JP5200898B2 - Inspection method and inspection device for state quantity measuring device of rolling bearing unit - Google Patents

Inspection method and inspection device for state quantity measuring device of rolling bearing unit Download PDF

Info

Publication number
JP5200898B2
JP5200898B2 JP2008308609A JP2008308609A JP5200898B2 JP 5200898 B2 JP5200898 B2 JP 5200898B2 JP 2008308609 A JP2008308609 A JP 2008308609A JP 2008308609 A JP2008308609 A JP 2008308609A JP 5200898 B2 JP5200898 B2 JP 5200898B2
Authority
JP
Japan
Prior art keywords
inspection
encoder
sensors
characteristic change
phase difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008308609A
Other languages
Japanese (ja)
Other versions
JP2010133779A (en
Inventor
秋津 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008308609A priority Critical patent/JP5200898B2/en
Publication of JP2010133779A publication Critical patent/JP2010133779A/en
Application granted granted Critical
Publication of JP5200898B2 publication Critical patent/JP5200898B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明の検査方法及び検査装置の対象となる転がり軸受ユニットの状態量測定装置は、この転がり軸受ユニットを構成する静止側軌道輪と回転側軌道輪との間に作用する外力等の状態量を測定する為に利用する。更に、この求めた状態量を、自動車等の車両の走行安定性確保を図る為に利用する。本発明は、この様な転がり軸受ユニットの状態量測定装置を構成する複数のセンサが、カバー等の保持部材に対して正規の位置関係で組み付けられているか否かを検査する方法及び装置に関する。   The state quantity measuring device of the rolling bearing unit which is the object of the inspection method and the inspection apparatus of the present invention is the state quantity such as an external force acting between the stationary side bearing ring and the rotating side bearing ring constituting the rolling bearing unit. Used for measurement. Further, the obtained state quantity is used for ensuring the running stability of a vehicle such as an automobile. The present invention relates to a method and an apparatus for inspecting whether or not a plurality of sensors constituting such a state quantity measuring device for a rolling bearing unit are assembled in a normal positional relationship with a holding member such as a cover.

例えば自動車の車輪は懸架装置に対し、複列アンギュラ型等の転がり軸受ユニットにより回転自在に支持する。又、自動車の走行安定性を確保する為に、例えばアンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)、更には、電子制御式ビークルスタビリティコントロールシステム(ESC)等の車両用走行安定化装置が使用されている。この様な各種車両用走行安定化装置を制御する為には、車輪の回転速度、車体に加わる各方向の加速度等を表す信号が必要になる。そして、より高度の制御を行う為には、車輪を介して上記転がり軸受ユニットに加わる荷重(例えばラジアル荷重とアキシアル荷重との一方又は双方)の大きさを知る事が好ましい場合がある。   For example, automobile wheels are rotatably supported by a suspension device by a double-row angular type rolling bearing unit. In order to ensure the running stability of automobiles, for example, anti-lock braking system (ABS), traction control system (TCS), and electronically controlled vehicle stability control system (ESC) etc. The device is in use. In order to control such various vehicle running stabilization devices, signals representing the rotational speed of the wheels, acceleration in each direction applied to the vehicle body, and the like are required. In order to perform higher-level control, it may be preferable to know the magnitude of a load (for example, one or both of a radial load and an axial load) applied to the rolling bearing unit via a wheel.

この様な事情に鑑みて、特許文献1には、特殊なエンコーダを使用して、転がり軸受ユニットに加わる荷重の大きさを測定する発明が記載されている。図10は、この特許文献1に記載された構造と同じ荷重の測定原理を採用している、転がり軸受ユニットの状態量測定装置に関する従来構造の第1例を示している。この従来構造の第1例は、使用時に懸架装置に結合固定した状態で回転しない外輪1の内径側に、使用時に車輪を支持固定した状態でこの車輪と共に回転するハブ2を、複数個の転動体3、3を介して、回転自在に支持している。これら各転動体3、3には、背面組み合わせ型の接触角と共に、予圧を付与している。尚、図示の例では、これら各転動体3、3として玉を使用しているが、重量が嵩む自動車用の軸受ユニットの場合には、玉に代えて円すいころを使用する場合もある。   In view of such circumstances, Patent Document 1 describes an invention in which a special encoder is used to measure the magnitude of a load applied to a rolling bearing unit. FIG. 10 shows a first example of a conventional structure relating to a state quantity measuring device for a rolling bearing unit, which employs the same load measurement principle as the structure described in Patent Document 1. In the first example of this conventional structure, a hub 2 that rotates together with a wheel 2 while supporting and fixing the wheel in use is fixed to a plurality of rolling wheels on the inner diameter side of the outer ring 1 that does not rotate while being coupled and fixed to a suspension device. It is rotatably supported via the moving bodies 3 and 3. A preload is applied to each of the rolling elements 3 and 3 together with a contact angle of the rear combination type. In the illustrated example, balls are used as the rolling elements 3 and 3. However, in the case of an automobile bearing unit that is heavy, tapered rollers may be used instead of balls.

又、上記ハブ2の軸方向内端部(軸方向に関して「内」とは、自動車への組付け状態で車両の幅方向中央側を言い、図10〜11の右側。反対に、車両の幅方向外側となる、図10〜11の左側を、軸方向に関して「外」と言う。本明細書全体で同じ。)には、円環状のエンコーダ4を、上記ハブ2と同心に支持固定している。又、特許請求の範囲に記載した保持部材としての役目も有し、上記外輪1の内端開口を塞ぐ、有底円筒状のカバー5の内側に、1対のセンサ6a、6bを支持固定すると共に、これら両センサ6a、6bの検出部を、上記エンコーダ4の被検出面である外周面に近接対向させている。このエンコーダ4は、円環状の芯金7と、この芯金7の外周面に添着固定した、永久磁石製で円筒状のエンコーダ本体8とから成る。被検出面である、このエンコーダ本体8の外周面の軸方向内半部には、S極とN極とを、円周方向に関して交互に且つ等間隔に配置している。これらS極とN極との境界は、軸方向中央部が円周方向に関して最も突出した、「く」字形となっている。   Further, the inner end of the hub 2 in the axial direction (“inner” with respect to the axial direction refers to the center side in the width direction of the vehicle when assembled to the automobile, and is the right side of FIGS. 10 to 11. On the contrary, the width of the vehicle 10-11, which is the outer side in the direction, is referred to as "outside" in the axial direction. The same applies to the entire specification.) The annular encoder 4 is supported and fixed concentrically with the hub 2. Yes. Further, the pair of sensors 6a and 6b is supported and fixed inside the bottomed cylindrical cover 5 which also serves as a holding member described in the claims and closes the inner end opening of the outer ring 1. At the same time, the detection parts of both the sensors 6 a and 6 b are made to face and face the outer peripheral surface, which is the detected surface of the encoder 4. The encoder 4 includes an annular cored bar 7 and a cylindrical encoder body 8 made of a permanent magnet attached and fixed to the outer peripheral surface of the cored bar 7. S poles and N poles are alternately arranged at equal intervals in the circumferential direction on the inner half portion in the axial direction of the outer peripheral surface of the encoder body 8 which is a detected surface. The boundary between these S poles and N poles has a "<" shape with the central portion in the axial direction protruding most in the circumferential direction.

又、上記両センサ6a、6bの検出部には、ホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子を組み込んでいる。そして、これら両センサ6a、6bの検出部を、上記エンコーダ4の被検出面の軸方向両半部に、それぞれ1つずつ近接対向させている。上記外輪1と上記ハブ2との間にアキシアル荷重が作用しない、中立状態で、上記S極とN極との軸方向中央部で円周方向に関して最も突出した部分が、上記両センサ6a、6bの検出部同士の間の丁度中央位置に存在する様に、各部材の軸方向の設置位置を規制している。これと共に、上記両センサ6a、6bの検出部と、上記被検出面の変化の位相との関係が所定通りになる様に、上記両センサ6a、6bの円周方向の設置位置を規制している。   Further, magnetic detection elements such as a Hall IC, a Hall element, an MR element, and a GMR element are incorporated in the detection portions of the sensors 6a and 6b. And the detection part of both these sensors 6a and 6b is made to adjoin and oppose each one half part of the axial direction of the to-be-detected surface of the said encoder 4, respectively. In the neutral state where an axial load does not act between the outer ring 1 and the hub 2, the most protruding portions in the circumferential direction at the central portion in the axial direction of the S and N poles are the sensors 6 a and 6 b. The installation positions in the axial direction of the respective members are regulated so that they are just located at the center position between the detection parts. At the same time, the installation positions of the sensors 6a and 6b in the circumferential direction are regulated so that the relationship between the detection portions of the sensors 6a and 6b and the phase of change of the detected surface is as specified. Yes.

上述の様に構成する転がり軸受ユニットの状態量測定装置の場合、外輪1とハブ2との間にアキシアル荷重が作用する事により、これら外輪1とハブ2とがアキシアル方向に相対変位すると、これに伴って、上記両センサ6a、6bの出力信号に関する情報である、これら両センサ6a、6bの出力信号同士の間に存在する位相差比(=位相差/1周期)が変化する。この位相差比は、上記アキシアル荷重の作用方向及び大きさ(上記相対変位の方向及び大きさ)に見合った値になる。従って、この位相差比に基づいて、上記アキシアル荷重の作用方向及び大きさ(上記相対変位の方向及び大きさ)を求める事ができる。尚、これらを求める処理は、図示しない演算器により行う。この為、この演算器のメモリ中には、予め理論計算や実験により調べておいた、上記位相差比と、上記アキシアル方向の相対変位又は荷重との関係(零点及びゲイン)を表す、式やマップを記憶させておく。   In the state measuring device for a rolling bearing unit configured as described above, when an axial load acts between the outer ring 1 and the hub 2, the outer ring 1 and the hub 2 are displaced relative to each other in the axial direction. Accordingly, the phase difference ratio (= phase difference / 1 period) existing between the output signals of both the sensors 6a and 6b, which is information relating to the output signals of the both sensors 6a and 6b, changes. This phase difference ratio is a value commensurate with the action direction and magnitude of the axial load (the direction and magnitude of the relative displacement). Therefore, based on this phase difference ratio, the direction and magnitude of the axial load (the direction and magnitude of the relative displacement) can be determined. Note that the processing for obtaining these is performed by an arithmetic unit (not shown). For this reason, in the memory of this computing unit, an equation or a formula representing the relationship (zero point and gain) between the phase difference ratio and the relative displacement or load in the axial direction, which has been examined in advance by theoretical calculation or experiment. Remember the map.

次に、図11は、転がり軸受ユニットの状態量測定装置に関する従来構造の第2例を示している。この従来構造の第2例の場合には、外輪1とハブ2との径方向に関する相対変位量、或は、これら外輪1とハブ2との間に作用するラジアル荷重を測定する様に構成している。この為に本例の場合には、円環状の芯金7aと共にエンコーダ4aを構成する、永久磁石製のエンコーダ本体8aを円輪状としている。そして、1対のセンサ6a、6bの検出部を、被検出面であるこのエンコーダ本体8aの軸方向側面のうちで、径方向にずれた2個所位置に対向させている。このエンコーダ本体8aの軸方向側面には、S極とN極とを円周方向に関して交互に配置すると共に、これらS極とN極との境界の形状を、「く」字形としている。この為、上記外輪1とハブ2とが、ラジアル荷重に基づいて径方向に相対変位すると、上記両センサ6a、6bの出力信号の位相が中立位置からずれる。そして、上述した従来構造の第1例の場合と同様の機構により、上記径方向に関する相対変位量やラジアル荷重、或はモーメントを求められる。   Next, FIG. 11 shows a second example of a conventional structure related to a state quantity measuring device for a rolling bearing unit. In the case of the second example of this conventional structure, the relative displacement in the radial direction between the outer ring 1 and the hub 2 or the radial load acting between the outer ring 1 and the hub 2 is measured. ing. For this reason, in the case of this example, the encoder body 8a made of a permanent magnet, which constitutes the encoder 4a together with the annular cored bar 7a, has a ring shape. And the detection part of a pair of sensor 6a, 6b is made to oppose the position of two places shifted | deviated to radial direction among the axial direction side surfaces of this encoder main body 8a which is a to-be-detected surface. On the side surface in the axial direction of the encoder body 8a, the S pole and the N pole are alternately arranged in the circumferential direction, and the shape of the boundary between the S pole and the N pole is a "<" shape. For this reason, when the outer ring 1 and the hub 2 are relatively displaced in the radial direction based on the radial load, the phases of the output signals of the sensors 6a and 6b are shifted from the neutral position. The relative displacement amount, radial load, or moment in the radial direction can be obtained by the same mechanism as in the first example of the conventional structure described above.

尚、上述した各従来構造の場合には、エンコーダ4、4aを永久磁石製とすると共に、これら各エンコーダ4、4aの被検出面にN極とS極とを、円周方向に関して交互に配置する構成を採用している。これに対し、エンコーダを単なる磁性材製とすると共に、このエンコーダの被検出面に凸部、舌片或は柱部等の充実部と、凹部、切り欠き或は透孔等の除肉部とを、円周方向に関して交互に配置する構成を採用する事もできる。この様な構成を採用する場合には、1対のセンサ側に永久磁石を組み込む。   In the case of each conventional structure described above, the encoders 4 and 4a are made of permanent magnets, and the north and south poles are alternately arranged in the circumferential direction on the detection surface of each of the encoders 4 and 4a. The structure to be adopted is adopted. On the other hand, the encoder is made of a simple magnetic material, a solid part such as a convex part, a tongue piece or a column part on the detection surface of the encoder, and a thinning part such as a concave part, a notch or a through hole It is also possible to adopt a configuration in which these are alternately arranged in the circumferential direction. When such a configuration is adopted, permanent magnets are incorporated on the pair of sensor sides.

又、上述した各従来構造の場合には、エンコーダの被検出面にその検出部を対向させるセンサの数を、2個としている。これに対し、図示は省略するが、特許文献2〜4には、当該センサの数を3個以上とする事で、多方向の変位や外力を求められる構造が記載されている。   In the case of each of the conventional structures described above, the number of sensors that make the detection portion face the detection surface of the encoder is two. On the other hand, although not shown in the drawings, Patent Documents 2 to 4 describe structures in which multidirectional displacement and external force are obtained by setting the number of sensors to three or more.

ところで、上述の様な従来から知られている転がり軸受ユニットの状態量測定装置を工業的に製造する場合には、図10〜11に示す様に、上記各センサ6a、6bを、前記カバー5の内側に保持固定した合成樹脂製のホルダ9内にモールドする事が考えられる。この様な構造を採用すれば、上記カバー5に対する上記各センサ6a、6bの保持固定を容易に行え、しかも、長期間に亙る使用に拘らず、これら各センサ6a、6b同士の位置関係がずれ動く事を防止できる。   By the way, when manufacturing the state quantity measuring apparatus of the rolling bearing unit conventionally known as mentioned above, as shown in FIGS. 10 to 11, the sensors 6a and 6b are connected to the cover 5 as shown in FIGS. It is conceivable to mold in a holder 9 made of synthetic resin held and fixed inside. By adopting such a structure, the sensors 6a and 6b can be easily held and fixed to the cover 5, and the positional relationship between the sensors 6a and 6b is shifted regardless of the use over a long period of time. It can be prevented from moving.

ところが、上記各センサ6a、6b同士の位置関係、或は、上記カバー5に対するこれら各センサ6a、6bの位置関係は、上記ホルダ9を射出成形する際、金型のキャビティ内に高圧で注入される溶融樹脂に押されてずれる可能性がある。一方、射出成形後の状態で上記各センサ6a、6bは、それぞれの検出部を含めて合成樹脂により覆われる為、これら各センサ6a、6b同士の位置関係が、設計通り、正確に規制されているか否かを目視により確認する事ができなくなる。従って、何らかの方法により、上記各センサ6a、6b同士の位置関係が適正になっているか否かを確認しなければ、この位置関係が適正でないまま、転がり軸受ユニットの状態量測定装置が組み立てられる可能性がある。この場合に、上記各位置関係が適正になっていないと、上記外輪1とハブ2との間の状態量(これら外輪1とハブ2との間の相対変位量、これら外輪1とハブ2との間に作用する荷重やモーメント)を、精度良く求められなくなる。   However, the positional relationship between the sensors 6a and 6b or the positional relationship of the sensors 6a and 6b with respect to the cover 5 is injected at a high pressure into the mold cavity when the holder 9 is injection molded. There is a possibility of being displaced by being pushed by the molten resin. On the other hand, since the sensors 6a and 6b are covered with the synthetic resin including the respective detection parts in the state after injection molding, the positional relationship between the sensors 6a and 6b is accurately regulated as designed. It will not be possible to visually confirm whether or not there is. Therefore, if it is not confirmed by some method whether or not the positional relationship between the sensors 6a and 6b is appropriate, the state quantity measuring device for the rolling bearing unit can be assembled while the positional relationship is not appropriate. There is sex. In this case, if the positional relationships are not appropriate, the state quantity between the outer ring 1 and the hub 2 (the relative displacement between the outer ring 1 and the hub 2, the outer ring 1 and the hub 2 The load and moment acting between the two cannot be obtained with high accuracy.

尚、上記各センサ6a、6b同士の位置関係の規定からのずれが僅かであれば、演算器にインストールしたソフトウェア中の計算式やマップ等の零点(更に必要に応じてゲイン)を補正する事で、上記状態量を、必要な精度を確保しつつ求められる。但し、上記ずれが過大になると、上記状態量を、必要な精度を確保しつつ求める事が難しくなる他、仮に求められても面倒な処理が必要になる可能性がある。即ち、上記外輪1とハブ2との間に外力が作用していない中立状態で、上記各センサ6a、6bの出力信号同士の間には、0でない、所定の位相差(初期位相差)を設定しておく事が好ましい。この理由は、上記外力の作用方向に関係なく、上記外輪1とハブ2との相対回転の方向が同じである限り、上記各センサ6a、6bの出力信号同士の前後関係が逆転しない様にする為である。   If there is a slight deviation from the positional relationship between the sensors 6a and 6b, the zero point (and gain if necessary) of the calculation formula and map in the software installed in the computing unit should be corrected. Thus, the state quantity is obtained while ensuring the required accuracy. However, if the deviation is excessive, it is difficult to obtain the state quantity while ensuring the necessary accuracy, and even if it is obtained, it may be troublesome. That is, a predetermined phase difference (initial phase difference) which is not 0 is generated between the output signals of the sensors 6a and 6b in a neutral state where no external force is applied between the outer ring 1 and the hub 2. It is preferable to set it. This is because the front-rear relationship between the output signals of the sensors 6a and 6b is not reversed as long as the direction of relative rotation between the outer ring 1 and the hub 2 is the same regardless of the direction of the external force. Because of that.

例えば、上記中立状態で、上記各センサ6a、6bの出力信号同士の位相が180度ずれる様に、これら各センサ6a、6bの検出部を、エンコーダ本体8(8a)の着磁ピッチに関して「0.5+n(nは0又は自然数)」ピッチ分だけ円周方向にずらせる事が好ましい。ところが、上記各センサ6a、6bの円周方向に関するずれ量が「0.2+n」であったり、「0.8+n」であったりと、「0.5+n」から大きくずれると、大きな外力が作用した場合に、上記各センサ6a、6bの出力信号同士の前後関係が逆転する可能性が生じる。この様な場合に、逆転の事実を把握して上記外力を精度良く求める為には、複雑な演算処理が必要になり、演算器として、処理能力の大きな高価なものが必要になったり、処理速度が遅くなったりして、上記外力を表す信号に基づいて適切な制御を行う事ができなくなってしまう。   For example, in the neutral state, the detection units of the sensors 6a and 6b are set to “0” with respect to the magnetization pitch of the encoder body 8 (8a) so that the phases of the output signals of the sensors 6a and 6b are 180 degrees apart. .5 + n (where n is 0 or a natural number) "is preferably shifted in the circumferential direction by the pitch. However, if the amount of displacement of the sensors 6a and 6b in the circumferential direction is “0.2 + n”, “0.8 + n”, or a large deviation from “0.5 + n”, a large external force is applied. In this case, there is a possibility that the front-rear relationship between the output signals of the sensors 6a and 6b is reversed. In such a case, in order to grasp the fact of reversal and obtain the above external force with high accuracy, complicated arithmetic processing is required, and an expensive computing unit with a large processing capacity is required, The speed becomes slow and appropriate control cannot be performed based on the signal representing the external force.

上述の様な事情に鑑みて、特願2007−173929には、転がり軸受ユニットの状態量測定装置に組み込んだ複数のセンサ同士の位置関係を目視により確認できなくても、これら各センサ同士の位置関係が適正であるか否かを判定できる検査方法が開示されている。図12〜14は、上記特願2007−173929に開示された先発明の検査方法の第1例を示している。本例の場合には、前述の図10に示した転がり軸受ユニットの状態量測定装置を検査対象とする。そして、この検査対象に関して、エンコーダ4の円周方向に関する、1対のセンサ6a、6b同士の位置関係の適否を判断する。   In view of the circumstances as described above, Japanese Patent Application No. 2007-173929 describes the position of each sensor even if the positional relationship between the sensors incorporated in the state quantity measuring device of the rolling bearing unit cannot be visually confirmed. An inspection method that can determine whether or not the relationship is appropriate is disclosed. 12 to 14 show a first example of the inspection method of the prior invention disclosed in Japanese Patent Application No. 2007-173929. In the case of this example, the state quantity measuring device of the rolling bearing unit shown in FIG. Then, regarding this inspection object, it is determined whether or not the positional relationship between the pair of sensors 6a and 6b in the circumferential direction of the encoder 4 is appropriate.

本例の検査方法を実施する場合には、先ず、カバー5の内側に上記各センサ6a、6bを、合成樹脂製のホルダ9を介して保持固定する。その後、このカバー5を静止側軌道輪である外輪1(図10参照)に結合する以前に、図12に示す様に、このカバー5の開口端部を、検査装置の取付フレーム11に設けた円形の取付孔12に、軽い(検査後に上記カバー5を傷めずに外せる程度の)締り嵌めで内嵌支持する。これと共に、上記各センサ6a、6bの検出部に、検査用エンコーダ10の検査用被検出面を近接対向させる。   When carrying out the inspection method of this example, first, the respective sensors 6 a and 6 b are held and fixed inside the cover 5 via a holder 9 made of synthetic resin. Then, before connecting the cover 5 to the outer ring 1 (see FIG. 10), which is a stationary raceway, as shown in FIG. 12, the opening end of the cover 5 is provided on the mounting frame 11 of the inspection apparatus. The circular mounting hole 12 is supported by an internal fit with a light interference fit (so that the cover 5 can be removed without damaging the cover 5 after inspection). At the same time, the inspection detection surface of the inspection encoder 10 is brought close to and opposed to the detection portions of the sensors 6a and 6b.

上記検査用エンコーダ10は、磁性金属板製で円環状の芯金13と、この芯金13に外嵌固定した、ゴム磁石等の永久磁石製で円筒状の検査用エンコーダ本体14とから成る。このうちの芯金13は、図示しない回転軸に、この回転軸と同心に外嵌支持して、所定の方向に一定の回転速度で回転駆動自在としている。又、上記検査用エンコーダ本体14は、検査用被検出面である外周面にS極とN極とを、円周方向に関して交互に且つ等間隔に配置している。これと共に、これらS極とN極との境界を、上記検査用エンコーダ10の中心軸と平行にしている。尚、本例の場合には、この検査用エンコーダ10の外周面に存在するS極とN極とのピッチ(中心角ピッチ)PCを、状態量測定装置を構成する上記エンコーダ4のピッチと同じにしている。 The inspection encoder 10 includes an annular metal core 13 made of a magnetic metal plate, and a cylindrical inspection encoder body 14 made of a permanent magnet such as a rubber magnet that is externally fixed to the metal core 13. Of these, the cored bar 13 is externally supported by a rotating shaft (not shown) concentrically with the rotating shaft, and can be driven to rotate at a constant rotational speed in a predetermined direction. Further, the inspection encoder main body 14 has S poles and N poles arranged alternately and at equal intervals in the circumferential direction on the outer peripheral surface which is a surface to be detected. At the same time, the boundary between the S pole and the N pole is parallel to the central axis of the inspection encoder 10. In the case of this example, the pitch (center angle pitch) P C between the S pole and the N pole existing on the outer peripheral surface of the inspection encoder 10 is the pitch of the encoder 4 constituting the state quantity measuring device. It is the same.

上述の様な設備を利用して、円周方向に関する上記各センサ6a、6b同士の位置関係の適否を判断するには、上記検査用エンコーダ10を所定の方向に一定の回転速度で回転させつつ、上記各センサ6a、6bの出力信号同士の間に存在する位相差を求める。例えば、図13に示す様に、これら各センサ6a、6bの検出部が、円周方向に関して中心角で「PC+θ」だけずれている場合、これら各センサ6a、6bの出力信号の位相は、図14に示す様に、t(∝θ)だけずれる。即ち、これら各センサ6a、6bの検出部を、円周方向に関して中心角で「θ+n・PC(nは0又は自然数)」だけずらせて配置した場合、「n・PC」分のずれは、上記各センサ6a、6bの出力信号の位相のずれには結び付かず、「θ」分のずれが、上記図14に示したずれ(位相差t)に結び付く。 In order to determine whether or not the positional relationship between the sensors 6a and 6b in the circumferential direction is appropriate using the above-described equipment, the inspection encoder 10 is rotated in a predetermined direction at a constant rotational speed. The phase difference existing between the output signals of the sensors 6a and 6b is obtained. For example, as shown in FIG. 13, when the detection units of the sensors 6a and 6b are shifted by “P C + θ” in the central angle with respect to the circumferential direction, the phases of the output signals of the sensors 6a and 6b are As shown in FIG. 14, it is shifted by t (∝θ). That is, when the detection units of the sensors 6a and 6b are arranged with a center angle shifted by “θ + n · P C (n is 0 or a natural number)” with respect to the circumferential direction, the deviation of “n · P C ” is The phase difference of the output signals of the sensors 6a and 6b is not connected, but the shift of “θ” is related to the shift (phase difference t) shown in FIG.

そこで、この図14に示した上記各センサ6a、6bの出力信号の位相差tに基づいて、円周方向に関するこれら各センサ6a、6b同士の位置関係の適否を判定する。この場合に、上記検査用エンコーダ10の回転速度が既知であれば、上記図14に表れた位相差tに基づいて、上記位置関係の適否を判定できる。これに対して、上記回転速度が既知でなくても一定であれば、位相差比(位相差t/1周期T、T∝PC)に基づいて、上記位置関係の適否を判定できる。即ち、上記既知の回転速度に関する上記位相差の測定値、又は、上記位相差比の測定値が、予め設定しておいた許容範囲に収まっている場合には、上記位置関係が適正であると判定できる。これに対して、上記許容範囲に収まっていない場合には、上記位置関係が適正でないと判定できる。 Therefore, based on the phase difference t between the output signals of the sensors 6a and 6b shown in FIG. 14, the suitability of the positional relationship between the sensors 6a and 6b in the circumferential direction is determined. In this case, if the rotational speed of the inspection encoder 10 is known, the suitability of the positional relationship can be determined based on the phase difference t shown in FIG. On the other hand, if the rotational speed is not known, if it is constant, whether or not the positional relationship is appropriate can be determined based on the phase difference ratio (phase difference t / 1 period T, T∝P C ). That is, when the measured value of the phase difference or the measured value of the phase difference ratio relating to the known rotational speed is within a preset allowable range, the positional relationship is appropriate. Can be judged. On the other hand, when it is not within the allowable range, it can be determined that the positional relationship is not appropriate.

尚、上述した先発明の検査方法の第1例を実施する場合、上記検査用エンコーダ10の外周面に存在するS極とN極とのピッチPCは、状態量測定装置を構成する前記エンコーダ4(図10参照)のピッチと同じである必要はない。但し、これら両エンコーダ10、4のピッチを同じにする事が、これら両エンコーダ10、4のピッチの相違に関する換算処理を行う事なく、円周方向に関する上記各センサ6a、6b同士の位置関係の適否を容易に判定する面からは好ましい。 Incidentally, when carrying out the first example of the inspection method of the previous invention described above, the pitch P C of the S and N poles present on the outer peripheral surface of the inspection encoder 10, the encoder constituting the state quantity measuring device It is not necessary to be the same as the pitch of 4 (see FIG. 10). However, making the pitches of the encoders 10 and 4 the same means that the positional relationship between the sensors 6a and 6b in the circumferential direction can be determined without performing a conversion process regarding the difference in pitch between the encoders 10 and 4. This is preferable from the viewpoint of easily determining suitability.

次に、図15〜17は、前記特願2007−173929に開示された先発明の検査方法の第2例を示している。本例の場合も、前述の図10に示した転がり軸受ユニットの状態量測定装置を検査対象とする。そして、この検査対象に関して、エンコーダ4の軸方向に関する、1対のセンサ6a、6b同士の位置関係の適否を判断する。   Next, FIGS. 15 to 17 show a second example of the inspection method of the prior invention disclosed in the Japanese Patent Application No. 2007-173929. Also in this example, the state quantity measuring device of the rolling bearing unit shown in FIG. Then, regarding this inspection object, it is determined whether or not the positional relationship between the pair of sensors 6a and 6b in the axial direction of the encoder 4 is appropriate.

本例の検査方法を実施する場合には、上述した第1例の検査方法を実施する場合と同様、図15に示す様にして、上記各センサ6a、6bを保持固定したカバー5を検査装置にセットする。但し、本例の場合、検査用エンコーダ10aを構成する検査用エンコーダ本体14aの外周面(検査用被検出面)の磁気特性の構造が、上述した第1例の場合と異なる。即ち、上記検査用エンコーダ本体14aの外周面には、S極とN極とを、軸方向に関して交互に且つ等間隔に配置している。これと共に、これらS極とN極との境界を、上記検査用エンコーダ10aの中心軸に対し直交する仮想平面上に存在させている。又、この境界を、軸方向に関して既知のピッチPAで存在させている。このピッチPAを、上記各センサ6a、6bの設置位置との関係で規制する点に関しては、方向が円周方向から軸方向に変わった点以外、上述した第1例の場合と同様である。 When carrying out the inspection method of this example, as in the case of carrying out the inspection method of the first example described above, as shown in FIG. 15, the cover 5 holding and fixing the sensors 6a, 6b is inspected. Set to. However, in the case of this example, the structure of the magnetic characteristics of the outer peripheral surface (inspected detection surface) of the inspection encoder body 14a constituting the inspection encoder 10a is different from that of the first example described above. That is, on the outer peripheral surface of the inspection encoder main body 14a, the S poles and the N poles are alternately arranged at equal intervals in the axial direction. At the same time, the boundary between the S pole and the N pole is present on a virtual plane orthogonal to the central axis of the inspection encoder 10a. Also, the boundary is present at a known pitch P A in the axial direction. The pitch P A, the sensors 6a, in terms of regulation in relation to the installation position of 6b, except that the direction is changed from the circumferential direction in the axial direction, the same as in the first example described above .

上述の様な設備を利用して、軸方向に関する上記各センサ6a、6b同士の位置関係の適否を判断するには、上記検査用エンコーダ10aを一定の速度で軸方向に平行移動させつつ、上記各センサ6a、6bの出力信号同士の間に存在する位相差を求める。例えば、図16に示す様に、これら各センサ6a、6bの検出部が、軸方向に「PA+α」だけずれている場合、これら各センサ6a、6bの出力信号の位相は、図17に示す様に、t(∝α)だけずれる。即ち、これら各センサ6a、6bの検出部を、軸方向に「α+n・PA(nは0又は自然数)」だけずらせて配置した場合、「n・PA」分のずれは、上記各センサ6a、6bの出力信号の位相のずれには結び付かず、「α」分のずれが、上記図17に示したずれ(位相差t)に結び付く。そこで、この図17に示した上記各センサ6a、6bの出力信号の位相差t{若しくは位相差比(位相差t/1周期T、T∝PA)}に基づいて、上述した第1例の場合と同様の手法により、軸方向に関する上記各センサ6a、6b同士の位置関係の適否を判定する。 In order to determine the appropriateness of the positional relationship between the sensors 6a and 6b with respect to the axial direction using the equipment as described above, the inspection encoder 10a is translated in the axial direction at a constant speed, A phase difference existing between output signals of the sensors 6a and 6b is obtained. For example, as shown in FIG. 16, when the detection units of these sensors 6a and 6b are shifted by “P A + α” in the axial direction, the phases of the output signals of these sensors 6a and 6b are shown in FIG. As shown, it is shifted by t (∝α). That is, when the detectors of these sensors 6a and 6b are arranged by being shifted by “α + n · P A (n is 0 or a natural number)” in the axial direction, the deviation of “n · P A ” The shift of “α” does not relate to the phase shift of the output signals 6a and 6b, but the shift (phase difference t) shown in FIG. Therefore, based on the phase difference t {or phase difference ratio (phase difference t / 1 period T, T∝P A )} of the output signals of the sensors 6a and 6b shown in FIG. The suitability of the positional relationship between the sensors 6a and 6b with respect to the axial direction is determined by the same method as in.

ところで、上述した先発明の検査方法の第1〜2例の他にも、上記各センサ6a、6b同士の位置関係の適否を確認できる方法として、これら各センサ6a、6bの出力信号同士の間の初期位相差特性{使用時に生じると考えられる初期位相差(若しくは初期位相差比)を表す特性}を調べる方法が考えられる。即ち、使用時に生じると考えられる初期位相差(若しくは初期位相差比)は、上記円周方向に関する位置関係と、上記軸方向に関する位置関係との、何れの位置関係が適正でない場合にも、所望通りにならなくなる。この為、上記初期位相差特性が所望通りになっているか否かを調べれば、上記各方向の位置関係が適正になっているか否かを判断できる。尚、上記初期位相差特性と上記各方向の位置関係との間には、所定の関係が成立する事から、上記初期位相差特性は、上述した先発明の検査方法の第1〜2例の測定結果を利用して算出する事もできる。但し、この場合には、これら各例の測定作業で、互いに異なる2種類の検査用エンコーダ10、10aを使用する為、一方の測定作業から他方の測定作業に移行する際に、セット換え(上記各検査用エンコーダ10、10aの交換)による測定誤差が生じる可能性がある。従って、この測定誤差の分だけ、上記初期位相差特性の算出結果にも誤差が生じる可能性がある。   Incidentally, in addition to the first and second examples of the above-described inspection method of the invention, as a method for confirming the appropriateness of the positional relationship between the sensors 6a and 6b, the output signals of the sensors 6a and 6b A method of examining the initial phase difference characteristic {characteristic representing the initial phase difference (or initial phase difference ratio) that is considered to occur during use} is conceivable. That is, the initial phase difference (or initial phase difference ratio) that is considered to be generated during use is desired regardless of whether the positional relationship in the circumferential direction and the positional relationship in the axial direction are not appropriate. It won't be on the street. Therefore, it can be determined whether or not the positional relationship in each direction is appropriate by examining whether or not the initial phase difference characteristic is as desired. Since a predetermined relationship is established between the initial phase difference characteristic and the positional relationship in each direction, the initial phase difference characteristic is the first or second example of the above-described inspection method according to the invention. It can also be calculated using the measurement result. However, in this case, since two types of inspection encoders 10 and 10a different from each other are used in the measurement work of each of these examples, when changing from one measurement work to the other measurement work, the set change (described above) There is a possibility that a measurement error due to the exchange of the inspection encoders 10 and 10a) occurs. Accordingly, an error may occur in the calculation result of the initial phase difference characteristic corresponding to the measurement error.

一方、上記初期位相差特性は、前述の図12〜14に示した先発明の検査方法の第1例に於いて、検査用エンコーダ10を使用する代わりに、状態量測定装置を構成するエンコーダ4の被検出面と同じ構造の検査用被検出面を備えた検査用エンコーダを使用する事によって、求める事ができる。この場合には、1個の検査用エンコーダを使用して上記初期位相差特性を求められる為、上述の様なセット換えによる測定誤差を生じる事なく、この初期位相差特性を精度良く求められる。但し、この方法では、この初期位相差特性が所望通りになっていないと言う判定結果が出た場合に、その原因(各センサが円周方向にずれているか、或は軸方向にずれているか)までは知る事ができない。   On the other hand, the initial phase difference characteristic is determined by the encoder 4 constituting the state quantity measuring device instead of using the inspection encoder 10 in the first example of the inspection method of the prior invention shown in FIGS. This can be obtained by using an inspection encoder having an inspection detection surface having the same structure as that of the detection surface. In this case, since the initial phase difference characteristic can be obtained by using one inspection encoder, the initial phase difference characteristic can be obtained with high accuracy without causing a measurement error due to the change of the setting as described above. However, in this method, if a determination result is obtained that the initial phase difference characteristic is not as desired, the cause (whether each sensor is displaced in the circumferential direction or in the axial direction) ) Until you can not know.

特開2006−317420号公報JP 2006-317420 A 特開2006−322928号公報JP 2006-322928 A 特開2007−93580号公報JP 2007-93580 A 特開2008−64731号公報JP 2008-64731 A

本発明は、上述の様な事情に鑑み、複数のセンサが保持部材に対して正規の位置関係で組み付けられているか否かを検査すべく、上記各センサの出力信号同士の間の初期位相差特性を求める場合に、この初期位相差特性を1個の検査用エンコーダを使用して精度良く求める事ができ、しかもこの初期位相差特性が所望通りになっていないと言う判定結果が出た場合に、その原因が、円周方向に関する上記各センサ同士の位置関係のずれにあるか否か(軸方向に関するずれの影響があるか否か)を確認できる検査方法及び検査装置を実現すべく発明したものである。   In view of the circumstances as described above, the present invention provides an initial phase difference between the output signals of the sensors in order to check whether or not a plurality of sensors are assembled in a normal positional relationship with respect to the holding member. When obtaining the characteristic, the initial phase difference characteristic can be obtained with high accuracy using one inspection encoder, and a determination result is obtained that the initial phase difference characteristic is not as desired. In order to realize an inspection method and an inspection apparatus capable of confirming whether or not the cause is a displacement of the positional relationship between the sensors in the circumferential direction (whether there is an influence of a displacement in the axial direction). It is a thing.

本発明の検査方法及び検査装置による検査の対象となる転がり軸受ユニットの状態量測定装置は、転がり軸受ユニットと、状態量測定装置とを備える。
このうちの転がり軸受ユニットは、静止側周面に静止側軌道を有し、使用時にも回転しない静止側軌道輪と、回転側周面に回転側軌道を有し、使用時に回転する回転側軌道輪と、上記静止側軌道と上記回転側軌道との間に転動自在に設けられた複数個の転動体とを備える。
又、上記状態量測定装置は、エンコーダと、上記静止側軌道輪に対し保持部材を介して支持固定されたセンサ装置と、演算器とを備える。
このうちのエンコーダは、上記回転側軌道輪の一部に直接又は他の部材を介して支持固定されたもので、この回転側軌道輪と同心の被検出面を備える。そして、この被検出面の特性を円周方向に関して交互に変化させると共に、この被検出面の特性が円周方向に関して変化する位相を、少なくともこの被検出面の幅方向一部分で、この幅方向に関して連続的に変化させている。
又、上記センサ装置は、複数個のセンサを備えたもので、これら各センサの検出部を上記被検出面に対向させると共に、このうちの少なくとも1個のセンサの検出部を、上記被検出面のうちで、上記特性変化の位相が幅方向に関して連続的に変化する部分に対向させた状態で、上記保持部材を上記静止側軌道輪に対し結合固定する事により、この静止側軌道輪に対し支持されている。且つ、上記各センサはそれぞれ、上記回転側軌道輪の回転に伴い、上記被検出面のうちで自身の検出部を対向させた部分の特性変化に対応してその出力信号を変化させる。
又、上記演算器は、上記各センサの出力信号に関する情報に基づいて、上記静止側軌道輪と上記回転側軌道輪との間の相対変位と、これら両軌道輪同士の間に作用する外力とのうちの、少なくとも一方の状態量を算出する機能を有する。
A state quantity measuring device for a rolling bearing unit to be inspected by an inspection method and an inspection apparatus according to the present invention includes a rolling bearing unit and a state quantity measuring device.
Among these, the rolling bearing unit has a stationary side raceway on the stationary side circumferential surface and does not rotate even when used, and a stationary side raceway that has a rotational side raceway on the rotational side circumferential surface and rotates when used. A ring, and a plurality of rolling elements provided between the stationary track and the rotating track so as to be freely rollable.
The state quantity measuring device includes an encoder, a sensor device supported and fixed to the stationary raceway ring via a holding member, and an arithmetic unit.
Of these, the encoder is supported and fixed directly on a part of the rotation side raceway or via another member, and includes a detection surface concentric with the rotation side raceway. The characteristics of the detected surface are alternately changed with respect to the circumferential direction, and the phase at which the characteristics of the detected surface change with respect to the circumferential direction is at least a part of the width direction of the detected surface with respect to the width direction. It is changing continuously.
Further, the sensor device includes a plurality of sensors, and the detection unit of each sensor is opposed to the detection surface, and the detection unit of at least one of the sensors is connected to the detection surface. The holding member is coupled and fixed to the stationary bearing ring in a state where the phase of the characteristic change is opposed to a portion that continuously changes in the width direction. It is supported. And each said sensor changes the output signal according to the characteristic change of the part which faced its own detection part in the said to-be-detected surface with rotation of the said rotation side track ring.
Further, the computing unit is configured to detect relative displacement between the stationary side raceway and the rotation side raceway and an external force acting between the two raceways based on information on output signals of the sensors. Among these, it has a function of calculating at least one of the state quantities.

本発明の転がり軸受ユニットの状態量測定装置の検査方法及び検査装置のうち、請求項1に記載した検査方法は、上述の様な転がり軸受ユニットの状態量測定装置に関して、上記各センサの出力信号同士の間の初期位相差特性と、上記エンコーダの円周方向に関する上記各センサ同士の位置関係とが、それぞれ適正であるか否かを検査する。
この様な請求項1に記載した検査方法では、検査用エンコーダを用意する。この検査用エンコーダは、上記エンコーダの被検出面と同じ面形状(被検出面が円筒面の場合、この被検出面の直径が異なるものを含む)を有する(即ち、この被検出面が円筒面であれば円筒面の形状を有し、この被検出面が円輪面であれば円輪面の形状を有する)検査用被検出面を備える。そして、この検査用被検出面の特性を円周方向に関して交互に変化させると共に、この検査用被検出面の円周方向に関する一部の領域を、特性変化の境界が、上記エンコーダの被検出面の特性変化の境界と同一の形状及び向きを有すると共に円周方向に関して既知のピッチで存在している、第一特性変化領域とし、同じく他の一部(残部)の領域を、特性変化の境界が、上記検査用被検出面の幅方向と平行な直線形状であると共に円周方向に関して既知のピッチで存在している、第二特性変化領域としている。そして、上記保持部材を上記静止側軌道輪に結合する以前に、上記検査用エンコーダの検査用被検出面に上記各センサの検出部を対向させた状態で、この検査用エンコーダをこれら各センサに対し一定の速度で回転させる。そして、この際に生じたこれら各センサの出力信号同士の間の位相差のうち、上記第一特性変化領域で生じた位相差(これら各センサの検出部がこの第一特性変化領域に対向している状態での位相差)に基づいて、これら各センサの出力信号同士の間の初期位相差特性{使用時に生じると考えられる初期位相差(若しくは初期位相差比)を表す特性}の適否を判定する。これと共に、上記第二特性変化領域で生じた位相差(上記各センサの検出部がこの第二特性変化領域に対向している状態での位相差)に基づいて、上記検査用エンコーダの回転方向(=上記エンコーダの円周方向)に関する、上記各センサ同士の位置関係の適否を判定する。
Of the inspection method and the inspection device for the state quantity measuring device of the rolling bearing unit according to the present invention, the inspection method described in claim 1 relates to the state signal measuring device for the rolling bearing unit as described above. It is inspected whether the initial phase difference characteristics between the sensors and the positional relationship between the sensors in the circumferential direction of the encoder are appropriate.
In such an inspection method described in claim 1, an inspection encoder is prepared. This inspection encoder has the same surface shape as the detection surface of the encoder (when the detection surface is a cylindrical surface, the detection surface includes a different diameter) (that is, the detection surface is a cylindrical surface). If the detected surface is an annular surface, it has an annular surface shape). Then, the characteristics of the detected surface for inspection are alternately changed in the circumferential direction, and a part of the area of the detected surface for inspection in the circumferential direction is changed with the boundary of the characteristic change being the detected surface of the encoder. The first characteristic change region, which has the same shape and orientation as the boundary of the characteristic change, and exists at a known pitch with respect to the circumferential direction, is also the other part (the remaining part) of the characteristic change boundary. Is a second characteristic change region that has a linear shape parallel to the width direction of the inspection target surface and exists at a known pitch in the circumferential direction. Before the holding member is coupled to the stationary-side race, the inspection encoder is attached to each sensor in a state where the detection portion of each sensor is opposed to the inspection detection surface of the inspection encoder. Rotate at a constant speed. Of the phase difference between the output signals of each sensor generated at this time, the phase difference generated in the first characteristic change region (the detection part of each sensor faces the first characteristic change region). The initial phase difference characteristic between the output signals of these sensors (property representing the initial phase difference (or initial phase difference ratio) that is considered to occur during use) between the output signals of each of these sensors judge. At the same time, based on the phase difference generated in the second characteristic change region (the phase difference in a state where the detection unit of each sensor faces the second characteristic change region), the rotation direction of the inspection encoder The suitability of the positional relationship between the sensors with respect to (= circumferential direction of the encoder) is determined.

尚、上述の様な請求項1に記載した検査方法を実施する場合に、検査用エンコーダの検査用被検出面の特性を変化させる態様に就いては、位置関係を検査すべき各センサの構造(機能)に応じて選択する。
例えば、上記各センサが、ホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子を組み込んでいるが永久磁石を備えていない場合には、請求項2に記載した様に、上記検査用エンコーダを永久磁石製とする。そして、この検査用エンコーダの検査用被検出面にS極とN極とを、この検査用エンコーダの円周方向に関して交互に配置する。
或は、請求項4に記載した様に、上記検査用エンコーダを磁性材製とする。そして、この検査用エンコーダの検査用被検出面に凸部、舌片或は柱部等の充実部と、凹部、切り欠き或は透孔等の除肉部とを、この検査用エンコーダの円周方向に関して交互に配置する。これと共に、この検査用エンコーダを挟んで上記各センサの検出部と対向する位置に、永久磁石の磁極を配置する。
一方、上記各センサが、上述の様な磁気検知素子と共に永久磁石を備えているものである場合には、請求項3に記載した様に、上記検査用エンコーダを磁性材製とする。そして、この検査用エンコーダの検査用被検出面に凸部、舌片或は柱部等の充実部と、凹部、切り欠き或は透孔等の除肉部とを、この検査用エンコーダの円周方向に関して交互に配置する。
When the inspection method described in claim 1 as described above is performed, the structure of each sensor whose positional relationship is to be inspected in the aspect of changing the characteristics of the inspection target surface of the inspection encoder. Select according to (function).
For example, when each of the sensors incorporates a magnetic sensing element such as a Hall IC, a Hall element, an MR element, a GMR element, etc., but does not include a permanent magnet, as described in claim 2, The encoder is made of permanent magnets. Then, the S pole and the N pole are alternately arranged in the circumferential direction of the inspection encoder on the inspection target surface of the inspection encoder.
Alternatively, as described in claim 4, the inspection encoder is made of a magnetic material. Then, a solid portion such as a convex portion, a tongue piece or a column portion and a thinned portion such as a concave portion, a notch or a through hole are formed on the inspection target surface of the inspection encoder. Alternatingly arranged in the circumferential direction. At the same time, a magnetic pole of a permanent magnet is arranged at a position facing the detection portion of each sensor with the inspection encoder interposed therebetween.
On the other hand, when each of the sensors is provided with a permanent magnet together with the magnetic sensing element as described above, the inspection encoder is made of a magnetic material. Then, a solid portion such as a convex portion, a tongue piece or a column portion and a thinned portion such as a concave portion, a notch or a through hole are formed on the inspection target surface of the inspection encoder. Alternatingly arranged in the circumferential direction.

又、上述の様な請求項1〜4に記載した検査方法を実施する場合に、好ましくは、請求項5に記載した様に、上記検査用エンコーダとして、上記検査用被検出面のうち円周方向に関して前記第一、第二両特性変化領域同士の間部分に、この検査用被検出面の幅方向片半部の周期特性をこれら第一、第二両特性変化領域の周期特性と異ならせた中間領域を設けたものを使用する。
或は、請求項6に記載した様に、上記検査用エンコーダとして、上記検査用被検出面のうち円周方向に関して上記第一、第二両特性変化領域同士の間部分に、この検査用被検出面の幅方向両半部の周期特性をこれら第一、第二両特性変化領域の周期特性と異ならせた中間領域を設けたものを使用する。
或は、請求項7に記載した様に、上記検査用エンコーダとして、上記検査用被検出面のうち円周方向に関して上記第一、第二両特性変化領域同士の間部分に、位相差特性をこれら第一、第二両特性変化領域の位相差特性と異ならせた中間領域を設けたものを使用する。
或は、請求項8に記載した様に、上記検査用エンコーダとして、上記第一、第二両特性変化領域同士の周期特性を互いに異ならせたものを使用する。
Further, when the inspection method described in claims 1 to 4 as described above is performed, preferably, as described in claim 5, the inspection encoder has a circumference of the inspection target surface. The periodic characteristics of the half halves of the detected surface for inspection are different from the periodic characteristics of the first and second characteristic change areas in the portion between the first and second characteristic change areas with respect to the direction. Use an intermediate area.
Alternatively, as described in claim 6, as the inspection encoder, the inspection object is provided between the first and second characteristic change regions in the circumferential direction of the inspection detection surface. A detector provided with an intermediate region in which the periodic characteristics of both halves in the width direction of the detection surface are different from the periodic characteristics of both the first and second characteristic changing regions is used.
Alternatively, as described in claim 7, as the inspection encoder, a phase difference characteristic is provided between the first and second characteristic change regions in the circumferential direction of the inspection target surface. Those provided with an intermediate region different from the phase difference characteristics of the first and second characteristic change regions are used.
Alternatively, as described in claim 8, the inspection encoder is one in which the periodic characteristics of the first and second characteristic change regions are different from each other.

又、請求項9に記載した転がり軸受ユニットの状態量測定装置の検査装置は、上述した請求項1〜8のうちの何れか1項に記載した転がり軸受ユニットの状態量測定装置の検査方法を実施する為、少なくとも、検査用エンコーダと、保持部材を支持する支持手段と、この検査用エンコーダの検査用被検出面にこの保持部材に保持された各センサの検出部を対向させた状態で、この検査用エンコーダをこれら各センサに対し一定の回転速度で回転させる回転駆動手段と、これら各センサの出力信号同士の間の位相差のうち、第一特性変化領域で生じた位相差に基づいて、これら各センサの出力信号同士の間の初期位相差特性の適否を判定すると共に、第二特性変化領域で生じた位相差に基づいて、上記検査用エンコーダの回転方向に関する上記各センサ同士の位置関係の適否を判定する判定手段とを備える。更に、上述した請求項4に記載した検査方法を実施する場合には、これらに加えて、上記検査用エンコーダを挟んで上記各センサの検出部と対向する位置にその磁極を配置する、永久磁石を備える。   An inspection apparatus for a state quantity measuring apparatus for a rolling bearing unit according to claim 9 is the inspection method for a state quantity measuring apparatus for a rolling bearing unit according to any one of claims 1 to 8. In order to carry out, at least the inspection encoder, the support means for supporting the holding member, and the detection part of each sensor held by the holding member opposed to the inspection detection surface of the inspection encoder, Based on the phase difference generated in the first characteristic change region among the phase difference between the rotation drive means for rotating the inspection encoder with respect to each sensor at a constant rotation speed and the output signals of these sensors. The initial phase difference characteristics between the output signals of these sensors are determined to be appropriate, and the rotation direction of the inspection encoder is determined based on the phase difference generated in the second characteristic change region. And a determination means for determining suitability of the positional relationship of the sensor together. Further, when the inspection method described in claim 4 described above is performed, in addition to these, a permanent magnet having its magnetic pole disposed at a position facing the detection portion of each sensor with the inspection encoder interposed therebetween. Is provided.

上述の様な本発明の転がり軸受ユニットの状態量測定装置の検査方法及び検査装置によれば、複数のセンサが保持部材に対して正規の位置関係で組み付けられているか否かを検査すべく、上記各センサの出力信号同士の間の初期位相差特性を求める場合に、この初期位相差特性を、1個の検査用エンコーダを使用して、1回の測定作業で求められる。この為、この初期位相差特性を精度良く(セット換えによる測定誤差を生じる事なく)、しかも短時間で求められる。又、本発明の場合には、上記1回の測定作業により、検査用エンコーダの回転方向に関する各センサ同士の位置関係の適否を判定できる。この為、上記初期位相差特性が所望通りになっていないと言う判定結果が出た場合に、その原因が、検査用エンコーダの回転方向に関する各センサ同士の位置関係のずれにあるか否か(軸方向に関するずれが影響しているか否か)を確認できる。従って、この様な原因の確認によって、保持部材に対する上記各センサの保持固定作業の改善策を講じ易くできる。   According to the inspection method and the inspection device of the state quantity measuring device of the rolling bearing unit of the present invention as described above, in order to inspect whether or not a plurality of sensors are assembled in a regular positional relationship with the holding member, When obtaining the initial phase difference characteristic between the output signals of the sensors, the initial phase difference characteristic is obtained by one measurement operation using one inspection encoder. For this reason, the initial phase difference characteristic can be obtained with high accuracy (without causing a measurement error due to changing the set) and in a short time. In the case of the present invention, the suitability of the positional relationship between the sensors in the rotation direction of the inspection encoder can be determined by the one measurement operation. For this reason, when the determination result that the initial phase difference characteristic is not as desired is obtained, whether or not the cause is a shift in the positional relationship between the sensors with respect to the rotation direction of the inspection encoder ( It is possible to confirm whether or not the deviation in the axial direction has an influence. Therefore, by checking such a cause, it is possible to easily take measures for improving the holding and fixing operation of each sensor with respect to the holding member.

又、本発明を実施する場合、請求項5に記載した構成を採用すれば、センサの出力信号の周期が、検査用被検出面に設けた中間領域の幅方向片半部に対応する部分で、第一、第二両特性変化領域に対応する部分と異なる長さになる。この為、この周期が異なる長さになった部分を目印として、センサの出力信号が、第一、第二両特性変化領域のうちの何れの領域で発生した出力信号であるかを判別し易くできる。
又、本発明を実施する場合、請求項6に記載した構成を採用すれば、センサの出力信号の周期が、検査用被検出面に設けた中間領域に対応する部分で、第一、第二両特性変化領域に対応する部分と異なる長さになる。この為、この周期が異なる長さになった部分を目印として、センサの出力信号が、第一、第二両特性変化領域のうちの何れの領域で発生した出力信号であるかを判別し易くできる。
又、本発明を実施する場合、請求項7に記載した構成を採用すれば、各センサの出力信号同士の間の位相差(位相差比)が、検査用被検出面に設けた中間領域に対応する部分で、第一、第二両特性変化領域に対応する部分と異なる大きさになる。この為、この位相差が異なる大きさになった部分を目印として、各センサの出力信号同士の間の位相差が、第一、第二両特性変化領域のうちの何れの領域で発生した位相差であるかを判別し易くできる。
尚、上述した請求項5〜7に記載した構成を採用する場合に、検査用エンコーダの第一特性変化領域(第二特性変化領域)の円周方向両側に設ける1対の中間領域の周期特性又は位相差特性を、これら両中間領域同士で互いに異ならせれば、何れの領域で発生した出力信号又は位相差であるかの判別を、より容易に行える。又、本発明を実施する場合には、検査用エンコーダの第一特性変化領域(第二特性変化領域)の円周方向両側に設ける1対の中間領域として、互いに異なる構成の中間領域(上記請求項5〜7に記載した各中間領域のうちから選択した、互いに異なる1対の中間領域)を採用する事もできる。この様な構成を採用する場合も、何れの領域で発生した出力信号又は位相差であるかの判別を、より容易に行える。
更に、本発明を実施する場合、請求項8に記載した構成を採用すれば、各センサの出力信号の周期が、第一特性変化領域に対応する部分と第二特性変化領域に対応する部分とで、互いに異なる長さになる。この為、この周期の長さに基づいて、各センサの出力信号が、第一、第二両特性変化領域のうちの何れの領域で発生した出力信号であるかを判別し易くできる。
従って、上述した請求項5〜8に記載した構成を採用すれば、検査装置を構成する判定手段による判定ミスを生じにくくできる。
Further, when the present invention is implemented, if the configuration described in claim 5 is adopted, the period of the output signal of the sensor is a portion corresponding to one half of the width direction of the intermediate region provided on the detection surface for inspection. The lengths are different from those corresponding to the first and second characteristic change regions. For this reason, it is easy to discriminate whether the output signal of the sensor is an output signal generated in either of the first and second characteristic change areas, with the portions where the periods have different lengths as marks. it can.
Further, when the present invention is implemented, if the configuration described in claim 6 is adopted, the period of the output signal of the sensor is a portion corresponding to the intermediate region provided on the detection target surface, and the first and second The length is different from the portions corresponding to both characteristic change regions. For this reason, it is easy to discriminate whether the output signal of the sensor is an output signal generated in either of the first and second characteristic change areas, with the portions where the periods have different lengths as marks. it can.
Further, when the present invention is implemented, if the configuration described in claim 7 is adopted, the phase difference (phase difference ratio) between the output signals of the sensors is in an intermediate region provided on the inspection target surface. The corresponding part has a different size from the part corresponding to both the first and second characteristic change regions. For this reason, the phase difference between the output signals of the sensors is generated in any one of the first and second characteristic change regions, with the portion where the phase difference is different as a mark. It can be easily discriminated whether it is a phase difference.
In addition, when employ | adopting the structure described in Claim 5-7 mentioned above, the periodic characteristic of a pair of intermediate | middle area | region provided in the circumferential direction both sides of the 1st characteristic change area | region (2nd characteristic change area | region) of an inspection encoder Alternatively, if the phase difference characteristics are different from each other between these two intermediate regions, it is possible to more easily determine in which region the output signal or the phase difference is generated. When the present invention is carried out, a pair of intermediate regions provided on both sides in the circumferential direction of the first characteristic change region (second characteristic change region) of the inspection encoder are different from each other in the intermediate regions (above-mentioned claims). A pair of different intermediate regions selected from the intermediate regions described in Items 5 to 7 may be employed. Even when such a configuration is adopted, it is possible to more easily determine in which region the output signal or phase difference is generated.
Further, when implementing the present invention, if the configuration described in claim 8 is adopted, the period of the output signal of each sensor includes a portion corresponding to the first characteristic change region and a portion corresponding to the second characteristic change region. Thus, the lengths are different from each other. Therefore, based on the length of this cycle, it can be easily determined whether the output signal of each sensor is an output signal generated in either of the first and second characteristic change regions.
Therefore, if the configuration described in claims 5 to 8 described above is adopted, it is difficult to cause a determination error by the determination unit configuring the inspection apparatus.

[実施の形態の第1例]
図1は、請求項1、2、9に対応する、本発明の実施の形態の第1例を示している。本例の場合には、前述の図10に示した転がり軸受ユニットの状態量測定装置を検査対象とする。そして、この検査対象に関して、1対のセンサ6a、6bを保持固定したカバー5を外輪1に結合する以前の状態で、これら各センサ6a、6bの出力信号同士の間の初期位相差特性{使用時に生じると考えられる初期位相差(若しくは初期位相差比)を表す特性}、並びに、円周方向に関するこれら各センサ6a、6b同士の位置関係の適否を判断する。
[First example of embodiment]
FIG. 1 shows a first example of an embodiment of the present invention corresponding to claims 1, 2 and 9. In the case of this example, the state quantity measuring device of the rolling bearing unit shown in FIG. Then, with respect to this inspection object, in the state before the cover 5 holding and fixing the pair of sensors 6a and 6b is coupled to the outer ring 1, the initial phase difference characteristics between the output signals of these sensors 6a and 6b {use The characteristic representing the initial phase difference (or initial phase difference ratio) that is considered to occur sometimes} and the appropriateness of the positional relationship between the sensors 6a and 6b in the circumferential direction are determined.

本例の検査方法を実施する場合には、先ず、上記カバー5の内側に上記各センサ6a、6bを、合成樹脂製のホルダ9を介して保持固定する。その後、このカバー5を上記外輪1に結合する以前に、図1に示す様に、このカバー5の開口端部を、検査装置を構成する支持手段である取付フレーム11に設けた円形の取付孔12に、軽い(検査後に上記カバー5を傷めずに外せる程度の)締り嵌めで内嵌支持する。これと共に、上記各センサ6a、6bの検出部に、検査用エンコーダ10bの検査用被検出面を近接対向させる。   When carrying out the inspection method of this example, first, the sensors 6a and 6b are held and fixed inside the cover 5 via a holder 9 made of synthetic resin. Thereafter, before the cover 5 is coupled to the outer ring 1, as shown in FIG. 1, the opening end of the cover 5 is provided with a circular mounting hole provided in a mounting frame 11 that is a supporting means constituting the inspection apparatus. 12 is supported by a light interference fit (so that the cover 5 can be removed without damaging after inspection). At the same time, the inspection detection surface of the inspection encoder 10b is brought close to and opposed to the detection portions of the sensors 6a and 6b.

上記検査用エンコーダ10bは、磁性金属板製で円環状の芯金13と、この芯金13に外嵌固定した、ゴム磁石等の永久磁石製で円筒状の検査用エンコーダ本体14bとから成る。このうちの芯金13は、図示しない回転駆動手段を構成する回転軸に、この回転軸と同心に外嵌支持して、所定の方向に一定の回転速度で回転駆動自在としている。又、上記検査用エンコーダ本体14bは、検査用被検出面である外周面にS極とN極とを、円周方向に関して交互に配置している。特に、本例の場合には、この様な検査用被検出面の円周方向に関する片半部と他半部との各領域(互いに重ならない180度ずつの各領域)で、上記S極とN極との境界の形態を互いに異ならせる事により、このうちの片半部の領域を第一特性変化領域15とし、同じく他半部の領域を第二特性変化領域16としている。   The inspection encoder 10b includes an annular core 13 made of a magnetic metal plate, and a cylindrical inspection encoder main body 14b made of a permanent magnet such as a rubber magnet that is externally fixed to the core 13. Of these, the metal core 13 is fitted and supported on a rotation shaft constituting a rotation driving means (not shown) concentrically with the rotation shaft so as to be freely rotatable at a constant rotational speed in a predetermined direction. In the inspection encoder body 14b, S poles and N poles are alternately arranged in the circumferential direction on the outer peripheral surface which is a detection target surface. In particular, in the case of this example, in each region of one half portion and the other half portion in the circumferential direction of such a surface to be detected for inspection (each region of 180 degrees not overlapping each other), the S pole and By making the form of the boundary with the N pole different from each other, one half of the area is the first characteristic change area 15 and the other half is the second characteristic change area 16.

即ち、本例の場合、上記第一特性変化領域15では、上記境界の形状及び向き並びに中心角ピッチを、状態量測定装置を構成するエンコーダ4(図10参照)の被検出面に存在する「く」字形の境界と同じにしている。これに対し、上記第二特性変化領域16では、上記境界を、上記検査用被検出面の幅方向(軸方向)と平行な直線形状とすると共に、上記エンコーダ4の被検出面に存在する「く」字形の境界と同じ中心角ピッチで存在させている。又、本例の場合、図1に示す様に、上記各センサ6a、6bの検出部に上記検査用エンコーダ10bの検査用被検出面を近接対向させた状態で、上記カバー5に対する、上記第一特性変化領域15に存在する「く」字形の境界の頂部の軸方向位置を、状態量測定装置の使用時に於ける、上記カバー5に対する、上記エンコーダ4の被検出面に存在する「く」字形の境界の頂部の軸方向位置と、同じにしている。この為に、前記取付フレーム11の端面と上記検査用エンコーダ10bとの位置関係を、外輪1の端面と上記エンコーダ4(図10参照)との位置関係と同じにしている。   That is, in the case of this example, in the first characteristic change region 15, the shape and direction of the boundary and the central angle pitch are present on the detection surface of the encoder 4 (see FIG. 10) constituting the state quantity measuring device. It is the same as the “K” shaped border. On the other hand, in the second characteristic change region 16, the boundary has a linear shape parallel to the width direction (axial direction) of the inspection target surface and exists on the detection surface of the encoder 4. It exists at the same center angle pitch as the “」 ”-shaped boundary. In the case of this example, as shown in FIG. 1, the above-mentioned cover 5 with respect to the cover 5 with the detection detection surface of the inspection encoder 10 b in close proximity to the detection portion of the sensors 6 a and 6 b. The axial position of the top of the “<”-shaped boundary existing in one characteristic change region 15 is the “<” that exists on the detected surface of the encoder 4 with respect to the cover 5 when the state quantity measuring device is used. It is the same as the axial position of the top of the character-shaped boundary. Therefore, the positional relationship between the end surface of the mounting frame 11 and the inspection encoder 10b is the same as the positional relationship between the end surface of the outer ring 1 and the encoder 4 (see FIG. 10).

そして、本例の場合には、上述の図1に示した状態で、上記検査用エンコーダ10bを所定の方向に一定の回転速度で回転させつつ、上記各センサ6a、6bの出力信号同士の間に存在する位相差(又は位相差比)を求める。そして、この位相差(又は位相差比)のうち、上記第一特性変化領域15で発生した位相差(又は位相差比)に基づいて、これら各センサ6a、6bの出力信号同士の間の初期位相差特性の適否を判定する。即ち、この初期位相差特性が所望通りになっている(予め設定しておいた許容範囲に収まっている)か否かを判定する。これと共に、上記第二特性変化領域16で発生した位相差(又は位相差比)に基づいて、前述の図12〜14に示した先発明の検査方法の第1例の場合と同様の手法により、円周方向(上記検査用エンコーダ10bの回転方向)に関する上記各センサ6a、6b同士の位置関係の適否を判定する。そして、これら各判定の結果を、これら各センサ6a、6bが、上記カバー5に対して正規の位置関係で組み付けられているか否かの最終的な判定の材料として利用する。例えば、上記初期位相差特性が不適で上記円周方向に関する位置関係が適正の場合には、軸方向に関する位置関係が不適と判定する。勿論、円周方向の位置関係が不適の場合には、そのまま判定する。尚、これらの判定作業は、検査装置を構成する判定手段である判定器により行う。   In the case of this example, in the state shown in FIG. 1, the inspection encoder 10b is rotated in a predetermined direction at a constant rotational speed, while the output signals of the sensors 6a and 6b are connected to each other. The phase difference (or phase difference ratio) existing in Then, based on the phase difference (or phase difference ratio) generated in the first characteristic change region 15 among the phase difference (or phase difference ratio), an initial value between the output signals of these sensors 6a and 6b is obtained. The suitability of the phase difference characteristic is determined. That is, it is determined whether or not the initial phase difference characteristic is as desired (within a preset allowable range). At the same time, based on the phase difference (or phase difference ratio) generated in the second characteristic change region 16, the same method as in the first example of the inspection method of the prior invention shown in FIGS. The suitability of the positional relationship between the sensors 6a and 6b in the circumferential direction (the rotation direction of the inspection encoder 10b) is determined. The result of each determination is used as a material for final determination as to whether or not each of the sensors 6a and 6b is assembled in a normal positional relationship with the cover 5. For example, when the initial phase difference characteristic is inappropriate and the positional relationship in the circumferential direction is appropriate, it is determined that the positional relationship in the axial direction is inappropriate. Of course, when the positional relationship in the circumferential direction is inappropriate, the determination is made as it is. Note that these determination operations are performed by a determination device which is a determination means constituting the inspection apparatus.

上述した様に、本例の転がり軸受ユニットの状態量測定装置の検査方法及び検査装置によれば、上記各センサ6a、6bの出力信号同士の間の初期位相差特性を、1個の検査用エンコーダ10bを使用して、1回の測定作業で求められる。この為、この初期位相差特性を精度良く(セット換えに基づく測定誤差を生じる事なく)、しかも短時間で求められる。又、本例の場合には、上記1回の測定作業で、円周方向及び軸方向に関する上記各センサ6a、6b同士の位置関係の適否も判定できる。この為、上記初期位相差特性が所望通りになっていないと言う判定結果が出た場合に、その原因が、円周方向に関する上記各センサ6a、6b同士の位置関係のずれにあるか否か(軸方向に関するずれの影響があるか否か)を確認できる。従って、この様な原因の確認によって、カバー5に対する上記各センサ6a、6bの保持固定作業の改善策を講じ易くできる。   As described above, according to the inspection method and inspection apparatus of the state quantity measuring device of the rolling bearing unit of this example, the initial phase difference characteristic between the output signals of the sensors 6a and 6b is used for one inspection. Using the encoder 10b, it is obtained by a single measurement operation. For this reason, this initial phase difference characteristic can be obtained with high accuracy (without causing a measurement error due to changing the set) and in a short time. In the case of this example, the suitability of the positional relationship between the sensors 6a and 6b with respect to the circumferential direction and the axial direction can also be determined by the single measurement operation. For this reason, when the determination result that the initial phase difference characteristic is not as desired is obtained, whether or not the cause is a shift in the positional relationship between the sensors 6a and 6b in the circumferential direction. (Whether or not there is an influence of deviation in the axial direction) can be confirmed. Therefore, by checking such a cause, it is possible to easily take measures for improving the holding and fixing operation of the sensors 6a and 6b with respect to the cover 5.

尚、本例の検査方法及び検査装置を実施する場合も、前述した先発明の場合と同様、上記検査用エンコーダ10bの外周面に存在するS極とN極とのピッチは、状態量測定装置を構成するエンコーダ4(図10参照)のピッチと同じである必要はない。但し、これら両エンコーダ10b、4のピッチを互いに同じにする事が、これら両エンコーダ10b、4のピッチの相違に関する換算処理を行う事なく、円周方向に関する上記各センサ6a、6b同士の位置関係の適否を容易に判定する面からは好ましい。   Even when the inspection method and the inspection apparatus of this example are implemented, the pitch between the S pole and the N pole existing on the outer peripheral surface of the inspection encoder 10b is the state quantity measuring device as in the case of the above-described invention. Need not be the same as the pitch of the encoder 4 (see FIG. 10). However, making the pitches of the two encoders 10b and 4 the same means that the positional relationship between the sensors 6a and 6b in the circumferential direction is not performed without performing a conversion process on the difference in pitch between the encoders 10b and 4. It is preferable from the viewpoint of easily determining the suitability of.

[実施の形態の第2例]
図2は、請求項1、3、9に対応する、本発明の実施の形態の第2例を示している。本例は、1対のセンサ6a、6b(図1参照)が、ホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子と共に、永久磁石を備えている構造を対象とする例である。本例の場合には、上記各センサ6a、6bがそれぞれ永久磁石を備えている為、検査用エンコーダ10cとして、単なる磁性材製のものを使用する。即ち、この検査用エンコーダ10cは、軟鋼板等の磁性金属板により全体を円筒状に形成すると共に、検査用被検出面である、外周面の幅方向中間部に、それぞれがスリット状の透孔17a、17bと柱部18a、18bとを、円周方向に関して交互に配置している。そして、それぞれがこの検査用被検出面の円周方向両半部の領域である、第一、第二両特性変化領域15a、16aに於ける、上記各透孔17a、17bと上記各柱部18a、18bとの境界の形状及び向き並びに中心角ピッチを、それぞれ上述した第1例の検査用エンコーダ10bの境界の場合と同じ様に規制している。上記各センサ6a、6bの構成に合わせて、使用する検査用エンコーダ10cの構成を変えた点を除いて、その他の構成及び作用は、上述した第1例の場合と同様である。
[Second Example of Embodiment]
FIG. 2 shows a second example of an embodiment of the present invention corresponding to claims 1, 3 and 9. In this example, a pair of sensors 6a and 6b (see FIG. 1) is an example for a structure including a permanent magnet together with a magnetic sensing element such as a Hall IC, a Hall element, an MR element, and a GMR element. . In the case of this example, since each of the sensors 6a and 6b includes a permanent magnet, a simple magnetic material is used as the inspection encoder 10c. That is, the inspection encoder 10c is formed in a cylindrical shape as a whole by a magnetic metal plate such as a mild steel plate, and each has a slit-shaped through hole in the intermediate portion in the width direction of the outer peripheral surface, which is a detection detection surface. 17a, 17b and column portions 18a, 18b are alternately arranged in the circumferential direction. And each said through-hole 17a, 17b and each said column part in the 1st and 2nd characteristic change area | regions 15a and 16a which are the area | regions of the circumferential direction both half part of this to-be-detected surface for an inspection, respectively. The shape and orientation of the boundaries with 18a and 18b, and the central angle pitch are regulated in the same manner as in the case of the boundary with the inspection encoder 10b of the first example described above. Except for the point that the configuration of the inspection encoder 10c to be used is changed in accordance with the configuration of each of the sensors 6a and 6b, other configurations and operations are the same as those in the case of the first example described above.

[実施の形態の第3例]
図3は、請求項1、4、9に対応する、本発明の実施の形態の第3例を示している。本例も前述した第1例の場合と同様、1対のセンサ6a、6b(図1参照)が、ホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子を備えてはいるが、永久磁石を備えていない構造を対象とする例である。本例の場合には、検査用エンコーダ10cとして、上述した第2例の場合と同じものを使用する。そして、検査を実施する際には、図3に示す様に、上記検査用エンコーダ10cの内径側に、径方向に関して両端にS極とN極とを備え、検査時にも回転しない部分に支持固定された、永久磁石19を配置する。又、この状態で、この永久磁石19の何れか一方の磁極(図示の例ではS極)を、上記検査用エンコーダ10cの内周面のうち、円周方向に関して上記各センサ6a、6bの検出部と同位相の部分に近接対向させる。言い換えれば、上記永久磁石19の何れか一方の磁極を、上記各センサ6a、6bの検出部に対し、上記検査用エンコーダ10cの円周方向一部分を挟んで対向させる。これにより、上記検査用エンコーダ10cを上記各センサ6a、6b及び永久磁石19に対して回転させた場合に、この永久磁石19の磁力に基づいて、上記各センサ6a、6bの出力信号を変化させられる様にしている。尚、本例の場合には、上記永久磁石19単体で磁束密度にむらが生じない様にする為に、上記検査用エンコーダ10cの検査用被検出面の円周方向に関する、上記永久磁石19の幅を、上記第一、第二両特性変化領域15a、16aに於ける特性変化の1ピッチ分の長さとほぼ等しくしている。その他の構成及び作用は、前述した第1例の場合と同様である。
[Third example of embodiment]
FIG. 3 shows a third example of the embodiment of the invention corresponding to claims 1, 4 and 9. As in the case of the first example described above, the pair of sensors 6a and 6b (see FIG. 1) includes a magnetic detection element such as a Hall IC, a Hall element, an MR element, and a GMR element. This is an example for a structure that does not include a permanent magnet. In the case of this example, the same encoder as in the second example described above is used as the inspection encoder 10c. When performing the inspection, as shown in FIG. 3, the inspection encoder 10c is provided with an S pole and an N pole at both ends in the radial direction, and is supported and fixed to a portion that does not rotate during the inspection. The permanent magnets 19 are arranged. In this state, one of the magnetic poles (S pole in the illustrated example) of the permanent magnet 19 is detected by the sensors 6a and 6b in the circumferential direction on the inner peripheral surface of the inspection encoder 10c. The part is in close proximity to the part having the same phase as the part. In other words, any one of the magnetic poles of the permanent magnet 19 is opposed to the detection portion of each of the sensors 6a and 6b with a part in the circumferential direction of the inspection encoder 10c interposed therebetween. Thus, when the inspection encoder 10c is rotated with respect to the sensors 6a and 6b and the permanent magnet 19, the output signals of the sensors 6a and 6b are changed based on the magnetic force of the permanent magnet 19. I am trying to do it. In the case of this example, in order to prevent unevenness in the magnetic flux density of the permanent magnet 19 alone, the permanent magnet 19 is related to the circumferential direction of the inspection target surface of the inspection encoder 10c. The width is substantially equal to the length of one pitch of the characteristic change in the first and second characteristic change regions 15a and 16a. Other configurations and operations are the same as those of the first example described above.

尚、上述した各実施の形態では、図4の上半部に示す様に、検査用エンコーダEの第一、第二両特性変化領域A1、A2に存在する特性変化の境界の中心角ピッチ(周期特性)を、これら両領域A1、A2同士で互いに等しくする構成を採用した。ところが、この様な構成を採用する場合、例えば図4の上半部に示す様に、上記両領域A1、A2を円周方向(同図の左右方向)に関して互いに近接配置すると、同図の下半部に示す様に、1対のセンサS1、S2の出力信号の周期が、上記両領域A1、A2に対応する部分だけでなく、これら両領域A1、A2間に対応する部分でも(即ち、検査用被検出面の全周に亙って)、等しくなる可能性がある。この様な場合には、前記判定器が、上記第一特性変化領域A1で発生した出力信号と、上記第二特性変化領域A2で発生した出力信号とを、これら各出力信号の周期を見て判別する事ができなくなると言った問題を生じる。但し、この様な場合でも、検査装置に上記両領域A1、A2の回転角度位置を検出する為の機能を追加して、これら両領域A1、A2の回転角度位置を検出すれば、これら両領域A1、A2の回転角度位置と上記各センサS1、S2の周方向位置との関係から、上記両センサS1、S2の出力信号が、上記両領域A1、A2のうちの何れの領域で発生した出力信号であるかを判別する事が可能になる。但し、この場合には、検査装置に回転角度位置を検出する為の機能を追加する分だけ、この検査装置のコストが嵩むと言った、新たな問題を生じる。 In each of the above-described embodiments, as shown in the upper half of FIG. 4, the central angle of the boundary of the characteristic change existing in both the first and second characteristic change areas A 1 and A 2 of the inspection encoder E A configuration is adopted in which the pitch (periodic characteristics) is made equal between these two regions A 1 and A 2 . However, when such a configuration is adopted, for example, as shown in the upper half of FIG. 4, if both the regions A 1 and A 2 are arranged close to each other in the circumferential direction (the left-right direction in FIG. 4), As shown in the lower half, the period of the output signals of the pair of sensors S 1 and S 2 is not only the portion corresponding to both the areas A 1 and A 2 , but also between these areas A 1 and A 2. (Ie, over the entire circumference of the inspection target surface) may be equal. In such a case, the determiner uses the output signal generated in the first characteristic change region A 1 and the output signal generated in the second characteristic change region A 2 as the period of each output signal. The problem that it becomes impossible to distinguish by seeing is caused. However, even in such a case, if a function for detecting the rotation angle positions of both the areas A 1 and A 2 is added to the inspection apparatus, the rotation angle positions of both the areas A 1 and A 2 can be detected. from the relationship between the circumferential position of these two regions a 1, the rotational angular position and the sensors S 1 of a 2, S 2, the output signal of the two sensors S 1, S 2 is the both regions a 1, It is possible to determine in which region of A 2 the output signal is generated. However, in this case, there arises a new problem that the cost of the inspection apparatus increases as much as the function for detecting the rotation angle position is added to the inspection apparatus.

これに対し、図5〜9の上半部に示した様な検査用エンコーダE1〜E5を使用すれば、上述の様な新たな問題を生じる事なく、1対のセンサS1、S2の出力信号{又はこれら両センサS1、S2の出力信号同士の間の位相差(位相差比)}が、第一、第二両特性変化領域A1、A2のうちの何れの領域で発生したものであるかを、容易且つ確実に判別する事が可能になる。 On the other hand, if the inspection encoders E 1 to E 5 as shown in the upper half of FIGS. 5 to 9 are used, the pair of sensors S 1 and S 1 does not cause the above-described new problem. 2 output signals {or a phase difference (phase difference ratio) between the output signals of both the sensors S 1 and S 2 )} is any of the first and second characteristic change regions A 1 and A 2. It is possible to easily and surely determine whether the error occurred in the area.

先ず、請求項5に対応する構成を有する、図5の上半部に示した検査用エンコーダE1の場合には、第一、第二両特性変化領域A1、A2同士の間部分に、その幅方向片半部(同図の上半部)の周期特性を、これら第一、第二両特性変化領域A1、A2の周期特性と異ならせた、中間領域B1を設けている。具体的には、この中間領域B1の幅方向片半部に特性変化の境界を設けず、幅方向他半部(同図の下半部)にのみ、上記第一特性変化領域A1の幅方向他半部と同じ形態(傾斜角度、中心角ピッチ)の特性変化の境界を設けている。この様な検査用エンコーダE1を使用すれば、図5の下半部に示す様に、一方のセンサS1の出力信号の周期が、上記中間領域B1の幅方向片半部に対応する部分で、上記第一、第二両特性変化領域A1、A2に対応する部分よりも長くなる。この為、この周期が長くなった部分を目印として、1対のセンサS1、S2の出力信号が、上記第一、第二両特性変化領域A1、A2のうちの何れの領域で発生した出力信号であるかを容易に判別できる。
尚、上記中間領域B1の幅方向他半部に設ける特性変化の境界の形態は、上記第二特性変化領域A2の幅方向他半部に存在する特性変化の境界の形態と同じにする事もできる。
First, in the case of the inspection encoder E 1 having the configuration corresponding to claim 5 and shown in the upper half portion of FIG. 5, the first and second characteristic change regions A 1 and A 2 are located between the two. An intermediate region B 1 is provided in which the periodic characteristics of one half of the width direction (the upper half of the figure) are different from the periodic characteristics of the first and second characteristic change regions A 1 and A 2. Yes. Specifically, the intermediate region B 1 of without providing the boundary characteristic change in the width direction piece halves other widthwise half portion only (the lower half of the figure), the first characteristic change region A 1 The boundary of the characteristic change of the same form (an inclination angle, a center angle pitch) as the other half part of the width direction is provided. If such an inspection encoder E 1 is used, as shown in the lower half of FIG. 5, the period of the output signal of one sensor S 1 corresponds to one half of the width direction of the intermediate region B 1. This part is longer than the part corresponding to both the first and second characteristic change regions A 1 and A 2 . For this reason, the output signals of the pair of sensors S 1 and S 2 are output in any one of the first and second characteristic change areas A 1 and A 2 , using the part where the period is longer as a mark. It is possible to easily determine whether the output signal is generated.
The form of the characteristic change boundary provided in the other half of the width direction of the intermediate area B 1 is the same as the form of the boundary of the characteristic change existing in the other half of the width direction of the second characteristic change area A 2. You can also do things.

次に、請求項6に対応する構成を有する、図6の上半部に示した検査用エンコーダE2の場合には、第一、第二両特性変化領域A1、A2同士の間に設けた中間領域B2の幅方向両半部の周期特性を、これら第一、第二両特性変化領域A1、A2の周期特性と異ならせている。この為に具体的には、この中間領域B2に、特性変化の境界を設けていない。この様な検査用エンコーダE2を使用すれば、図6の下半部に示す様に、1対のセンサS1、S2の出力信号の周期が、上記中間領域B2に対応する部分で、上記第一、第二両特性変化領域A1、A2に対応する部分よりも長くなる。この為、この周期が長くなった部分を目印として、上記両センサS1、S2の出力信号が、上記第一、第二両特性変化領域A1、A2のうちの何れの領域で発生した出力信号であるかを容易に判別できる。 Next, in the case of the inspection encoder E 2 having the configuration corresponding to claim 6 and shown in the upper half of FIG. 6, the first and second characteristic change areas A 1 and A 2 are interposed between each other. The periodic characteristics of the half portions in the width direction of the provided intermediate area B 2 are different from the periodic characteristics of the first and second characteristic change areas A 1 and A 2 . Specifically in this order, the intermediate region B 2, is not provided with boundary characteristic change. When such an inspection encoder E 2 is used, as shown in the lower half of FIG. 6, the period of the output signals of the pair of sensors S 1 and S 2 is a portion corresponding to the intermediate region B 2. The first and second characteristic change areas A 1 and A 2 are longer than those corresponding to the first and second characteristic change areas A 1 and A 2 . For this reason, the output signals of the sensors S 1 and S 2 are generated in any one of the first and second characteristic change areas A 1 and A 2 , using the part where the period is longer as a mark. It is possible to easily discriminate whether the output signal has been output.

次に、請求項7に対応する構成を有する、図7の上半部に示した検査用エンコーダE3の場合には、第一、第二両特性変化領域A1、A2同士の間に設けた中間領域B3の位相差特性を、これら第一、第二両特性変化領域A1、A2の位相差特性と異ならせている。この為に具体的には、この中間領域B3に設ける特性変化の境界を、検査用被検出面の幅方向に対して上記第一、第二両特性変化領域A1、A2に設けた特性変化の境界と異なる角度で傾斜させた、直線状の境界としている。この様な検査用エンコーダE3を使用すれば、図7の下半部に示す様に、1対のセンサS1、S2の出力信号同士の間の位相差が、上記中間領域B3に対応する部分で、上記第一、第二両特性変化領域A1、A2に対応する部分に対して異なった大きさになる。この為、この位相差が異なった大きさになった部分を目印として、上記両センサS1、S2の出力信号同士の間の位相差が、上記第一、第二両特性変化領域A1、A2のうちの何れの領域で発生した位相差であるかを容易に判別できる。 Next, in the case of the inspection encoder E 3 having the configuration corresponding to claim 7 and shown in the upper half of FIG. 7, the first and second characteristic change areas A 1 and A 2 are interposed between each other. The phase difference characteristic of the provided intermediate area B 3 is different from the phase difference characteristics of the first and second characteristic change areas A 1 and A 2 . For this purpose, specifically, the boundary of the characteristic change provided in the intermediate area B 3 is provided in the first and second characteristic change areas A 1 and A 2 with respect to the width direction of the inspection target surface. It is a straight boundary that is inclined at an angle different from the boundary of the characteristic change. When such an inspection encoder E 3 is used, as shown in the lower half of FIG. 7, the phase difference between the output signals of the pair of sensors S 1 and S 2 is generated in the intermediate region B 3 . The corresponding portions have different sizes with respect to the portions corresponding to the first and second characteristic change regions A 1 and A 2 . For this reason, the phase difference between the output signals of the sensors S 1 and S 2 is the first and second characteristic change regions A 1 , using the portions where the phase differences are different as marks. , A 2 in which region the phase difference has occurred can be easily discriminated.

次に、やはり請求項7に対応する構成を有する、図8の上半部に示した検査用エンコーダE4の場合には、上述した図7の検査用エンコーダE3の場合と同様、第一、第二両特性変化領域A1、A2同士の間に設けた中間領域B4の位相差特性を、これら第一、第二両特性変化領域A1、A2の位相差特性と異ならせている。この為に具体的には、上記中間領域B4の幅方向両半部に設ける特性変化の境界の形態(傾斜角度)を、上記第二両特性変化領域A2に設けた特性変化の境界の形態と等しくすると共に、上記中間領域B4の幅方向両半部同士で、円周方向に関する特性変化の境界の位相を互いにずらせている。この様な検査用エンコーダE4を使用すれば、図8の下半部に示す様に、1対のセンサS1、S2の出力信号同士の間の位相差が、上記中間領域B4に対応する部分で、上記第一、第二両特性変化領域A1、A2に対応する部分に対して異なった大きさになる。この為、この位相差が異なった大きさになった部分を目印として、上記両センサS1、S2の出力信号同士の間の位相差が、上記第一、第二両特性変化領域A1、A2のうちの何れの領域で発生した位相差であるかを容易に判別できる。 Next, in the case of the inspection encoder E 4 shown in the upper half portion of FIG. 8 which also has the configuration corresponding to the seventh aspect, as in the case of the inspection encoder E 3 of FIG. , the phase difference characteristics of the intermediate region B 4 provided between the second double-characteristic change region a 1, a 2 each other, be different from the those first, phase difference characteristics of the second double-characteristic change region a 1, a 2 ing. For this purpose, specifically, the form (inclination angle) of the characteristic change boundary provided in both widthwise halves of the intermediate area B 4 is changed to the characteristic change boundary provided in the second both characteristic change area A 2 . together equal to the form, in the widthwise half portions of the intermediate region B 4, it is to be shifted from each other the phase boundary of the characteristic change in the circumferential direction. If such an inspection encoder E 4 is used, as shown in the lower half of FIG. 8, the phase difference between the output signals of the pair of sensors S 1 and S 2 is generated in the intermediate region B 4 . The corresponding portions have different sizes with respect to the portions corresponding to the first and second characteristic change regions A 1 and A 2 . For this reason, the phase difference between the output signals of the sensors S 1 and S 2 is the first and second characteristic change regions A 1 , using the portions where the phase differences are different as marks. , A 2 in which region the phase difference has occurred can be easily discriminated.

尚、上述の図5〜8に示した検査用エンコーダE1〜E4を実施する場合に、第一特性変化領域A1(第二特性変化領域A2)の円周方向両側に設ける1対の中間領域の周期特性又は位相差特性を、これら両中間領域同士で互いに異ならせれば、何れの領域で発生した出力信号又は位相差であるかの判別を、より容易に行える。又、本発明を実施する場合には、検査用エンコーダの第一特性変化領域A1(第二特性変化領域A2)の円周方向両側に設ける1対の中間領域として、互いに異なる構成の中間領域(例えば、上述の図5〜7に示した各中間領域のうちから選択した、互いに異なる1対の中間領域)を採用する事もできる。この様な構成を採用する場合も、何れの領域で発生した出力信号又は位相差であるかの判別を、より容易に行える。 When the inspection encoders E 1 to E 4 shown in FIGS. 5 to 8 are implemented, a pair provided on both sides in the circumferential direction of the first characteristic change area A 1 (second characteristic change area A 2 ). If the period characteristic or phase difference characteristic of the intermediate region is made different between the two intermediate regions, it is possible to more easily determine in which region the output signal or phase difference is generated. When the present invention is carried out, a pair of intermediate areas provided on both sides in the circumferential direction of the first characteristic change area A 1 (second characteristic change area A 2 ) of the inspection encoder are different in the middle. A region (for example, a pair of different intermediate regions selected from the intermediate regions shown in FIGS. 5 to 7 described above) may be employed. Even when such a configuration is adopted, it is possible to more easily determine in which region the output signal or phase difference is generated.

次に、請求項8に対応する構成を有する、図9の上半部に示した検査用エンコーダE5の場合には、第一特性変化領域A1の周期特性と、第二特性変化領域A2の周期特性とを、互いに異ならせている。この為に具体的には、上記第二特性変化領域A2に設けた特性変化の境界の中心角ピッチを、上記第一特性変化領域A1に設けた特性変化の境界の中心角ピッチよりも小さくしている。この様な検査用エンコーダE5を使用すれば、図9の下半部に示す様に、1対のセンサS1、S2の出力信号の周期が、上記第一特性変化領域A1に対応する部分よりも、上記第二特性変化領域A2に対応する部分で短くなる。この為、この周期の差に基づいて、上記両センサS1、S2の出力信号が、上記第一、第二両特性変化領域A1、A2のうちの何れの領域で発生した出力信号であるかを容易に判別できる。 Next, in the case of the inspection encoder E 5 having the configuration corresponding to claim 8 and shown in the upper half of FIG. 9, the periodic characteristic of the first characteristic change area A 1 and the second characteristic change area A The two periodic characteristics are different from each other. For this purpose, specifically, the central angle pitch of the boundary of characteristic change provided in the second characteristic change area A 2 is set to be larger than the central angle pitch of the boundary of characteristic change provided in the first characteristic change area A 1. It is small. If such an inspection encoder E 5 is used, the period of the output signals of the pair of sensors S 1 and S 2 corresponds to the first characteristic change region A 1 as shown in the lower half of FIG. The portion corresponding to the second characteristic change region A 2 is shorter than the portion to be processed. For this reason, based on the difference between the periods, the output signals of the sensors S 1 and S 2 are generated in any one of the first and second characteristic change areas A 1 and A 2. Can be easily determined.

従って、上述した図5〜9の検査用エンコーダE1〜E5を使用すれば、前記判定器が、1対のセンサS1、S2の出力信号又はこれら両出力信号同士の間の位相差の発生領域を誤判別し、結果として判定ミスが生じると言った不具合が発生する事を、有効に回避できる。 Therefore, if the inspection encoders E 1 to E 5 in FIGS. 5 to 9 described above are used, the determination unit outputs the phase difference between the output signals of the pair of sensors S 1 and S 2 or between these output signals. It is possible to effectively avoid the occurrence of a problem such as erroneous determination of the occurrence region of the occurrence of the error and a determination error occurring as a result.

尚、上述した各実施の形態では、複数のセンサをエンコーダの被検出面に対し径方向に対向させる状態量測定装置を検査対象とする場合に、本発明を適用した。但し、本発明は、例えば前述の図11に示した状態量測定装置の様に、複数のセンサをエンコーダの被検出面に対し軸方向に対向させる状態量測定装置を検査対象とする場合にも、適用可能である。   In each of the above-described embodiments, the present invention is applied to a case where a state quantity measuring device that causes a plurality of sensors to face the detection surface of the encoder in the radial direction is an inspection target. However, the present invention is also applicable to a case where a state quantity measuring apparatus in which a plurality of sensors are opposed to the detection surface of the encoder in the axial direction, such as the state quantity measuring apparatus shown in FIG. Applicable.

本発明の実施の形態の第1例を示す断面図。Sectional drawing which shows the 1st example of embodiment of this invention. 同第2例を実施する場合に使用する検査用エンコーダの斜視図。The perspective view of the encoder for a test | inspection used when implementing the 2nd example. 同第3例を実施する場合に使用する検査用エンコーダ及び永久磁石の斜視図。The perspective view of the test | inspection encoder and permanent magnet used when implementing the 3rd example. 検査用エンコーダの第一特性変化領域で発生したセンサの出力信号と、同じく第二特性変化領域で発生したセンサの出力信号とを、この出力信号の周期から判別できない構成の1例を示す図。The figure which shows an example of the structure which cannot discriminate | determine from the period of this output signal the output signal of the sensor which generate | occur | produced in the 1st characteristic change area | region of the encoder for a test | inspection, and the output signal of the sensor similarly generated in the 2nd characteristic change area | region. 同じく、判別できる構成の第1例を示す図。The figure which shows the 1st example of the structure which can be discriminate | determined similarly. 同第2例を示す図。The figure which shows the 2nd example. 検査用エンコーダの第一特性変化領域で発生した1対のセンサの出力信号間の位相差と、同じく第二特性変化領域で発生した1対のセンサの出力信号間の位相差とを、この位相差から判別できる構成の第1例を示す図。The phase difference between the output signals of the pair of sensors generated in the first characteristic change region of the inspection encoder and the phase difference between the output signals of the pair of sensors similarly generated in the second characteristic change region are The figure which shows the 1st example of the structure which can be discriminate | determined from a phase difference. 同第2例を示す図。The figure which shows the 2nd example. 検査用エンコーダの第一特性変化領域で発生したセンサの出力信号と、同じく第二特性変化領域で発生したセンサの出力信号とを、この出力信号の周期から判別できる構成の第3例を示す図。The figure which shows the 3rd example of a structure which can discriminate | determine the output signal of the sensor which generate | occur | produced in the 1st characteristic change area | region of the encoder for an inspection, and the output signal of the sensor which also occurred in the 2nd characteristic change area | region from this output signal period. . 従来から知られている転がり軸受ユニットの状態量測定装置の第1例を示す断面図。Sectional drawing which shows the 1st example of the state quantity measuring apparatus of the rolling bearing unit known conventionally. 同第2例を示す断面図。Sectional drawing which shows the 2nd example. 先発明の検査方法の第1例を示す断面図。Sectional drawing which shows the 1st example of the inspection method of a prior invention. 1対のセンサ及び検査用エンコーダを取り出して径方向から見た図。The figure which took out a pair of sensor and the encoder for a test | inspection, and was seen from the radial direction. 検査用エンコーダの回転に伴う1対のセンサの出力信号の変化状況を示す線図。The diagram which shows the change state of the output signal of a pair of sensor accompanying rotation of the encoder for a test | inspection. 先発明の検査方法の第2例を示す断面図。Sectional drawing which shows the 2nd example of the inspection method of a prior invention. 1対のセンサ及び検査用エンコーダを取り出して径方向から見た図。The figure which took out a pair of sensor and the encoder for a test | inspection, and was seen from the radial direction. 検査用エンコーダの回転に伴う1対のセンサの出力信号の変化状況を示す線図。The diagram which shows the change state of the output signal of a pair of sensor accompanying rotation of the encoder for a test | inspection.

符号の説明Explanation of symbols

1 外輪
2 ハブ
3 転動体
4、4a エンコーダ
5 カバー
6a、6b センサ
7、7a 芯金
8、8a エンコーダ本体
9 ホルダ
10、10a、10b、10c 検査用エンコーダ
11 取付フレーム
12 取付孔
13 芯金
14、14a、14b 検査用エンコーダ本体
15、15a 第一特性変化領域
16、16a 第二特性変化領域
17 透孔
18 柱部
19 永久磁石
1 第一特性変化領域
2 第二特性変化領域
1〜B5 中間領域
1〜E5 検査用エンコーダ
1、S2 センサ
DESCRIPTION OF SYMBOLS 1 Outer ring 2 Hub 3 Rolling element 4, 4a Encoder 5 Cover 6a, 6b Sensor 7, 7a Core metal 8, 8a Encoder main body 9 Holder 10, 10a, 10b, 10c Inspection encoder 11 Mounting frame 12 Mounting hole 13 Core metal 14, 14a, 14b inspection encoder body 15,15a first characteristic change region 16,16a second characteristic change region 17 through hole 18 pillar part 19 permanent magnet A 1 first characteristic change region A 2 second characteristic change region B 1 .about.B 5 the middle area E 1 to E 5 test encoder S 1, S 2 sensor

Claims (9)

転がり軸受ユニットと、状態量測定装置とを備え、
このうちの転がり軸受ユニットは、静止側周面に静止側軌道を有し、使用時にも回転しない静止側軌道輪と、回転側周面に回転側軌道を有し、使用時に回転する回転側軌道輪と、上記静止側軌道と上記回転側軌道との間に転動自在に設けられた複数個の転動体とを備えたものであり、
上記状態量測定装置は、エンコーダと、上記静止側軌道輪に対し保持部材を介して支持固定されたセンサ装置と、演算器とを備え、
このうちのエンコーダは、上記回転側軌道輪の一部に直接又は他の部材を介して支持固定されたもので、この回転側軌道輪と同心の被検出面を備え、この被検出面の特性を円周方向に関して交互に変化させると共に、この被検出面の特性が円周方向に関して変化する位相を、少なくともこの被検出面の幅方向一部分で、この幅方向に関して連続的に変化させており、
上記センサ装置は、複数個のセンサを備えたもので、これら各センサの検出部を上記被検出面に対向させると共に、このうちの少なくとも1個のセンサの検出部を、上記被検出面のうちで、上記特性変化の位相が幅方向に関して連続的に変化する部分に対向させた状態で、上記保持部材を上記静止側軌道輪に対し結合固定する事により、この静止側軌道輪に対し支持されており、且つ、上記各センサはそれぞれ、上記回転側軌道輪の回転に伴い、上記被検出面のうちで自身の検出部を対向させた部分の特性変化に対応してその出力信号を変化させるものであり、
上記演算器は、上記各センサの出力信号に関する情報に基づいて、上記静止側軌道輪と上記回転側軌道輪との間の相対変位と、これら両軌道輪同士の間に作用する外力とのうちの、少なくとも一方の状態量を算出する機能を有するものである、
転がり軸受ユニットの状態量測定装置に関して、
上記各センサの出力信号同士の間の初期位相差特性と、上記エンコーダの円周方向に関する上記各センサ同士の位置関係とが、それぞれ適正であるか否かを検査する転がり軸受ユニットの状態量測定装置の検査方法であって、
上記エンコーダの被検出面と同じ面形状を有する検査用被検出面を備え、この検査用被検出面の特性を円周方向に関して交互に変化させると共に、この検査用被検出面の円周方向に関する一部の領域を、特性変化の境界が、上記エンコーダの被検出面の特性変化の境界と同一の形状及び向きを有すると共に円周方向に関して既知のピッチで存在している、第一特性変化領域とし、同じく他の一部の領域を、特性変化の境界が、上記検査用被検出面の幅方向と平行な直線形状であると共に円周方向に関して既知のピッチで存在している、第二特性変化領域とした検査用エンコーダを用意し、上記保持部材を上記静止側軌道輪に結合する以前に、この検査用エンコーダの検査用被検出面に上記各センサの検出部を対向させた状態で、この検査用エンコーダをこれら各センサに対し一定の速度で回転させ、この際に生じたこれら各センサの出力信号同士の間の位相差のうち、上記第一特性変化領域で生じた位相差に基づいて、上記各センサの出力信号同士の間の初期位相差特性の適否を判定すると共に、上記第二特性変化領域で生じた位相差に基づいて、上記検査用エンコーダの回転方向に関する上記各センサ同士の位置関係の適否を判定する、
転がり軸受ユニットの状態量測定装置の検査方法。
A rolling bearing unit and a state quantity measuring device;
Among these, the rolling bearing unit has a stationary side raceway on the stationary side circumferential surface and does not rotate even when used, and a stationary side raceway that has a rotational side raceway on the rotational side circumferential surface and rotates when used. A ring, and a plurality of rolling elements provided between the stationary-side track and the rotating-side track so as to roll freely,
The state quantity measuring device includes an encoder, a sensor device supported and fixed to the stationary raceway ring via a holding member, and a calculator.
Of these, the encoder is supported and fixed to a part of the rotation-side raceway directly or via another member, and has a detection surface concentric with the rotation-side raceway. Are alternately changed in the circumferential direction, and the phase in which the characteristics of the detected surface change in the circumferential direction is continuously changed in the width direction at least in a part of the width direction of the detected surface.
The sensor device includes a plurality of sensors. The detection unit of each sensor is opposed to the detection surface, and the detection unit of at least one of the sensors is disposed on the detection surface. In this state, the holding member is coupled to and fixed to the stationary side race ring in a state where it faces a portion where the phase of the characteristic change continuously changes in the width direction. In addition, each of the sensors changes its output signal in response to a change in characteristics of a portion of the detected surface facing its own detection unit as the rotation-side raceway rotates. Is,
Based on the information on the output signal of each sensor, the computing unit includes a relative displacement between the stationary side raceway and the rotation side raceway and an external force acting between the two raceways. Having a function of calculating at least one state quantity of
Regarding the state quantity measuring device for rolling bearing units,
State quantity measurement of a rolling bearing unit that checks whether the initial phase difference characteristics between the output signals of each sensor and the positional relationship between the sensors in the circumferential direction of the encoder are appropriate. A method for inspecting a device,
An inspection detection surface having the same surface shape as the detection surface of the encoder, the characteristics of the inspection detection surface are alternately changed with respect to the circumferential direction, and the circumferential direction of the detection detection surface is related to In a part of the region, a first characteristic change region in which the boundary of the characteristic change has the same shape and orientation as the boundary of the characteristic change of the detected surface of the encoder and exists at a known pitch in the circumferential direction Similarly, in another part of the region, the boundary of the characteristic change has a linear shape parallel to the width direction of the detection target surface for inspection and exists at a known pitch in the circumferential direction. Before preparing the inspection encoder as the change area and coupling the holding member to the stationary raceway, with the detection part of each sensor facing the inspection detection surface of the inspection encoder, This inspection The coder is rotated at a constant speed with respect to each of these sensors, and the phase difference between the output signals of each of the sensors generated at this time is based on the phase difference generated in the first characteristic change region. The positional relationship between the sensors with respect to the rotation direction of the inspection encoder is determined based on the phase difference generated in the second characteristic change region while determining the suitability of the initial phase difference characteristics between the output signals of the sensors. To determine the suitability of
Inspection method for state quantity measuring device of rolling bearing unit.
検査用エンコーダが永久磁石製であって、この検査用エンコーダの検査用被検出面にS極とN極とを、この検査用エンコーダの円周方向に関して交互に配置している、請求項1に記載した転がり軸受ユニットの状態量測定装置の検査方法。   The inspection encoder is made of a permanent magnet, and S poles and N poles are alternately arranged on the inspection target surface of the inspection encoder in the circumferential direction of the inspection encoder. Inspection method of state quantity measuring device of rolling bearing unit described. 各センサが永久磁石を備えたものであると共に、検査用エンコーダが磁性材製であって、この検査用エンコーダの検査用被検出面に充実部と除肉部とを、この検査用エンコーダの円周方向に関して交互に配置している、請求項1に記載した転がり軸受ユニットの状態量測定装置の検査方法。   Each sensor is provided with a permanent magnet, and the inspection encoder is made of a magnetic material. The inspection method of the state quantity measuring device of the rolling bearing unit according to claim 1, wherein the rolling bearing unit is alternately arranged in the circumferential direction. 検査用エンコーダが磁性材製であって、この検査用エンコーダの検査用被検出面に充実部と除肉部とを、この検査用エンコーダの円周方向に関して交互に配置しており、この検査用エンコーダを挟んで各センサの検出部と対向する位置に、永久磁石の磁極を配置している、請求項1に記載した転がり軸受ユニットの状態量測定装置の検査方法。   The inspection encoder is made of a magnetic material, and a solid portion and a thinned portion are alternately arranged on the inspection target surface of the inspection encoder in the circumferential direction of the inspection encoder. The inspection method of the state quantity measuring apparatus of a rolling bearing unit according to claim 1, wherein the magnetic pole of the permanent magnet is arranged at a position facing the detection unit of each sensor across the encoder. 検査用エンコーダとして、検査用被検出面のうち円周方向に関して第一、第二両特性変化領域同士の間部分に、この検査用被検出面の幅方向片半部の周期特性をこれら第一、第二両特性変化領域の周期特性と異ならせた中間領域を設けたものを使用する、請求項1〜4のうちの何れか1項に記載した転がり軸受ユニットの状態量測定装置の検査方法。   As the inspection encoder, the periodic characteristics of the half halves of the inspection target surface in the width direction are arranged between the first and second characteristic change regions in the circumferential direction of the inspection target surface. The inspection method for the state quantity measuring device for a rolling bearing unit according to any one of claims 1 to 4, wherein an intermediate region made different from the periodic characteristics of the second both characteristic change regions is used. . 検査用エンコーダとして、検査用被検出面のうち円周方向に関して第一、第二両特性変化領域同士の間部分に、この検査用被検出面の幅方向両半部の周期特性をこれら第一、第二両特性変化領域の周期特性と異ならせた中間領域を設けたものを使用する、請求項1〜4のうちの何れか1項に記載した転がり軸受ユニットの状態量測定装置の検査方法。   As the inspection encoder, the periodic characteristics of the half halves of the inspection target surface in the width direction are arranged between the first and second characteristic change regions in the circumferential direction of the inspection target surface. The inspection method for the state quantity measuring device for a rolling bearing unit according to any one of claims 1 to 4, wherein an intermediate region made different from the periodic characteristics of the second both characteristic change regions is used. . 検査用エンコーダとして、検査用被検出面のうち円周方向に関して第一、第二両特性変化領域同士の間部分に、位相差特性をこれら第一、第二両特性変化領域の位相差特性と異ならせた中間領域を設けたものを使用する、請求項1〜4のうちの何れか1項に記載した転がり軸受ユニットの状態量測定装置の検査方法。   As an inspection encoder, the phase difference characteristic between the first and second characteristic change areas is set between the first and second characteristic change areas in the circumferential direction of the inspection target surface. The inspection method of the state quantity measuring device of a rolling bearing unit according to any one of claims 1 to 4, wherein a different intermediate region is used. 検査用エンコーダとして、第一、第二両特性変化領域同士の周期特性を互いに異ならせたものを使用する、請求項1〜4のうちの何れか1項に記載した転がり軸受ユニットの状態量測定装置の検査方法。   The state quantity measurement of the rolling bearing unit according to any one of claims 1 to 4, wherein an inspection encoder is used in which the periodic characteristics of the first and second characteristic change regions are different from each other. Device inspection method. 請求項1〜8のうちの何れか1項に記載した転がり軸受ユニットの状態量測定装置の検査方法を実施する為、少なくとも、検査用エンコーダと、保持部材を支持する支持手段と、この検査用エンコーダの検査用被検出面にこの保持部材に保持された各センサの検出部を対向させた状態で、この検査用エンコーダをこれら各センサに対し一定の回転速度で回転させる回転駆動手段と、これら各センサの出力信号同士の間の位相差のうち、第一特性変化領域で生じた位相差に基づいて、これら各センサの出力信号同士の間の初期位相差特性の適否を判定すると共に、第二特性変化領域で生じた位相差に基づいて、上記検査用エンコーダの回転方向に関する上記各センサ同士の位置関係の適否を判定する判定手段とを備えた、転がり軸受ユニットの状態量測定装置の検査装置。   In order to carry out the inspection method of the state quantity measuring device for a rolling bearing unit according to any one of claims 1 to 8, at least an inspection encoder, a support means for supporting a holding member, and this inspection Rotation drive means for rotating the inspection encoder at a constant rotational speed with respect to the sensors while the detection portions of the sensors held by the holding member are opposed to the detection detection surface of the encoder, Among the phase differences between the output signals of the sensors, based on the phase difference generated in the first characteristic change region, the suitability of the initial phase difference characteristics between the output signals of these sensors is determined, and the first A rolling bearing unit comprising: a determination unit that determines appropriateness of a positional relationship between the sensors with respect to a rotation direction of the inspection encoder based on a phase difference generated in a two-characteristic change region. Inspection apparatus of the state quantity measuring device.
JP2008308609A 2008-12-03 2008-12-03 Inspection method and inspection device for state quantity measuring device of rolling bearing unit Expired - Fee Related JP5200898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008308609A JP5200898B2 (en) 2008-12-03 2008-12-03 Inspection method and inspection device for state quantity measuring device of rolling bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008308609A JP5200898B2 (en) 2008-12-03 2008-12-03 Inspection method and inspection device for state quantity measuring device of rolling bearing unit

Publications (2)

Publication Number Publication Date
JP2010133779A JP2010133779A (en) 2010-06-17
JP5200898B2 true JP5200898B2 (en) 2013-06-05

Family

ID=42345218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008308609A Expired - Fee Related JP5200898B2 (en) 2008-12-03 2008-12-03 Inspection method and inspection device for state quantity measuring device of rolling bearing unit

Country Status (1)

Country Link
JP (1) JP5200898B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113567042B (en) * 2021-07-26 2023-03-24 中国船舶重工集团公司第七0三研究所 Axial force measuring ring calibration device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001272251A (en) * 2000-03-24 2001-10-05 Honda Motor Co Ltd Inspection device for mounting of rotation sensor on motor
DE10158052A1 (en) * 2001-11-27 2003-06-05 Philips Intellectual Property Arrangement for determining the position of a motion sensor element
JP2007101396A (en) * 2005-10-05 2007-04-19 Sendai Nikon:Kk Encoder
JP2007132773A (en) * 2005-11-10 2007-05-31 Nsk Ltd Inspection method of encoder
JP4887816B2 (en) * 2006-02-13 2012-02-29 日本精工株式会社 Load measuring device for rolling bearing units
JP2008122171A (en) * 2006-11-10 2008-05-29 Nsk Ltd Method of exchanging sensor of bearing unit with state quantity measuring device

Also Published As

Publication number Publication date
JP2010133779A (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP2008064731A (en) Quantity-of-state measuring device for rotary machine
KR20060018208A (en) Load measuring unit for rolling bearing unit
JP4957412B2 (en) Inspection method for state quantity measuring device of rolling bearing unit
JP2006113017A (en) Encoder, rolling bearing unit with the encoder, and rolling bearing unit with load-measuring instrument
JP2006337356A (en) Rolling bearing unit with displacement measuring instrument, and rolling bearing unit with load measuring instrument
JP5200898B2 (en) Inspection method and inspection device for state quantity measuring device of rolling bearing unit
JP4957390B2 (en) Method for manufacturing rolling bearing unit with physical quantity measuring device
JP2006317434A (en) Apparatus for measuring displacement and load of rolling bearing unit
JP2008039155A (en) Rolling bearing unit with state quantity measuring device and assembling method
JP2007171104A (en) Roller bearing unit with load-measuring device
JP5092393B2 (en) Method for assembling state quantity measuring device for rolling bearing unit
JP2006258801A (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device
JP2005164253A (en) Load measuring instrument for rolling bearing unit
JP2007225106A (en) Rolling bearing unit with state quantity measurement device
JP2008292275A (en) Load measuring instrument for rolling bearing unit
JP2008224397A (en) Load measuring device for roller bearing unit
JP2010139473A (en) Method and apparatus for inspection of quantity-of-state measurement device of rolling bearing unit
JP4882403B2 (en) Encoder and state quantity measuring device
JP5135741B2 (en) Left and right wheel support unit for vehicles
JP2008122171A (en) Method of exchanging sensor of bearing unit with state quantity measuring device
JP4735526B2 (en) State quantity measuring device for rolling bearing units
JP2009276256A (en) Inspection method for encoder
JP2009198427A (en) Rotational speed detector
JP4941140B2 (en) State quantity measuring device for rolling bearing units
JP5007534B2 (en) Load measuring device for rotating machinery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees