JP2006258801A - Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device - Google Patents

Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device Download PDF

Info

Publication number
JP2006258801A
JP2006258801A JP2006034686A JP2006034686A JP2006258801A JP 2006258801 A JP2006258801 A JP 2006258801A JP 2006034686 A JP2006034686 A JP 2006034686A JP 2006034686 A JP2006034686 A JP 2006034686A JP 2006258801 A JP2006258801 A JP 2006258801A
Authority
JP
Japan
Prior art keywords
sensors
detection
rolling bearing
encoder
bearing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006034686A
Other languages
Japanese (ja)
Inventor
Mamoru Aoki
護 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006034686A priority Critical patent/JP2006258801A/en
Publication of JP2006258801A publication Critical patent/JP2006258801A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To inhibit a variation of a changing timing of an output signal of a pair of the sensors 9a, 9b, irrespective of a direction and an amount of a relative displacement of both orbital rings of static and rotation sides, to simplify a process in an operation part calculating the above direction and amount of the relative displacement, to suppress a cost up of an operation part, and to provide a structure which can shorten a period required to specify the direction and the amount of the displacement. <P>SOLUTION: An initial phase difference is established between the output signals of the sensors 9a, 9b by changing the direction of the magnetic detection elements 10, 10 or the permanent magnets 11, 11 constituting of a pair of the sensors 9a, 9b. Further, the direction and the amount of the above displacement is determined by grasping the variation of the direction and the amount of a real phase difference as the phase difference between the output signals of the sensors 9a, 9b at this time point for the initial phase difference. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明に係る変位測定装置付転がり軸受ユニット及び荷重測定装置付転がり軸受ユニットは、例えば車両(自動車)の車輪を懸架装置に対して回転自在に支持すると共に、この車輪に加わる荷重の大きさを測定して、車両の安定運行の確保に利用する。或は、各種工作機械の主軸を支持する為の転がり軸受ユニットに組み込んで、この主軸に加わる荷重を測定し、工具の送り速度等を適切に調節する為に利用する。   A rolling bearing unit with a displacement measuring device and a rolling bearing unit with a load measuring device according to the present invention support, for example, a wheel of a vehicle (automobile) so as to be rotatable with respect to a suspension device, and can control the magnitude of a load applied to the wheel. Measure and use to ensure stable operation of the vehicle. Alternatively, it is incorporated in a rolling bearing unit for supporting the spindles of various machine tools, is used for measuring the load applied to the spindle and adjusting the feed rate of the tool appropriately.

例えば、車両の車輪を懸架装置に対して回転自在に支持する為に、転がり軸受ユニットを使用する。又、車両の走行安定性を確保する為に、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)等の車両の走行状態安定化装置が広く使用されている。これらABSやTCS等の走行状態安定化装置によれば、制動時や加速時に於ける車両の走行状態を安定させる事はできるが、より厳しい条件でもこの安定性の確保を図る為には、車両の走行安定性に影響するより多くの情報を取り入れて、ブレーキやエンジンの制御を行なう事が必要になる。   For example, a rolling bearing unit is used to rotatably support a vehicle wheel with respect to a suspension device. In order to ensure the running stability of the vehicle, a running state stabilizing device for the vehicle such as an antilock brake system (ABS) or a traction control system (TCS) is widely used. According to these running state stabilizing devices such as ABS and TCS, the running state of the vehicle at the time of braking or acceleration can be stabilized, but in order to ensure this stability even under more severe conditions, the vehicle It is necessary to control the brakes and the engine by incorporating more information that affects the running stability of the vehicle.

即ち、上記ABSやTCS等の従来の走行状態安定化装置の場合には、タイヤと路面との滑りを検知してブレーキやエンジンを制御する、所謂フィードバック制御を行なっている為、これらブレーキやエンジンの制御が一瞬とは言え遅れる。言い換えれば、厳しい条件下での性能向上を図るべく、所謂フィードフォワード制御により、タイヤと路面との間に滑りが発生しない様にしたり、左右の車輪の制動力が極端に異なる所謂ブレーキの片効きを防止する事はできない。更には、トラック等で、積載状態が不良である事に基づいて走行安定性が不良になるのを防止する事もできない。   That is, in the case of the conventional running state stabilizing device such as ABS or TCS, since so-called feedback control is performed to detect the slip between the tire and the road surface and control the brake and the engine, the brake and engine Control is delayed for a moment. In other words, in order to improve performance under severe conditions, the so-called feed-forward control prevents slippage between the tire and the road surface, or the so-called brake one-side effect where the braking forces of the left and right wheels are extremely different. Cannot be prevented. Furthermore, it is impossible to prevent the running stability of a truck or the like from being deteriorated based on the poor loading state.

この様な問題に対応すべく、上記フィードフォワード制御等を行なう為には、懸架装置に対して車輪を支持する為の転がり軸受ユニットに、この車輪に加わるラジアル荷重とアキシアル荷重とのうちの一方又は双方を測定する為の荷重測定装置を組み込む事が考えられる。この様な場合に使用可能な荷重測定装置付車輪支持用転がり軸受ユニットとして従来から、特許文献1〜4に記載されたものが知られている。   In order to cope with such a problem, in order to perform the feedforward control or the like, one of a radial load and an axial load applied to the wheel is applied to the rolling bearing unit for supporting the wheel with respect to the suspension device. Or it is possible to incorporate a load measuring device for measuring both. Conventionally, what was described in patent documents 1-4 is known as a rolling bearing unit for wheel support with a load measuring device which can be used in such a case.

このうちの特許文献1には、ラジアル荷重を測定自在な、荷重測定装置付転がり軸受ユニットが記載されている。この従来構造の第1例の場合には、非接触式の変位センサにより、回転しない外輪と、この外輪の内径側で回転するハブとの径方向に関する変位を測定する事により、これら外輪とハブとの間に加わるラジアル荷重を求める様にしている。求めたラジアル荷重は、ABSを適正に制御する他、積載状態の不良を運転者に知らせる為に利用する。   Of these, Patent Document 1 describes a rolling bearing unit with a load measuring device capable of measuring a radial load. In the case of the first example of the conventional structure, the outer ring and the hub are measured by measuring the radial displacement between the outer ring that does not rotate and the hub that rotates on the inner diameter side of the outer ring by a non-contact displacement sensor. The radial load applied between and is calculated. The obtained radial load is used not only to properly control the ABS but also to inform the driver of a bad loading condition.

又、特許文献2には、転がり軸受ユニットに加わるアキシアル荷重を測定する構造が記載されている。この特許文献2に記載された従来構造の第2例の場合、外輪の外周面に設けた固定側フランジの内側面複数個所で、この固定側フランジをナックルに結合する為のボルトを螺合する為のねじ孔を囲む部分に、それぞれ荷重センサを添設している。上記外輪を上記ナックルに支持固定した状態でこれら各荷重センサは、このナックルの外側面と上記固定側フランジの内側面との間で挟持される。この様な従来構造の第2例の転がり軸受ユニットの荷重測定装置の場合、車輪と上記ナックルとの間に加わるアキシアル荷重は、上記各荷重センサにより測定される。   Patent document 2 describes a structure for measuring an axial load applied to a rolling bearing unit. In the case of the second example of the conventional structure described in Patent Document 2, bolts for connecting the fixed side flange to the knuckle are screwed at a plurality of positions on the inner side surface of the fixed side flange provided on the outer peripheral surface of the outer ring. Each load sensor is attached to a portion surrounding the screw hole. Each load sensor is clamped between the outer surface of the knuckle and the inner surface of the fixed flange in a state where the outer ring is supported and fixed to the knuckle. In the case of the load measuring device for the rolling bearing unit of the second example having such a conventional structure, the axial load applied between the wheel and the knuckle is measured by the load sensors.

又、特許文献3には、外輪の円周方向4個所位置に支持した変位センサユニットとハブに外嵌固定した断面L字形の被検出リングとにより、上記4個所位置での、上記外輪に対する上記ハブの、ラジアル方向及びアキシアル方向の変位を検出し、各部の検出値に基づいて、このハブに加わる荷重の方向及びその大きさを求める構造が記載されている。   Further, in Patent Document 3, the displacement sensor unit supported at four positions in the circumferential direction of the outer ring and the L-shaped detection ring that is externally fitted and fixed to the hub are used to detect the above-described outer ring at the four positions. A structure is described in which the displacement of the hub in the radial direction and the axial direction is detected, and the direction of the load applied to the hub and the magnitude thereof are determined based on the detection values of the respective parts.

更に、特許文献4には、一部の剛性を低くした外輪相当部材に動的歪みを検出する為のストレンゲージを設け、このストレンゲージが検出する転動体の通過周波数から転動体の公転速度を求め、この公転速度から、転がり軸受に加わるアキシアル荷重を測定する方法が記載されている。   Furthermore, in Patent Document 4, a strain gauge for detecting dynamic strain is provided in a member corresponding to an outer ring whose rigidity is partially reduced, and the revolution speed of the rolling element is determined from the passing frequency of the rolling element detected by the strain gauge. A method for determining the axial load applied to the rolling bearing from the revolution speed is described.

前述の特許文献1に記載された従来構造の第1例の場合、変位センサにより外輪とハブとの径方向に関する変位を測定する事で、転がり軸受ユニットに加わる荷重を測定する。但し、この径方向に関する変位量は僅かである為、この荷重を精度良く求める為には、上記変位センサとして、高精度のものを使用する必要がある。高精度の非接触式センサは高価である為、荷重測定装置付転がり軸受ユニット全体としてコストが嵩む事が避けられない。   In the case of the first example of the conventional structure described in Patent Document 1, the load applied to the rolling bearing unit is measured by measuring the displacement in the radial direction between the outer ring and the hub using a displacement sensor. However, since the displacement amount in the radial direction is small, it is necessary to use a highly accurate displacement sensor in order to obtain this load with high accuracy. Since high-precision non-contact sensors are expensive, it is inevitable that the cost of the entire rolling bearing unit with a load measuring device increases.

又、特許文献2に記載された従来構造の第2例の場合、ナックルに対し外輪を支持固定する為のボルトと同数だけ、荷重センサを設ける必要がある。この為、荷重センサ自体が高価である事と相まって、転がり軸受ユニットの荷重測定装置全体としてのコストが相当に嵩む事が避けられない。又、特許文献3に記載された構造は、外輪の周方向4個所位置にセンサを設置する為、上記特許文献1に記載された構造よりも更にコストが嵩む。更に、特許文献4に記載された方法は、外輪相当部材の一部の剛性を低くする必要があり、この外輪相当部材の耐久性確保が難しくなる可能性がある。   In the second example of the conventional structure described in Patent Document 2, it is necessary to provide as many load sensors as the bolts for supporting and fixing the outer ring to the knuckle. For this reason, coupled with the fact that the load sensor itself is expensive, it is inevitable that the cost of the entire load measuring device of the rolling bearing unit is considerably increased. In addition, the structure described in Patent Document 3 is more expensive than the structure described in Patent Document 1 because sensors are installed at four positions in the circumferential direction of the outer ring. Furthermore, the method described in Patent Document 4 needs to reduce the rigidity of a part of the outer ring equivalent member, and it may be difficult to ensure the durability of the outer ring equivalent member.

この様な事情に鑑みて特願2005−147642号には、荷重の作用方向に配置された1対のセンサの出力信号の位相差に基づき、転がり軸受ユニットに加わる荷重の大きさを測定する発明が記載されている。図5〜12は、上記出願に開示された先発明のうちの2例の構造を示している。これら各先発明に係る構造は、何れも、図5、9に示す様に、懸架装置に支持された状態で回転しない静止側軌道輪である外輪1の内径側に、車輪を支持固定(結合固定)する回転側軌道輪であるハブ2を、複数個の転動体3、3を介して回転自在に支持している。そして、このハブ2の中間部にエンコーダ4、4aを外嵌固定すると共に、上記外輪1の軸方向中間部で複列に配置された上記各転動体3、3の間部分にセンサ5、5aを、それぞれの検出部を、被検出面である上記エンコーダ4、4aの外周面に近接対向させた状態で、それぞれ1対ずつ設けている。尚、上記センサ5、5aの検出部には、ホールIC、ホール素子、MR、GMR等の磁気検知素子を組み込む事が適当である。   In view of such circumstances, Japanese Patent Application No. 2005-147642 discloses an invention for measuring the magnitude of a load applied to a rolling bearing unit based on the phase difference between the output signals of a pair of sensors arranged in the direction in which the load is applied. Is described. 5 to 12 show the structures of two examples of the prior invention disclosed in the above application. As shown in FIGS. 5 and 9, each of the structures according to the prior inventions supports and fixes (couples) a wheel to the inner diameter side of the outer ring 1 which is a stationary side race ring that does not rotate while being supported by a suspension device. A hub 2 which is a rotating side race ring to be fixed is rotatably supported via a plurality of rolling elements 3 and 3. The encoders 4, 4 a are externally fitted and fixed to the intermediate part of the hub 2, and the sensors 5, 5 a are arranged between the rolling elements 3, 3 arranged in a double row at the axially intermediate part of the outer ring 1. Each pair is provided in a state where the respective detection units are close to and opposed to the outer peripheral surfaces of the encoders 4 and 4a, which are detected surfaces. In addition, it is appropriate to incorporate a magnetic detection element such as a Hall IC, a Hall element, MR, or GMR in the detection portion of the sensors 5 and 5a.

図5〜8に示した、先発明の第1例の構造の場合、上記エンコーダ4として、永久磁石製のものを使用している。被検出面である、このエンコーダ4の外周面には、N極に着磁した部分とS極に着磁した部分とを、円周方向に関して交互に且つ等間隔で配置している。これらN極に着磁された部分とS極に着磁された部分との境界は、上記エンコーダ4の軸方向に対し同じ角度だけ傾斜させると共に、この軸方向に対する傾斜方向を、このエンコーダ4の軸方向中間部を境に互いに逆方向としている。従って、上記N極に着磁された部分とS極に着磁された部分とは、軸方向中間部が円周方向に関して最も突出した(又は凹んだ)、「く」字形となっている。   In the case of the structure of the first example of the present invention shown in FIGS. 5 to 8, the encoder 4 is made of a permanent magnet. On the outer peripheral surface of the encoder 4 which is a detection surface, portions magnetized in the N pole and portions magnetized in the S pole are alternately arranged at equal intervals in the circumferential direction. The boundary between the part magnetized in the N pole and the part magnetized in the S pole is inclined by the same angle with respect to the axial direction of the encoder 4, and the inclination direction with respect to the axial direction of the encoder 4 is The axial directions are opposite to each other at the intermediate portion. Therefore, the portion magnetized in the N pole and the portion magnetized in the S pole have a “<” shape with the axially middle portion protruding (or recessed) most in the circumferential direction.

又、上記両センサ5、5の検出部が上記エンコーダ4の外周面に対向する位置は、このエンコーダ4の円周方向に関して同じ位置としている。言い換えれば、上記両センサ5、5の検出部は、上記外輪1の中心軸を含む同一仮想平面上に配置されている。又、この外輪1と上記ハブ2との間にアキシアル荷重が作用しない状態で、上記N極に着磁された部分とS極に着磁された部分との軸方向中間部で円周方向に関して最も突出した部分(境界の傾斜方向が変化する部分)が、上記両センサ5、5の検出部同士の間の丁度中央位置に存在する様に、各部材4、5、5の設置位置を規制している。この様に、上記境界の傾斜方向が変化する部分を上記中央位置に存在させる事で、内外輪の温度差や熱膨張等の変形による誤差(変位が生じていなくても内外輪の温度差によって位相差が生じる、所謂オフセット)を小さく抑えられる様にしている。尚、先発明の第1例の場合には、上記エンコーダ4として永久磁石製のものを使用しているので、上記両センサ5、5側に永久磁石を組み込む必要はない。   The positions where the detection parts of the sensors 5 and 5 face the outer peripheral surface of the encoder 4 are the same with respect to the circumferential direction of the encoder 4. In other words, the detection parts of the sensors 5 and 5 are arranged on the same virtual plane including the central axis of the outer ring 1. Further, in the state where the axial load is not applied between the outer ring 1 and the hub 2, the axial direction intermediate portion between the portion magnetized in the N pole and the portion magnetized in the S pole is related to the circumferential direction. The installation positions of the members 4, 5, and 5 are regulated so that the most protruding part (the part in which the tilt direction of the boundary changes) is exactly at the center position between the detection parts of the sensors 5 and 5. is doing. In this way, by making the portion where the inclination direction of the boundary changes in the center position, errors due to temperature difference between the inner and outer rings and deformation due to thermal expansion (even if no displacement occurs, the temperature difference between the inner and outer rings The so-called offset, which causes a phase difference, can be kept small. In the case of the first example of the present invention, since the encoder 4 is made of a permanent magnet, it is not necessary to incorporate a permanent magnet on both the sensors 5 and 5 side.

上述の様に構成する先発明の第1例の場合、上記外輪1とハブ2との間にアキシアル荷重が作用すると、上記両センサ5、5の出力信号が変化する位相がずれる。即ち、上記外輪1とハブ2との間にアキシアル荷重が作用しておらず、上記外輪1と上記ハブ2とが相対変位していない、中立状態では、上記両センサ5、5の検出部は、図8の(A)の実線イ、イ上、即ち、上記最も突出した部分から軸方向に同じだけずれた部分に対向する。従って、上記両センサ5、5の出力信号の位相は、同図の(C)に示す様に一致する。   In the case of the first example of the prior invention configured as described above, when an axial load is applied between the outer ring 1 and the hub 2, the phase at which the output signals of the sensors 5, 5 change is shifted. That is, in the neutral state where an axial load is not applied between the outer ring 1 and the hub 2 and the outer ring 1 and the hub 2 are not relatively displaced, the detecting portions of the sensors 5 and 5 are 8, facing the solid lines a and b in FIG. 8A, that is, the portions that are shifted from the most protruding portions by the same amount in the axial direction. Accordingly, the phases of the output signals of the sensors 5 and 5 coincide as shown in FIG.

これに対して、上記エンコーダ4を固定したハブ2に、図8の(A)で下向きのアキシアル荷重が作用し(外輪1とハブ2とがアキシアル方向に相対変位し)た場合には、上記両センサ5、5の検出部は、図8の(A)の破線ロ、ロ上、即ち、上記最も突出した部分からの軸方向に関するずれが互いに異なる部分に対向する。この状態では上記両センサ5、5の出力信号の位相は、同図の(B)に示す様にずれる。更に、上記エンコーダ4を固定したハブ2に、図8の(A)で上向きのアキシアル荷重が作用した場合には、上記両センサ5、5の検出部は、図8の(A)の鎖線ハ、ハ上、即ち、上記最も突出した部分からの軸方向に関するずれが、逆方向に互いに異なる部分に対向する。この状態では上記両センサ5、5の出力信号の位相は、同図の(D)に示す様にずれる。   On the other hand, when a downward axial load acts on the hub 2 to which the encoder 4 is fixed in FIG. 8A (the outer ring 1 and the hub 2 are relatively displaced in the axial direction), The detection parts of both sensors 5 and 5 are opposed to the broken lines B and B in FIG. In this state, the phases of the output signals of the sensors 5 and 5 are shifted as shown in FIG. Further, when an upward axial load is applied to the hub 2 to which the encoder 4 is fixed as shown in FIG. 8A, the detecting portions of both the sensors 5 and 5 are connected to the chain line H shown in FIG. , C, that is, the deviation in the axial direction from the most projecting portion opposes different portions in the opposite direction. In this state, the phases of the output signals of the sensors 5 and 5 are shifted as shown in FIG.

上述の様に先発明の第1例の場合には、上記両センサ5、5の出力信号の位相が、上記外輪1とハブ2との間に加わるアキシアル荷重の方向に応じた方向にずれる。又、このアキシアル荷重により上記両センサ5、5の出力信号の位相がずれる程度(変位量)は、このアキシアル荷重が大きくなる程大きくなる。従って第1例の場合には、上記両センサ5、5の出力信号の位相ずれの有無、ずれが存在する場合にはその方向及び大きさに基づいて、上記外輪1とハブ2との間に作用しているアキシアル荷重の方向及び大きさを求められる。   As described above, in the case of the first example of the prior invention, the phases of the output signals of the sensors 5 and 5 are shifted in the direction corresponding to the direction of the axial load applied between the outer ring 1 and the hub 2. Further, the degree to which the phase of the output signals of the sensors 5, 5 is shifted by this axial load (displacement amount) increases as the axial load increases. Therefore, in the case of the first example, based on the presence and absence of the phase shift of the output signals of the sensors 5 and 5 and the direction and magnitude of the shift, between the outer ring 1 and the hub 2. The direction and magnitude of the acting axial load can be determined.

次に、図9〜12に示した、先発明の第2例の構造の場合には、ハブ2の中間部に、磁性金属板製のエンコーダ4aを外嵌固定している。被検出面である、このエンコーダ4aの外周面には、スリット状の透孔6a、6bと柱部7a、7bとを、円周方向に関して交互に且つ等間隔で配置している。これら各透孔6a、6bと各柱部7a、7bとは、上記エンコーダ4aの軸方向に対し同じ角度だけ傾斜させると共に、この軸方向に対する傾斜方向を、このエンコーダ4aの軸方向中間部を境に互いに逆方向としている。即ち、このエンコーダ4aは、軸方向片半部に、上記軸方向に対し所定方向に同じだけ傾斜した透孔6a、6aを形成すると共に、軸方向他半部に、この所定方向と逆方向に同じ角度だけ傾斜した透孔6b、6bを形成している。   Next, in the case of the structure of the second example of the present invention shown in FIGS. 9 to 12, an encoder 4 a made of a magnetic metal plate is externally fitted and fixed to an intermediate portion of the hub 2. Slit-like through holes 6a and 6b and column portions 7a and 7b are alternately arranged at equal intervals in the circumferential direction on the outer peripheral surface of the encoder 4a, which is the detection surface. The through holes 6a and 6b and the column portions 7a and 7b are inclined by the same angle with respect to the axial direction of the encoder 4a, and the inclined direction with respect to the axial direction is bounded by the intermediate portion in the axial direction of the encoder 4a. Are in opposite directions. That is, the encoder 4a is formed with through holes 6a and 6a inclined in the same direction in the predetermined direction with respect to the axial direction in one half of the axial direction, and in the opposite direction to the predetermined direction in the other half of the axial direction. The through holes 6b and 6b inclined by the same angle are formed.

一方、外輪1の軸方向中間部で複列に配置された転動体3、3同士の間部分に、前記1対のセンサ5a、5aを設置し、これら両センサ5a、5aの検出部を、上記エンコーダ4aの外周面に近接対向させている。これら両センサ5a、5aの検出部がこのエンコーダ4aの外周面に対向する位置は、このエンコーダ4aの円周方向に関して同じ位置としている。又、上記外輪1とハブ2との間にアキシアル荷重が作用しない状態で、上記各透孔6a、6b同士の間に位置し、全周に連続するリム部8が、上記両センサ5a、5aの検出部同士の間の丁度中央位置に存在する様に、各部材4a、5a、5aの設置位置を規制している。尚、先発明の第2例の場合には、上記エンコーダ4aが単なる磁性材製である為、上記両センサ5a、5aの側に永久磁石を組み込む必要がある。   On the other hand, the pair of sensors 5a and 5a is installed between the rolling elements 3 and 3 arranged in a double row at the axially intermediate portion of the outer ring 1, and the detection portions of both the sensors 5a and 5a are provided. It is made to face and oppose the outer peripheral surface of the encoder 4a. The positions where the detection parts of both the sensors 5a and 5a face the outer peripheral surface of the encoder 4a are the same in the circumferential direction of the encoder 4a. A rim portion 8 that is located between the through holes 6a and 6b and continues to the entire circumference in a state where an axial load does not act between the outer ring 1 and the hub 2 includes the sensors 5a and 5a. The installation positions of the members 4a, 5a, and 5a are regulated so as to exist at the center position between the detection units. In the case of the second example of the present invention, since the encoder 4a is made of a simple magnetic material, it is necessary to incorporate permanent magnets on the two sensors 5a and 5a side.

上述の様に構成する先発明の第2例の場合、上記外輪1とハブ2との間にアキシアル荷重が作用(し外輪1とハブ2とがアキシアル方向に相対変位)すると、前述した先発明の第1例の場合と同様に、上記両センサ5a、5aの出力信号が変化する位相がずれる。即ち、上記外輪1とハブ2との間にアキシアル荷重が作用していない状態では、上記両センサ5a、5aの検出部は、図12の(A)の実線イ、イ上、即ち、上記リム部8から軸方向に同じだけずれた部分に対向する。従って、上記両センサ5a、5aの出力信号の位相は、同図の(C)に示す様に一致する。   In the case of the second example of the prior invention configured as described above, when an axial load acts between the outer ring 1 and the hub 2 (the outer ring 1 and the hub 2 are relatively displaced in the axial direction), the above-described prior invention. As in the case of the first example, the phase at which the output signals of the sensors 5a and 5a change is shifted. That is, in a state where an axial load is not applied between the outer ring 1 and the hub 2, the detecting portions of the sensors 5a and 5a are on the solid lines A and B in FIG. It faces a portion that is displaced from the portion 8 by the same amount in the axial direction. Therefore, the phases of the output signals of the sensors 5a and 5a coincide as shown in FIG.

これに対して、上記エンコーダ4aを固定したハブ2に、図12の(A)で下向きのアキシアル荷重が作用した場合には、上記両センサ5a、5aの検出部は、図12の(A)の破線ロ、ロ上、即ち、上記リム部8からの軸方向に関するずれが互いに異なる部分に対向する。この状態では上記両センサ5a、5aの出力信号の位相は、同図の(B)に示す様にずれる。更に、上記エンコーダ4aを固定したハブ2に、図12の(A)で上向きのアキシアル荷重が作用した場合には、上記両センサ5a、5aの検出部は、図12の(A)の鎖線ハ、ハ上、即ち、上記リム部8からの軸方向に関するずれが、逆方向に互いに異なる部分に対向する。この状態では上記両センサ5a、5aの出力信号の位相は、同図の(D)に示す様にずれる。   On the other hand, when a downward axial load is applied to the hub 2 to which the encoder 4a is fixed as shown in FIG. 12A, the detecting portions of the sensors 5a and 5a are shown in FIG. The broken lines B and B, that is, portions opposite to each other in the axial direction from the rim portion 8 are opposed to each other. In this state, the phases of the output signals of the sensors 5a and 5a are shifted as shown in FIG. Further, when an upward axial load is applied to the hub 2 to which the encoder 4a is fixed as shown in FIG. 12A, the detecting portions of both the sensors 5a and 5a are connected to the chain line H shown in FIG. , C, that is, the axial displacement from the rim 8 opposes different parts in the opposite direction. In this state, the phases of the output signals of the sensors 5a and 5a are shifted as shown in FIG.

上述の様に先発明の第2例の場合も、前述の先発明の第1例の場合と同様に、上記両センサ5a、5aの出力信号の位相が、上記外輪1とハブ2との間に加わるアキシアル荷重の方向に応じた方向にずれる。又、このアキシアル荷重により上記両センサ5a、5aの出力信号の位相がずれる程度(変位量)は、このアキシアル荷重が大きくなる程大きくなる。従って第2例の場合も、上記両センサ5a、5aの出力信号の位相ずれの有無、ずれが存在する場合にはその方向及び大きさに基づいて、上記外輪1とハブ2との間に作用しているアキシアル荷重の方向及び大きさを求められる。
尚、エンコーダを円輪状に構成すると共に、このエンコーダの軸方向側面を被検出面とし、この被検出面に1対のセンサの検出部を、径方向にずらせた状態で対向させれば、上記外輪1と上記ハブ2との径方向に関する変位、延てはこれら外輪1とハブ2との間に加わるラジアル荷重を求める事も可能である。
As described above, in the case of the second example of the prior invention, as in the case of the first example of the previous invention, the phases of the output signals of the sensors 5a and 5a are between the outer ring 1 and the hub 2. It shifts in the direction according to the direction of the axial load applied to. Further, the degree of displacement (displacement amount) of the output signals of the sensors 5a and 5a due to the axial load increases as the axial load increases. Therefore, also in the case of the second example, there is an action between the outer ring 1 and the hub 2 based on the direction and size of the output signal of both the sensors 5a and 5a, if there is a phase shift and if there is a shift. The direction and magnitude of the axial load is determined.
If the encoder is configured in an annular shape, the side surface in the axial direction of the encoder is a detection surface, and the detection portions of the pair of sensors are opposed to the detection surface in a state shifted in the radial direction, the above It is also possible to determine the displacement in the radial direction between the outer ring 1 and the hub 2 and thus the radial load applied between the outer ring 1 and the hub 2.

以上に述べた、図5〜12に示した様な、先発明に係る変位測定装置付転がり軸受ユニットの場合、前述した様に、上記外輪1と上記ハブ2とが相対変位していない中立状態では、両センサ5、5(5a、5a)の出力信号の位相を、図8、12の(C)に示す様に一致させている。この為、車体に設けたGセンサ等の信号に基づき、別途上記相対変位に結び付く荷重の作用方向を特定しない限り、この相対変位の方向及び量(大きさ)を正確に求められなくなる可能性がある。   In the case of the above-described rolling bearing unit with a displacement measuring device as shown in FIGS. 5 to 12, as described above, the neutral state in which the outer ring 1 and the hub 2 are not relatively displaced. Then, the phases of the output signals of both sensors 5, 5 (5a, 5a) are made to coincide as shown in FIG. For this reason, there is a possibility that the direction and amount (size) of the relative displacement cannot be obtained accurately unless the direction of action of the load associated with the relative displacement is specified separately based on the signal from the G sensor or the like provided on the vehicle body. is there.

即ち、例えば一方のセンサの出力信号を基準信号として利用し、他方のセンサの出力信号を変位の方向を求める為の測定信号として利用する事を考えた場合、上記荷重の作用方向により変化する、上記相対変位の方向よって、上記基準信号に対する上記測定信号の前後関係が逆転する。この為、例えば、これら基準信号と測定信号との間の位相差が、−10度である場合に、+350度であると判定する可能性がある。この様な問題は、例えば上記Gセンサ等の、荷重の作用方向を特定できるセンサからの情報を取り入れる事で解消できる。但し、演算器部分での処理が複雑になる為、この演算器部分のコストが嵩む他、上記荷重の方向及び大きさを特定する為に要する時間が長くなり、例えば走行安定性確保の為の制御を迅速に行なう面からは不利である。   That is, for example, when considering using the output signal of one sensor as a reference signal and using the output signal of the other sensor as a measurement signal for determining the direction of displacement, it changes depending on the direction of action of the load. Depending on the direction of the relative displacement, the context of the measurement signal with respect to the reference signal is reversed. For this reason, for example, when the phase difference between the reference signal and the measurement signal is −10 degrees, it may be determined that the phase difference is +350 degrees. Such a problem can be solved by incorporating information from a sensor that can specify the direction of the load, such as the G sensor. However, since the processing in the computing unit is complicated, the cost of the computing unit is increased, and the time required to specify the direction and magnitude of the load is increased. For example, for ensuring running stability This is disadvantageous in terms of speedy control.

特開2001−21577号公報JP 2001-21577 A 特開平3−209016号公報Japanese Patent Laid-Open No. 3-209016 特開2004−3918号公報Japanese Patent Laid-Open No. 2004-3918 特公昭62−3365号公報Japanese Patent Publication No.62-3365

本発明は、上述の様な事情に鑑みて、演算器部分での処理が簡単なもので済み、この演算器部分のコスト上昇を抑え、しかも、変位の方向及び大きさ、延ては荷重の方向及び大きさを特定する為に要する時間を短くできる構造を実現すべく発明したものである。   In the present invention, in view of the circumstances as described above, the processing in the computing unit is simple and the cost of the computing unit is suppressed. In addition, the direction and size of the displacement, and the load can be reduced. It was invented to realize a structure that can shorten the time required to specify the direction and size.

本発明の変位測定装置付転がり軸受ユニット及び荷重測定装置付転がり軸受ユニットは、転がり軸受ユニットと変位測定装置又は荷重測定装置とを備える。
このうちの転がり軸受ユニットは、使用状態でも回転しない静止側軌道輪と、使用状態で回転する回転側軌道輪と、これら静止側軌道輪と回転側軌道輪との互いに対向する周面に存在する静止側軌道と回転側軌道との間に設けられた複数個の転動体とを備える。
又、上記変位測定装置又は荷重測定装置は、エンコーダと、1対のセンサと、演算器とを備える。
このうちのエンコーダは、上記回転側軌道輪の一部に支持されたもので、この回転側軌道輪と同心の被検出面の特性を円周方向に関して交互に変化させると共に、この被検出面の特性が円周方向に関して変化する位相を、少なくとも一方のセンサの検出部が対向する部分で、検出すべき変位の方向に応じて連続的に、且つ、他方のセンサの検出部が対向する部分と異ならせた状態で変化させている。
又、上記両センサは、それぞれの検出部を上記エンコーダの被検出面に対向させた状態で回転しない部分に支持され、この被検出面の特性変化に対応してその出力信号を変化させる。
そして、上記静止側軌道輪と上記回転側軌道輪とが相対変位していない中立状態で、図1に示す様に、上記両センサの検出信号同士の間に、初期位相差δを設定している。
更に、上記演算器は、上記両センサの検出信号の周期と、各瞬間にこれら両センサの検出信号同士の間に存在する実位相差の上記初期位相差δからのずれ量とに基づいて、上記静止側軌道輪と上記回転側軌道輪との相対変位の方向及び量、又は、これら両軌道輪同士の間に作用する荷重の方向及び大きさを算出する。
The rolling bearing unit with a displacement measuring device and the rolling bearing unit with a load measuring device according to the present invention include a rolling bearing unit and a displacement measuring device or a load measuring device.
Of these, the rolling bearing unit is present on a stationary bearing ring that does not rotate even in use, a rotating bearing ring that rotates in use, and circumferential surfaces of the stationary bearing ring and the rotating bearing ring that face each other. And a plurality of rolling elements provided between the stationary side track and the rotating side track.
The displacement measuring device or the load measuring device includes an encoder, a pair of sensors, and an arithmetic unit.
Of these, the encoder is supported by a part of the rotation-side raceway, and alternately changes the characteristics of the detection surface concentric with the rotation-side raceway in the circumferential direction. The phase at which the characteristic changes with respect to the circumferential direction is a portion where the detection unit of at least one sensor faces, continuously according to the direction of displacement to be detected, and a portion where the detection unit of the other sensor faces. It is changed in a different state.
The two sensors are supported by portions that do not rotate with their respective detection portions facing the detection surface of the encoder, and change their output signals in response to changes in the characteristics of the detection surface.
Then, in a neutral state where the stationary side raceway and the rotation side raceway are not relatively displaced, as shown in FIG. 1, an initial phase difference δ is set between the detection signals of the two sensors. Yes.
Further, the computing unit is based on the period of the detection signals of the two sensors and the amount of deviation from the initial phase difference δ of the actual phase difference existing between the detection signals of the two sensors at each moment. The direction and amount of relative displacement between the stationary bearing ring and the rotating bearing ring, or the direction and magnitude of the load acting between the two bearing rings are calculated.

尚、上記初期位相差δは、上記静止側軌道輪と上記回転側軌道輪との相対変位に拘らず喪失しない(常にδ>0であり、上記両センサの出力信号が変化するタイミングが逆転しない)程度の大きさに設定する。従って、上記初期位相差δの大きさは、上記静止側軌道輪と上記回転側軌道輪との間で発生する可能性のある相対変位量(これら両軌道輪同士の間に作用し得る荷重の大きさ)、被検出面の特性変化の境界が変位の方向に対し傾斜している角度、上記両軌道輪同士の振れ回りの程度に応じて、設計的若しくは実験的に定める。前述の図5〜12に示した様な、車輪支持用転がり軸受ユニットの場合、上記初期位相差δの大きさを、45〜315度(1周期の1/8〜7/8の範囲)にする事が好ましい。即ち、上記初期位相差δの大きさの絶対値を、1周期の1/8以上確保すれば、必要とする測定精度、測定の迅速性(1回転中での特性変化の回数)等を確保しつつ、上記両センサの出力信号が変化するタイミングが逆転しない様にできる。
尚、前記エンコーダの被検出面の特性変化のピッチ(1円周での特性変化の回数)、形状、傾斜角度等は、上記初期位相差δの大きさ等の応じて適宜設定する。
Note that the initial phase difference δ is not lost regardless of the relative displacement between the stationary side raceway and the rotation side raceway (always δ> 0, and the timing at which the output signals of both sensors change does not reverse). ) Set to a size of about. Accordingly, the magnitude of the initial phase difference δ is determined by the relative displacement that may occur between the stationary side raceway and the rotation side raceway (the load that can act between the two raceways). Size), the angle at which the boundary of the characteristic change of the surface to be detected is inclined with respect to the direction of the displacement, and the degree of swinging between the two race rings. In the case of the wheel bearing rolling bearing unit as shown in FIGS. 5 to 12 described above, the initial phase difference δ is set to 45 to 315 degrees (in a range of 1/8 to 7/8 of one cycle). It is preferable to do. That is, if the absolute value of the magnitude of the initial phase difference δ is ensured to be 1/8 or more of one cycle, the required measurement accuracy, quick measurement (number of characteristic changes during one rotation), etc. are ensured. However, the timing at which the output signals of the two sensors change can be prevented from being reversed.
It should be noted that the characteristic change pitch (number of characteristic changes per circle), shape, inclination angle, and the like of the detection surface of the encoder are appropriately set according to the magnitude of the initial phase difference δ.

上述の様に構成する本発明の変位測定装置付転がり軸受ユニット及び荷重測定装置付転がり軸受ユニットによれば、初期位相差δの存在に基づき、両センサの出力信号が変化するタイミングが逆転しない。この為、これら両センサの出力信号の実位相差の大きさが分かれば、静止側軌道輪と回転側軌道輪との相対変位の方向及び量、延ては、これら両軌道輪同士の間に作用する荷重の方向及び大きさを求められる。即ち、上記実位相差が上記初期位相差δよりも大きければ、静止側軌道輪と回転側軌道輪とが所定方向に、これら両位相差同士の間の差に相当する量だけ相対変位した事が分かる。又、上記実位相差が上記初期位相差δよりも小さければ、静止側軌道輪と回転側軌道輪とが上記所定方向とは逆方向に、これら両位相差同士の間の差に相当する量だけ相対変位した事が分かる。この相対変位の方向及び量を特定する為に、Gセンサ等の荷重の作用方向を特定する為の他のセンサからの情報を取り入れる必要はない。この為、演算器部分での処理が簡単なもので済み、この演算器部分のコスト上昇を抑え、しかも、変位の方向及び大きさ(量)、延ては上記荷重の方向及び大きさを特定する為に要する時間を短くして、例えば走行安定性確保の為の制御を迅速に行なえる。
尚、上記回転側軌道輪と静止側軌道輪との間に作用する荷重を求める為には、必ずしもこれら回転側軌道輪と静止側軌道輪との相対変位量を求める必要はない。即ち、請求項10に記載した様に、演算器に、1対のセンサの検出信号に基づいて、上記静止側軌道輪と上記回転側軌道輪との間に作用する荷重を直接(上記相対変位の方向及び量を求める過程を経る事なく)算出する機能を持たせる事もできる。
According to the rolling bearing unit with a displacement measuring device and the rolling bearing unit with a load measuring device of the present invention configured as described above, the timing at which the output signals of both sensors change does not reverse based on the presence of the initial phase difference δ. For this reason, if the magnitude of the actual phase difference between the output signals of these sensors is known, the direction and amount of relative displacement between the stationary side raceway and the rotation side raceway, and therefore between these raceways, The direction and magnitude of the acting load can be determined. That is, if the actual phase difference is larger than the initial phase difference δ, the stationary side raceway and the rotation side raceway are relatively displaced in a predetermined direction by an amount corresponding to the difference between the two phase differences. I understand. Further, if the actual phase difference is smaller than the initial phase difference δ, the stationary side raceway and the rotation side raceway are opposite to the predetermined direction, and an amount corresponding to the difference between these two phase differences. It can be seen that the relative displacement only. In order to specify the direction and amount of this relative displacement, it is not necessary to incorporate information from other sensors for specifying the direction of the load of the G sensor or the like. For this reason, the processing in the computing unit is simple, the cost of the computing unit is suppressed, and the direction and size (amount) of the displacement and the direction and size of the load are specified. For example, the time required for the operation can be shortened and, for example, the control for ensuring the running stability can be performed quickly.
Incidentally, in order to obtain the load acting between the rotation side raceway and the stationary side raceway, it is not always necessary to obtain the relative displacement amount between the rotation side raceway and the stationary side raceway. That is, as described in claim 10, a load acting between the stationary side raceway and the rotation side raceway is directly applied to the computing unit based on the detection signals of the pair of sensors (the relative displacement). It is also possible to have a function of calculating (without going through the process of obtaining the direction and amount of

本発明を実施する場合に、例えば請求項2、11に記載した如く、図2に示した様に、両センサ9a、9bとして、ホールIC、ホール素子、MR、GMR等の磁気検知素子10と永久磁石11とを備えたものを使用する。このうち、上記両センサ9a、9bの磁気検知素子10は、前述の図9〜12に示した様な、磁性材製のエンコーダ4aの被検出面(外周面)にその前面を対向させた状態で配置される。これに対して上記永久磁石11は、上記被検出面と反対側である、上記磁気検知素子10の背面に、着磁方向一端面を当接若しくは近接対向させている。   In carrying out the present invention, for example, as described in claims 2 and 11, as shown in FIG. 2, as both sensors 9 a and 9 b, a magnetic sensing element 10 such as a Hall IC, a Hall element, MR, GMR, etc. A thing provided with the permanent magnet 11 is used. Among these, the magnetic sensing elements 10 of both the sensors 9a and 9b are in a state where the front faces the detected surface (outer peripheral surface) of the encoder 4a made of a magnetic material as shown in FIGS. It is arranged with. On the other hand, the permanent magnet 11 has one end surface in the magnetization direction in contact with or in close proximity to the back surface of the magnetic sensing element 10, which is the opposite side to the detected surface.

そして、上記両センサ9a、9b同士の間で、上記磁気検知素子10の背面に当接若しくは近接対向する、上記永久磁石11の極を互いに異ならせる事により、上記両センサ9a、9bの検出信号同士の間に初期位相差を設定している。具体的には、一方(図2の右方)のセンサ9aの場合には、上記磁気検知素子10の背面に上記永久磁石11のN極を、他方(図2の左方)のセンサ9bの場合には、上記磁気検知素子10の背面に上記永久磁石11のS極を、それぞれ当接若しくは近接対向させる事により、上記センサ9a、9b出力信号の位相を、電気角で180度異ならせて(反転させて)いる。   The detection signals of the sensors 9a and 9b are made different between the sensors 9a and 9b by making the poles of the permanent magnet 11 in contact with or in close proximity to the back of the magnetic sensing element 10 different from each other. An initial phase difference is set between them. Specifically, in the case of one sensor 9a (right side in FIG. 2), the N pole of the permanent magnet 11 is placed on the back surface of the magnetic sensing element 10, and the other sensor 9b (left side in FIG. 2). In this case, the S poles of the permanent magnets 11 are brought into contact with or in close proximity to the back surface of the magnetic sensing element 10 so that the phases of the output signals of the sensors 9a and 9b are 180 degrees different in electrical angle. (Inverted).

尚、図2の矢印イは、上記エンコーダ4aの回転方向を表している。この図2では、上記各センサ9a、9bの構成を明りょうに記載する為に、これら両センサ9a、9bを、上記エンコーダ4aの回転方向に関してずらせて記載しているが、実際の場合にこれら両センサ9a、9bの上記エンコーダ4aの回転方向に関する位相は、互いに一致させている。
上述の様な構成を採用すれば、上記両センサ9a、9bの出力信号同士の間に、必要な初期位相差δを、容易に設定できる。尚、図2に示した構造の場合、上記エンコーダ4aとして、磁性材製のものを使用する必要がある(前述の図5〜8に示した様な、永久磁石製のエンコーダ4を使用する事はできない)。
Note that the arrow A in FIG. 2 represents the rotation direction of the encoder 4a. In FIG. 2, in order to clearly describe the configuration of each of the sensors 9a and 9b, the two sensors 9a and 9b are shown shifted with respect to the rotation direction of the encoder 4a. The phases of the sensors 9a and 9b with respect to the rotation direction of the encoder 4a coincide with each other.
If the configuration as described above is employed, the necessary initial phase difference δ can be easily set between the output signals of the sensors 9a and 9b. In the case of the structure shown in FIG. 2, it is necessary to use a magnetic material as the encoder 4a (the permanent magnet encoder 4 as shown in FIGS. 5 to 8 is used). Can't)

又、本発明を実施する場合に、例えば請求項3、12に記載した如く、図3〜4に示した様に、両センサ9、9として、上記請求項2、11に記載した構造と同様に、ホールIC、ホール素子、MR、GMR等の磁気検知素子10と永久磁石11とを備えたものを使用する。そして、上記両センサ9、9の磁気検知素子10の前面を、前述の図9〜12に示した磁性材製のエンコーダ4aの被検出面(外周面)に対向させると共に、上記永久磁石11の着磁方向一端面を上記磁気検知素子10の背面に、当接若しくは近接対向させる。図3〜4に示した構造の場合には、上記両センサ9、9同士の間で、上記磁気検知素子10の背面に当接若しくは近接対向する、上記永久磁石11の極を互いに同じとしている。その代わりに、上記磁気検知素子10の配設方向を互いに異ならせる事により、上記両センサ9、9の検出信号同士の間に初期位相差を設定している。具体的には、これら両センサ9、9同士の間で上記磁気検知素子10の配設方向を180度異ならせる(上記エンコーダ4aの中心軸に直交する仮想平面に関して鏡面対称に配置する)事で、上記両センサ9、9の出力信号の位相を、電気角で180度異ならせて(反転させて)いる。   When the present invention is implemented, for example, as shown in claims 3 and 12, as shown in FIGS. 3 and 4, both sensors 9 and 9 have the same structure as that described in claims 2 and 11 above. In addition, a device including a magnetic sensing element 10 such as a Hall IC, Hall element, MR, GMR or the like and a permanent magnet 11 is used. The front surfaces of the magnetic detection elements 10 of the sensors 9 and 9 are opposed to the detection surface (outer peripheral surface) of the magnetic material encoder 4a shown in FIGS. One end surface in the magnetization direction is brought into contact with or in close proximity to the back surface of the magnetic sensing element 10. In the case of the structure shown in FIGS. 3 to 4, the poles of the permanent magnet 11 that are in contact with or close to the back surface of the magnetic sensing element 10 are the same between the sensors 9 and 9. . Instead, the initial phase difference is set between the detection signals of the sensors 9 and 9 by making the arrangement directions of the magnetic sensing elements 10 different from each other. Specifically, by disposing the direction of arrangement of the magnetic sensing element 10 between these sensors 9, 9 by 180 degrees (arranged mirror-symmetrically with respect to a virtual plane orthogonal to the central axis of the encoder 4a). The phases of the output signals of the sensors 9 and 9 are different (inverted) by 180 degrees in electrical angle.

上記図3、4に関しても、矢印イは、上記エンコーダ4aの回転方向を表している。又、この図3でも、上記各センサ9、9の構成を明りょうに記載する為に、これら両センサ9、9を、上記エンコーダ4aの回転方向に関してずらせて記載しているが、実際の場合にこれら両センサ9、9の上記エンコーダ4aの回転方向に関する位相は、図4に示す様に、互いに一致させている。
上述の様な構成を採用しても、上記両センサ9、9の出力信号同士の間に、必要な初期位相差δを、容易に設定できる。尚、図3〜4に示した構造の場合には、上記両センサ9、9毎に、互いに独立した永久磁石11、11を組み込んでいるが、これら両センサ9、9を構成する1対の磁気検知素子10、10同士の間に掛け渡す様にして、1個の永久磁石を設置する事もできる。この様な構成を採用すれば、単一のホルダ内に1対のセンサを組み込んで成るセンサユニットの組立作業の容易化による低コスト化を図れる。又、図3〜4に示した構造の場合には、エンコーダとして、前述の図5〜8に示した様な、永久磁石製のものを使用する事もできる。但し、この場合には、センサ側の永久磁石は省略する。
3 and 4 also, the arrow a represents the rotation direction of the encoder 4a. Also, in FIG. 3, in order to clearly describe the configuration of each of the sensors 9 and 9, these sensors 9 and 9 are illustrated with being shifted with respect to the rotation direction of the encoder 4a. In addition, the phases of the sensors 9 and 9 with respect to the rotation direction of the encoder 4a are matched with each other as shown in FIG.
Even if the configuration as described above is employed, the necessary initial phase difference δ can be easily set between the output signals of the sensors 9 and 9. In the case of the structure shown in FIGS. 3 to 4, each of the sensors 9 and 9 incorporates permanent magnets 11 and 11 that are independent from each other. One permanent magnet can be installed so as to span between the magnetic sensing elements 10 and 10. By adopting such a configuration, the cost can be reduced by facilitating the assembling work of the sensor unit in which a pair of sensors are incorporated in a single holder. In the case of the structure shown in FIGS. 3 to 4, an encoder made of a permanent magnet as shown in FIGS. 5 to 8 may be used as the encoder. However, in this case, the sensor-side permanent magnet is omitted.

尚、図示は省略するが、請求項4、13に記載した様に、両センサのうちの一方の出力信号に、回転側軌道輪の回転速度に比例した遅れを持たせる演算処理を施す事により、上記両センサの検出信号同士の間に初期位相差を設定する事もできる。
或いは、やはり図示は省略するが、請求項5、14に記載した様に、両センサをエンコーダの回転方向にずらせて配置する事により、これら両センサの検出信号同士の間に初期位相差を設定する事もできる。上記両センサを単一の合成樹脂製のホルダ内に包埋保持すれば、設定した初期位相差がずれる事はない。
Although not shown in the drawings, as described in claims 4 and 13, the output signal of one of the two sensors is subjected to arithmetic processing for giving a delay proportional to the rotational speed of the rotating raceway. The initial phase difference can be set between the detection signals of the two sensors.
Alternatively, although not shown in the drawings, as described in claims 5 and 14, the initial phase difference is set between the detection signals of both sensors by disposing both sensors in the rotational direction of the encoder. You can also do it. If both the sensors are embedded and held in a single synthetic resin holder, the set initial phase difference does not shift.

又、本発明を実施する場合に好ましくは、請求項6、15に記載した様に、エンコーダの被検出面の特性が変化する位相を、一方のセンサの検出部が対向する部分と他方のセンサの検出部が対向する部分とで、上記エンコーダの中心軸に平行な方向に関し、互いに逆方向に、同じ角度ずつ変化させる。この様な構造は、前述の図5〜12に示した先発明と同様の構造である。
この様な構造の場合、静止側軌道輪と回転側軌道輪との相対変位に基づく、上記両センサの出力信号の位相差を大きくできる。この為、これら両軌道輪同士の相対変位量、延ては、これら両軌道輪同士の間に作用する荷重の測定精度を良好にできる。
Further, when the present invention is implemented, preferably, as described in claims 6 and 15, the phase at which the characteristic of the detection surface of the encoder changes is changed so that the detection portion of one sensor faces the other sensor. With respect to the direction parallel to the central axis of the encoder, the detection unit is changed in the opposite directions by the same angle. Such a structure is the same structure as the prior invention shown in FIGS.
In the case of such a structure, it is possible to increase the phase difference between the output signals of the two sensors based on the relative displacement between the stationary side raceway and the rotation side raceway. For this reason, it is possible to improve the measurement accuracy of the amount of relative displacement between the two race rings, and hence the load acting between the two race rings.

或いは、請求項7、16に記載した様に、エンコーダの被検出面の特性が変化する位相を、一方のセンサの検出部が対向する部分でのみ、上記エンコーダの中心軸に平行な方向に関して変化させる。これに対して、他方のセンサの検出部が対向する部分では、この方向(上記エンコーダの中心軸に平行な方向)に関して変化させない。
この様な請求項7、16に記載した発明の場合には、静止側軌道輪と回転側軌道輪との相対変位に基づく1対のセンサの出力信号の位相差は、上述した請求項6、15に記載した発明の場合の1/2になるが、上記他方のセンサ及びエンコーダのうちでこの他方のセンサと組み合わされる部分に、従来からABS用、TCS用として広く使用されている構造を流用できて、低廉化を図れる。
Alternatively, as described in claims 7 and 16, the phase at which the characteristic of the detected surface of the encoder changes changes only in the part where the detection part of one sensor faces in the direction parallel to the central axis of the encoder. Let On the other hand, no change is made in this direction (a direction parallel to the central axis of the encoder) in a portion where the detection unit of the other sensor faces.
In the case of the invention described in claims 7 and 16, the phase difference between the output signals of the pair of sensors based on the relative displacement between the stationary-side raceway and the rotation-side raceway is the above-described claim 6, Although it is ½ of the case of the invention described in No. 15, the structure widely used for ABS and TCS has been diverted to the part of the other sensor and encoder combined with the other sensor. Can be made cheaper.

又、請求項1〜7に記載した発明を実施する場合に好ましくは、請求項8に記載した様に、演算器に、算出した相対変位量に基づき、静止側軌道輪と回転側軌道輪との間に作用する荷重を算出する機能を持たせる。
又、この様な請求項8に記載した発明、或いは請求項10〜16に記載した発明を実施する場合に好ましくは、請求項9、17に記載した様に、転がり軸受ユニットを自動車の車輪支持用のハブユニットとする。そして、使用状態で静止側軌道輪を自動車の懸架装置に支持し、回転側軌道輪であるハブに車輪を結合固定する。
この様な構造によれば、厳しい条件でも車両の安定性の確保を図る為に必要な情報を取り入れて、ブレーキやエンジンの制御を行なう事ができる。
Further, when the inventions described in claims 1 to 7 are carried out, preferably, as described in claim 8, the calculator has a stationary side raceway and a rotation side raceway based on the calculated relative displacement amount. A function for calculating a load acting during the period is provided.
Further, when the invention described in claim 8 or the invention described in claims 10 to 16 is carried out, preferably, the rolling bearing unit is used for supporting a wheel of an automobile as described in claims 9 and 17. Hub unit. Then, in use, the stationary side race is supported by the suspension device of the automobile, and the wheel is coupled and fixed to the hub that is the rotation side race.
According to such a structure, it is possible to control the brakes and the engine by incorporating information necessary for ensuring the stability of the vehicle even under severe conditions.

本発明を説明する為の、1対のセンサの出力信号を示す線図。The diagram which shows the output signal of a pair of sensor for demonstrating this invention. 本発明を実施する場合の具体的構造の第1例を示す、要部斜視図。The principal part perspective view which shows the 1st example of the concrete structure in the case of implementing this invention. 同第2例を示す、要部斜視図。The principal part perspective view which shows the 2nd example. 同じくエンコーダの径方向から見た図。The figure seen from the radial direction of the encoder. 先発明に係る変位測定装置付転がり軸受ユニットの第1例を示す断面図。Sectional drawing which shows the 1st example of the rolling bearing unit with a displacement measuring device which concerns on a prior invention. この第1例に組み込むエンコーダの斜視図。The perspective view of the encoder built in this 1st example. 同じく展開図。Similarly development. アキシアル荷重の変動に伴って変化するセンサの出力信号を示す線図。The diagram which shows the output signal of the sensor which changes with the fluctuation | variation of an axial load. 先発明の第2例を示す断面図。Sectional drawing which shows the 2nd example of a prior invention. この第2例に組み込むエンコーダの斜視図。The perspective view of the encoder integrated in this 2nd example. 同じく展開図。Similarly development. アキシアル荷重の変動に伴って変化するセンサの出力信号を示す線図。The diagram which shows the output signal of the sensor which changes with the fluctuation | variation of an axial load.

符号の説明Explanation of symbols

1 外輪
2 ハブ
3 転動体
4、4a エンコーダ
5、5a センサ
6a、6b 透孔
7a、7b 柱部
8 リム部
9、9a、9b センサ
10 磁気検知素子
11 永久磁石
DESCRIPTION OF SYMBOLS 1 Outer ring 2 Hub 3 Rolling element 4, 4a Encoder 5, 5a Sensor 6a, 6b Through-hole 7a, 7b Column part 8 Rim part 9, 9a, 9b Sensor 10 Magnetic detection element 11 Permanent magnet

Claims (17)

転がり軸受ユニットと変位測定装置とを備え、
このうちの転がり軸受ユニットは、使用状態でも回転しない静止側軌道輪と、使用状態で回転する回転側軌道輪と、これら静止側軌道輪と回転側軌道輪との互いに対向する周面に存在する静止側軌道と回転側軌道との間に設けられた複数個の転動体とを備えたものであり、
上記変位測定装置は、エンコーダと、1対のセンサと、演算器とを備えたものであり、 このうちのエンコーダは、上記回転側軌道輪の一部に支持されたもので、この回転側軌道輪と同心の被検出面の特性を円周方向に関して交互に変化させると共に、この被検出面の特性が円周方向に関して変化する位相を、少なくとも一方のセンサの検出部が対向する部分で、検出すべき変位の方向に応じて連続的に、且つ、他方のセンサの検出部が対向する部分と異ならせた状態で変化させており、
上記両センサは、それぞれの検出部を上記エンコーダの被検出面に対向させた状態で回転しない部分に支持され、この被検出面の特性変化に対応してその出力信号を変化させるものであり、
上記静止側軌道輪と上記回転側軌道輪とが相対変位していない中立状態で、上記両センサの検出信号同士の間に初期位相差を設定しており、
上記演算器は、上記両センサの検出信号の周期と、各瞬間にこれら両センサの検出信号同士の間に存在する実位相差の上記初期位相差からのずれ量とに基づいて、上記静止側軌道輪と上記回転側軌道輪との相対変位の方向及び量を算出するものである
変位測定装置付転がり軸受ユニット。
A rolling bearing unit and a displacement measuring device;
Of these, the rolling bearing unit is present on a stationary bearing ring that does not rotate even in use, a rotating bearing ring that rotates in use, and circumferential surfaces of the stationary bearing ring and the rotating bearing ring that face each other. A plurality of rolling elements provided between the stationary side track and the rotating side track,
The displacement measuring device includes an encoder, a pair of sensors, and an arithmetic unit, and the encoder is supported by a part of the rotating side raceway, and the rotating side track The characteristics of the surface to be detected that are concentric with the wheel are alternately changed in the circumferential direction, and the phase at which the characteristics of the surface to be detected changes in the circumferential direction is detected at the part where the detection part of at least one sensor faces. According to the direction of the displacement to be changed, and the detection part of the other sensor is changed in a state different from the facing part,
The two sensors are supported by a portion that does not rotate in a state in which the respective detection units face the detection surface of the encoder, and change the output signal in response to a change in the characteristics of the detection surface.
In the neutral state where the stationary side raceway and the rotation side raceway are not relatively displaced, an initial phase difference is set between the detection signals of the two sensors,
The computing unit is based on the period of the detection signals of the two sensors and the amount of deviation from the initial phase difference of the actual phase difference existing between the detection signals of the two sensors at each moment. A rolling bearing unit with a displacement measuring device for calculating the direction and amount of relative displacement between the bearing ring and the rotation-side bearing ring.
両センサは、エンコーダの被検出面にその前面を対向させた状態で配置された磁気検知素子と、この被検出面と反対側であるこの磁気検知素子の背面に、着磁方向一端面を当接若しくは近接対向させた永久磁石とを備えたものであり、上記両センサ同士の間で、上記磁気検知素子の背面に当接若しくは近接対向する、上記永久磁石の極を互いに異ならせる事により、上記両センサの検出信号同士の間に初期位相差を設定した、請求項1に記載した変位測定装置付転がり軸受ユニット。   In both sensors, one end surface in the magnetization direction is applied to the magnetic sensing element arranged with the front surface facing the detection surface of the encoder and the back surface of the magnetic detection element opposite to the detection surface. It is provided with a permanent magnet that is in contact with or in close proximity to each other, and by making the poles of the permanent magnet that are in contact with or in close proximity to the back of the magnetic sensing element between the two sensors different from each other, The rolling bearing unit with a displacement measuring device according to claim 1, wherein an initial phase difference is set between detection signals of the two sensors. 両センサは、エンコーダの被検出面にその前面を対向させた状態で配置された磁気検知素子と、この被検出面と反対側であるこの磁気検知素子の背面に、着磁方向一端面を当接若しくは近接対向させた永久磁石とを備えたものであり、上記両センサの向きを互いに異ならせる事により、これら両センサの検出信号同士の間に初期位相差を設定した、請求項1に記載した変位測定装置付転がり軸受ユニット。   In both sensors, one end surface in the magnetization direction is applied to the magnetic sensing element arranged with the front surface facing the detection surface of the encoder and the back surface of the magnetic detection element opposite to the detection surface. 2. The apparatus according to claim 1, further comprising a permanent magnet that is in contact with or in close proximity to each other, wherein an initial phase difference is set between detection signals of the two sensors by making the directions of the two sensors different from each other. Rolling bearing unit with displacement measuring device. 両センサのうちの一方の出力信号に、回転側軌道輪の回転速度に比例した遅れを持たせる演算処理を施す事により、上記両センサの検出信号同士の間に初期位相差を設定した、請求項1に記載した変位測定装置付転がり軸受ユニット。   An initial phase difference is set between the detection signals of the two sensors by performing arithmetic processing for giving a delay proportional to the rotational speed of the rotating raceway to the output signal of one of the two sensors. Item 2. A rolling bearing unit with a displacement measuring device according to Item 1. 両センサをエンコーダの回転方向にずらせて配置する事により、これら両センサの検出信号同士の間に初期位相差を設定した、請求項1に記載した変位測定装置付転がり軸受ユニット。   The rolling bearing unit with a displacement measuring device according to claim 1, wherein an initial phase difference is set between detection signals of both sensors by disposing both sensors in the rotational direction of the encoder. エンコーダの被検出面の特性が変化する位相を、一方のセンサの検出部が対向する部分と他方のセンサの検出部が対向する部分とで、上記エンコーダの中心軸に平行な方向に関して、互いに逆方向に、同じ角度ずつ変化させている、請求項1〜5のうちの何れか1項に記載した変位測定装置付転がり軸受ユニット。   The phase at which the characteristics of the surface to be detected of the encoder change is opposite to each other in the direction parallel to the central axis of the encoder at the portion where the detection portion of one sensor faces and the portion where the detection portion of the other sensor faces. The rolling bearing unit with a displacement measuring device according to any one of claims 1 to 5, wherein the rolling bearing unit is changed in the direction by the same angle. エンコーダの被検出面の特性が変化する位相を、一方のセンサの検出部が対向する部分でのみ、上記エンコーダの中心軸に平行な方向に関して変化させ、他方のセンサの検出部が対向する部分ではこの方向に関して変化させていない、請求項1〜5のうちの何れか1項に記載した変位測定装置付転がり軸受ユニット。   The phase at which the characteristic of the surface to be detected of the encoder changes is changed only in the part where the detection part of one sensor faces in the direction parallel to the central axis of the encoder, and in the part where the detection part of the other sensor faces. The rolling bearing unit with a displacement measuring device according to any one of claims 1 to 5, wherein the rolling bearing unit is not changed in this direction. 演算器が、算出した相対変位量に基づき、静止側軌道輪と回転側軌道輪との間に作用する荷重を算出する機能を有する、請求項1〜7のうちの何れか1項に記載した変位測定装置付転がり軸受ユニット。   The computing unit has a function of calculating a load acting between the stationary side raceway and the rotation side raceway based on the calculated relative displacement amount, according to any one of claims 1 to 7. Rolling bearing unit with displacement measuring device. 転がり軸受ユニットが自動車の車輪支持用のハブユニットであり、使用状態で静止側軌道輪が自動車の懸架装置に支持され、回転側軌道輪であるハブに車輪が結合固定される、請求項8に記載した変位測定装置付転がり軸受ユニット。   9. The rolling bearing unit is a hub unit for supporting a wheel of an automobile, the stationary side bearing ring is supported by a suspension of the automobile in use, and the wheel is coupled and fixed to a hub that is a rotating side bearing ring. Rolling bearing unit with displacement measuring device described. 転がり軸受ユニットと荷重測定装置とを備え、
このうちの転がり軸受ユニットは、使用状態でも回転しない静止側軌道輪と、使用状態で回転する回転側軌道輪と、これら静止側軌道輪と回転側軌道輪との互いに対向する周面に存在する静止側軌道と回転側軌道との間に設けられた複数個の転動体とを備えたものであり、
上記荷重測定装置は、エンコーダと、1対のセンサと、演算器とを備えたものであり、 このうちのエンコーダは、上記回転側軌道輪の一部に支持されたもので、この回転側軌道輪と同心の被検出面の特性を円周方向に関して交互に変化させると共に、この被検出面の特性が円周方向に関して変化する位相を、少なくとも一方のセンサの検出部が対向する部分で、検出すべき変位の方向に応じて連続的に、且つ、他方のセンサの検出部が対向する部分と異ならせた状態で変化させており、
上記両センサは、それぞれの検出部を上記エンコーダの被検出面に対向させた状態で回転しない部分に支持され、この被検出面の特性変化に対応してその出力信号を変化させるものであり、
上記静止側軌道輪と上記回転側軌道輪とが相対変位していない中立状態で、上記両センサの検出信号同士の間に初期位相差を設定しており、
上記演算器は、上記両センサの検出信号の周期と、各瞬間にこれら両センサの検出信号同士の間に存在する実位相差の上記初期位相差からのずれ量とに基づいて、上記静止側軌道輪と上記回転側軌道輪との間に作用する荷重の方向及び大きさを算出するものである
荷重測定装置付転がり軸受ユニット。
A rolling bearing unit and a load measuring device;
Of these, the rolling bearing unit is present on a stationary bearing ring that does not rotate even in use, a rotating bearing ring that rotates in use, and circumferential surfaces of the stationary bearing ring and the rotating bearing ring that face each other. A plurality of rolling elements provided between the stationary side track and the rotating side track,
The load measuring device includes an encoder, a pair of sensors, and an arithmetic unit, and the encoder is supported by a part of the rotating side raceway, and the rotating side track The characteristics of the surface to be detected that are concentric with the wheel are alternately changed in the circumferential direction, and the phase at which the characteristics of the surface to be detected changes in the circumferential direction is detected at the part where the detection part of at least one sensor faces. According to the direction of the displacement to be performed, and continuously changing the state in which the detection part of the other sensor is different from the facing part,
The two sensors are supported by a portion that does not rotate in a state in which the respective detection units face the detection surface of the encoder, and change the output signal in response to a change in the characteristics of the detection surface.
In the neutral state where the stationary side raceway and the rotation side raceway are not relatively displaced, an initial phase difference is set between the detection signals of the two sensors,
The computing unit is based on the period of the detection signals of the two sensors and the amount of deviation from the initial phase difference of the actual phase difference existing between the detection signals of the two sensors at each moment. A rolling bearing unit with a load measuring device for calculating a direction and a magnitude of a load acting between the bearing ring and the rotation-side bearing ring.
両センサは、エンコーダの被検出面にその前面を対向させた状態で配置された磁気検知素子と、この被検出面と反対側であるこの磁気検知素子の背面に、着磁方向一端面を当接若しくは近接対向させた永久磁石とを備えたものであり、上記両センサ同士の間で、上記磁気検知素子の背面に当接若しくは近接対向する、上記永久磁石の極を互いに異ならせる事により、上記両センサの検出信号同士の間に初期位相差を設定した、請求項10に記載した荷重測定装置付転がり軸受ユニット。   In both sensors, one end surface in the magnetization direction is applied to the magnetic sensing element arranged with the front surface facing the detection surface of the encoder and the back surface of the magnetic detection element opposite to the detection surface. It is provided with a permanent magnet that is in contact with or in close proximity to each other, and by making the poles of the permanent magnet that are in contact with or in close proximity to the back of the magnetic sensing element between the two sensors different from each other, The rolling bearing unit with a load measuring device according to claim 10, wherein an initial phase difference is set between detection signals of the two sensors. 両センサは、エンコーダの被検出面にその前面を対向させた状態で配置された磁気検知素子と、この被検出面と反対側であるこの磁気検知素子の背面に、着磁方向一端面を当接若しくは近接対向させた永久磁石とを備えたものであり、上記両センサの向きを互いに異ならせる事により、これら両センサの検出信号同士の間に初期位相差を設定した、請求項10に記載した荷重測定装置付転がり軸受ユニット。   In both sensors, one end surface in the magnetization direction is applied to the magnetic sensing element arranged with the front surface facing the detection surface of the encoder and the back surface of the magnetic detection element opposite to the detection surface. 11. The apparatus according to claim 10, further comprising a permanent magnet that is in contact with or in close proximity to each other, wherein an initial phase difference is set between detection signals of both sensors by making the directions of the two sensors different from each other. Rolling bearing unit with load measuring device. 両センサのうちの一方の出力信号に、回転側軌道輪の回転速度に比例した遅れを持たせる演算処理を施す事により、上記両センサの検出信号同士の間に初期位相差を設定した、請求項10に記載した荷重測定装置付転がり軸受ユニット。   An initial phase difference is set between the detection signals of the two sensors by performing arithmetic processing for giving a delay proportional to the rotational speed of the rotating raceway to the output signal of one of the two sensors. Item 11. A rolling bearing unit with a load measuring device according to Item 10. 両センサをエンコーダの回転方向にずらせて配置する事により、これら両センサの検出信号同士の間に初期位相差を設定した、請求項10に記載した荷重測定装置付転がり軸受ユニット。   The rolling bearing unit with a load measuring device according to claim 10, wherein an initial phase difference is set between detection signals of both sensors by disposing both sensors in the rotational direction of the encoder. エンコーダの被検出面の特性が変化する位相を、一方のセンサの検出部が対向する部分と他方のセンサの検出部が対向する部分とで、上記エンコーダの中心軸に平行な方向に関して、互いに逆方向に、同じ角度ずつ変化させている、請求項10〜14のうちの何れか1項に記載した荷重測定装置付転がり軸受ユニット。   The phase at which the characteristics of the surface to be detected of the encoder change is opposite to each other in the direction parallel to the central axis of the encoder at the portion where the detection portion of one sensor faces and the portion where the detection portion of the other sensor faces. The rolling bearing unit with a load measuring device according to any one of claims 10 to 14, wherein the direction is changed by the same angle in the direction. エンコーダの被検出面の特性が変化する位相を、一方のセンサの検出部が対向する部分でのみ、上記エンコーダの中心軸に平行な方向に関して変化させ、他方のセンサの検出部が対向する部分ではこの方向に関して変化させていない、請求項10〜14のうちの何れか1項に記載した荷重測定装置付転がり軸受ユニット。   The phase at which the characteristic of the surface to be detected of the encoder changes is changed only in the part where the detection part of one sensor faces in the direction parallel to the central axis of the encoder, and in the part where the detection part of the other sensor faces. The rolling bearing unit with a load measuring device according to any one of claims 10 to 14, which is not changed in this direction. 転がり軸受ユニットが自動車の車輪支持用のハブユニットであり、使用状態で静止側軌道輪が自動車の懸架装置に支持され、回転側軌道輪であるハブに車輪が結合固定される、請求項10〜16のうちの何れか1項に記載した荷重測定装置付転がり軸受ユニット。   The rolling bearing unit is a hub unit for supporting a wheel of an automobile, the stationary side bearing ring is supported by a suspension device of the automobile in use, and the wheel is coupled and fixed to a hub that is a rotating side bearing ring. A rolling bearing unit with a load measuring device according to any one of 16.
JP2006034686A 2005-02-21 2006-02-13 Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device Pending JP2006258801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006034686A JP2006258801A (en) 2005-02-21 2006-02-13 Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005043499 2005-02-21
JP2006034686A JP2006258801A (en) 2005-02-21 2006-02-13 Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device

Publications (1)

Publication Number Publication Date
JP2006258801A true JP2006258801A (en) 2006-09-28

Family

ID=37098203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006034686A Pending JP2006258801A (en) 2005-02-21 2006-02-13 Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device

Country Status (1)

Country Link
JP (1) JP2006258801A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186397A (en) * 2008-02-08 2009-08-20 Nsk Ltd Magnetic detection ic and state quantity measuring device for rolling bearing unit
JP2016509229A (en) * 2013-03-05 2016-03-24 レシカル,アー.エス. Speed sensor
US10018524B2 (en) 2014-12-16 2018-07-10 Aktiebolaget Skf Load determining system for a rolling element bearing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009186397A (en) * 2008-02-08 2009-08-20 Nsk Ltd Magnetic detection ic and state quantity measuring device for rolling bearing unit
JP2016509229A (en) * 2013-03-05 2016-03-24 レシカル,アー.エス. Speed sensor
US10018524B2 (en) 2014-12-16 2018-07-10 Aktiebolaget Skf Load determining system for a rolling element bearing

Similar Documents

Publication Publication Date Title
JP2008064731A (en) Quantity-of-state measuring device for rotary machine
JP4887882B2 (en) Displacement measuring device and load measuring device of rolling bearing unit
JP2006300086A (en) Rolling bearing unit with load measuring device
JP2007093580A (en) Rolling bearing unit with displacement measuring device, and the rolling bearing unit with load measuring device
JP2006337356A (en) Rolling bearing unit with displacement measuring instrument, and rolling bearing unit with load measuring instrument
JP2006113017A (en) Encoder, rolling bearing unit with the encoder, and rolling bearing unit with load-measuring instrument
JP2006308465A (en) Load measuring device
JP2006258801A (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device
JP2011185944A (en) Rolling bearing unit with load measuring instrument
JP4957390B2 (en) Method for manufacturing rolling bearing unit with physical quantity measuring device
JP2006317361A (en) Load measuring apparatus for rolling bearing unit
JP2008039155A (en) Rolling bearing unit with state quantity measuring device and assembling method
JP2006292445A (en) Rolling bearing unit with load cell
JP2006317434A (en) Apparatus for measuring displacement and load of rolling bearing unit
JP2006292730A (en) Rolling bearing unit with displacement-measuring device, and rolling bearing unit with load-measuring device
JP2009001201A (en) Quantity-of-state measuring device for rotary machine
JP5092393B2 (en) Method for assembling state quantity measuring device for rolling bearing unit
JP4957357B2 (en) Rotational support device state quantity measuring device
JP2007057342A (en) Rolling bearing unit with load measuring device
JP2004184297A (en) Load-measuring device for roller bearing unit
JP2006194863A (en) Rolling bearing unit with displacement and load measuring device
JP5200898B2 (en) Inspection method and inspection device for state quantity measuring device of rolling bearing unit
JP2007086058A (en) Rolling bearing unit with displacement measuring instrument, and rolling bearing unit with load measuring instrument
JP4941140B2 (en) State quantity measuring device for rolling bearing units
JP2006201157A (en) Ball bearing unit having displacement measuring device, and ball bearing unit having load measuring device