JP2006308465A - Load measuring device - Google Patents

Load measuring device Download PDF

Info

Publication number
JP2006308465A
JP2006308465A JP2005132407A JP2005132407A JP2006308465A JP 2006308465 A JP2006308465 A JP 2006308465A JP 2005132407 A JP2005132407 A JP 2005132407A JP 2005132407 A JP2005132407 A JP 2005132407A JP 2006308465 A JP2006308465 A JP 2006308465A
Authority
JP
Japan
Prior art keywords
load
wheel
stationary
braking
brake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005132407A
Other languages
Japanese (ja)
Inventor
Takeshi Takizawa
岳史 滝澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005132407A priority Critical patent/JP2006308465A/en
Publication of JP2006308465A publication Critical patent/JP2006308465A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Regulating Braking Force (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a structure capable of acquiring an essentially needed load which acts across a road surface and an outer circumferential surface of a wheel, by adding/subtracting (compensating) an additive load associated with braking to/from a load acting across an outer ring 1 and a hub 2. <P>SOLUTION: A basic measurement load value which is an axial load acting across the outer ring 1 and the hub 2, is acquired based on a phase difference between output signals from a pair of Hall ICs 11a, 11b. Moreover, a braking error component which is a load acting across the outer ring 1 and the hub 2, is acquired based on an oil pressure introduced into a cylinder chamber of a disc brake. Next, the essentially needed load is obtained precisely by adding/subtracting the braking error component to/from the basic measurement load value. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明に係る荷重測定装置は、例えば車両(自動車)の車輪を懸架装置に対して回転自在に支持する車輪支持用転がり軸受ユニットに組み込んで、この車輪に加わる荷重の大きさを測定し、車両の安定運行の確保に利用する。   A load measuring device according to the present invention is incorporated in a wheel bearing rolling bearing unit that supports a wheel of a vehicle (automobile), for example, so as to be rotatable with respect to a suspension device, and measures the magnitude of a load applied to the wheel. It is used to secure stable operation.

例えば、車両の車輪を懸架装置に対して回転自在に支持する為に、転がり軸受ユニットを使用する。又、車両の走行安定性を確保する為に、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)等の車両の走行状態安定化装置が広く使用されている。これらABSやTCS等の走行状態安定化装置によれば、制動時や加速時に於ける車両の走行状態を安定させる事はできるが、より厳しい条件でもこの安定性の確保を図る為には、車両の走行安定性に影響するより多くの情報を取り入れて、ブレーキやエンジンの制御を行なう事が必要になる。   For example, a rolling bearing unit is used to rotatably support a vehicle wheel with respect to a suspension device. In order to ensure the running stability of the vehicle, a running state stabilizing device for the vehicle such as an antilock brake system (ABS) or a traction control system (TCS) is widely used. According to these running state stabilizing devices such as ABS and TCS, the running state of the vehicle at the time of braking or acceleration can be stabilized, but in order to ensure this stability even under more severe conditions, the vehicle It is necessary to control the brakes and the engine by incorporating more information that affects the running stability of the vehicle.

即ち、上記ABSやTCS等の従来の走行状態安定化装置の場合には、タイヤと路面との滑りを検知してブレーキやエンジンを制御する、所謂フィードバック制御を行なっている為、これらブレーキやエンジンの制御が一瞬とは言え遅れる。言い換えれば、厳しい条件下での性能向上を図るべく、所謂フィードフォワード制御により、タイヤと路面との間に滑りが発生しない様にしたり、左右の車輪の制動力が極端に異なる所謂ブレーキの片効きを防止する事はできない。   That is, in the case of the conventional running state stabilizing device such as ABS or TCS, since so-called feedback control is performed to detect the slip between the tire and the road surface and control the brake and the engine, the brake and engine Control is delayed for a moment. In other words, in order to improve performance under severe conditions, the so-called feed-forward control prevents slippage between the tire and the road surface, or the so-called brake one-side effect where the braking forces of the left and right wheels are extremely different. Cannot be prevented.

この様な問題に対応すべく、上記フィードフォワード制御等を行なう為には、懸架装置に対して車輪を支持する為の転がり軸受ユニットに、この車輪に加わるラジアル荷重とアキシアル荷重とのうちの一方又は双方を測定する為の荷重測定装置を組み込む事が考えられる。この様な場合に使用可能な荷重測定装置付車輪支持用転がり軸受ユニットとして従来から、特許文献1〜5に記載されたものが知られている。   In order to cope with such a problem, in order to perform the feedforward control or the like, one of a radial load and an axial load applied to the wheel is applied to the rolling bearing unit for supporting the wheel with respect to the suspension device. Or it is possible to incorporate a load measuring device for measuring both. Conventionally, what was described in patent documents 1-5 is known as a wheel bearing rolling bearing unit with a load measuring device which can be used in such a case.

このうちの特許文献1には、ラジアル荷重を測定自在な、荷重測定装置付転がり軸受ユニットが記載されている。この従来構造の第1例の場合には、非接触式の変位センサにより、回転しない外輪と、この外輪の内径側で回転するハブとの径方向に関する変位を測定する事により、これら外輪とハブとの間に加わるラジアル荷重を求める様にしている。求めたラジアル荷重は、ABSを適正に制御する他、積載状態の不良を運転者に知らせる為に利用する。   Of these, Patent Document 1 describes a rolling bearing unit with a load measuring device capable of measuring a radial load. In the case of the first example of the conventional structure, the outer ring and the hub are measured by measuring the radial displacement between the outer ring that does not rotate and the hub that rotates on the inner diameter side of the outer ring by a non-contact displacement sensor. The radial load applied between and is calculated. The obtained radial load is used not only to properly control the ABS but also to inform the driver of a bad loading condition.

又、特許文献2には、転がり軸受ユニットに加わるアキシアル荷重を測定する構造が記載されている。この特許文献2に記載された従来構造の第2例の場合、外輪の外周面に設けた固定側フランジの内側面複数個所で、この固定側フランジをナックルに結合する為のボルトを螺合する為のねじ孔を囲む部分に、それぞれ荷重センサを添設している。上記外輪を上記ナックルに支持固定した状態でこれら各荷重センサは、このナックルの外側面と上記固定側フランジの内側面との間で挟持される。この様な従来構造の第2例の転がり軸受ユニットの荷重測定装置の場合、車輪と上記ナックルとの間に加わるアキシアル荷重は、上記各荷重センサにより測定される。   Patent document 2 describes a structure for measuring an axial load applied to a rolling bearing unit. In the case of the second example of the conventional structure described in Patent Document 2, bolts for connecting the fixed side flange to the knuckle are screwed at a plurality of positions on the inner side surface of the fixed side flange provided on the outer peripheral surface of the outer ring. Each load sensor is attached to a portion surrounding the screw hole. Each load sensor is clamped between the outer surface of the knuckle and the inner surface of the fixed flange in a state where the outer ring is supported and fixed to the knuckle. In the case of the load measuring device for the rolling bearing unit of the second example having such a conventional structure, the axial load applied between the wheel and the knuckle is measured by the load sensors.

又、特許文献3には、外輪の円周方向4個所位置に支持した変位センサユニットとハブに外嵌固定した断面L字形の被検出リングとにより、上記4個所位置での、上記外輪に対する上記ハブの、ラジアル方向及びアキシアル方向の変位を検出し、各部の検出値に基づいて、このハブに加わる荷重の方向及びその大きさを求める構造が記載されている。   Further, in Patent Document 3, the displacement sensor unit supported at four positions in the circumferential direction of the outer ring and the L-shaped detection ring that is externally fitted and fixed to the hub are used to detect the above-described outer ring at the four positions. A structure is described in which the displacement of the hub in the radial direction and the axial direction is detected, and the direction of the load applied to the hub and the magnitude thereof are determined based on the detection values of the respective parts.

又、特許文献4には、一部の剛性を低くした外輪相当部材に動的歪みを検出する為のストレンゲージを設け、このストレンゲージが検出する転動体の通過周波数から転動体の公転速度を求め、この公転速度から、転がり軸受に加わるアキシアル荷重を測定する方法が記載されている。   Further, in Patent Document 4, a strain gauge for detecting dynamic strain is provided in a member corresponding to an outer ring whose rigidity is partially reduced, and the revolution speed of the rolling element is determined from the passing frequency of the rolling element detected by the strain gauge. A method for determining the axial load applied to the rolling bearing from the revolution speed is described.

更に、特許文献5には、互いに逆方向の接触角を付与された転動体の公転速度が荷重の作用方向及び大きさにより変化する事を利用して、静止側軌道輪である外輪と、回転側軌道輪であるハブとの間に作用するラジアル荷重とアキシアル荷重との一方又は双方を求める構造が記載されている。   Further, in Patent Document 5, the revolution speed of the rolling elements provided with contact angles in opposite directions is changed depending on the direction and magnitude of the load, and the outer ring that is a stationary side race ring is rotated. The structure which calculates | requires one or both of the radial load and axial load which act between the hubs which are a side track ring is described.

又、未公開ではあるが例えば特願2004−279155号には、回転側軌道輪に支持したエンコーダと静止側軌道輪に支持したセンサとにより、これら両軌道輪同士の間の変位を測定し、この変位からこれら両軌道輪同士の間に加わる荷重を求める構造が開示されている。この先発明に係る荷重測定装置は、上記回転側軌道輪の一部に、被検出面の特性を円周方向に関して交互に変化させたエンコーダを、この回転側軌道輪と同心に支持している。又、上記センサは、検出部を上記被検出面に対向させた状態で、上記静止側軌道輪等の回転しない部分に支持され、この被検出面の特性変化に対応してその出力信号を変化させる。そして、演算器が、上記センサの出力信号に基づいて上記両軌道輪同士の間に作用する荷重を算出する様にしている。この為に、上記被検出面の特性が円周方向に関して変化するピッチ若しくは位相を、検出すべき荷重の作用方向に応じて連続的に変化させており、上記演算器は、上記センサの出力信号が変化するパターンに基づいて上記荷重を算出する機能を有する。   In addition, although not disclosed, for example, in Japanese Patent Application No. 2004-279155, the displacement between the two race rings is measured by an encoder supported on the rotation side race ring and a sensor supported on the stationary side race ring. From this displacement, a structure for obtaining a load applied between the two race rings is disclosed. In the load measuring apparatus according to the prior invention, an encoder in which the characteristics of the detected surface are alternately changed in the circumferential direction is supported concentrically with the rotation-side raceway on a part of the rotation-side raceway. The sensor is supported by a non-rotating portion such as the stationary-side track ring with the detection unit facing the detection surface, and changes its output signal in response to a change in the characteristics of the detection surface. Let A computing unit calculates a load acting between the two race rings based on the output signal of the sensor. For this purpose, the pitch or phase at which the characteristics of the surface to be detected change in the circumferential direction is continuously changed according to the acting direction of the load to be detected, and the computing unit outputs the output signal of the sensor. It has a function of calculating the load based on a pattern in which changes.

図4〜11は、上記特願2004−279155号に開示された具体的構造のうちの2例を示している。これら各先発明に係る構造は、何れも、図4、8に示す様に、懸架装置に支持された状態で回転しない静止側軌道輪である外輪1の内径側に、車輪を支持固定(結合固定)した状態でこの車輪と共に回転する、回転側軌道輪であるハブ2を、複数個の転動体3、3を介して回転自在に支持している。そして、このハブ2の中間部にエンコーダ4、4aを外嵌固定すると共に、上記外輪1の軸方向中間部で複列に配置された上記各転動体3、3の間部分にセンサ5、5aを、それぞれの検出部を、被検出面である上記エンコーダ4、4aの外周面に近接対向させた状態で、それぞれ1対ずつ設けている。尚、上記センサ5、5aの検出部には、ホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子を組み込む事が適当である。   4 to 11 show two examples of specific structures disclosed in Japanese Patent Application No. 2004-279155. As shown in FIGS. 4 and 8, each of the structures according to each of the prior inventions supports and fixes (couples) the wheel to the inner diameter side of the outer ring 1 which is a stationary side race ring that does not rotate while being supported by the suspension device. A hub 2 that is a rotating side race wheel that rotates together with the wheel in a fixed state is rotatably supported via a plurality of rolling elements 3 and 3. The encoders 4, 4 a are externally fitted and fixed to the intermediate part of the hub 2, and the sensors 5, 5 a are arranged between the rolling elements 3, 3 arranged in a double row at the axially intermediate part of the outer ring 1. Each pair is provided in a state where the respective detection units are close to and opposed to the outer peripheral surfaces of the encoders 4 and 4a, which are detected surfaces. In addition, it is appropriate to incorporate a magnetic detection element such as a Hall IC, a Hall element, an MR element, or a GMR element in the detection part of the sensors 5 and 5a.

図4〜7に示した、先発明の第1例の構造の場合、上記エンコーダ4として、永久磁石製のものを使用している。被検出面である、このエンコーダ4の外周面には、N極に着磁した部分とS極に着磁した部分とを、円周方向に関して交互に且つ等間隔で配置している。これらN極に着磁された部分とS極に着磁された部分との境界は、上記エンコーダ4の軸方向に対し同じ角度だけ傾斜させると共に、この軸方向に対する傾斜方向を、このエンコーダ4の軸方向中間部を境に互いに逆方向としている。従って、上記N極に着磁された部分とS極に着磁された部分とは、軸方向中間部が円周方向に関して最も突出した(又は凹んだ)、「く」字形となっている。   In the case of the structure of the first example of the prior invention shown in FIGS. 4 to 7, the encoder 4 is made of a permanent magnet. On the outer peripheral surface of the encoder 4 which is a detection surface, portions magnetized in the N pole and portions magnetized in the S pole are alternately arranged at equal intervals in the circumferential direction. The boundary between the part magnetized in the N pole and the part magnetized in the S pole is inclined by the same angle with respect to the axial direction of the encoder 4, and the inclination direction with respect to the axial direction of the encoder 4 is The axial directions are opposite to each other at the intermediate portion. Therefore, the portion magnetized in the N pole and the portion magnetized in the S pole have a “<” shape with the axially middle portion protruding (or recessed) most in the circumferential direction.

又、上記両センサ5、5の検出部が上記エンコーダ4の外周面に対向する位置は、このエンコーダ4の円周方向に関して同じ位置としている。言い換えれば、上記両センサ5、5の検出部は、上記外輪1の中心軸を含む同一仮想平面上に配置されている。又、この外輪1と上記ハブ2との間にアキシアル荷重が作用しない状態で、上記N極に着磁された部分とS極に着磁された部分との軸方向中間部で円周方向に関して最も突出した部分(境界の傾斜方向が変化する部分)が、上記両センサ5、5の検出部同士の間の丁度中央位置に存在する様に、各部材4、5、5の設置位置を規制している。この様に、上記境界の傾斜方向が変化する部分を上記中央位置に存在させる事で、内外輪の温度差や熱膨張等の変形による誤差(変位が生じていなくても内外輪の温度差によって位相差が生じる、所謂オフセット)を小さく抑えられる様にしている。尚、先発明の第1例の場合には、上記エンコーダ4として永久磁石製のものを使用しているので、上記両センサ5、5側に永久磁石を組み込む必要はない。   The positions where the detection parts of the sensors 5 and 5 face the outer peripheral surface of the encoder 4 are the same with respect to the circumferential direction of the encoder 4. In other words, the detection parts of the sensors 5 and 5 are arranged on the same virtual plane including the central axis of the outer ring 1. Further, in the state where the axial load is not applied between the outer ring 1 and the hub 2, the axial direction intermediate portion between the portion magnetized in the N pole and the portion magnetized in the S pole is related to the circumferential direction. The installation positions of the members 4, 5, and 5 are regulated so that the most protruding part (the part in which the tilt direction of the boundary changes) is exactly at the center position between the detection parts of the sensors 5 and 5. is doing. In this way, by making the portion where the inclination direction of the boundary changes in the center position, errors due to temperature difference between the inner and outer rings and deformation due to thermal expansion (even if no displacement occurs, the temperature difference between the inner and outer rings The so-called offset, which causes a phase difference, can be kept small. In the case of the first example of the present invention, since the encoder 4 is made of a permanent magnet, it is not necessary to incorporate a permanent magnet on both the sensors 5 and 5 side.

上述の様に構成する先発明の第1例の場合、上記外輪1とハブ2との間にアキシアル荷重が作用すると、上記両センサ5、5の出力信号が変化する位相がずれる。即ち、上記外輪1とハブ2との間にアキシアル荷重が作用しておらず、上記外輪1と上記ハブ2とが相対変位していない、中立状態では、上記両センサ5、5の検出部は、図7の(A)の実線イ、イ上、即ち、上記最も突出した部分から軸方向に同じだけずれた部分に対向する。従って、上記両センサ5、5の出力信号の位相は、同図の(C)に示す様に一致する。   In the case of the first example of the prior invention configured as described above, when an axial load is applied between the outer ring 1 and the hub 2, the phase at which the output signals of the sensors 5, 5 change is shifted. That is, in the neutral state where an axial load is not applied between the outer ring 1 and the hub 2 and the outer ring 1 and the hub 2 are not relatively displaced, the detecting portions of the sensors 5 and 5 are 7A is opposed to a portion that is shifted by the same amount in the axial direction from the most protruding portion. Accordingly, the phases of the output signals of the sensors 5 and 5 coincide as shown in FIG.

これに対して、上記エンコーダ4を固定したハブ2に、図7の(A)で下向きのアキシアル荷重が作用し(外輪1とハブ2とがアキシアル方向に相対変位し)た場合には、上記両センサ5、5の検出部は、図7の(A)の破線ロ、ロ上、即ち、上記最も突出した部分からの軸方向に関するずれが互いに異なる部分に対向する。この状態では上記両センサ5、5の出力信号の位相は、同図の(B)に示す様にずれる。更に、上記エンコーダ4を固定したハブ2に、図7の(A)で上向きのアキシアル荷重が作用した場合には、上記両センサ5、5の検出部は、図7の(A)の鎖線ハ、ハ上、即ち、上記最も突出した部分からの軸方向に関するずれが、逆方向に互いに異なる部分に対向する。この状態では上記両センサ5、5の出力信号の位相は、同図の(D)に示す様にずれる。   On the other hand, when a downward axial load acts on the hub 2 to which the encoder 4 is fixed in FIG. 7A (the outer ring 1 and the hub 2 are relatively displaced in the axial direction), The detection parts of both sensors 5 and 5 are opposed to the broken lines B and B in FIG. 7A, that is, the parts different from each other in the axial direction from the most protruding part. In this state, the phases of the output signals of the sensors 5 and 5 are shifted as shown in FIG. Further, when an upward axial load is applied to the hub 2 to which the encoder 4 is fixed as shown in FIG. 7A, the detecting portions of both the sensors 5 and 5 are connected to the chain line H shown in FIG. , C, that is, the deviation in the axial direction from the most projecting portion opposes different portions in the opposite direction. In this state, the phases of the output signals of the sensors 5 and 5 are shifted as shown in FIG.

上述の様に先発明の第1例の場合には、上記両センサ5、5の出力信号の位相が、上記外輪1とハブ2との間に加わるアキシアル荷重の方向に応じた方向にずれる。又、このアキシアル荷重により上記両センサ5、5の出力信号の位相がずれる程度(変位量)は、このアキシアル荷重が大きくなる程大きくなる。従って、上記第1例の場合には、上記両センサ5、5の出力信号の位相ずれの有無、ずれが存在する場合にはその方向及び大きさに基づいて、上記外輪1とハブ2との間に作用しているアキシアル荷重の方向及び大きさを求められる。   As described above, in the case of the first example of the prior invention, the phases of the output signals of the sensors 5 and 5 are shifted in the direction corresponding to the direction of the axial load applied between the outer ring 1 and the hub 2. Further, the degree to which the phase of the output signals of the sensors 5, 5 is shifted by this axial load (displacement amount) increases as the axial load increases. Accordingly, in the case of the first example, the presence or absence of a phase shift between the output signals of the sensors 5 and 5 and, if there is a shift, based on the direction and magnitude of the outer ring 1 and the hub 2. The direction and magnitude of the axial load acting in between are obtained.

次に、図8〜11に示した、先発明の第2例の構造の場合には、ハブ2の中間部に、磁性金属板製のエンコーダ4aを外嵌固定している。被検出面である、このエンコーダ4aの外周面には、スリット状の透孔6a、6bと柱部7a、7bとを、円周方向に関して交互に且つ等間隔で配置している。これら各透孔6a、6bと各柱部7a、7bとは、上記エンコーダ4aの軸方向に対し同じ角度だけ傾斜させると共に、この軸方向に対する傾斜方向を、このエンコーダ4aの軸方向中間部を境に互いに逆方向としている。即ち、このエンコーダ4aは、軸方向片半部に、上記軸方向に対し所定方向に同じだけ傾斜した透孔6a、6aを形成すると共に、軸方向他半部に、この所定方向と逆方向に同じ角度だけ傾斜した透孔6b、6bを形成している。   Next, in the case of the structure of the second example of the present invention shown in FIGS. 8 to 11, an encoder 4 a made of a magnetic metal plate is externally fitted and fixed to an intermediate portion of the hub 2. Slit-like through holes 6a and 6b and column portions 7a and 7b are alternately arranged at equal intervals in the circumferential direction on the outer peripheral surface of the encoder 4a, which is the detection surface. The through holes 6a and 6b and the column portions 7a and 7b are inclined by the same angle with respect to the axial direction of the encoder 4a, and the inclined direction with respect to the axial direction is bounded by the intermediate portion in the axial direction of the encoder 4a. Are in opposite directions. That is, the encoder 4a is formed with through holes 6a and 6a inclined in the same direction in the predetermined direction with respect to the axial direction in one half of the axial direction, and in the opposite direction to the predetermined direction in the other half of the axial direction. The through holes 6b and 6b inclined by the same angle are formed.

一方、外輪1の軸方向中間部で複列に配置された転動体3、3同士の間部分に、前記1対のセンサ5a、5aを設置し、これら両センサ5a、5aの検出部を、上記エンコーダ4aの外周面に近接対向させている。これら両センサ5a、5aの検出部がこのエンコーダ4aの外周面に対向する位置は、このエンコーダ4aの円周方向に関して同じ位置としている。又、上記外輪1とハブ2との間にアキシアル荷重が作用しない状態で、上記各透孔6a、6b同士の間に位置し、全周に連続するリム部8が、上記両センサ5a、5aの検出部同士の間の丁度中央位置に存在する様に、各部材4a、5a、5aの設置位置を規制している。尚、先発明の第2例の場合には、上記エンコーダ4aが単なる磁性材製である為、上記両センサ5a、5aの側に永久磁石を組み込む必要がある。   On the other hand, the pair of sensors 5a and 5a is installed between the rolling elements 3 and 3 arranged in a double row at the axially intermediate portion of the outer ring 1, and the detection portions of both the sensors 5a and 5a are provided. It is made to face and oppose the outer peripheral surface of the encoder 4a. The positions where the detection parts of both the sensors 5a and 5a face the outer peripheral surface of the encoder 4a are the same in the circumferential direction of the encoder 4a. A rim portion 8 that is located between the through holes 6a and 6b and continues to the entire circumference in a state where an axial load does not act between the outer ring 1 and the hub 2 includes the sensors 5a and 5a. The installation positions of the members 4a, 5a, and 5a are regulated so as to exist at the center position between the detection units. In the case of the second example of the present invention, since the encoder 4a is made of a simple magnetic material, it is necessary to incorporate permanent magnets on the two sensors 5a and 5a side.

上述の様に構成する先発明の第2例の場合、上記外輪1とハブ2との間にアキシアル荷重が作用(し外輪1とハブ2とがアキシアル方向に相対変位)すると、前述した先発明の第1例の場合と同様に、上記両センサ5a、5aの出力信号が変化する位相がずれる。即ち、上記外輪1とハブ2との間にアキシアル荷重が作用していない状態では、上記両センサ5a、5aの検出部は、図11の(A)の実線イ、イ上、即ち、上記リム部8から軸方向に同じだけずれた部分に対向する。従って、上記両センサ5a、5aの出力信号の位相は、同図の(C)に示す様に一致する。   In the case of the second example of the prior invention configured as described above, when an axial load acts between the outer ring 1 and the hub 2 (the outer ring 1 and the hub 2 are relatively displaced in the axial direction), the above-described prior invention. As in the case of the first example, the phase at which the output signals of the sensors 5a and 5a change is shifted. That is, in a state where an axial load is not applied between the outer ring 1 and the hub 2, the detecting portions of the sensors 5a and 5a are on the solid lines A and B in FIG. It faces a portion that is displaced from the portion 8 by the same amount in the axial direction. Therefore, the phases of the output signals of the sensors 5a and 5a coincide as shown in FIG.

これに対して、上記エンコーダ4aを固定したハブ2に、図11の(A)で下向きのアキシアル荷重が作用した場合には、上記両センサ5a、5aの検出部は、図11の(A)の破線ロ、ロ上、即ち、上記リム部8からの軸方向に関するずれが互いに異なる部分に対向する。この状態では上記両センサ5a、5aの出力信号の位相は、同図の(B)に示す様にずれる。更に、上記エンコーダ4aを固定したハブ2に、図11の(A)で上向きのアキシアル荷重が作用した場合には、上記両センサ5a、5aの検出部は、図11の(A)の鎖線ハ、ハ上、即ち、上記リム部8からの軸方向に関するずれが、逆方向に互いに異なる部分に対向する。この状態では上記両センサ5a、5aの出力信号の位相は、同図の(D)に示す様にずれる。   On the other hand, when a downward axial load is applied to the hub 2 to which the encoder 4a is fixed as shown in FIG. 11A, the detecting portions of the sensors 5a and 5a are shown in FIG. The broken lines B and B, that is, the portions that are different from each other in the axial direction from the rim portion 8 face each other. In this state, the phases of the output signals of the sensors 5a and 5a are shifted as shown in FIG. Further, when an upward axial load is applied to the hub 2 to which the encoder 4a is fixed as shown in FIG. 11A, the detecting portions of both the sensors 5a and 5a are connected to the chain line H shown in FIG. , C, that is, the axial displacement from the rim 8 opposes different parts in the opposite direction. In this state, the phases of the output signals of the sensors 5a and 5a are shifted as shown in FIG.

上述の様に先発明の第2例の場合も、前述の先発明の第1例の場合と同様に、上記両センサ5a、5aの出力信号の位相が、上記外輪1とハブ2との間に加わるアキシアル荷重の方向に応じた方向にずれる。又、このアキシアル荷重により上記両センサ5a、5aの出力信号の位相がずれる程度(変位量)は、このアキシアル荷重が大きくなる程大きくなる。従って第2例の場合も、上記両センサ5a、5aの出力信号の位相ずれの有無、ずれが存在する場合にはその方向及び大きさに基づいて、上記外輪1とハブ2との間に作用しているアキシアル荷重の方向及び大きさを求められる。
尚、エンコーダを円輪状に構成すると共に、このエンコーダの軸方向側面を被検出面とし、この被検出面に1対のセンサの検出部を、径方向にずらせた状態で対向させれば、上記外輪1と上記ハブ2との径方向に関する変位、延てはこれら外輪1とハブ2との間に加わるラジアル荷重を求める事も可能である。
As described above, in the case of the second example of the prior invention, as in the case of the first example of the previous invention, the phases of the output signals of the sensors 5a and 5a are between the outer ring 1 and the hub 2. It shifts in the direction according to the direction of the axial load applied to. Further, the degree of displacement (displacement amount) of the output signals of the sensors 5a and 5a due to the axial load increases as the axial load increases. Therefore, also in the case of the second example, there is an action between the outer ring 1 and the hub 2 based on the direction and size of the output signal of both the sensors 5a and 5a, if there is a phase shift and if there is a shift. The direction and magnitude of the axial load is determined.
If the encoder is configured in an annular shape, the side surface in the axial direction of the encoder is a detection surface, and the detection portions of the pair of sensors are opposed to the detection surface in a state shifted in the radial direction, the above It is also possible to determine the displacement in the radial direction between the outer ring 1 and the hub 2 and thus the radial load applied between the outer ring 1 and the hub 2.

前記特許文献1〜5に示した従来構造の場合も、以上に述べた、図4〜11に示した様な先発明に係る構造の場合も、次述する様に、制動時を除けば(定速走行時及び加速時であれば)、求めた荷重は、車輪(タイヤ)の外周面と路面との間に作用する荷重と等価若しくは大きな関連性のあるものである。従って、求めた荷重に基づいて、車両の走行安定性を確保する為のフィードフォワード制御を行なう事が可能になる。但し、この様なフィードフォワード制御による走行安定性確保の為の制御は、定速走行時や加速走行時だけでなく(むしろ定速走行時や加速走行時よりも)、制動時に重要になる場合が多い。従って、制動時にこそ、上記車輪の外周面と路面との間に作用する荷重を正確に測定可能とする事が重要である。この為には、制動に伴って静止側軌道輪である外輪と回転側軌道輪であるハブとの間に加わる荷重を求め、更に、この制動に伴って加わる荷重分を、これら外輪とハブとの間に作用する荷重に対し加減(補償)する事により、上記車輪の外周面と路面との間に作用する荷重を求める必要がある。   In the case of the conventional structure shown in Patent Documents 1 to 5 as well as the structure according to the prior invention as shown in FIGS. 4 to 11 described above, as described below, except during braking ( The obtained load is equivalent or highly related to the load acting between the outer peripheral surface of the wheel (tire) and the road surface (when driving at a constant speed and during acceleration). Therefore, it is possible to perform feedforward control for ensuring the running stability of the vehicle based on the obtained load. However, such control for ensuring driving stability by feedforward control is important not only during constant speed driving or acceleration driving (rather than during constant speed driving or acceleration driving) but also during braking. There are many. Therefore, it is important that the load acting between the outer peripheral surface of the wheel and the road surface can be accurately measured only during braking. For this purpose, the load applied between the outer ring, which is a stationary side race ring, and the hub, which is a rotary side race ring, is obtained along with braking. It is necessary to obtain the load acting between the outer peripheral surface of the wheel and the road surface by adjusting (compensating) the load acting during the road.

例えば、制動装置が、ディスクロータとキャリパとを備えたディスクブレーキである場合に就いて考える。このうちのディスクロータは、上記車輪と共に上記ハブに固定されて、このハブと共に回転する。又、上記キャリパは、上記外輪と共に懸架装置を構成するナックルに固定される(対向ピストン型の場合)か、このナックルに固定されたサポートに、上記外輪の軸方向の変位を可能に支持される(フローティングキャリパ型の場合)。何れにしても、制動時には上記キャリパ内に設けたシリンダに油圧を導入し、このシリンダ内に油密に嵌装したピストンの押し出しにより、1対のパッドを上記ディスクロータの両側面に押圧する(強く挟持する)。この際、これら両パッドがこのディスクロータの両側面に押し付けられる力は、油圧配管の抵抗やサポートとキャリパとの間の摺動抵抗等により、多少なりとも(特にフローティングキャリパ型の場合には必然的に)不均一になる。   For example, consider a case where the braking device is a disc brake having a disc rotor and a caliper. Of these, the disk rotor is fixed to the hub together with the wheel, and rotates together with the hub. The caliper is fixed to a knuckle that constitutes a suspension device together with the outer ring (in the case of an opposed piston type), or supported by the support fixed to the knuckle so as to be able to displace the outer ring in the axial direction. (For floating caliper type). In any case, during braking, hydraulic pressure is introduced into a cylinder provided in the caliper, and a pair of pads are pressed against both side surfaces of the disk rotor by pushing out a piston that is oil-tightly fitted in the cylinder ( Hold tightly). At this time, the force with which both the pads are pressed against both sides of the disk rotor is somewhat (especially in the case of the floating caliper type) due to the resistance of the hydraulic piping and the sliding resistance between the support and the caliper. )) Become non-uniform.

この為、上記ディスクロータを介して上記ハブに、(両面側での押し付け力の差分の)アキシアル荷重が加わる。このアキシアル荷重は、一般的には、上記車輪の外周面と路面との間に作用する荷重に比べれば小さい。但し、この車輪の外周面と路面との間に作用する荷重とは関係ない(走行安定性に影響しない)ものであるから、制動に伴って加わる荷重分を補償しない限り、前記フィードフォワード制御を高精度で行なう事はできなくなる。又、制動装置がドラムブレーキの場合には、制動時に、ラジアル荷重が、上記車輪の外周面と路面との間に作用する荷重とは別に発生する可能性がある。   For this reason, an axial load (a difference in pressing force on both sides) is applied to the hub via the disk rotor. This axial load is generally smaller than the load acting between the outer peripheral surface of the wheel and the road surface. However, since the load acting between the outer peripheral surface of the wheel and the road surface is irrelevant (does not affect the running stability), the feedforward control is performed as long as the load applied during braking is not compensated. It cannot be performed with high accuracy. Further, when the braking device is a drum brake, a radial load may be generated separately from a load acting between the outer peripheral surface of the wheel and the road surface during braking.

特許文献6には、キャリパの担体にセンサを設けた構造が記載されている。この様な特許文献6に記載された構造によれば、このセンサの検出信号により、制動装置であるディスクブレーキの作動時に、この作動に伴って転がり軸受ユニットに加わるアキシアル荷重を求められるとされる。但し、キャリパの担体に設けたセンサでは、必ずしも、上記荷重の誤差成分に結び付く力を正確に求められないものと考えられる。又、限られたスペースにセンサ及び信号取り出し用のハーネスを設置しなければならない等、コスト及び重量が嵩む事が避けられない。   Patent Document 6 describes a structure in which a sensor is provided on a caliper carrier. According to such a structure described in Patent Document 6, it is assumed that the axial load applied to the rolling bearing unit in accordance with the operation of the disc brake as the braking device is obtained from the detection signal of the sensor. . However, it is considered that the sensor provided on the caliper carrier does not necessarily accurately determine the force associated with the load error component. In addition, an increase in cost and weight is inevitable, for example, a sensor and a signal extraction harness must be installed in a limited space.

特開2001−21577号公報JP 2001-21577 A 特開平3−209016号公報Japanese Patent Laid-Open No. 3-209016 特開2004−3918号公報Japanese Patent Laid-Open No. 2004-3918 特公昭62−3365号公報Japanese Patent Publication No.62-3365 特開2005−31063号公報JP 2005-31063 A 特開2002−350254号公報JP 2002-350254 A

本発明は、上述の様な事情に鑑みて、余分なセンサを付加する事なく、簡単に構成できて、制動に伴って加わる荷重分を正確に求められ、この荷重分を外輪等の静止部材とハブ等の回転部材との間に作用する荷重に対し加減(補償)する事により、車輪の外周面と路面との間に作用する荷重等、本来求めたい荷重を求められる構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention can be easily configured without adding an extra sensor, and a load applied along with braking can be accurately obtained, and this load can be used as a stationary member such as an outer ring. To achieve a structure that can obtain the load that is originally required, such as the load that acts between the outer peripheral surface of the wheel and the road surface, by adjusting (compensating) the load acting between the wheel and the rotating member such as the hub. Invented.

本発明の荷重測定装置は、回転部材と静止部材との間に作用する荷重を求める為の荷重測定手段と、制動手段によりこの回転部材に加えられる制動力の大きさを求める制動力検知手段とを備える。そして、この制動力検知手段が求めたこの制動力の大きさに基づいて、上記荷重測定手段が求める荷重の値を補正する機能を有する。   The load measuring device according to the present invention includes a load measuring means for obtaining a load acting between the rotating member and the stationary member, a braking force detecting means for obtaining a magnitude of a braking force applied to the rotating member by the braking means, Is provided. And it has a function which correct | amends the value of the load which the said load measurement means calculates | requires based on the magnitude | size of this braking force which this braking force detection means calculated | required.

上述の様に構成する本発明の荷重測定装置によれば、制動に伴って加わる荷重分を、外輪等の静止部材とハブ等の回転部材との間に作用する荷重に対し加減(補償)する事で、車輪の外周面と路面との間に作用する荷重等、本来求めたい荷重を求められる。   According to the load measuring device of the present invention configured as described above, the load applied during braking is adjusted (compensated) with respect to the load acting between the stationary member such as the outer ring and the rotating member such as the hub. Thus, the load that is originally desired, such as a load acting between the outer peripheral surface of the wheel and the road surface, can be obtained.

本発明を実施する場合に好ましくは、請求項2〜3に記載した様に、回転部材を、自動車の車輪を支持する為の車輪支持用転がり軸受ユニットの回転側軌道輪とし、静止部材を、この車輪支持用転がり軸受ユニットを構成する静止側軌道輪とする。又、制動手段を、上記車輪の回転に対して抵抗を加えるブレーキとする。
そして、請求項2に記載した様に、制動力検知手段を、上記ブレーキを作動させる為のブレーキペダルの踏み込みに伴って上昇する油圧を検知する為の油圧センサを含んで構成する。
或いは、請求項3に記載した様に、制動力検知手段を、上記ブレーキを作動させる為のブレーキペダルの踏み込みに伴って油圧を上昇させる為の信号を発する油圧制御回路を含んで構成する。
この様な構成を採用すれば、制動力の大きさを簡単に求められる。
When carrying out the present invention, preferably, as described in claims 2 to 3, the rotating member is a rotating side bearing ring of a wheel bearing rolling bearing unit for supporting a wheel of an automobile, and the stationary member is Let it be a stationary side bearing ring which constitutes this wheel support rolling bearing unit. The braking means is a brake that applies resistance to the rotation of the wheel.
According to a second aspect of the present invention, the braking force detecting means includes a hydraulic pressure sensor for detecting a hydraulic pressure that rises as the brake pedal is depressed to operate the brake.
Alternatively, as described in claim 3, the braking force detection means includes a hydraulic pressure control circuit that generates a signal for increasing the hydraulic pressure when the brake pedal for depressing the brake is depressed.
By adopting such a configuration, the magnitude of the braking force can be easily obtained.

又、本発明を実施する場合に好ましくは、例えば請求項4に記載した様に、回転部材の一部にこの回転部材と同心に支持されてこの回転部材と共に回転するエンコーダと、検出部をこのエンコーダの被検出面に対向させた状態で静止部材に支持されたセンサと、このセンサの出力信号に基づいてこの静止部材と上記回転部材との間の相対変位を求める演算器とを備える。このうちのエンコーダは、上記回転部材の回転中心と同心の被検出面の特性を円周方向に関して交互に且つ等間隔で変化させると共に、この被検出面の特性が円周方向に関して変化する位相を、検出すべき変位の方向に応じて連続的に変化させたものとする。そして、上記演算器は、上記センサの出力信号の変化のパターンに基づいて、上記静止部材と上記回転部材との間の相対変位量を求め、更にこの相対変位量に基づいてこれら静止部材と回転部材との間に作用する荷重を求める機能を有する。
或いは、請求項5に記載した様に、前述の特許文献5に記載された構造の如く、互いに対向する、回転側軌道輪の周面に設けた回転側軌道と静止側軌道輪の周面に設けた静止側軌道との間に複数個の転動体を、接触角を付与した状態で転動自在に設ける。そして、荷重測定手段は、これら各転動体の公転速度の変化に基づいて、上記回転側軌道輪と上記静止側軌道輪との間に加わる荷重を求める。
本発明は、前述の特許文献1〜4に記載された様な荷重測定装置を備えた構造に制動力検知手段を付加し、この制動力検知手段が求めたこの制動力の大きさに基づいて、荷重測定手段が求める荷重の値を補正する態様で実施する事もできる。但し、上述の請求項4〜5に記載した構成を採用すれば、比較的低コストに得られるセンサのみを使用して実施できる為、コストの面から有利である。
Preferably, when carrying out the present invention, for example, as described in claim 4, an encoder that is supported concentrically with a part of the rotating member and rotates together with the rotating member, and a detection unit are provided. A sensor supported by a stationary member in a state of being opposed to the detection surface of the encoder, and an arithmetic unit for obtaining a relative displacement between the stationary member and the rotating member based on an output signal of the sensor. Among these, the encoder changes the characteristics of the detected surface concentric with the rotation center of the rotating member alternately and at equal intervals in the circumferential direction, and changes the phase of the detected surface characteristics to change in the circumferential direction. It is assumed that it is continuously changed according to the direction of the displacement to be detected. The computing unit obtains a relative displacement amount between the stationary member and the rotating member based on a change pattern of the output signal of the sensor, and further rotates with the stationary member based on the relative displacement amount. It has a function of obtaining a load acting between the members.
Alternatively, as described in claim 5, as in the structure described in the above-mentioned Patent Document 5, the rotation-side track provided on the peripheral surface of the rotation-side raceway and the peripheral surface of the stationary-side raceway are opposed to each other. A plurality of rolling elements are provided so as to be able to roll freely with a contact angle provided between the stationary side track provided. And a load measurement means calculates | requires the load added between the said rotation side track ring and the said stationary side track ring based on the change of the revolution speed of each of these rolling elements.
The present invention adds a braking force detection means to a structure having a load measuring device as described in Patent Documents 1 to 4 described above, and based on the magnitude of the braking force obtained by the braking force detection means. It is also possible to implement in a mode in which the load value obtained by the load measuring means is corrected. However, if the configuration described in the above fourth to fifth aspects is adopted, it can be carried out using only a sensor obtained at a relatively low cost, which is advantageous in terms of cost.

図1〜3は、本発明の実施例を示している。回転側軌道輪であるハブ2の中間部に外嵌固定した、エンコーダ4bは、磁性金属板により全体を円筒状に形成されており、幅方向中央部に、それぞれが「く」字形である多数の透孔6、6を、円周方向に亙り等間隔に形成している。これら各透孔6、6はそれぞれ、上記エンコーダ4bの被検出面である、外周面の幅方向中央部で、円周方向に関して最も突出して(或いは凹んで)いる。   1 to 3 show an embodiment of the present invention. The encoder 4b, which is externally fitted and fixed to the intermediate portion of the hub 2 which is the rotating side raceway, is formed in a cylindrical shape by a magnetic metal plate, and has a plurality of "<" shapes at the center in the width direction. The through-holes 6 are formed at equal intervals in the circumferential direction. Each of these through-holes 6 and 6 protrudes (or is depressed) most in the circumferential direction at the center in the width direction of the outer peripheral surface, which is the detected surface of the encoder 4b.

一方、静止側軌道輪である外輪1の軸方向中間部で、上記エンコーダ4bの外周面に対向する部分に取付孔9を、この外輪1を径方向に貫通する状態で形成している。そして、この取付孔9にセンサユニット10を、径方向外方から挿通している。このセンサユニット10は、信号生成部である1対のホールIC11a、11bと、単一の永久磁石12とを備える。このうちの両ホールIC11a、11bは、検出部として機能する片端面を上記エンコーダ4bの外周面に、厚さ寸法が小さな(例えば0.5〜2mm程度の)検出隙間を介して、近接対向させている。又、上記永久磁石12は、上記両ホールIC11a、11bを挟んで、上記エンコーダ4bの被検出面(外周面)と反対側(上記外輪1及びハブ2の径方向外側)に配置している。そして、上記永久磁石12の着磁方向(図1の上下方向)一端面(図1の下端面)に、上記両ホールIC11a、11bの他端面(図1の上面)を当接させている。   On the other hand, a mounting hole 9 is formed in a portion facing the outer peripheral surface of the encoder 4b at a middle portion in the axial direction of the outer ring 1 which is a stationary-side raceway so as to penetrate the outer ring 1 in the radial direction. The sensor unit 10 is inserted into the mounting hole 9 from the outside in the radial direction. The sensor unit 10 includes a pair of Hall ICs 11a and 11b, which are signal generation units, and a single permanent magnet 12. Of these Hall ICs 11a and 11b, one end surface functioning as a detection unit is placed close to and opposed to the outer peripheral surface of the encoder 4b through a detection gap having a small thickness (for example, about 0.5 to 2 mm). ing. The permanent magnet 12 is disposed on the opposite side (outer radial direction of the outer ring 1 and the hub 2) of the encoder 4b across the hall ICs 11a and 11b. The other end surfaces (upper surfaces in FIG. 1) of both the Hall ICs 11a and 11b are brought into contact with one end surface (lower end surface in FIG. 1) of the magnetization direction (vertical direction in FIG. 1) of the permanent magnet 12.

上記センサユニット10は、上記両ホールIC11a、11bと上記永久磁石12とを、上記位置関係に組み合わせた状態で、これら各部材11a、11b、12を合成樹脂製のホルダ13内に包埋保持して成る。即ち、上記センサユニット10は、これら各部材11a、11b、12を、電力供給用及び信号取り出し用のハーネス、更には波形整形用のIC等と共に、上記ホルダ13を射出成形する為の金型のキャビティ内にセットした状態で、このキャビティ内に合成樹脂を注入する事により造る。この様な上記センサユニット10の製造作業の際、上記両ホールIC11a、11b同士の位置関係が、上記永久磁石12の磁力に基づく吸引力や反発力によりずれる事はない。又、この位置関係は、この単一の永久磁石12に対し上記両ホールIC11a、11bを適正位置に突き合わせるのみで、容易に規制できる。   The sensor unit 10 embeds and holds each of the members 11a, 11b, 12 in a synthetic resin holder 13 in a state where the Hall ICs 11a, 11b and the permanent magnet 12 are combined in the positional relationship. It consists of That is, the sensor unit 10 is a mold for injection-molding the holder 13 together with the members 11a, 11b, and 12 together with a harness for power supply and signal extraction, and an IC for waveform shaping. It is made by injecting synthetic resin into this cavity while it is set in the cavity. During the manufacturing operation of the sensor unit 10, the positional relationship between the two Hall ICs 11 a and 11 b is not shifted by the attractive force or the repulsive force based on the magnetic force of the permanent magnet 12. Further, this positional relationship can be easily regulated simply by abutting the two Hall ICs 11a and 11b on the single permanent magnet 12 at appropriate positions.

上述の様に構成する本実施例の構造により、前記外輪1と前記ハブ2との間に加わるアキシアル荷重を求める方法に関しては、基本的には、前述の図8〜11に示した、先発明の第2例の場合と同様である。即ち、上記アキシアル荷重に基づいて上記外輪1と上記ハブ2とがアキシアル方向に変位すると、上記両ホールIC11a、11bに基づく1対の出力信号の位相が、前述の図11に示す様にずれる。そこで、図示しない演算器により、このずれの方向及び大きさから、上記アキシアル方向の変位の方向及び大きさを求め、更にこの変位の方向及び大きさから、上記アキシアル荷重の方向及び大きさを求められる。但し、この様にして求められるアキシアル荷重の方向及び大きさは、単に上記外輪1と上記ハブ2との間に加わるアキシアル荷重に関するものである。前述した様に、ディスクブレーキの作動に伴う制動時に於いては、上記外輪1と上記ハブ2との間に加わるアキシアル荷重である元測定荷重値には、制動に伴うアキシアル荷重である、制動誤差成分が含まれる。従って、そのままでは、この制動誤差成分だけ、車輪と路面との間に作用する、走行安定性確保の為の制御に重要なアキシアル荷重の値である、測定対象荷重との間に差が生じる事になる。   With regard to the method for obtaining the axial load applied between the outer ring 1 and the hub 2 by the structure of the present embodiment configured as described above, basically the prior invention shown in the above-described FIGS. This is the same as the case of the second example. That is, when the outer ring 1 and the hub 2 are displaced in the axial direction based on the axial load, the phases of the pair of output signals based on the Hall ICs 11a and 11b are shifted as shown in FIG. Therefore, the direction and magnitude of the displacement in the axial direction are obtained from the direction and magnitude of the deviation by an arithmetic unit (not shown), and further, the direction and magnitude of the axial load are obtained from the direction and magnitude of the displacement. It is done. However, the direction and the magnitude of the axial load obtained in this way are merely related to the axial load applied between the outer ring 1 and the hub 2. As described above, at the time of braking accompanying the operation of the disc brake, the original measured load value that is the axial load applied between the outer ring 1 and the hub 2 includes the braking error that is the axial load accompanying braking. Ingredients included. Therefore, if this is the case, there will be a difference between this braking error component and the load to be measured, which is the value of the axial load that acts between the wheels and the road surface and is important for ensuring driving stability. become.

そこで、本実施例の場合には、上記制動誤差成分を求め、この制動誤差成分を、上記元測定荷重値に対し補償(加減)して、上記測定対象荷重を高精度に求める様にしている。即ち、上記制動誤差成分の作用方向が、この測定対象荷重の作用方向と同じである場合には、この制動誤差成分を上記元測定荷重値から減ずる事により、上記制動誤差成分の作用方向が、上記測定対象荷重の作用方向と反対である場合には、この制動誤差成分を上記元測定荷重値に加える事により、上記測定対象荷重を高精度で求める様にしている。この点に就いて、図2〜3を参照しつつ説明する。   Therefore, in the case of the present embodiment, the braking error component is obtained, and the braking error component is compensated (adjusted) with respect to the original measured load value, so that the measurement target load is obtained with high accuracy. . That is, when the action direction of the braking error component is the same as the action direction of the load to be measured, the action direction of the braking error component is reduced by subtracting the braking error component from the original measured load value. When the direction of the measurement target load is opposite, the braking error component is added to the original measurement load value to obtain the measurement target load with high accuracy. This point will be described with reference to FIGS.

例えば、平坦路を直進走行中にディスクブレーキにより軽制動を行なった場合に就いて、図2により説明する。この場合には、車体に重力や遠心力に基づくアキシアル荷重が加わる事はない為、上記測定対象荷重は、図2の(A)に実線イで示す様に、ほぼ0のままである。これに対して、上記元測定荷重値は、上記制動誤差成分の影響により、図2の破線ロで示す様に、0から明らかに外れた値にまで変化する。この破線ロで示す様な上記元測定荷重値を利用して、車両の走行安定性を確保する為の制御を行なっても、十分に高精度の制御を行なう事は難しい。一方、上記ディスクブレーキによる制動時に、このディスクブレーキを構成するキャリパのシリンダ内の油圧は、図2の(B)の曲線ハで示す様に変化する。この曲線ハと、上記実線イと上記破線ロとの差である制動誤差成分とを比較すれば明らかな通り、この制動誤差成分と上記油圧との間には、明りょうな関係(ほぼ比例関係)が存在する。そこで、上記曲線ハで表される、上記シリンダ内の油圧に基づいて上記制動誤差成分を求め、この制動誤差成分を、上記破線ロで示した元測定荷重値に関して補償すれば(減ずれば)、上記図2の(A)に実線イで示した、上記測定対象荷重に近い、修正荷重値を得られる。図2の(C)には、この様にして求めた修正荷重値を、鎖線ニで示している。この図2の(C)に示した実線イは、上記測定対象荷重である。   For example, a case where light braking is performed by a disc brake while traveling straight on a flat road will be described with reference to FIG. In this case, since an axial load based on gravity or centrifugal force is not applied to the vehicle body, the load to be measured remains almost zero as shown by a solid line a in FIG. On the other hand, the original measured load value changes to a value clearly deviating from 0, as shown by the broken line b in FIG. 2, due to the influence of the braking error component. Even if the control for ensuring the running stability of the vehicle is performed using the original measured load value as shown by the broken line (b), it is difficult to perform sufficiently high-precision control. On the other hand, at the time of braking by the disc brake, the oil pressure in the cylinder of the caliper constituting the disc brake changes as shown by the curve C in FIG. As is apparent from a comparison between this curve c and the braking error component that is the difference between the solid line A and the broken line B, there is a clear relationship (almost proportional relationship) between the braking error component and the hydraulic pressure. ) Exists. Therefore, if the braking error component is obtained based on the hydraulic pressure in the cylinder represented by the curve C, and this braking error component is compensated (reduced) with respect to the original measured load value indicated by the broken line b). A corrected load value close to the load to be measured, which is indicated by a solid line A in FIG. In FIG. 2C, the corrected load value obtained in this way is indicated by a chain line d. The solid line A shown in FIG. 2C is the load to be measured.

更に、図3は、急制動時に於ける、測定対象荷重と、元測定荷重値と、油圧と、修正荷重値とを示している。各線イ〜ニの意味は、図2の場合と同じである。図3から明らかな通り、急制動に伴って車体の安定性が損なわれる結果、測定対象荷重自体も0から変化するが、油圧に基づいて制動誤差成分を求め、元測定荷重値に対する補償を行なう事で、上記測定対象荷重を高精度に求める事ができる。   Further, FIG. 3 shows a measurement target load, an original measurement load value, a hydraulic pressure, and a corrected load value at the time of sudden braking. The meanings of the lines A to D are the same as those in FIG. As apparent from FIG. 3, the stability of the vehicle body is lost as a result of sudden braking. As a result, the measurement target load itself also changes from 0, but a braking error component is obtained based on the hydraulic pressure, and compensation for the original measurement load value is performed. Thus, the load to be measured can be obtained with high accuracy.

本発明の実施例を示す断面図。Sectional drawing which shows the Example of this invention. 軽制動時に於ける、測定対象荷重と、元測定荷重値と、油圧と、修正荷重値との関係を示す線図。The diagram which shows the relationship between a to-be-measured load, the original measurement load value, a hydraulic pressure, and a correction load value at the time of light braking. 急制動時に於ける、測定対象荷重と、元測定荷重値と、油圧と、修正荷重値との関係を示す線図。The diagram which shows the relationship between a to-be-measured load, the original measurement load value, a hydraulic pressure, and a correction load value at the time of sudden braking. 先発明に係る変位測定装置付転がり軸受ユニットの第1例を示す断面図。Sectional drawing which shows the 1st example of the rolling bearing unit with a displacement measuring device which concerns on a prior invention. この第1例に組み込むエンコーダの斜視図。The perspective view of the encoder built in this 1st example. 同じく展開図。Similarly development. アキシアル荷重の変動に伴って変化するセンサの出力信号を示す線図。The diagram which shows the output signal of the sensor which changes with the fluctuation | variation of an axial load. 先発明の第2例を示す断面図。Sectional drawing which shows the 2nd example of a prior invention. この第2例に組み込むエンコーダの斜視図。The perspective view of the encoder integrated in this 2nd example. 同じく展開図。Similarly development. アキシアル荷重の変動に伴って変化するセンサの出力信号を示す線図。The diagram which shows the output signal of the sensor which changes with the fluctuation | variation of an axial load.

符号の説明Explanation of symbols

1 外輪
2 ハブ
3 転動体
4、4a、4b エンコーダ
5、5a センサ
6、6a、6b 透孔
7a、7b 柱部
8 リム部
9 取付孔
10 センサユニット
11a、11b ホールIC
12 永久磁石
13 ホルダ
DESCRIPTION OF SYMBOLS 1 Outer ring 2 Hub 3 Rolling element 4, 4a, 4b Encoder 5, 5a Sensor 6, 6a, 6b Through-hole 7a, 7b Column part 8 Rim part 9 Mounting hole 10 Sensor unit 11a, 11b Hall IC
12 Permanent magnet 13 Holder

Claims (5)

回転部材と静止部材との間に作用する荷重を求める為の荷重測定手段と、制動手段によりこの回転部材に加えられる制動力の大きさを求める制動力検知手段とを備え、この制動力検知手段が求めたこの制動力の大きさに基づいて、上記荷重測定手段が求める荷重の値を補正する機能を有する荷重測定装置。   A load measuring means for obtaining a load acting between the rotating member and the stationary member; and a braking force detecting means for obtaining a magnitude of a braking force applied to the rotating member by the braking means. A load measuring device having a function of correcting the value of the load obtained by the load measuring means based on the magnitude of the braking force obtained by. 回転部材が自動車の車輪を支持する為の車輪支持用転がり軸受ユニットの回転側軌道輪であり、静止部材がこの車輪支持用転がり軸受ユニットを構成する静止側軌道輪であり、制動手段が上記車輪の回転に対して抵抗を加えるブレーキであり、制動力検知手段がこのブレーキを作動させる為のブレーキペダルの踏み込みに伴って上昇する油圧を検知する為の油圧センサを含んで構成されるものである、請求項1に記載した荷重測定装置。   The rotating member is a rotating side bearing ring of a wheel bearing rolling bearing unit for supporting a wheel of an automobile, the stationary member is a stationary side bearing ring constituting the wheel supporting rolling bearing unit, and the braking means is the wheel. A brake that applies resistance to the rotation of the brake, and includes a hydraulic pressure sensor that detects the hydraulic pressure that rises as the brake force detection means depresses the brake pedal for operating the brake. The load measuring device according to claim 1. 回転部材が自動車の車輪を支持する為の車輪支持用転がり軸受ユニットの回転側軌道輪であり、静止部材がこの車輪支持用転がり軸受ユニットを構成する静止側軌道輪であり、制動手段が上記車輪の回転に対して抵抗を加えるブレーキであり、制動力検知手段がこのブレーキを作動させる為のブレーキペダルの踏み込みに伴って油圧を上昇させる為の信号を発する油圧制御回路を含んで構成されるものである、請求項1に記載した荷重測定装置。   The rotating member is a rotating side bearing ring of a wheel bearing rolling bearing unit for supporting a wheel of an automobile, the stationary member is a stationary side bearing ring constituting the wheel supporting rolling bearing unit, and the braking means is the wheel. A brake that applies resistance to the rotation of the brake and includes a hydraulic control circuit that generates a signal for increasing the hydraulic pressure when the braking force detecting means depresses the brake pedal for operating the brake. The load measuring device according to claim 1, wherein 回転部材の一部にこの回転部材と同心に支持されてこの回転部材と共に回転するエンコーダと、検出部をこのエンコーダの被検出面に対向させた状態で静止部材に支持されたセンサと、このセンサの出力信号に基づいてこの静止部材と上記回転部材との間の相対変位を求める演算器とを備え、このうちのエンコーダは、上記回転部材の回転中心と同心の被検出面の特性を円周方向に関して交互に且つ等間隔で変化させると共に、この被検出面の特性が円周方向に関して変化する位相を、検出すべき変位の方向に応じて連続的に変化させており、上記演算器は、上記センサの出力信号の変化のパターンに基づいて、上記静止部材と上記回転部材との間の相対変位量を求め、更にこの相対変位量に基づいてこれら静止部材と回転部材との間に作用する荷重を求める機能を有する、請求項1〜3のうちの何れか1項に記載した荷重測定装置。   An encoder that is supported by a part of the rotating member concentrically with the rotating member and rotates together with the rotating member, a sensor that is supported by the stationary member in a state in which the detection unit faces the detection surface of the encoder, and the sensor And an arithmetic unit for obtaining a relative displacement between the stationary member and the rotating member based on the output signal of the output member, and the encoder includes a circle that determines the characteristics of the detected surface concentric with the rotation center of the rotating member. The phase is changed alternately and at equal intervals with respect to the direction, and the phase at which the characteristic of the detected surface changes with respect to the circumferential direction is continuously changed according to the direction of the displacement to be detected. Based on the change pattern of the output signal of the sensor, a relative displacement amount between the stationary member and the rotating member is obtained, and further, an action is performed between the stationary member and the rotating member based on the relative displacement amount. That has the function of determining the load, the load measuring apparatus according to any one of claims 1 to 3. 互いに対向する、回転側軌道輪の周面に設けた回転側軌道と静止側軌道輪の周面に設けた静止側軌道との間に複数個の転動体が、接触角を付与した状態で転動自在に設けられており、荷重測定手段は、これら各転動体の公転速度の変化に基づいて上記回転側軌道輪と上記静止側軌道輪との間に加わる荷重を求める機能を有する、請求項1〜3のうちの何れか1項に記載した荷重測定装置。   A plurality of rolling elements roll with a contact angle between a rotating track provided on the circumferential surface of the rotating raceway and a stationary track provided on the circumferential surface of the stationary raceway, which are opposed to each other. The load measuring means has a function of obtaining a load applied between the rotation side raceway and the stationary side raceway based on a change in revolution speed of each rolling element. The load measuring apparatus described in any one of 1-3.
JP2005132407A 2005-04-28 2005-04-28 Load measuring device Withdrawn JP2006308465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005132407A JP2006308465A (en) 2005-04-28 2005-04-28 Load measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005132407A JP2006308465A (en) 2005-04-28 2005-04-28 Load measuring device

Publications (1)

Publication Number Publication Date
JP2006308465A true JP2006308465A (en) 2006-11-09

Family

ID=37475520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005132407A Withdrawn JP2006308465A (en) 2005-04-28 2005-04-28 Load measuring device

Country Status (1)

Country Link
JP (1) JP2006308465A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270974A (en) * 2008-05-08 2009-11-19 Nsk Ltd Rotation support device with quantity-of-state measuring function
WO2013047346A1 (en) 2011-09-29 2013-04-04 Ntn株式会社 Wheel bearing apparatus with sensor
JP2013076573A (en) * 2011-09-29 2013-04-25 Ntn Corp Bearing device for wheel with sensors
CN104121285A (en) * 2014-06-25 2014-10-29 芜湖众绅机械制造有限公司 High-precision heavy-load integrated hub unit with oil nozzle
CN104121283A (en) * 2014-06-25 2014-10-29 芜湖众绅机械制造有限公司 Hub bearing unit for non-driving wheel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270974A (en) * 2008-05-08 2009-11-19 Nsk Ltd Rotation support device with quantity-of-state measuring function
WO2013047346A1 (en) 2011-09-29 2013-04-04 Ntn株式会社 Wheel bearing apparatus with sensor
JP2013076573A (en) * 2011-09-29 2013-04-25 Ntn Corp Bearing device for wheel with sensors
US9404540B2 (en) 2011-09-29 2016-08-02 Ntn Corporation Wheel bearing apparatus with sensor
CN104121285A (en) * 2014-06-25 2014-10-29 芜湖众绅机械制造有限公司 High-precision heavy-load integrated hub unit with oil nozzle
CN104121283A (en) * 2014-06-25 2014-10-29 芜湖众绅机械制造有限公司 Hub bearing unit for non-driving wheel

Similar Documents

Publication Publication Date Title
JP4844010B2 (en) Rolling bearing unit with load measuring device
JP4887882B2 (en) Displacement measuring device and load measuring device of rolling bearing unit
JP2006300086A (en) Rolling bearing unit with load measuring device
JP4946177B2 (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load measuring device
JP2006308465A (en) Load measuring device
JP5099245B2 (en) Rolling bearing unit with load measuring device
JP2006337356A (en) Rolling bearing unit with displacement measuring instrument, and rolling bearing unit with load measuring instrument
JP2006113017A (en) Encoder, rolling bearing unit with the encoder, and rolling bearing unit with load-measuring instrument
WO2014087871A1 (en) Wheel bearing device with attached sensor
JP2006317361A (en) Load measuring apparatus for rolling bearing unit
JP5908243B2 (en) Bearing device for wheels with sensor
JP4862318B2 (en) Load measuring device
JP2006258801A (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device
JP2006292730A (en) Rolling bearing unit with displacement-measuring device, and rolling bearing unit with load-measuring device
JP2008039155A (en) Rolling bearing unit with state quantity measuring device and assembling method
JP4887816B2 (en) Load measuring device for rolling bearing units
JP2004198210A (en) Load measuring apparatus for rolling bearing unit
JP4752483B2 (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load measuring device
JP2008298564A (en) Manufacturing method for roll bearing unit equipped with physical quantity measuring device
JP2007051983A (en) Encoder for rotation detection
JP4956940B2 (en) State quantity measuring device
JP2004184297A (en) Load-measuring device for roller bearing unit
JP2007198992A (en) Load measurement device of rolling bearing unit
JP5476678B2 (en) Rotation support device with state quantity measurement function
JP2007003514A (en) Rolling bearing unit with displacement measuring device, and rolling bearing unit with load measuring device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20070511

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080407

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100426