JP2004184297A - Load-measuring device for roller bearing unit - Google Patents

Load-measuring device for roller bearing unit Download PDF

Info

Publication number
JP2004184297A
JP2004184297A JP2002353255A JP2002353255A JP2004184297A JP 2004184297 A JP2004184297 A JP 2004184297A JP 2002353255 A JP2002353255 A JP 2002353255A JP 2002353255 A JP2002353255 A JP 2002353255A JP 2004184297 A JP2004184297 A JP 2004184297A
Authority
JP
Japan
Prior art keywords
load
sensor
bearing unit
change
rolling bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002353255A
Other languages
Japanese (ja)
Other versions
JP4269669B2 (en
JP2004184297A5 (en
Inventor
Hiroo Ishikawa
寛朗 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002353255A priority Critical patent/JP4269669B2/en
Publication of JP2004184297A publication Critical patent/JP2004184297A/en
Publication of JP2004184297A5 publication Critical patent/JP2004184297A5/ja
Application granted granted Critical
Publication of JP4269669B2 publication Critical patent/JP4269669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/723Shaft end sealing means, e.g. cup-shaped caps or covers

Abstract

<P>PROBLEM TO BE SOLVED: To accurately measure the load acting between an outer ring 1 and a hub 2, regardless of the errors in manufacture or assembly of a ring 18a, which is to be detected, and a displacement sensor unit 22. <P>SOLUTION: The detection signal of a rotation detection sensor 12a is inputted in a controller 28 via a first process circuit 25, while the detection signal of the displacement sensor unit 22 is inputted in the controller 28 via a second processor kit 27; and the controller 28 stores the detected signal of the displacement sensor unit 22, when the hub 2 is rotated under no load condition in a memory 29 as a correction signal. The controller 28, when actually a load is added, calculates the load, based on the difference with respect to the correction signal. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明に係る転がり軸受ユニット用荷重測定装置は、例えば車両(自動車)の車輪を懸架装置に対して回転自在に支持すると共に、少なくともこの車輪に加わる力の大きさを測定して、車両の安定運行に寄与せしめるものである。
【0002】
【従来の技術】
車両の車輪を懸架装置に対して回転自在に支持するのに、転がり軸受ユニットを使用する。又、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)等、各種車両用姿勢安定装置を制御する為には、上記車輪の回転速度を検出する必要がある。この為、上記転がり軸受ユニットに回転速度検出装置を組み込んだ回転速度検出装置付転がり軸受ユニットにより、上記車輪を懸架装置に対して回転自在に支持すると共に、この車輪の回転速度を検出する事が、近年広く行なわれる様になっている。
【0003】
図8は、この様な目的で使用される従来構造の1例として、特許文献1に記載された回転速度検出装置付転がり軸受ユニットを示している。この回転速度検出装置付転がり軸受ユニットは、懸架装置に支持される外輪1の内径側に、車輪を結合固定するハブ2を支持している。このハブ2は、車輪を固定する為のフランジ3をその外端部(車両への組み付け状態で幅方向外側となる端部)に有するハブ本体4と、このハブ本体4の内端部(車両への組み付け状態で幅方向中央側となる端部)に外嵌されてナット5により抑え付けられた内輪6とを備える。そして、上記外輪1の内周面に形成した複列の外輪軌道7、7と上記ハブ2の外周面に形成した複列の内輪軌道8、8との間にそれぞれ複数個ずつの転動体9、9を配置して、上記外輪1の内径側での上記ハブ2の回転を自在としている。
【0004】
上述の様な転がり軸受ユニットに回転速度検出装置を組み込むべく、上記内輪6の内端部にセンサロータ10を外嵌固定すると共に、上記外輪1の内端開口部に被着したカバー11に回転検出センサ12を支持している。そして、この回転検出センサ12の検知部を、上記センサロータ10の被検出部に、微小隙間を介して対向させている。
【0005】
上述の様な回転速度検出装置付転がり軸受ユニットの使用時、車輪を固定したハブ2と共に上記センサロータ10が回転し、このセンサロータ10の被検知部が上記回転検出センサ12の検知部の近傍を走行すると、この回転検出センサ12の出力が変化する。この様にして回転検出センサ12の出力が変化する周波数は、上記車輪の回転数に比例する。従って、この回転検出センサ12の出力を図示しない制御器に送れば、ABSやTCSを適切に制御できる。
【0006】
上述した様な従来から広く知られている回転速度検出装置付転がり軸受ユニットによれば、制動時や加速時に於ける車両の走行姿勢の安定性確保を図れるが、より厳しい条件でもこの安定性の確保を図る為には、車両の走行安定性に影響するより多くの情報を取り入れて、ブレーキやエンジンの制御を行なう事が必要になる。これに対して、従来の回転速度検出装置付転がり軸受ユニットを利用したABSやTCSの場合には、タイヤと路面との滑りを検知してブレーキやエンジンを制御する、所謂フィードバック制御を行なっている。この為、これらブレーキやエンジンの制御が一瞬とは言え遅れる為、厳しい条件下での性能向上の面からは改良が望まれる。即ち、従来構造の場合には、所謂フィードフォワード制御により、タイヤと路面との間に滑りが発生しない様にしたり、左右の車輪の制動力が極端に異なる所謂ブレーキの片効きを防止する事はできない。更には、トラック等で、積載状態が不良である事に基づいて走行安定性が不良になるのを防止する事もできない。
【0007】
この様な事情に鑑みて、前記特許文献1には、図9に示す様な、転がり軸受ユニットに加わる荷重を測定自在とした構造が記載されている。この従来構造の第2例の場合には、外輪1の軸方向中間部で複列の外輪軌道7、7の間部分に、この外輪1を直径方向に貫通する取付孔13を、この外輪1の上端部にほぼ鉛直方向に形成している。そして、この取付孔13内に、荷重測定用のセンサである、円杆状(棒状)の変位センサ14を装着している。この変位センサ14の先端面(下端面)に設けた検出面は、ハブ2の軸方向中間部に外嵌固定したセンサリング15の外周面に近接対向させている。上記変位センサ14は、上記検出面と上記センサリング15の外周面との距離が変化した場合に、その変化量に対応した信号を出力する。
【0008】
上述の様に構成する従来構造の第2例の場合には、上記変位センサ14の検出信号に基づいて、この変位センサ14を組み込んだ転がり軸受ユニットに加わる荷重を求める事ができる。即ち、車両の懸架装置に支持した上記外輪1は、この車両の重量により下方に押されるのに対して、車輪を支持固定したハブ2は、そのままの位置に止まろうとする。この為、上記重量が嵩む程、上記外輪1やハブ2、並びに転動体9、9の弾性変形に基づいて、これら外輪1の中心とハブ2の中心とのずれが大きくなる。そして、この外輪1の上端部に設けた、上記変位センサ14の検出面と上記センサリング15の外周面との距離は、上記重量が嵩む程短くなる。そこで、上記変位センサ14の検出信号を制御器に送れば、予め実験等により求めた関係式等から、当該変位センサ14を組み込んだ転がり軸受ユニットに加わる荷重を求める事ができる。この様にして求めた、各転がり軸受ユニットに加わる荷重に基づいて、ABSを適正に制御する他、積載状態の不良を運転者に知らせる。
【0009】
図9に示した従来構造の第2例の場合、車両の重量に基づいて鉛直方向に加わる荷重を測定できるが、例えば旋回走行時に遠心力等に基づいて加わるモーメント荷重を測定する事はできない。この為、車両のあらゆる走行状態に応じて、安定走行の為に適切な制御を行なう為の信号を得る面からは改良が望まれる。この様な場合に使用可能な構造として、特許文献2、3に記載された構造が知られている。これら各特許文献2、3に記載された構造によれば、上記モーメント荷重を含め、車両の走行時に車輪に加わる各方向の荷重を測定できる。
【0010】
【特許文献1】
特開2001−21577号公報
【特許文献2】
特開平10−73501号公報
【特許文献3】
特開平11−218542号公報
【0011】
【先発明の説明】
更に、特願2002−203072号には、ハブに加わる荷重の方向及び大きさを、比較的簡単な構造で正確に求める事を目的に考えられた、図10〜12に示す様な、荷重測定装置付転がり軸受ユニットが開示されている。この先発明に係る構造の場合には、外輪1の軸方向中間部分の円周方向等間隔4個所位置に取付孔13a、13aを、それぞれ上記外輪1の内外両周面同士を連通させる状態で形成している。そして、これら各取付孔13a、13a内に、それぞれ変位センサ14a、14aを挿入している。
【0012】
これら各変位センサ14a、14aはそれぞれ、ハブ2のラジアル方向(径方向)の変位及びスラスト方向(軸方向)の変位を測定自在とするもので、それぞれが非接触式である、2個の変位測定素子16a、16bを有する。これら各変位測定素子16a、16bは、静電容量型の近接センサの如き、非接触式で微小変位量を測定自在なもので、上記各変位センサ14a、14aを構成する合成樹脂製のホルダ17の先端面部分と先端部側面部分とに包埋支持している。
【0013】
一方、複列の内輪軌道9、9の間に位置する、上記ハブ2の中間部に、被検出リング18を外嵌固定している。この被検出リング18は、金属板にプレス加工等の塑性加工を施す事により、断面L字形で全体を円環状としたもので、円筒部19と、この円筒部19の軸方向一端部から径方向外方に直角に折れ曲がった折れ曲がり部20とを備える。
【0014】
この様な被検出リング18に対して、上記各変位センサ14a、14aの変位測定素子16a、16bの検出部を、それぞれ近接対向させている。即ち、変位測定素子16aを上記円筒部19の外周面に近接対向させて、前記外輪1に対する上記ハブ2のラジアル方向(径方向)の変位を測定自在としている。又、上記変位測定素子16bを上記折れ曲がり部20の片側面に近接対向させて、上記外輪1に対する上記ハブ2のスラスト方向の変位を測定自在としている。
【0015】
上述の様に構成する、先発明に係る荷重測定装置付転がり軸受ユニットの場合には、上記4個の変位センサ14a、14aにより、円周方向4個所位置で、上記外輪1に対する上記ハブ2の、ラジアル方向及びスラスト方向の変位を測定する。上記各変位センサ14a、14aが測定した、これら各変位センサ14a、14a毎に2種類ずつ合計8種類の検出信号は、それぞれハーネス21、21により取り出して、図示しない制御器に入力している。そして、この制御器が、上記各変位センサ14a、14aから送り込まれる検出信号に基づき、転がり軸受ユニットに加わる、各方向の荷重を求める。
【0016】
例えば、上記各転がり軸受ユニットに、車重等に基づく鉛直方向(下向き)の荷重が加わった場合には、鉛直方向に存在する2個の変位センサ14a、14aのうち、上側の変位センサ14aで、ラジアル検出部を構成する変位測定素子16aと、ラジアル被検出面である上記円筒部19の外周面との距離が狭まり、下側の変位センサ14aでこの距離が広がる。この際の距離の変化量は、上記荷重が大きくなる程大きくなる。水平方向(前後方向)に存在する2個の変位センサ14a、14aに関しては、この距離は変化しない。
【0017】
これに対して、何らかの原因で(例えば加速や制動に伴って)前記ハブ2に水平方向の荷重が加わった場合には、水平方向に存在する2個の変位センサ14a、14aのうち、荷重の作用方向前側の変位センサ14aで、ラジアル検出部を構成する変位測定素子16aと、ラジアル被検出面である上記円筒部19の外周面との距離が縮まり、同じく作用方向後側の変位センサ14aでこの距離が広がる。この際の距離の変化量も、上記荷重が大きくなる程大きくなる。鉛直方向に存在する2個の変位センサ14a、14aに関しては、この距離は変化しない。斜め方向の荷重によっては、総ての変位センサ14a、14aに関して、上記距離が変化する。
【0018】
従って、円周方向に関して等間隔に配置された4個の変位センサ14a、14aのラジアル検出部を構成する変位測定素子16a、16aの検出信号を比較すれば、ラジアル荷重の作用する方向とその大きさとを知る事ができる。尚、上記各部の距離の変化量とラジアル荷重の大きさ及び作用方向は、予め計算式や多数の実験、或はコンピュータ解析により求めておく。
【0019】
【発明が解決しようとする課題】
前述した従来構造にしても、或は上述した先発明に係る構造にしても、転がり軸受ユニットを構成する1対の軌道輪同士の距離を、直接又はこれら各軌道輪に固定した他の部材を介して検出し、この距離の変化に基づいて、上記転がり軸受ユニットに加わる荷重を測定する。この様な機構でこの荷重を正確に測定する為には、特別な配慮を行なわない限り、この荷重がゼロの場合(無負荷運転時)には、上記1対の軌道輪同士の相対回転に拘らず、変位センサの検出部と被検出面との距離が変化しない事が前提となる。
【0020】
但し、無負荷運転時に上記変位センサの検出部と被検出面との距離が変化しない様にする為には、各部の形状並びに寸法精度を極めて高くする必要が生じる。即ち、上記検出部と被検出面との距離は、各外輪軌道7、7と内輪軌道8、8との精度、被検出面を備えた被検出リング18の精度の他、荷重測定装置付転がり軸受ユニットの構成各部材の組立精度によって、無負荷運転時にも変化する可能性がある。そして、何らの対策も施さない場合には、変位センサ14、14aの検出信号を受け入れた制御器が、上記各精度の不良に起因する上記距離の変化と荷重変化に伴う距離変化とを区別できず、上記転がり軸受ユニットに加わる荷重を正確に求める事ができなくなる。
本発明は、この様な事情に鑑みて、上記各精度の不良に起因する上記距離の変化を補正できる機能を設ける事により、転がり軸受ユニットに加わる荷重を正確に測定できる転がり軸受ユニット用荷重測定装置を低コストで実現すべく発明したものである。
【0021】
【課題を解決するための手段】
本発明の転がり軸受ユニット用荷重測定装置は、1対の軌道輪と、荷重測定用のセンサと、演算器と、記憶手段とを備える。
このうちの1対の軌道輪は、複数個の転動体を介して相対回転を自在に組み合わされている。
又、上記荷重測定用のセンサは、上記両軌道輪同士の間の距離の変化に対応して出力を変化させるものである。
又、上記演算器は、上記センサの出力の変化に基づいて、上記1対の軌道輪同士の間に作用する荷重を算出するものである。
更に、上記記憶手段は、無負荷状態で上記両軌道輪が相対回転した場合に於ける上記センサの出力の変化を、補正用信号として記憶しておくものである。
そして、上記演算器は、上記1対の軌道輪が荷重を受けた状態で相対回転する際に、上記センサの出力と上記補正用信号とに基づいて、上記1対の軌道輪同士の間に加わる荷重を算出する。
【0022】
【作用】
上述の様に構成する本発明の転がり軸受ユニット用荷重測定装置は、各部の形状並びに寸法精度の不良に基づく、荷重測定用のセンサの検出部と被検出面との距離のばらつきを、補正用信号により補償できる。この為、上記各部の形状並びに寸法精度、組立精度を特に高くしなくても、1対の軌道輪同士の間に加わる荷重を正確に求める事ができる。
【0023】
【発明の実施の形態】
図1〜5は、本発明の実施の形態の第1例を示している。尚、本発明の特徴は、各部の形状精度、寸法精度、組み付け精度を特に高くしなくても、外輪1とハブ2との間に加わる荷重の大きさ及び方向を精度良く検出する為の構造にある。その他の部分の構造及び作用は、多くの点で、前述の図10〜12に示した先発明に係る構造と共通するので、同等部分には同一符号を付して、重複する説明を省略若しくは簡略にし、以下、本発明の特徴部分並びに上記図10〜12に示した構造と異なる部分を中心に説明する。
【0024】
本例の場合には、ハブ2の内端部に外嵌固定した内輪6の内端部に、ラジアル方向及びスラスト方向の変位を検出する為の被検出リング16aの基端部(図1〜2の左端部)を外嵌固定している。この被検出リング18aの形状は前述の図8〜10に示した従来構造及び先発明構造に組み込んだセンサロータ10と同様であるが、磁気特性を変化させる為の透孔は設けていない。又、外輪1の内端開口部を塞いだカバー11に、変位センサユニット22を保持固定している。そして、この変位センサユニット22の円周方向4個所位置にそれぞれ1対ずつ支持した変位測定素子16a、16bの検出面を、上記被検出リング18aの内周面或は内側面に、ラジアル方向或はスラスト方向に近接対向させている。
【0025】
この様な本例の構造の場合、外輪1の中心軸とハブ2の中心軸とが非平行になると、上記被検出リング18aの被測定面と上記各変位測定素子16a、16bとの距離が同時に、しかも円弧運動に基づいて変化する。従って、本例の構造は、荷重測定の面から見ると、モーメント荷重が加わった場合に、ラジアル方向の変位とスラスト方向の変位とを独立して検出できない。この為、変位センサユニット22に組み込んだ、ラジアル検出部である上記各変位測定素子16a、16aの検出信号と、スラスト検出部である上記各変位測定素子16b、16bの検出信号との処理が多少面倒になる。但し、この処理は数学的に可能であるし、本例の様な構造を採用すれば、転がり軸受ユニットへの上記変位センサユニット22の取付作業を容易にできる。
【0026】
上述の様に、転がり軸受ユニットの内端部に上記被検出リング18aと上記変位センサユニット22とを設ける事に合わせて、本例の場合には、ハブ2の中間部に、回転速度検出の為のセンサロータ10aを外嵌固定している。そして、外輪1の軸方向中間部で円周方向1個所位置に形成した取付孔13aに、回転検出センサ12aを挿入し、この回転検出センサ12aの検出面を、上記センサロータ10aの外周面に近接対向させている。
【0027】
本例の場合にこのセンサロータ10aは、ゴム磁石、プラスチック磁石等の永久磁石製とし、径方向に着磁している。そして、このセンサロータ10aの外周面に、図3に示す様に、S極とN極とを配置している。このセンサロータ10aの外周面のうちの軸方向片側(図3の右下側)には多数のS極とN極とを、円周方向に関して交互に且つ等間隔で配置している。これに対して、上記センサロータ10aの外周面のうちの軸方向他側(図3の左上側)には、円周方向に関して1個所のみN極(又はS極)を配置し、残りの部分はS極(又はN極)としている。
【0028】
上述の様に、永久磁石製の上記センサロータ10aの外周面の磁極変化の状態を、軸方向片側と他側とで互いに異ならせた事に合わせて、上記回転検出センサ12aには1対の磁気検出素子23a、23bを、上記センサロータ10aの軸方向(図1の左右方向)に離隔させて設けている。上記両磁気検出素子23a、23bは、ホールIC等の磁束の方向に応じて特性を変化させる素子を組み込んで成るもので、それぞれが対向する磁極に応じて出力を変化させる。この様な磁気検出素子23a、23bのうち、一方(図1の右方)の磁気検出素子23aをセンサロータ10aの外周面のうちの軸方向片側に、他方(図1の左方)の磁気検出素子23bを同じく軸方向他側に、それぞれ検出隙間を介して対向させている。
【0029】
上述の様な1対の磁気検出素子23a、23bを組み込んだ、前記回転検出センサ12aの出力信号は、ハーネス24により、回転検出用の第一の処理回路25に入力している。上記センサロータ10aの回転時にこの第一の処理回路25には、上記ハーネス24を通じて、図4に実線a、破線bで示す様な信号が送り込まれる。このうちの実線aで示した信号は、上記一方の磁気検出素子23aの出力信号で、上記センサロータ10aの回転速度に応じた周波数で変化する。又、破線bで示した信号は、上記他方の磁気検出素子23bの検出信号で、上記センサロータ10aが1回転する毎に1回だけ変化する。
【0030】
又、前記変位センサユニット22を構成する変位測定素子16a、16bの検出信号は、この変位センサユニット22のコネクタ26にその一端を接続した別のハーネスにより、荷重検出用の第二の処理回路27に送り込む様にしている。本例の場合には、この第二の処理回路27が処理した、前記転がり軸受ユニットに加わる荷重に関する信号と、上記第一の処理回路25が処理した、前記ハブ2の回転に関する信号とを、演算器を含む制御器28に入力している。この制御器28には、特許請求の範囲に記載した記憶手段であるメモリ29を付設して、次述する様にして求める、上記転がり軸受ユニットに加わる荷重に関する補正用信号を記録できる様にしている。そして、上記制御器28は、上記第二の処理回路27が処理した、上記転がり軸受ユニットに加わる荷重に関する信号と、上記メモリ29に記録されている補正用信号とにより、実際に上記転がり軸受ユニットに加わる荷重を算出する様にしている。
【0031】
上記補正用信号を求める場合には、前記外輪1を静止した状態のまま、前記ハブ2を1回転以上、無負荷状態のまま回転させ、その間の上記各変位測定素子16a、16bの検出信号及び前記磁気検出素子23bの検出信号を観察する。具体的には、この磁気検出素子23bの信号に基づいて分かる、上記ハブ2が1回転する間の、上記各変位測定素子16a、16bの検出信号を観察する。この作業は無負荷状態で行なう為、各部の誤差がなければ、これら各変位測定素子16a、16bの検出信号は変化しない。但し、前述した様に、各外輪軌道7、7及び内輪軌道8、8の精度不良、被検出面を備えた被検出リング18aの精度不良の他、前記内輪6に対するこの被検出リング18aの組み付け不良や上記外輪1に対する前記変位センサユニット22の組み付け不良等、各部の組立不良によって、無負荷運転時にも、図4に鎖線cで示す様に、上記各変位測定素子16a、16bの検出信号が変化する。この様な無負荷状態でのこれら各変位測定素子16a、16bの検出信号の変化は、上記精度不良や組立不良によるものと考えられる。
【0032】
そこで、本発明の場合には、無負荷状態で上記ハブ2が1回転する間の上記各変位測定素子16a、16bの検出信号の変化を、前記両磁気検出素子23a、23bの検出信号から求まる回転方向の位相との関係を考慮しつつ観察する。そして、基準位置(例えば、図4に破線bで示す、上記磁気検出素子23bの検出信号が立ち上がる位置)からの回転角度に応じた、図5に示す様な補正用信号を求め、前記メモリ29に記憶させる。この補正用信号は、前記転がり軸受ユニットを無負荷状態で回転させた場合に於ける、上記各変位測定素子16a、16bの検出信号の変化である。従って、これら各変位測定素子16a、16bの検出信号が上記補正用信号の様に変化する限り、上記転がり軸受ユニットには負荷が加わっていない事になる。尚、上記補正用信号を求める為には、上記ハブ2を1回転させれば良いが、複数回転させて、その平均値を上記補正用信号とする事もできる。
【0033】
実際に上記転がり軸受ユニットに負荷が加わった場合にその負荷の大きさは、上記補正用信号との差として求められる。即ち、上述の様に構成する本例の転がり軸受ユニット用荷重測定装置の運転時、前記制御器28は、前記第一の処理回路25を通じて送り込まれる前記各磁気検出素子23a、23bの検出信号との関係で、前記第二の処理回路27を通じて送り込まれる上記各変位測定素子16a、16bの検出信号を、上記メモリ29に記憶された上記補正用信号と関連付けて処理する。具体的には、上記第一の処理回路25を通じて送り込まれる検出信号により、前記ハブ2の回転方向に関する位相を求め、その位相での補正用信号の大きさを求める。更に、その位相での、上記第二の処理回路27を通じて送り込まれる信号と上記補正用信号との差を求め、この差を実際に上記転がり軸受ユニットに加わる荷重として算出する。この様にして算出した荷重は、別途設けたABSやTCSの制御器に送り、各種車両用姿勢安定装置の制御に利用する。
【0034】
本例の転がり軸受ユニット用荷重測定装置は、前記各部の精度不良の他、前記各部の組立不良に基づく、荷重測定用の変位測定素子16a、16bと、前記被検出リング18aの被検出面との距離のばらつきを、補正用信号により補償できる。この為、前記各外輪軌道7、7及び内輪軌道8、8、上記被検出リング18aの精度、前記内輪6に対するこの被検出リング18aの組み付け精度、前記外輪1に対する前記変位センサユニット22の組み付け精度を特に高くしなくても、この外輪1と上記ハブ2との間に加わる荷重を正確に求める事ができる。
【0035】
又、本例の構造の場合には前記変位センサユニット22を、前記カバー11を介して上記外輪1に支持している為、この外輪1に設ける取付孔13aが1個で済む。従って、この取付孔13aの形成作業が容易になってコスト低減を図れる他、上記外輪1の肉厚を特に大きくしなくても、この外輪1の強度確保を図れる。又、各方向の荷重によって上記外輪1と上記ハブ2とが変位した場合には、上記各変位測定素子16a、16bと上記被検出リング18aの内周面或は内側面との距離が変化するので、この変化の大きさと変化の方向とにより、上記荷重の方向と大きさとを求める事ができる。
【0036】
次に、図6〜7は、本発明の実施の形態の第2例を示している。本例の場合には、ハブ2(図1参照)の中間部に外嵌固定する、回転検出用のセンサロータ10bとして、磁性材を外歯歯車状に形成したものを使用している。そして、このセンサロータ10bの外周面に円周方向に関して等間隔に形成した複数の突部30a、30bのうち、1個の突部30bを他の突部30a、30aよりも高くしている。この様なセンサロータ10bと組み合わせる図示しない回転検出センサとしては、永久磁石と、磁性材製のポールピースと、このポールピースの周囲に巻回したコイルとから成る、所謂パッシブ型のものを使用する。
【0037】
上述の様なセンサロータ10bと回転検出センサとを使用する本例の場合、上記センサロータ10bの回転に伴って上記回転検出センサの出力信号が、図7の実線aで示す様に変化する。即ち、この回転検出センサの出力信号が、上記センサロータ10bの回転速度に比例した周波数で変化すると共に、その変化の大きさが、1回転毎に1度だけ大きくなる。そこで、この大きく変化した点を基準として、図7に鎖線cで示した各変位測定素子16a、16b(図1〜2参照)の検出信号を処理すれば、上述した第1例の場合と同様に、図5に示す様な補正用信号を得て、誤差に影響されない、正確な荷重測定を行なえる。
【0038】
尚、本発明を実施する場合には、各転動体直径の相互差は、できるだけ小さくする事が好ましい。この理由は、外輪軌道と内輪軌道との間に設ける各転動体の直径にばらつきがあると、これら各転動体の公転運動に伴って上記外輪軌道と内輪軌道との距離が変化し、その結果、変位センサと被検出面との距離も変化する為である。この様な原因による距離変化を正確に補正する事は、不可能ではないにしろ非常に難しい。従って、上記各転動体直径の相互差を、例えば1.0μm以下、好ましくは0.5μm以下と小さくして、これら各転動体の公転運動に伴って上記外輪軌道と内輪軌道との距離が変化しない様にする事が、正確な荷重測定を行なう面からは好ましい。
【0039】
又、本発明は、図示の実施の形態に限らず、前述した特許文献1〜3に記載された構造、或は図10〜12に示した先発明に係る構造で実施する事もできる。更には、自動車の車輪を支持する為の転がり軸受ユニットに限らず、産業機械等、各種機械装置の回転支持部を構成する転がり軸受ユニットで実施する事もできる。
【0040】
【発明の効果】
本発明の転がり軸受ユニット用荷重測定装置は、以上に述べた通り構成され作用するので、構成各部材の形状並びに寸法精度を極端に高くしなくても、転がり軸受ユニットに加わる荷重を正確に測定できる。従って、この荷重に基づいて制御を行なう、各種機械装置の性能向上を、極端なコスト上昇を伴う事なく実現できる。
【図面の簡単な説明】
【図1】本発明の実施の形態の1例を示す断面図。
【図2】図1のA部拡大図。
【図3】回転検出用のセンサロータの部分斜視図。
【図4】このセンサロータに対向する回転検出センサの出力信号の波形と、荷重測定用の変位センサの波形とを示す線図。
【図5】基準位置からの回転角度に応じた補正用信号を示す線図。
【図6】回転検出用のセンサロータの別例を、軸方向から見た正面図。
【図7】このセンサロータに対向する回転検出センサの出力信号の波形と、荷重測定用の変位センサの波形とを示す線図。
【図8】従来から知られている回転速度検出装置付転がり軸受ユニットの1例を示す断面図。
【図9】従来から知られている荷重測定装置付転がり軸受ユニットの1例を示す断面図。
【図10】先発明に係る荷重測定装置付転がり軸受ユニットの1例を示す断面図。
【図11】一部を省略して示す、図10のB−B断面図。
【図12】図10のC部拡大図。
【符号の説明】
1 外輪
2 ハブ
3 フランジ
4 ハブ本体
5 ナット
6 内輪
7 外輪軌道
8 内輪軌道
9 転動体
10、10a、10b センサロータ
11 カバー
12、12a 回転検出センサ
13、13a 取付孔
14、14a 変位センサ
15 センサリング
16a、16b 変位測定素子
17 ホルダ
18、18a 被検出リング
19 円筒部
20 折れ曲がり部
21 ハーネス
22 変位センサユニット
23a、23b 磁気検出素子
24 ハーネス
25 第一の処理回路
26 コネクタ
27 第二の処理回路
28 制御器
29 メモリ
30a、30b 突部
[0001]
TECHNICAL FIELD OF THE INVENTION
A load measuring device for a rolling bearing unit according to the present invention rotatably supports, for example, wheels of a vehicle (automobile) with respect to a suspension device, and measures at least the magnitude of a force applied to the wheels to stabilize the vehicle. It contributes to the operation.
[0002]
[Prior art]
A rolling bearing unit is used to rotatably support wheels of a vehicle with respect to a suspension device. Further, in order to control various vehicle posture stabilizing devices such as an antilock brake system (ABS) and a traction control system (TCS), it is necessary to detect the rotation speed of the wheels. Therefore, it is possible to support the wheel rotatably with respect to the suspension device and detect the rotation speed of the wheel by a rolling bearing unit with a rotation speed detection device incorporating the rotation speed detection device in the rolling bearing unit. In recent years, it has been widely practiced.
[0003]
FIG. 8 shows a rolling bearing unit with a rotation speed detecting device described in Patent Document 1 as an example of a conventional structure used for such a purpose. This rolling bearing unit with a rotation speed detecting device supports a hub 2 for connecting and fixing wheels on the inner diameter side of an outer ring 1 supported by a suspension device. The hub 2 has a hub body 4 having a flange 3 for fixing a wheel at an outer end thereof (an end which becomes an outer side in a width direction when assembled to a vehicle), and an inner end of the hub body 4 (a vehicle The inner ring 6 is fitted to the outside at the center in the width direction in the assembled state of the inner ring 6 and held down by the nut 5. A plurality of rolling elements 9 are respectively provided between the double-row outer raceways 7, 7 formed on the inner peripheral surface of the outer race 1 and the double-row inner raceways 8, 8 formed on the outer peripheral surface of the hub 2. , 9 are arranged to allow the hub 2 to rotate freely on the inner diameter side of the outer ring 1.
[0004]
In order to incorporate the rotation speed detecting device into the rolling bearing unit as described above, a sensor rotor 10 is externally fitted and fixed to the inner end of the inner ring 6 and the cover 11 attached to the inner end opening of the outer ring 1 is rotated. The detection sensor 12 is supported. The detection section of the rotation detection sensor 12 is opposed to the detection section of the sensor rotor 10 via a minute gap.
[0005]
When the above-described rolling bearing unit with the rotation speed detecting device is used, the sensor rotor 10 rotates together with the hub 2 to which the wheel is fixed, and the detected part of the sensor rotor 10 is located near the detecting part of the rotation detecting sensor 12. , The output of the rotation detection sensor 12 changes. The frequency at which the output of the rotation detection sensor 12 changes in this way is proportional to the rotation speed of the wheel. Therefore, if the output of the rotation detection sensor 12 is sent to a controller (not shown), the ABS and TCS can be appropriately controlled.
[0006]
According to the above-described rolling bearing unit with a rotation speed detecting device which has been widely known, stability of the running posture of the vehicle at the time of braking or acceleration can be ensured. In order to ensure this, it is necessary to control the brakes and the engine by incorporating more information that affects the running stability of the vehicle. In contrast, in the case of an ABS or TCS using a conventional rolling bearing unit with a rotation speed detecting device, a so-called feedback control is performed in which a slip between a tire and a road surface is detected to control a brake or an engine. . For this reason, the control of these brakes and the engine is delayed even for a moment, and therefore, improvement is demanded from the aspect of performance improvement under severe conditions. That is, in the case of the conventional structure, the so-called feed-forward control prevents slipping from occurring between the tire and the road surface or prevents the so-called one-sided braking effect in which the braking forces of the left and right wheels are extremely different. Can not. Further, it is impossible to prevent running stability from being deteriorated on the basis of a poor loading state of a truck or the like.
[0007]
In view of such circumstances, Patent Literature 1 describes a structure, as shown in FIG. 9, in which a load applied to a rolling bearing unit can be measured freely. In the case of the second example of this conventional structure, a mounting hole 13 that penetrates the outer race 1 in the diametric direction is provided between the double-row outer raceways 7, 7 at an intermediate portion in the axial direction of the outer race 1, Is formed in a substantially vertical direction at the upper end. A rod-shaped (rod-shaped) displacement sensor 14, which is a sensor for measuring a load, is mounted in the mounting hole 13. The detection surface provided on the distal end surface (lower end surface) of the displacement sensor 14 is closely opposed to the outer peripheral surface of the sensor ring 15 externally fitted and fixed to the axially intermediate portion of the hub 2. When the distance between the detection surface and the outer peripheral surface of the sensor ring 15 changes, the displacement sensor 14 outputs a signal corresponding to the change amount.
[0008]
In the case of the second example of the conventional structure configured as described above, the load applied to the rolling bearing unit incorporating the displacement sensor 14 can be obtained based on the detection signal of the displacement sensor 14. That is, the outer ring 1 supported by the suspension system of the vehicle is pushed downward by the weight of the vehicle, while the hub 2 supporting and fixing the wheels tends to stop at the same position. Therefore, as the weight increases, the deviation between the center of the outer ring 1 and the center of the hub 2 increases based on the elastic deformation of the outer ring 1 and the hub 2 and the rolling elements 9 and 9. The distance between the detection surface of the displacement sensor 14 and the outer peripheral surface of the sensor ring 15 provided at the upper end of the outer ring 1 becomes shorter as the weight increases. Therefore, if the detection signal of the displacement sensor 14 is sent to the controller, the load applied to the rolling bearing unit incorporating the displacement sensor 14 can be determined from a relational expression or the like determined in advance through experiments or the like. Based on the load thus applied to each rolling bearing unit, the ABS is appropriately controlled, and the driver is informed of a defective loading condition.
[0009]
In the case of the second example of the conventional structure shown in FIG. 9, a load applied in the vertical direction can be measured based on the weight of the vehicle, but a moment load applied based on centrifugal force or the like during turning can not be measured. Therefore, improvement is desired from the viewpoint of obtaining a signal for performing appropriate control for stable running according to all running states of the vehicle. As structures that can be used in such a case, structures described in Patent Documents 2 and 3 are known. According to the structures described in Patent Literatures 2 and 3, it is possible to measure loads in each direction applied to the wheels when the vehicle is running, including the moment load.
[0010]
[Patent Document 1]
JP 2001-21577 A
[Patent Document 2]
JP-A-10-73501
[Patent Document 3]
JP-A-11-218542
[0011]
[Description of Prior Invention]
Furthermore, Japanese Patent Application No. 2002-203072 discloses a load measurement method as shown in FIGS. 10 to 12 which is intended to accurately determine the direction and magnitude of a load applied to a hub with a relatively simple structure. A rolling bearing unit with a device is disclosed. In the case of the structure according to the preceding invention, the mounting holes 13a, 13a are formed at four positions at equal circumferential intervals in the axially intermediate portion of the outer ring 1 in a state where the inner and outer peripheral surfaces of the outer ring 1 communicate with each other. are doing. The displacement sensors 14a, 14a are inserted into the respective mounting holes 13a, 13a.
[0012]
Each of the displacement sensors 14a, 14a is capable of freely measuring the radial (radial) displacement and the thrust (axial) displacement of the hub 2, and each of the two displacement sensors is a non-contact type. It has measuring elements 16a and 16b. Each of the displacement measuring elements 16a and 16b is a non-contact type, such as a capacitance type proximity sensor, capable of measuring a minute displacement amount. The synthetic resin holder 17 constituting each of the displacement sensors 14a and 14a. And embedded in and supported by the distal end surface portion and the distal end side surface portion.
[0013]
On the other hand, a detected ring 18 is externally fixed to an intermediate portion of the hub 2 located between the inner and outer raceways 9, 9 in a double row. The ring to be detected 18 is formed by subjecting a metal plate to plastic working such as press working so as to have an L-shaped cross section and a ring shape as a whole, and has a cylindrical portion 19 and a diameter from one axial end of the cylindrical portion 19. And a bent portion 20 bent outward at a right angle.
[0014]
The detection units of the displacement measuring elements 16a and 16b of the displacement sensors 14a and 14a are respectively opposed to the detection ring 18 as described above. That is, the displacement measuring element 16a is made to closely approach the outer peripheral surface of the cylindrical portion 19, so that the radial displacement (radial direction) of the hub 2 with respect to the outer ring 1 can be measured. Further, the displacement measuring element 16b is made to closely approach one side surface of the bent portion 20 so that the displacement of the hub 2 with respect to the outer ring 1 in the thrust direction can be freely measured.
[0015]
In the case of the rolling bearing unit with the load measuring device according to the invention, which is configured as described above, the four displacement sensors 14a, 14a move the hub 2 relative to the outer ring 1 at four positions in the circumferential direction. , Radial and thrust displacements are measured. A total of eight types of detection signals, two types for each of the displacement sensors 14a, 14a, measured by the displacement sensors 14a, 14a, are extracted by harnesses 21, 21 and input to a controller (not shown). Then, the controller obtains loads in each direction applied to the rolling bearing unit based on the detection signals sent from the displacement sensors 14a, 14a.
[0016]
For example, when a load in the vertical direction (downward) based on the vehicle weight or the like is applied to each of the rolling bearing units, the upper displacement sensor 14a of the two displacement sensors 14a, 14a existing in the vertical direction. The distance between the displacement measuring element 16a constituting the radial detecting portion and the outer peripheral surface of the cylindrical portion 19, which is the surface to be radially detected, is reduced, and the distance is increased by the lower displacement sensor 14a. The amount of change in the distance at this time increases as the load increases. This distance does not change for the two displacement sensors 14a, 14a existing in the horizontal direction (front-back direction).
[0017]
On the other hand, when a load in the horizontal direction is applied to the hub 2 for some reason (for example, due to acceleration or braking), of the two displacement sensors 14a, 14a existing in the horizontal direction, the load With the displacement sensor 14a on the front side in the working direction, the distance between the displacement measuring element 16a constituting the radial detection unit and the outer peripheral surface of the cylindrical portion 19, which is the surface to be radially detected, is reduced. This distance spreads. The amount of change in the distance at this time also increases as the load increases. This distance does not change for the two displacement sensors 14a, 14a present in the vertical direction. Depending on the load in the oblique direction, the distance changes with respect to all the displacement sensors 14a, 14a.
[0018]
Therefore, if the detection signals of the displacement measuring elements 16a, 16a constituting the radial detection units of the four displacement sensors 14a, 14a arranged at equal intervals in the circumferential direction are compared, the direction in which the radial load acts and the magnitude thereof are shown. You can know Sato. The amount of change in the distance between the above-mentioned parts, the magnitude of the radial load, and the acting direction are obtained in advance by a calculation formula, a number of experiments, or computer analysis.
[0019]
[Problems to be solved by the invention]
Regardless of the conventional structure described above or the structure according to the above-described invention, the distance between a pair of races constituting the rolling bearing unit may be directly or other members fixed to the races. And the load applied to the rolling bearing unit is measured based on the change in the distance. In order to measure this load accurately using such a mechanism, unless special consideration is taken, when this load is zero (during no-load operation), the relative rotation between the above-mentioned pair of bearing rings is determined. Regardless, it is assumed that the distance between the detection unit of the displacement sensor and the detected surface does not change.
[0020]
However, in order to keep the distance between the detection unit of the displacement sensor and the surface to be detected from changing during no-load operation, it is necessary to make the shape and dimensional accuracy of each unit extremely high. That is, the distance between the detection unit and the detected surface is determined by the accuracy of the outer raceways 7 and 7 and the inner raceways 8 and 8, the accuracy of the detected ring 18 having the detected surface, and the rolling with the load measuring device. Depending on the assembling accuracy of the components of the bearing unit, it may change even during no-load operation. When no countermeasures are taken, the controller that has received the detection signals of the displacement sensors 14 and 14a can distinguish the change in the distance caused by the above-described poor accuracy from the change in the distance caused by the load change. As a result, the load applied to the rolling bearing unit cannot be obtained accurately.
In view of such circumstances, the present invention provides a function for correcting a change in the distance caused by the above-described inaccuracy of each of the above-described accuracy, whereby the load applied to the rolling bearing unit can be accurately measured. It was invented to realize the device at low cost.
[0021]
[Means for Solving the Problems]
A load measuring device for a rolling bearing unit of the present invention includes a pair of bearing rings, a load measuring sensor, a calculator, and a storage unit.
A pair of races is freely combined relative rotation via a plurality of rolling elements.
Further, the load measuring sensor changes the output in response to a change in the distance between the two races.
Further, the arithmetic unit calculates a load acting between the pair of races based on a change in the output of the sensor.
Further, the storage means stores, as a correction signal, a change in the output of the sensor when the two bearing rings rotate relatively under no load.
When the pair of bearing rings rotate relative to each other under a load, based on the output of the sensor and the signal for correction, the computing unit is configured to interpose the pair of bearing rings between the pair of bearing rings. Calculate the applied load.
[0022]
[Action]
The load measuring device for a rolling bearing unit according to the present invention configured as described above is for correcting variations in the distance between the detection unit of the load measuring sensor and the surface to be detected, based on the shape and dimensional accuracy of each part. It can be compensated by the signal. For this reason, the load applied between the pair of races can be accurately determined without particularly increasing the shape, dimensional accuracy, and assembly accuracy of each of the above-described portions.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 5 show a first example of an embodiment of the present invention. A feature of the present invention is a structure for accurately detecting the magnitude and direction of the load applied between the outer ring 1 and the hub 2 without particularly increasing the shape accuracy, dimensional accuracy, and assembly accuracy of each part. It is in. Since the structure and operation of the other parts are common in many respects to the structure according to the preceding invention shown in FIGS. 10 to 12 above, the same parts are denoted by the same reference numerals, and redundant description is omitted or For simplicity, the following description focuses on features of the present invention and portions different from the structures shown in FIGS.
[0024]
In the case of this example, the base end of the detected ring 16a for detecting displacement in the radial direction and the thrust direction (FIGS. 1 to 4) is provided at the inner end of the inner race 6 which is externally fitted and fixed to the inner end of the hub 2. 2 (left end). The shape of the detected ring 18a is the same as that of the sensor rotor 10 incorporated in the conventional structure and the prior invention structure shown in FIGS. 8 to 10 described above, but is not provided with a through hole for changing magnetic characteristics. Further, the displacement sensor unit 22 is held and fixed to the cover 11 that covers the inner end opening of the outer ring 1. The detection surfaces of the displacement measuring elements 16a and 16b supported in pairs at four positions in the circumferential direction of the displacement sensor unit 22 are provided on the inner peripheral surface or the inner surface of the detected ring 18a in the radial direction or the inner surface. Are opposed to each other in the thrust direction.
[0025]
In the case of such a structure of the present example, when the center axis of the outer ring 1 and the center axis of the hub 2 are not parallel, the distance between the measured surface of the detected ring 18a and each of the displacement measuring elements 16a and 16b is reduced. At the same time, it changes based on the circular motion. Therefore, in the structure of this example, from the viewpoint of load measurement, when a moment load is applied, the radial displacement and the thrust displacement cannot be detected independently. For this reason, the processing of the detection signals of the displacement measuring elements 16a, 16a, which are the radial detection units, and the detection signals of the displacement measurement elements 16b, 16b, which are the thrust detection units, incorporated in the displacement sensor unit 22 is somewhat different. It becomes troublesome. However, this processing can be mathematically performed, and if a structure like this example is adopted, the work of mounting the displacement sensor unit 22 on the rolling bearing unit can be easily performed.
[0026]
As described above, the detection ring 18a and the displacement sensor unit 22 are provided at the inner end of the rolling bearing unit. The sensor rotor 10a for fitting is externally fixed. Then, the rotation detection sensor 12a is inserted into a mounting hole 13a formed at one position in the circumferential direction at the axially intermediate portion of the outer ring 1, and the detection surface of the rotation detection sensor 12a is attached to the outer peripheral surface of the sensor rotor 10a. They are close to each other.
[0027]
In the case of this example, the sensor rotor 10a is made of a permanent magnet such as a rubber magnet or a plastic magnet, and is magnetized in the radial direction. An S pole and an N pole are arranged on the outer peripheral surface of the sensor rotor 10a as shown in FIG. A large number of S poles and N poles are alternately arranged at equal intervals in the circumferential direction on one axial side (lower right side in FIG. 3) of the outer peripheral surface of the sensor rotor 10a. On the other hand, on the other side in the axial direction (upper left side in FIG. 3) of the outer peripheral surface of the sensor rotor 10a, only one N pole (or S pole) is arranged in the circumferential direction, and the remaining part is arranged. Is an S pole (or N pole).
[0028]
As described above, a pair of rotation detection sensors 12a is provided for the rotation detection sensor 12a in accordance with the state of magnetic pole change on the outer peripheral surface of the sensor rotor 10a made of a permanent magnet being different from one side on the other side in the axial direction. The magnetic detecting elements 23a and 23b are provided apart from each other in the axial direction (the left-right direction in FIG. 1) of the sensor rotor 10a. Each of the magnetic detection elements 23a and 23b incorporates an element such as a Hall IC that changes characteristics according to the direction of magnetic flux, and changes the output according to the magnetic poles facing each other. Of such magnetic detecting elements 23a and 23b, one (the right side in FIG. 1) magnetic detecting element 23a is placed on one side in the axial direction of the outer peripheral surface of the sensor rotor 10a, and the other (the left side in FIG. 1) magnetic field. The detection element 23b is also opposed to the other side in the axial direction via a detection gap.
[0029]
An output signal of the rotation detection sensor 12a incorporating the pair of magnetic detection elements 23a and 23b as described above is input to a first processing circuit 25 for rotation detection by a harness 24. At the time of rotation of the sensor rotor 10a, a signal as shown by a solid line a and a broken line b in FIG. The signal indicated by the solid line a is the output signal of the one magnetic detection element 23a and changes at a frequency corresponding to the rotation speed of the sensor rotor 10a. The signal indicated by the broken line b is a detection signal of the other magnetic detection element 23b, and changes only once every time the sensor rotor 10a makes one rotation.
[0030]
The detection signals of the displacement measuring elements 16a and 16b constituting the displacement sensor unit 22 are transmitted to a second processing circuit 27 for load detection by another harness having one end connected to a connector 26 of the displacement sensor unit 22. It is sent to. In the case of this example, a signal related to the load applied to the rolling bearing unit processed by the second processing circuit 27 and a signal related to the rotation of the hub 2 processed by the first processing circuit 25 are: It is input to a controller 28 including an arithmetic unit. The controller 28 is provided with a memory 29 as storage means described in the claims so that a correction signal relating to the load applied to the rolling bearing unit obtained as described below can be recorded. I have. Then, the controller 28 actually calculates the rolling bearing unit based on the signal regarding the load applied to the rolling bearing unit processed by the second processing circuit 27 and the correction signal recorded in the memory 29. Calculate the load applied to.
[0031]
When the correction signal is obtained, the hub 2 is rotated one or more times with no load while the outer ring 1 is stationary, and the detection signals of the displacement measuring elements 16a and 16b and The detection signal of the magnetic detection element 23b is observed. Specifically, while the hub 2 makes one rotation, the detection signals of the displacement measuring elements 16a and 16b, which are known based on the signal of the magnetic detecting element 23b, are observed. Since this operation is performed under no load, the detection signals of the displacement measuring elements 16a and 16b do not change unless there is an error in each part. However, as described above, in addition to the inaccuracy of the outer raceways 7, 7 and the inner raceways 8, 8, the inferiority of the detected ring 18a having the detected surface, the assembling of the detected ring 18a to the inner ring 6 Due to a failure or an assembly failure of each part such as a failure in assembling the displacement sensor unit 22 to the outer ring 1, even during a no-load operation, the detection signals of the displacement measurement elements 16a and 16b as shown by a chain line c in FIG. Change. Such a change in the detection signal of each of the displacement measuring elements 16a and 16b in the no-load state is considered to be due to the above-mentioned poor accuracy or defective assembly.
[0032]
Therefore, in the case of the present invention, the change of the detection signal of each of the displacement measuring elements 16a and 16b during one rotation of the hub 2 in a no-load state is obtained from the detection signals of the two magnetic detecting elements 23a and 23b. Observe while considering the relationship with the phase in the rotation direction. Then, a correction signal as shown in FIG. 5 corresponding to a rotation angle from a reference position (for example, a position where the detection signal of the magnetic detection element 23b rises as shown by a broken line b in FIG. 4) is obtained, and the memory 29 is obtained. To memorize. This correction signal is a change in the detection signal of each of the displacement measuring elements 16a and 16b when the rolling bearing unit is rotated under no load. Therefore, as long as the detection signals of the displacement measuring elements 16a and 16b change like the correction signal, no load is applied to the rolling bearing unit. In order to obtain the correction signal, the hub 2 may be rotated once, but it is also possible to rotate the hub a plurality of times and use the average value as the correction signal.
[0033]
When a load is actually applied to the rolling bearing unit, the magnitude of the load is obtained as a difference from the correction signal. That is, during operation of the load measuring device for a rolling bearing unit of the present example configured as described above, the controller 28 detects the detection signals of the magnetic detection elements 23a and 23b sent through the first processing circuit 25 and The detection signals of the displacement measuring elements 16a and 16b sent through the second processing circuit 27 are processed in association with the correction signals stored in the memory 29. Specifically, a phase in the rotation direction of the hub 2 is obtained from the detection signal sent through the first processing circuit 25, and the magnitude of the correction signal at that phase is obtained. Further, a difference between the signal sent through the second processing circuit 27 and the correction signal at that phase is obtained, and this difference is calculated as a load actually applied to the rolling bearing unit. The load calculated in this manner is sent to a separately provided ABS or TCS controller and used for controlling various types of vehicle posture stabilizing devices.
[0034]
The load measuring device for a rolling bearing unit according to the present embodiment includes a displacement measuring element 16a, 16b for load measurement, based on the inferiority of accuracy of each part, as well as an assembling failure of each part, and a detected surface of the detected ring 18a. Can be compensated for by the correction signal. Therefore, the accuracy of the detected ring 18a, the accuracy of assembling the detected ring 18a to the inner ring 6, and the accuracy of assembling the displacement sensor unit 22 to the outer ring 1 are described. The load applied between the outer race 1 and the hub 2 can be accurately obtained without increasing the height of the hub 2.
[0035]
In the case of the structure of this embodiment, the displacement sensor unit 22 is supported by the outer ring 1 via the cover 11, so that only one mounting hole 13a provided in the outer ring 1 is required. Therefore, the work of forming the mounting hole 13a is facilitated, cost can be reduced, and the strength of the outer ring 1 can be ensured without particularly increasing the thickness of the outer ring 1. Further, when the outer race 1 and the hub 2 are displaced by the load in each direction, the distance between each of the displacement measuring elements 16a, 16b and the inner peripheral surface or the inner surface of the detected ring 18a changes. Therefore, the direction and magnitude of the load can be determined from the magnitude and direction of the change.
[0036]
Next, FIGS. 6 and 7 show a second example of the embodiment of the present invention. In the case of this example, a magnetic material formed in an external gear shape is used as the rotation detecting sensor rotor 10b which is externally fitted and fixed to the intermediate portion of the hub 2 (see FIG. 1). Then, one of the plurality of protrusions 30a, 30b formed at equal intervals in the circumferential direction on the outer peripheral surface of the sensor rotor 10b has one protrusion 30b higher than the other protrusions 30a, 30a. As a rotation detection sensor (not shown) to be combined with such a sensor rotor 10b, a so-called passive type sensor including a permanent magnet, a pole piece made of a magnetic material, and a coil wound around the pole piece is used. .
[0037]
In the case of this example using the sensor rotor 10b and the rotation detection sensor as described above, the output signal of the rotation detection sensor changes as shown by a solid line a in FIG. 7 with the rotation of the sensor rotor 10b. That is, the output signal of the rotation detection sensor changes at a frequency proportional to the rotation speed of the sensor rotor 10b, and the magnitude of the change increases once per rotation. Therefore, by processing the detection signals of the displacement measuring elements 16a and 16b (see FIGS. 1 and 2) indicated by a chain line c in FIG. 7 on the basis of the greatly changed point as in the case of the first example described above. In addition, a correction signal as shown in FIG. 5 is obtained, and accurate load measurement can be performed without being affected by errors.
[0038]
When implementing the present invention, it is preferable that the difference between the diameters of the rolling elements be as small as possible. The reason is that if the diameter of each rolling element provided between the outer raceway and the inner raceway varies, the distance between the outer raceway and the inner raceway changes with the revolving motion of each rolling race, and as a result, This is because the distance between the displacement sensor and the detection surface also changes. It is very difficult, if not impossible, to accurately correct the distance change due to such causes. Therefore, the mutual difference between the rolling element diameters is reduced to, for example, 1.0 μm or less, preferably 0.5 μm or less, and the distance between the outer ring raceway and the inner ring raceway changes with the revolving motion of each rolling element. It is preferable not to do so from the viewpoint of performing accurate load measurement.
[0039]
Further, the present invention is not limited to the illustrated embodiment, but can be implemented with the structure described in Patent Documents 1 to 3 described above or the structure according to the prior invention shown in FIGS. Further, the present invention is not limited to a rolling bearing unit for supporting wheels of an automobile, but may be implemented by a rolling bearing unit constituting a rotation supporting portion of various types of machinery such as an industrial machine.
[0040]
【The invention's effect】
Since the load measuring device for a rolling bearing unit of the present invention is configured and operates as described above, it is possible to accurately measure the load applied to the rolling bearing unit without extremely increasing the shape and dimensional accuracy of the constituent members. it can. Therefore, it is possible to improve the performance of various types of mechanical devices that perform control based on this load without causing an extreme increase in cost.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating an example of an embodiment of the present invention.
FIG. 2 is an enlarged view of a portion A in FIG.
FIG. 3 is a partial perspective view of a sensor rotor for detecting rotation.
FIG. 4 is a diagram showing a waveform of an output signal of a rotation detection sensor facing the sensor rotor and a waveform of a displacement sensor for measuring a load.
FIG. 5 is a diagram showing a correction signal according to a rotation angle from a reference position.
FIG. 6 is a front view of another example of the sensor rotor for detecting rotation as viewed from the axial direction.
FIG. 7 is a diagram showing a waveform of an output signal of a rotation detection sensor facing the sensor rotor and a waveform of a displacement sensor for measuring a load.
FIG. 8 is a sectional view showing an example of a conventionally known rolling bearing unit with a rotation speed detecting device.
FIG. 9 is a cross-sectional view showing an example of a conventionally known rolling bearing unit with a load measuring device.
FIG. 10 is a sectional view showing an example of a rolling bearing unit with a load measuring device according to the invention.
FIG. 11 is a cross-sectional view taken along the line BB of FIG.
FIG. 12 is an enlarged view of a portion C in FIG. 10;
[Explanation of symbols]
1 outer ring
2 hub
3 Flange
4 Hub body
5 nuts
6 Inner ring
7 Outer ring track
8 Inner ring track
9 rolling elements
10, 10a, 10b Sensor rotor
11 Cover
12, 12a Rotation detection sensor
13, 13a Mounting hole
14, 14a Displacement sensor
15 Sensor ring
16a, 16b displacement measuring element
17 Holder
18, 18a Detected ring
19 cylindrical part
20 Bent part
21 Harness
22 Displacement sensor unit
23a, 23b Magnetic detecting element
24 harness
25 First processing circuit
26 Connector
27 Second processing circuit
28 Controller
29 memory
30a, 30b protrusion

Claims (3)

複数個の転動体を介して相対回転を自在に組み合わされた1対の軌道輪と、これら両軌道輪同士の間の距離の変化に対応して出力を変化させる荷重測定用のセンサと、このセンサの出力の変化に基づいて上記1対の軌道輪同士の間に作用する荷重を算出する演算器と、無負荷状態でこれら両軌道輪が相対回転した場合に於ける上記センサの出力の変化を補正用信号として記憶しておく記憶手段とを備え、上記演算器は、上記1対の軌道輪が荷重を受けた状態で相対回転する際に、上記センサの出力と上記補正用信号とに基づいて、上記1対の軌道輪同士の間に加わる荷重を算出する転がり軸受ユニット用荷重測定装置。A pair of races that are freely combined with each other via a plurality of rolling elements, a load measurement sensor that changes output in response to a change in the distance between the races, A calculator for calculating a load acting between the pair of races based on a change in the output of the sensor; and a change in the output of the sensor when the races rotate relative to each other in a no-load state. And a storage unit for storing the correction signal as a correction signal, wherein the computing unit stores the output of the sensor and the correction signal when the pair of races relatively rotate under a load. A load measuring device for a rolling bearing unit that calculates a load applied between the pair of races based on the load. それぞれが1対の軌道輪同士の間の距離の変化に対応して出力を変化させる複数のセンサが、円周方向に離隔して配置されている、請求項1に記載した転がり軸受ユニット用荷重測定装置。2. The load for a rolling bearing unit according to claim 1, wherein a plurality of sensors, each of which changes its output in response to a change in the distance between a pair of races, are arranged in the circumferential direction. measuring device. 荷重測定用のセンサに加えて、1対の軌道輪同士の相対回転を、少なくとも基準位置からの回転角度に関して検出可能な回転検出センサを設け、1対の軌道輪を無負荷状態で相対回転させつつ、上記荷重測定用のセンサの出力をこれら両軌道輪同士の間の距離の変化に対応して変化させ、このセンサの出力の変化を上記回転検出センサの出力に基づいて求まる円周方向位置に対応させて補正用信号とし、この補正用信号を記憶手段に記憶させた、請求項1〜2の何れかに記載した転がり軸受ユニット用荷重測定装置。In addition to the load measurement sensor, a rotation detection sensor capable of detecting the relative rotation between the pair of bearing rings at least with respect to the rotation angle from the reference position is provided, and the pair of bearing rings are rotated relative to each other without load. While changing the output of the load measuring sensor in accordance with the change in the distance between the two races, the change in the output of this sensor is determined in accordance with the output of the rotation detection sensor in the circumferential position. The load measuring device for a rolling bearing unit according to any one of claims 1 to 2, wherein a correction signal is stored in the storage means in correspondence with the correction signal.
JP2002353255A 2002-12-05 2002-12-05 Load measuring device for rolling bearing units Expired - Fee Related JP4269669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002353255A JP4269669B2 (en) 2002-12-05 2002-12-05 Load measuring device for rolling bearing units

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002353255A JP4269669B2 (en) 2002-12-05 2002-12-05 Load measuring device for rolling bearing units

Publications (3)

Publication Number Publication Date
JP2004184297A true JP2004184297A (en) 2004-07-02
JP2004184297A5 JP2004184297A5 (en) 2006-01-26
JP4269669B2 JP4269669B2 (en) 2009-05-27

Family

ID=32754583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002353255A Expired - Fee Related JP4269669B2 (en) 2002-12-05 2002-12-05 Load measuring device for rolling bearing units

Country Status (1)

Country Link
JP (1) JP4269669B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226937A (en) * 2005-02-21 2006-08-31 Nsk Ltd Load-measuring instrument of roller bearing unit
JP2006275251A (en) * 2005-03-30 2006-10-12 Jtekt Corp Rolling bearing device with sensor
JP2007051962A (en) * 2005-08-19 2007-03-01 Nsk Ltd Load measuring apparatus
EP3483581B1 (en) 2017-11-08 2020-02-26 Eolotec GmbH Method and device for monitoring a bearing clearance of rolling bearings
US10975908B1 (en) 2019-10-29 2021-04-13 Schaeffler Monitoring Services Gmbh Method and device for monitoring a bearing clearance of roller bearings

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006226937A (en) * 2005-02-21 2006-08-31 Nsk Ltd Load-measuring instrument of roller bearing unit
JP2006275251A (en) * 2005-03-30 2006-10-12 Jtekt Corp Rolling bearing device with sensor
JP4525423B2 (en) * 2005-03-30 2010-08-18 株式会社ジェイテクト Rolling bearing device with sensor
JP2007051962A (en) * 2005-08-19 2007-03-01 Nsk Ltd Load measuring apparatus
EP3483581B1 (en) 2017-11-08 2020-02-26 Eolotec GmbH Method and device for monitoring a bearing clearance of rolling bearings
US10975908B1 (en) 2019-10-29 2021-04-13 Schaeffler Monitoring Services Gmbh Method and device for monitoring a bearing clearance of roller bearings

Also Published As

Publication number Publication date
JP4269669B2 (en) 2009-05-27

Similar Documents

Publication Publication Date Title
US7245123B2 (en) Rolling element bearing unit with sensor and hub unit with sensor
US20060155507A1 (en) Load-measuring device for rolling bearing unit and rolling bearing unit for load measurement
WO2007029512A1 (en) Sensor-equipped bearing for wheel
JP2007127253A (en) Rolling bearing device with sensor
JP4543643B2 (en) Load measuring device for rolling bearing units
JP4887882B2 (en) Displacement measuring device and load measuring device of rolling bearing unit
JP2004198247A (en) Load measuring apparatus for rolling bearing unit
JP2006337356A (en) Rolling bearing unit with displacement measuring instrument, and rolling bearing unit with load measuring instrument
JP4269669B2 (en) Load measuring device for rolling bearing units
JP2006242241A (en) Ball bearing unit
JP4957390B2 (en) Method for manufacturing rolling bearing unit with physical quantity measuring device
JP2006317361A (en) Load measuring apparatus for rolling bearing unit
JP2004198210A (en) Load measuring apparatus for rolling bearing unit
JP2006258801A (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device
JP5098379B2 (en) Bearing load measuring device
JP2008292275A (en) Load measuring instrument for rolling bearing unit
JP2007071652A (en) Wheel bearing with sensor
JP4899311B2 (en) Rolling bearing unit with load measuring device
JP4843958B2 (en) Load measuring device for rolling bearing units
JP2004198173A (en) Load measuring apparatus for rolling bearing unit
JP2005091073A (en) Rotation speed detector and load measuring instrument for roller bearing unit
JP2005098771A (en) Load-measuring device of rolling bearing unit
JP2008128639A (en) Rolling bearing device for wheel
JP2005090993A (en) Load measuring device for roller bearing unit
JP5300429B2 (en) Wheel bearing with sensor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4269669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees