp Roller bearing device equipped with sensor
JP2009098075A (en) * 2007-10-18 2009-05-07 Jtekt Corp Sensor system for vehicle and bearing device for vehicle
JP2010052112A (en) * 2008-08-29 2010-03-11 Applied Materials Inc Axial movement detection mechanism and conditioner head

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11218542A (en) * 1998-02-04 1999-08-10 Nippon Seiko Kk Rolling bearing unit with rotating speed sensor
JP2004045219A (en) * 2002-07-11 2004-02-12 Nsk Ltd Rolling bearing unit for wheel supporting with load-measuring device
JP2005049324A (en) * 2003-01-16 2005-02-24 Toyota Central Res & Dev Lab Inc Moment detector, and detector for generated force in tire
JP2005249804A (en) * 2005-04-27 2005-09-15 Ntn Corp Bearing with rotation sensor
JP2006201157A (en) * 2004-12-22 2006-08-03 Nsk Ltd Ball bearing unit having displacement measuring device, and ball bearing unit having load measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11218542A (en) * 1998-02-04 1999-08-10 Nippon Seiko Kk Rolling bearing unit with rotating speed sensor
JP2004045219A (en) * 2002-07-11 2004-02-12 Nsk Ltd Rolling bearing unit for wheel supporting with load-measuring device
JP2005049324A (en) * 2003-01-16 2005-02-24 Toyota Central Res & Dev Lab Inc Moment detector, and detector for generated force in tire
JP2006201157A (en) * 2004-12-22 2006-08-03 Nsk Ltd Ball bearing unit having displacement measuring device, and ball bearing unit having load measuring device
JP2005249804A (en) * 2005-04-27 2005-09-15 Ntn Corp Bearing with rotation sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128812A (en) * 2006-11-21 2008-06-05 Jtekt Corp Roller bearing device equipped with sensor
JP2009098075A (en) * 2007-10-18 2009-05-07 Jtekt Corp Sensor system for vehicle and bearing device for vehicle
JP2010052112A (en) * 2008-08-29 2010-03-11 Applied Materials Inc Axial movement detection mechanism and conditioner head
JP4682236B2 (en) * 2008-08-29 2011-05-11 アプライド マテリアルズ インコーポレイテッド Shaft motion detection mechanism and conditioner head

Similar Documents

Publication Publication Date Title
JP4940937B2 (en) Rotating machine state quantity measuring device
JP2005090994A (en) Load measuring device for roller bearing unit
JP2007225106A (en) Rolling bearing unit with state quantity measurement device
JP4899722B2 (en) Rolling bearing unit with state quantity measuring device
JP5233509B2 (en) Load measuring device for rolling bearing units
JP4887816B2 (en) Load measuring device for rolling bearing units
JP2008039155A (en) Rolling bearing unit with state quantity measuring device and assembling method
JP2007085742A (en) Rolling bearing unit with load measuring device
JP4957390B2 (en) Method for manufacturing rolling bearing unit with physical quantity measuring device
JP4957412B2 (en) Inspection method for state quantity measuring device of rolling bearing unit
JP5092393B2 (en) Method for assembling state quantity measuring device for rolling bearing unit
JP2009001201A (en) Quantity-of-state measuring device for rotary machine
JP4957357B2 (en) Rotational support device state quantity measuring device
JP2009019880A (en) State quantity measuring device for rolling bearing unit
JP2007057342A (en) Rolling bearing unit with load measuring device
JP4899612B2 (en) Load measuring device for rolling bearing units
JP5200898B2 (en) Inspection method and inspection device for state quantity measuring device of rolling bearing unit
JP2008224397A (en) Load measuring device for roller bearing unit
JP2008122171A (en) Method of exchanging sensor of bearing unit with state quantity measuring device
JP5742392B2 (en) Physical quantity measuring device for rotating machine, machine tool, and automobile
JP5135741B2 (en) Left and right wheel support unit for vehicles
JP5007534B2 (en) Load measuring device for rotating machinery
JP2009186428A (en) Device for measuring state quantity of rolling bearing unit
JP4735526B2 (en) State quantity measuring device for rolling bearing units
JP5136707B2 (en) Left and right wheel support unit for vehicles

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090803

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120626