JP2004198247A - Load measuring apparatus for rolling bearing unit - Google Patents

Load measuring apparatus for rolling bearing unit Download PDF

Info

Publication number
JP2004198247A
JP2004198247A JP2002366883A JP2002366883A JP2004198247A JP 2004198247 A JP2004198247 A JP 2004198247A JP 2002366883 A JP2002366883 A JP 2002366883A JP 2002366883 A JP2002366883 A JP 2002366883A JP 2004198247 A JP2004198247 A JP 2004198247A
Authority
JP
Japan
Prior art keywords
load
displacement
temperature
rolling bearing
displacement sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002366883A
Other languages
Japanese (ja)
Inventor
Hiroo Ishikawa
寛朗 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002366883A priority Critical patent/JP2004198247A/en
Publication of JP2004198247A publication Critical patent/JP2004198247A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Abstract

<P>PROBLEM TO BE SOLVED: To accurately measure load acting between an outer ring 1 and a hub 2 regardless of temperature changes. <P>SOLUTION: The load is computed on the basis of variations in the distances between displacement measuring elements 16a and 16b each provided for displacement sensors 11b and 11b and a ring to be detected 12a. A temperature sensor 21 is provided adjacently to the displacement-side measuring elements 16a and 16b. A detection signal of the temperature sensor 21 is inputted with detection signals of the displacement-side measuring elements 16a and 16b to a computing unit for computing the load. With temperature drifts in the detection signals of the displacement-side measuring elements 16a and 16b removed on the basis of the detection signal of the temperature sensor 21, the computing unit computes the load. As a result, it is possible to accurately measure the load acting between the outer ring 1 and the hub 2. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明に係る転がり軸受ユニット用荷重測定装置は、例えば車両(自動車)の車輪を懸架装置に対して回転自在に支持すると共に、少なくともこの車輪に加わる力の大きさを測定して、車両の安定運行に寄与せしめるものである。
【0002】
【従来の技術】
車両の車輪を懸架装置に対して回転自在に支持するのに、転がり軸受ユニットを使用する。又、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)等、各種車両用姿勢安定装置を制御する為には、上記車輪の回転速度を検出する必要がある。この為、上記転がり軸受ユニットに回転速度検出装置を組み込んだ回転速度検出装置付転がり軸受ユニットにより、上記車輪を懸架装置に対して回転自在に支持すると共に、この車輪の回転速度を検出する事が、近年広く行なわれる様になっている。
【0003】
この様な目的で使用される回転速度検出装置付転がり軸受ユニットとしては、特許文献1に記載されたもの等、多くの構造が知られている。回転速度検出装置付転がり軸受ユニットで検出した、車輪の回転速度を表す信号を制御器に送れば、ABSやTCSを適切に制御できる。この様に、回転速度検出装置付転がり軸受ユニットによれば、制動時や加速時に於ける車両の走行姿勢の安定性確保を図れるが、より厳しい条件でもこの安定性の確保を図る為には、車両の走行安定性に影響するより多くの情報を取り入れて、ブレーキやエンジンの制御を行なう事が必要になる。これに対して、回転速度検出装置付転がり軸受ユニットを利用したABSやTCSの場合には、タイヤと路面との滑りを検知してブレーキやエンジンを制御する、所謂フィードバック制御を行なっている。この為、これらブレーキやエンジンの制御が一瞬とは言え遅れる為、厳しい条件下での性能向上の面からは改良が望まれる。即ち、従来構造の場合には、所謂フィードフォワード制御により、タイヤと路面との間に滑りが発生しない様にしたり、左右の車輪の制動力が極端に異なる所謂ブレーキの片効きを防止する事はできない。更には、トラック等で、積載状態が不良である事に基づいて走行安定性が不良になるのを防止する事もできない。
【0004】
この様な事情に鑑みて、前記特許文献1には、図9に示す様な、転がり軸受ユニットに加わる荷重を測定自在とした荷重測定装置付転がり軸受ユニットが記載されている。この従来の荷重測定装置付転がり軸受ユニットは、懸架装置に支持される外輪1の内径側に、車輪を結合固定するハブ2を支持している。このハブ2は、車輪を固定する為のフランジ3をその外端部(車両への組み付け状態で幅方向外側となる端部)に有するハブ本体4と、このハブ本体4の内端部(車両への組み付け状態で幅方向中央側となる端部)に外嵌されてナット5により抑え付けられた内輪6とを備える。そして、上記外輪1の内周面に形成した複列の外輪軌道7、7と上記ハブ2の外周面に形成した複列の内輪軌道8、8との間にそれぞれ複数個ずつの転動体9、9を配置して、上記外輪1の内径側での上記ハブ2の回転を自在としている。
【0005】
上記外輪1の軸方向中間部で複列の外輪軌道7、7の間部分に、この外輪1を直径方向に貫通する取付孔10を、この外輪1の上端部にほぼ鉛直方向に形成している。そして、この取付孔10内に、荷重測定用のセンサである、円杆状(棒状)の変位センサ11を装着している。この変位センサ11の先端面(下端面)に設けた検出面は、ハブ2の軸方向中間部に外嵌固定した被検出リング12の外周面に近接対向させている。上記変位センサ11は、上記検出面と上記被検出リング12の外周面との距離が変化した場合に、その変化量に対応した信号を出力する。
【0006】
上述の様に構成する従来の荷重測定装置付転がり軸受ユニットの場合には、上記変位センサ11の検出信号に基づいて、転がり軸受ユニットに加わる荷重を求める事ができる。即ち、車両の懸架装置に支持した上記外輪1は、この車両の重量により下方に押されるのに対して、車輪を支持固定したハブ2は、そのままの位置に止まろうとする。この為、上記重量が嵩む程、上記外輪1やハブ2、並びに転動体9、9の弾性変形に基づいて、これら外輪1の中心とハブ2の中心とのずれが大きくなる。そして、この外輪1の上端部に設けた、上記変位センサ11の検出面と上記被検出リング12の外周面との距離は、上記重量が嵩む程短くなる。そこで、上記変位センサ11の検出信号を制御器に送れば、予め実験等により求めた関係式或はマップ等から、当該変位センサ11を組み込んだ転がり軸受ユニットに加わる荷重を求める事ができる。この様にして求めた、各転がり軸受ユニットに加わる荷重に基づいて、ABSを適正に制御する他、積載状態の不良を運転者に知らせる。
【0007】
尚、図9に示した従来構造は、上記転がり軸受ユニットに加わる荷重に加えて、上記ハブ2の回転速度も検出自在としている。この為に、前記内輪6の内端部にセンサロータ13を外嵌固定すると共に、上記外輪1の内端開口部に被着したカバー14に回転検出センサ15を支持している。そして、この回転検出センサ15の検知部を、上記センサロータ13の被検出部に、検出隙間を介して対向させている。
【0008】
上述の様な回転速度検出装置を組み込んだ転がり軸受ユニットの使用時、車輪を固定したハブ2と共に上記センサロータ13が回転し、このセンサロータ13の被検知部が上記回転検出センサ15の検知部の近傍を走行すると、この回転検出センサ15の出力が変化する。この様にして回転検出センサ15の出力が変化する周波数は、上記車輪の回転数に比例する。従って、この回転検出センサ15の出力を図示しない制御器に送れば、ABSやTCSを適切に制御できる。
【0009】
ところで、図9に示した様な、従来から知られている荷重測定装置付転がり軸受ユニットの場合、車両の重量に基づいて鉛直方向に加わる荷重を測定できるが、例えば旋回走行時に遠心力等に基づいて加わるモーメント荷重を測定する事はできない。この為、車両のあらゆる走行状態に応じて、安定走行の為に適切な制御を行なう為の信号を得る面からは、改良が望まれる。この様な場合に使用可能な構造として、特許文献2、3に記載された構造が知られている。これら各特許文献2、3に記載された構造によれば、上記モーメント荷重を含め、車両の走行時に車輪に加わる各方向の荷重を測定できる。
尚、特許文献4には、転がり軸受ユニットの運転状態を監視する為に、この転がり軸受ユニットに、温度センサを含む複数種類のセンサを組み込んだ構造が記載されている。
【0010】
【特許文献1】
特開2001−21577号公報
【特許文献2】
特開平10−73501号公報
【特許文献3】
特開平11−218542号公報
【特許文献4】
特表2001−500597号公報
【0011】
【先発明の説明】
更に、特願2002−203072号には、ハブに加わる荷重の方向及び大きさを、比較的簡単な構造で正確に求める事を目的に考えられた、図10〜12に示す様な、荷重測定装置付転がり軸受ユニットが開示されている。この先発明に係る構造の場合には、外輪1の軸方向中間部分の円周方向等間隔4個所位置に取付孔10、10を、それぞれ上記外輪1の内外両周面同士を連通させる状態で形成している。そして、これら各取付孔10、10内に、それぞれ変位センサ11a、11aを挿入している。
【0012】
これら各変位センサ11a、11aはそれぞれ、ハブ2のラジアル方向(径方向)の変位及びスラスト方向(軸方向)の変位を測定自在とするもので、それぞれが非接触式である、2個の変位測定素子16a、16bを有する。これら各変位測定素子16a、16bは、静電容量式、渦電流式、磁気誘導式の近接センサの如き、非接触式で微小変位量を測定自在なもので、上記各変位センサ11a、11aを構成する合成樹脂製のホルダ17の先端面部分と先端部側面部分とに包埋支持している。
【0013】
一方、複列の内輪軌道8、8の間に位置する、上記ハブ2の中間部に、被検出リング12aを外嵌固定している。この被検出リング12aは、上記変位測定素子16a、16bの型式に応じた材質である金属板に、プレス加工等の塑性加工を施す事により、断面L字形で全体を円環状としたもので、円筒部18と、この円筒部18の軸方向一端部から径方向外方に直角に折れ曲がった折れ曲がり部19とを備える。
【0014】
この様な被検出リング12aに対して、上記各変位センサ11a、11aの変位測定素子16a、16bの検出部を、それぞれ近接対向させている。即ち、変位測定素子16aを上記円筒部18の外周面に近接対向させて、前記外輪1に対する上記ハブ2のラジアル方向(径方向)の変位を測定自在としている。又、上記変位測定素子16bを上記折れ曲がり部19の片側面に近接対向させて、上記外輪1に対する上記ハブ2のスラスト方向の変位を測定自在としている。
【0015】
上述の様に構成する、先発明に係る荷重測定装置付転がり軸受ユニットの場合には、上記4個の変位センサ11a、11aにより、円周方向4個所位置で、上記外輪1に対する上記ハブ2の、ラジアル方向及びスラスト方向の変位を測定する。上記各変位センサ11a、11aが測定した、これら各変位センサ11a、11a毎に2種類ずつ合計8種類の検出信号は、それぞれハーネス20、20により取り出して、図示しない制御器に入力している。そして、この制御器が、上記各変位センサ11a、11aから送り込まれる検出信号に基づき、転がり軸受ユニットに加わる、各方向の荷重を求める。
【0016】
例えば、上記各転がり軸受ユニットに、車重等に基づく鉛直方向(下向き)の荷重が加わった場合には、鉛直方向に存在する2個の変位センサ11a、11aのうち、上側の変位センサ11aで、ラジアル検出部を構成する変位測定素子16aと、ラジアル被検出面である上記円筒部18の外周面との距離が狭まり、下側の変位センサ11aでこの距離が広がる。この際の距離の変化量は、上記荷重が大きくなる程大きくなる。水平方向(前後方向)に存在する2個の変位センサ11a、11aに関しては、この距離は変化しない。
【0017】
これに対して、何らかの原因で(例えば加速や制動に伴って)前記ハブ2に水平方向の荷重が加わった場合には、水平方向に存在する2個の変位センサ11a、11aのうち、荷重の作用方向前側の変位センサ11aで、ラジアル検出部を構成する変位測定素子16aと、ラジアル被検出面である上記円筒部18の外周面との距離が縮まり、同じく作用方向後側の変位センサ11aでこの距離が広がる。この際の距離の変化量も、上記荷重が大きくなる程大きくなる。鉛直方向に存在する2個の変位センサ11a、11aに関しては、この距離は変化しない。斜め方向の荷重によっては、総ての変位センサ11a、11aに関して、上記距離が変化する。
【0018】
従って、円周方向に関して等間隔に配置された4個の変位センサ11a、11aのラジアル検出部を構成する変位測定素子16a、16aの検出信号を比較すれば、ラジアル荷重の作用する方向とその大きさとを知る事ができる。尚、上記各部の距離の変化量とラジアル荷重の大きさ及び作用方向は、予め計算式や多数の実験、或はコンピュータ解析により求めておく。
【0019】
【発明が解決しようとする課題】
前述の図9に示した従来構造にしても、或は上述の図10〜12に示した先発明に係る構造にしても、温度変化に伴って生じる測定誤差に就いては、特に考慮していない。これに対して、車輪を支持する為の転がり軸受ユニットの場合、使用温度範囲が極めて広い。例えば、寒冷地で冬期に屋外に放置された場合には、−30℃にまで温度低下する可能性があるのに対して、夏期に山岳走行等により制動を繰り返した場合には100℃を越える場合もある。
【0020】
この様に使用温度範囲が広い場合には、変位センサの出力が温度により変化する、所謂温度ドリフトの影響が無視できなくなる。即ち、1対の軌道輪同士の間の変位量が同じであっても、低温時と高温時とで上記変位センサの出力に差が生じ、そのままでは上記両軌道輪同士の間に作用する荷重を正確に求める事ができなくなる。又、温度変化に伴う被検出リング12、12aの熱膨張、熱収縮によって、上記両軌道輪同士の間に加わる荷重が同じであっても、上記変位センサが検出する、これら両軌道輪同士の間の距離が変動する事も考えられる。この場合でも、やはりこれら両軌道輪同士の間に作用する荷重を正確に求める事ができなくなる。
【0021】
特許文献4には、転がり軸受ユニットに温度センサを組み込んだ構造が記載されているが、この構造は、この転がり軸受ユニットの運転状態を観察しつつ、異常時に警報を発する為のものであって、温度変化に拘らず上記荷重を正確に求める事は意図していない。
本発明は、この様な事情に鑑み、温度変化に基づく影響を排除して、正確な荷重測定を行なえる転がり軸受ユニット用荷重測定装置を実現すべく発明したものである。
【0022】
【課題を解決するための手段】
本発明の転がり軸受ユニット用荷重測定装置は、1対の軌道輪と、変位センサと、温度センサと、演算器とを備える。
このうちの1対の軌道輪は、複数個の転動体を介して相対回転を自在に組み合わされている。
又、上記変位センサは、上記両軌道輪同士の間の距離の変化に対応して出力を変化させる。
又、上記演算器は、上記変位センサの出力の変化に基づいて上記両軌道輪同士の間に作用する荷重を算出する。
そして、上記演算器は、上記変位センサが検出する上記距離の変化に基づいて算出する荷重の値を、上記温度センサが検出する温度に基づいて補正する機能を有する。
【0023】
【作用】
上述の様に本発明の転がり軸受ユニット用荷重測定装置は、演算器が、変位センサが検出する上記距離の変化に基づいて1対の軌道輪同士の間に作用する荷重を、温度センサの信号に基づいて、温度変化の影響を補正して算出する。この為、転がり軸受ユニットに加わる荷重を、温度変化に拘らず、正確に測定できる。
【0024】
【発明の実施の形態】
図1〜4は、請求項1、2に対応する、本発明の実施の形態の第1例を示している。尚、本例の特徴は、各変位センサ11b、11bに温度センサ21を組み込む事により、これら各変位センサ11b、11bを構成する変位測定素子16a、16bの出力信号に、温度変化に伴ってドリフトが生じた場合にも、このドリフトの影響を除いて、外輪1とハブ2との間に作用する荷重を正確に求める点にある。その他の部分の構造及び作用は、前述の図10〜12に示した先発明に係る構造と同様であるから、同等部分には同一符号を付して重複する説明は省略し、以下、本発明の特徴部分を中心に説明する。
【0025】
上記各変位センサ11b、11bの先端部には温度センサ21を、上記各変位測定素子16a、16bに隣接する状態で設置(これら各変位測定素子16a、16bと共に合成樹脂中に包埋支持)している。上記温度センサ21としては、熱電対、サーミスタ等、小型に構成できる適宜のものを使用するが、何れにしても、上記各変位測定素子16a、16bと共に温度変化して、これら各変位測定素子16a、16bの温度を検出する。
【0026】
この様な温度センサ21の検出信号は、上記各変位測定素子16a、16bの検出信号と共に図示しない制御器に入力し、この制御器中に設けた演算器による荷重算出の際の補正に利用する。即ち、この演算器は、上記各変位測定素子16a、16bの検出信号から求められる、上記外輪1とハブ2との距離の変化に基づいてこれら外輪1とハブ2との間に作用する荷重を算出する際に、上記温度センサ21の検出信号に基づいて補正を加える。この補正により、上記各変位測定素子16a、16bの出力信号に温度変化に伴って生じたドリフトの影響を排除し、上記外輪1とハブ2との間に作用する荷重を正確に求める。
【0027】
尚、上記各変位測定素子16a、16bの出力信号に温度変化に伴って生じるドリフトの影響に就いては、例えば次述する様な実験により予め求めて、上記演算器に付属のメモリーに記憶させておく。即ち、図3に示す様に、変位センサ11bの検出面と、鋼板等の被検出板22とを、セラミック等、非金属製で線膨張係数が小さい材料により造られたスペーサ23を介して突き合わせた状態で、図示しない恒温槽内に設置する。このスペーサ23の厚さは既知であり、上記変位センサ11bの検出可能距離(フルスケール)の1/2程度の厚さとする。又、上記変位センサ11bは、図示しないばね等により、上記被検出板22に向け軽く押し付ける。そして、この恒温槽内の温度を変化させつつ、上記変位センサ11bの出力信号を観察する。
【0028】
この結果、上記変位センサ11bの出力信号が、温度変化に伴ってドリフトする為、図4に示す様な、温度と出力信号との関係が求められる。尚、この関係を厳密に求める為には、上記スペーサ23の熱膨張、熱収縮量も考慮して補正する必要があるが、この熱膨張、熱収縮量分の補正は、上記スペーサ23を構成する材料の線膨張係数(既知)に基づいて容易に行なえる。この様にして求めた、図4に示す様な関係を、例えば数式に置き換えて、或はマップとして、上記演算器に付属のメモリーに記憶させておけば、前述の様に、上記変位センサ11bを構成する各変位測定素子16a、16bの出力信号に温度変化に伴って生じたドリフトの影響を排除し、前記外輪1とハブ2との間に作用する荷重を正確に、且つリアルタイムで求める事ができる。尚、上記変位センサ11bを構成する各変位測定素子16a、16bに関しては、それぞれに就いて、上記図4に示す様な、温度変化とドリフトとの関係を求めて、上記メモリーに記憶させておく。
【0029】
次に、図5〜6は、やはり請求項1、2に対応する、本発明の実施の形態の第2例を示している。本例の場合には、ハブ2の内端部に外嵌固定した内輪6の内端部に、ラジアル方向及びスラスト方向の変位を検出する為の被検出リング12bの基端部(図1〜2の左端部)を外嵌固定している。この被検出リング12bの形状は前述の図9〜10に示した従来構造及び先発明構造に組み込んだセンサロータ13と同様であるが、磁気特性を変化させる為の透孔は設けていない。又、外輪1の内端開口部を塞いだカバー14に、変位センサユニット24を保持固定している。そして、この変位センサユニット24の円周方向4個所位置にそれぞれ1対ずつ支持した変位測定素子16a、16bの検出面を、上記被検出リング12bの内周面或は内側面に、ラジアル方向或はスラスト方向に近接対向させている。
【0030】
この様な構造に本発明を適用する為に、本例の場合には、上記各変位測定素子16a、16b毎に、これら各変位測定素子16a、16bの温度を検出する為の温度センサ21、21を設けている。本例の場合、この様に温度センサ21、21を上記各変位測定素子16a、16b毎に設けている為、これら各変位測定素子16a、16bの温度を正確に検出して、温度ドリフトの影響を排除する為の補正を、より正確に行なえる。その他の構成及び作用は、前述した第1例の場合と同様である。
【0031】
次に、図7〜8は、請求項1、3に対応する、本発明の実施の形態の第3〜4例を示している。本例の場合には、変位センサユニット24の外周面(図7に示した第3例)又は先端面(図8に示した第4例)に、非接触式の温度センサ21aを支持し、この温度センサ21aの検出面を、被検出リング12bの内周面(図7に示した第3例)又は内側面(図8に示した第4例)に対向させている。そして、この温度センサ21aにより、上記変位センサユニット24の検出部である変位測定素子16aが径方向に対向する被検出面を有する、上記被検出リング12bの温度を測定自在としている。
【0032】
この様な構造を有する本例の場合、上記変位測定素子16aと温度センサ21aとの検出信号を入力した演算器は、上記被検出リング12bの温度に基づいて求まるこの被検出リング12bの内周面の直径と、基準状態(例えば常温時)でのこの内周面の直径との差を求める。そして上記演算器は、上記変位測定素子16aの検出信号から求められる、この変位測定素子16aの検出部と上記内周面との距離に対し、上記差を加減して、この距離に関する補正値を求める。更に上記演算器は、この補正値に基づいて、外輪1とハブ2(図1参照)との間に作用するラジアル方向の荷重を求める。この結果、このラジアル荷重を、温度変化に伴う上記被検出リング12bの熱膨張、熱収縮分を補正して、正確に求める事ができる。
【0033】
尚、上記被接触式の温度センサ21aの構造は、特に問わないが、例えば赤外線放射温度計を使用する事が考えられる。この場合には、上記被検出リング12bの内周面に異物が付着していると、正確な温度測定を行なえなくなる。そこで、この場合には、図7〜8に示す様に、上記被検出リング12bの外周面とカバー14の内周面との間にシールリング25を設けて、上記被検出リング12bの内周面に、転がり軸受ユニット内に存在する、グリース等の異物が付着する事を防止する。
【0034】
又、本発明を実施する場合に、請求項2に係る発明と請求項3に係る発明とを組み合わせる事は、より正確な荷重測定を行なう面から好ましい。又、温度センサの信号を、正確な荷重を求める為の補正用としてだけでなく、転がり軸受ユニット部分の異常を検出する為に利用し、温度の異常上昇時に何らかの警告を発する様に構成する、運転状態監視装置を構成する事もできる。
更には、本発明は、自動車の車輪を支持する為の転がり軸受ユニットに限らず、産業機械等、各種機械装置の回転支持部を構成する転がり軸受ユニットにも適用できる。
【0035】
【発明の効果】
本発明の転がり軸受ユニット用荷重測定装置は、以上に述べた通り構成され作用するので、温度変化に伴う転がり軸受ユニットの構成部材の寸法変化に拘らず、この転がり軸受ユニットに加わる荷重を正確に測定できる。
【図面の簡単な説明】
【図1】本発明の実施の形態の第1例を示す断面図。
【図2】一部を省略して示す、図1のA部拡大図。
【図3】変位センサのドリフトと温度との関係を求める為の実験の実施状況を示す斜視図。
【図4】ドリフトに伴う変位センサの出力変化と温度との関係を示す線図。
【図5】本発明の実施の形態の第2例を示す断面図。
【図6】図5のB部拡大図。
【図7】本発明の実施の形態の第3例を示す、図6と同様の図。
【図8】同第4例を示す、図6と同様の図。
【図9】従来から知られている荷重測定装置付転がり軸受ユニットの1例を示す断面図。
【図10】先発明に係る荷重測定装置付転がり軸受ユニットの1例を示す断面図。
【図11】一部を省略して示す、図10のC−C断面図。
【図12】図10のD部拡大図。
【符号の説明】
1 外輪
2 ハブ
3 フランジ
4 ハブ本体
5 ナット
6 内輪
7 外輪軌道
8 内輪軌道
9 転動体
10 取付孔
11、11a、11b 変位センサ
12、12a、12b 被検出リング
13、13a センサロータ
14 カバー
15、15a 回転検出センサ
16a、16b 変位測定素子
17 ホルダ
18 円筒部
19 折れ曲がり部
20 ハーネス
21、21a 温度センサ
22 被検出板
23 スペーサ
24、24a 変位センサユニット
25 シールリング
[0001]
TECHNICAL FIELD OF THE INVENTION
A load measuring device for a rolling bearing unit according to the present invention rotatably supports, for example, wheels of a vehicle (automobile) with respect to a suspension device, and measures at least the magnitude of a force applied to the wheels to stabilize the vehicle. It contributes to the operation.
[0002]
[Prior art]
A rolling bearing unit is used to rotatably support wheels of a vehicle with respect to a suspension device. Further, in order to control various vehicle posture stabilizing devices such as an antilock brake system (ABS) and a traction control system (TCS), it is necessary to detect the rotation speed of the wheels. Therefore, it is possible to support the wheel rotatably with respect to the suspension device and detect the rotation speed of the wheel by a rolling bearing unit with a rotation speed detection device incorporating the rotation speed detection device in the rolling bearing unit. In recent years, it has been widely practiced.
[0003]
As a rolling bearing unit with a rotation speed detecting device used for such a purpose, many structures such as those described in Patent Document 1 are known. If a signal indicating the rotation speed of the wheel detected by the rolling bearing unit with the rotation speed detection device is sent to the controller, ABS and TCS can be appropriately controlled. As described above, according to the rolling bearing unit with the rotation speed detecting device, it is possible to ensure the stability of the running posture of the vehicle at the time of braking or acceleration, but in order to ensure this stability even under more severe conditions, It is necessary to control the brakes and the engine by incorporating more information that affects the running stability of the vehicle. On the other hand, in the case of ABS or TCS using a rolling bearing unit with a rotation speed detecting device, so-called feedback control is performed in which a slip between a tire and a road surface is detected to control a brake and an engine. For this reason, the control of these brakes and the engine is delayed even for a moment, and therefore, improvement is demanded from the aspect of performance improvement under severe conditions. That is, in the case of the conventional structure, the so-called feed-forward control prevents slipping from occurring between the tire and the road surface or prevents the so-called one-sided braking effect in which the braking forces of the left and right wheels are extremely different. Can not. Further, it is impossible to prevent running stability from being deteriorated on the basis of a poor loading state of a truck or the like.
[0004]
In view of such circumstances, Patent Document 1 described above discloses a rolling bearing unit with a load measuring device that can freely measure the load applied to the rolling bearing unit, as shown in FIG. In this conventional rolling bearing unit with a load measuring device, a hub 2 for connecting and fixing wheels is supported on the inner diameter side of an outer ring 1 supported by a suspension device. The hub 2 has a hub body 4 having a flange 3 for fixing a wheel at an outer end thereof (an end which becomes an outer side in a width direction when assembled to a vehicle), and an inner end of the hub body 4 (a vehicle The inner ring 6 is fitted to the outside at the center in the width direction in the assembled state of the inner ring 6 and held down by the nut 5. A plurality of rolling elements 9 are respectively provided between the double-row outer raceways 7, 7 formed on the inner peripheral surface of the outer race 1 and the double-row inner raceways 8, 8 formed on the outer peripheral surface of the hub 2. , 9 are arranged to allow the hub 2 to rotate freely on the inner diameter side of the outer ring 1.
[0005]
A mounting hole 10 diametrically penetrating the outer ring 1 is formed in a substantially vertical direction at an intermediate portion of the outer ring 1 between the double rows of outer ring raceways 7 in the axial middle portion. I have. A rod-shaped (rod-shaped) displacement sensor 11, which is a sensor for measuring a load, is mounted in the mounting hole 10. The detection surface provided on the distal end surface (lower end surface) of the displacement sensor 11 is closely opposed to the outer peripheral surface of the detected ring 12 which is externally fixed to the axially intermediate portion of the hub 2. When the distance between the detection surface and the outer peripheral surface of the detected ring 12 changes, the displacement sensor 11 outputs a signal corresponding to the change amount.
[0006]
In the case of the conventional rolling bearing unit with a load measuring device configured as described above, the load applied to the rolling bearing unit can be obtained based on the detection signal of the displacement sensor 11. That is, the outer ring 1 supported by the suspension system of the vehicle is pushed downward by the weight of the vehicle, while the hub 2 supporting and fixing the wheels tends to stop at the same position. Therefore, as the weight increases, the deviation between the center of the outer ring 1 and the center of the hub 2 increases based on the elastic deformation of the outer ring 1 and the hub 2 and the rolling elements 9 and 9. The distance between the detection surface of the displacement sensor 11 and the outer peripheral surface of the detected ring 12 provided at the upper end of the outer ring 1 becomes shorter as the weight increases. Therefore, if the detection signal of the displacement sensor 11 is sent to the controller, the load applied to the rolling bearing unit incorporating the displacement sensor 11 can be obtained from a relational expression or a map obtained in advance through experiments or the like. Based on the load thus applied to each rolling bearing unit, the ABS is appropriately controlled, and the driver is informed of a defective loading condition.
[0007]
The conventional structure shown in FIG. 9 is capable of detecting the rotation speed of the hub 2 in addition to the load applied to the rolling bearing unit. To this end, a sensor rotor 13 is externally fitted and fixed to the inner end of the inner race 6, and a rotation detection sensor 15 is supported by a cover 14 attached to the inner end opening of the outer race 1. The detection section of the rotation detection sensor 15 is opposed to the detection section of the sensor rotor 13 via a detection gap.
[0008]
When a rolling bearing unit incorporating the above-described rotational speed detecting device is used, the sensor rotor 13 rotates together with the hub 2 to which the wheels are fixed, and the detected part of the sensor rotor 13 is the detecting part of the rotation detecting sensor 15. , The output of the rotation detection sensor 15 changes. The frequency at which the output of the rotation detection sensor 15 changes in this way is proportional to the rotation speed of the wheel. Therefore, if the output of the rotation detection sensor 15 is sent to a controller (not shown), the ABS and TCS can be appropriately controlled.
[0009]
By the way, in the case of a conventionally known rolling bearing unit with a load measuring device as shown in FIG. 9, the load applied in the vertical direction can be measured based on the weight of the vehicle. It is not possible to measure the moment load applied based on this. Therefore, improvement is desired from the viewpoint of obtaining a signal for performing appropriate control for stable running according to all running states of the vehicle. As structures that can be used in such a case, structures described in Patent Documents 2 and 3 are known. According to the structures described in Patent Literatures 2 and 3, it is possible to measure loads in each direction applied to the wheels when the vehicle is running, including the moment load.
Patent Document 4 describes a structure in which a plurality of types of sensors including a temperature sensor are incorporated in the rolling bearing unit in order to monitor the operation state of the rolling bearing unit.
[0010]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2001-21577 [Patent Document 2]
Japanese Patent Application Laid-Open No. 10-73501 [Patent Document 3]
JP-A-11-218542 [Patent Document 4]
JP 2001-500977 A
[Description of Prior Invention]
Furthermore, Japanese Patent Application No. 2002-203072 discloses a load measurement method as shown in FIGS. 10 to 12 which is intended to accurately determine the direction and magnitude of a load applied to a hub with a relatively simple structure. A rolling bearing unit with a device is disclosed. In the case of the structure according to the prior invention, mounting holes 10 are formed at four positions at equal circumferential intervals in the axially intermediate portion of the outer ring 1 in such a manner that the inner and outer peripheral surfaces of the outer ring 1 communicate with each other. are doing. The displacement sensors 11a, 11a are inserted into the mounting holes 10, 10, respectively.
[0012]
Each of these displacement sensors 11a, 11a is capable of freely measuring the displacement of the hub 2 in the radial direction (radial direction) and the displacement of the hub 2 in the thrust direction (axial direction). It has measuring elements 16a and 16b. Each of these displacement measuring elements 16a and 16b is a non-contact type such as an electrostatic capacity type, an eddy current type, and a magnetic induction type proximity sensor, and is capable of measuring a minute displacement amount. The synthetic resin holder 17 is embedded and supported by the front end surface and the side surface of the front end.
[0013]
On the other hand, a detected ring 12a is externally fixed to an intermediate portion of the hub 2, which is located between the inner and outer raceways 8, 8 in multiple rows. The ring to be detected 12a is formed in an annular shape with an L-shaped cross section by performing plastic working such as press working on a metal plate made of a material corresponding to the type of the displacement measuring elements 16a and 16b. The cylindrical portion 18 includes a bent portion 19 that is bent radially outward at a right angle from one axial end of the cylindrical portion 18.
[0014]
The detection units of the displacement measuring elements 16a and 16b of the displacement sensors 11a and 11a are opposed to the detected ring 12a. That is, the displacement measuring element 16a is made to closely approach the outer peripheral surface of the cylindrical portion 18 so that the radial displacement (radial direction) of the hub 2 with respect to the outer ring 1 can be measured. In addition, the displacement measuring element 16b is made to closely approach one side surface of the bent portion 19 so that the displacement of the hub 2 with respect to the outer ring 1 in the thrust direction can be measured.
[0015]
In the case of the rolling bearing unit with the load measuring device according to the invention, which is configured as described above, the four displacement sensors 11a, 11a move the hub 2 relative to the outer ring 1 at four positions in the circumferential direction. , Radial and thrust displacements are measured. A total of eight types of detection signals, two types for each of the displacement sensors 11a, 11a, measured by each of the displacement sensors 11a, 11a are extracted by harnesses 20, 20, respectively, and input to a controller (not shown). Then, the controller obtains loads in each direction applied to the rolling bearing unit based on the detection signals sent from the displacement sensors 11a, 11a.
[0016]
For example, when a load in the vertical direction (downward) based on the vehicle weight or the like is applied to each of the rolling bearing units, the upper displacement sensor 11a of the two displacement sensors 11a, 11a existing in the vertical direction. The distance between the displacement measuring element 16a constituting the radial detection unit and the outer peripheral surface of the cylindrical portion 18 which is the radial detection surface is reduced, and the distance is increased by the lower displacement sensor 11a. The amount of change in the distance at this time increases as the load increases. For the two displacement sensors 11a, 11a present in the horizontal direction (front-back direction), this distance does not change.
[0017]
On the other hand, when a load in the horizontal direction is applied to the hub 2 for some reason (for example, due to acceleration or braking), of the two displacement sensors 11a, 11a existing in the horizontal direction, In the displacement sensor 11a on the front side in the operation direction, the distance between the displacement measuring element 16a constituting the radial detection unit and the outer peripheral surface of the cylindrical portion 18 which is the radial detection surface is reduced, and the displacement sensor 11a on the rear side in the operation direction is also This distance spreads. The amount of change in the distance at this time also increases as the load increases. This distance does not change for the two displacement sensors 11a, 11a present in the vertical direction. Depending on the load in the oblique direction, the distance changes with respect to all the displacement sensors 11a, 11a.
[0018]
Therefore, comparing the detection signals of the displacement measuring elements 16a, 16a constituting the radial detection units of the four displacement sensors 11a, 11a arranged at equal intervals in the circumferential direction, the direction in which the radial load acts and the magnitude thereof are shown. You can know Sato. The amount of change in the distance between the above-mentioned parts, the magnitude of the radial load, and the acting direction are obtained in advance by a calculation formula, a number of experiments, or computer analysis.
[0019]
[Problems to be solved by the invention]
Regardless of the conventional structure shown in FIG. 9 described above or the structure according to the prior invention shown in FIGS. 10 to 12, the measurement error caused by the temperature change is particularly taken into consideration. Absent. On the other hand, in the case of a rolling bearing unit for supporting wheels, the operating temperature range is extremely wide. For example, when left outdoors in a cold area in winter, the temperature may drop to −30 ° C., whereas when braking is repeated in mountainous driving in summer, the temperature may exceed 100 ° C. In some cases.
[0020]
When the operating temperature range is wide as described above, the effect of the so-called temperature drift in which the output of the displacement sensor changes with temperature cannot be ignored. That is, even if the amount of displacement between a pair of bearing rings is the same, a difference occurs in the output of the displacement sensor between a low temperature and a high temperature, and the load acting between the two bearing rings as it is Cannot be determined accurately. In addition, even if the load applied between the two races is the same due to the thermal expansion and contraction of the rings to be detected 12 and 12a due to the temperature change, the displacement sensor detects the load between the races. The distance between them may fluctuate. Even in this case, it is impossible to accurately determine the load acting between the two races.
[0021]
Patent Literature 4 describes a structure in which a temperature sensor is incorporated in a rolling bearing unit. This structure is for observing the operation state of the rolling bearing unit and issuing a warning when an abnormality occurs. However, it is not intended to obtain the above load accurately regardless of the temperature change.
In view of such circumstances, the present invention has been devised in order to realize a load measuring device for a rolling bearing unit capable of performing accurate load measurement while eliminating an influence based on a temperature change.
[0022]
[Means for Solving the Problems]
A load measuring device for a rolling bearing unit according to the present invention includes a pair of races, a displacement sensor, a temperature sensor, and a calculator.
A pair of races is freely combined relative rotation via a plurality of rolling elements.
The displacement sensor changes its output in response to a change in the distance between the two races.
The calculator calculates a load acting between the two races based on a change in the output of the displacement sensor.
The computing unit has a function of correcting a load value calculated based on the change in the distance detected by the displacement sensor based on a temperature detected by the temperature sensor.
[0023]
[Action]
As described above, in the load measuring device for a rolling bearing unit of the present invention, the arithmetic unit calculates the load acting between the pair of races based on the change in the distance detected by the displacement sensor, using the temperature sensor signal. Is calculated based on the correction of the influence of the temperature change. Therefore, the load applied to the rolling bearing unit can be accurately measured regardless of the temperature change.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 4 show a first example of an embodiment of the present invention corresponding to claims 1 and 2. FIG. The feature of this example is that by incorporating the temperature sensor 21 into each of the displacement sensors 11b, 11b, the output signals of the displacement measuring elements 16a, 16b constituting each of the displacement sensors 11b, 11b have a drift with temperature change. In the case where the load occurs, the load acting between the outer race 1 and the hub 2 is accurately obtained, excluding the effect of the drift. The structure and operation of the other parts are the same as the structure according to the preceding invention shown in FIGS. 10 to 12 described above, and therefore, the same parts are denoted by the same reference numerals and overlapping description will be omitted. The following description focuses on the characteristic portions of
[0025]
At the tip of each of the displacement sensors 11b, 11b, a temperature sensor 21 is installed adjacent to the displacement measuring elements 16a, 16b (embedded and supported in a synthetic resin together with the displacement measuring elements 16a, 16b). ing. As the temperature sensor 21, a thermocouple, a thermistor, or any other suitable device that can be configured in a small size is used, but in any case, the temperature changes together with the displacement measuring elements 16 a and 16 b, and the displacement measuring elements 16 a , 16b.
[0026]
The detection signal of the temperature sensor 21 is input to a controller (not shown) together with the detection signals of the displacement measuring elements 16a and 16b, and is used for correction in calculating a load by a calculator provided in the controller. . That is, this arithmetic unit calculates a load acting between the outer ring 1 and the hub 2 based on a change in the distance between the outer ring 1 and the hub 2 obtained from the detection signals of the displacement measuring elements 16a and 16b. At the time of calculation, a correction is made based on the detection signal of the temperature sensor 21. By this correction, the influence of the drift caused by the temperature change on the output signals of the displacement measuring elements 16a and 16b is eliminated, and the load acting between the outer ring 1 and the hub 2 is accurately obtained.
[0027]
The influence of the drift caused by the temperature change on the output signals of the displacement measuring elements 16a and 16b is obtained in advance by, for example, an experiment described below and stored in a memory attached to the arithmetic unit. Keep it. That is, as shown in FIG. 3, the detection surface of the displacement sensor 11b and the plate 22 to be detected such as a steel plate are abutted via a spacer 23 made of a nonmetallic material having a small linear expansion coefficient such as a ceramic. In a constant temperature bath (not shown). The thickness of the spacer 23 is known, and is set to be about half the detectable distance (full scale) of the displacement sensor 11b. Further, the displacement sensor 11b is lightly pressed against the detected plate 22 by a spring or the like (not shown). Then, the output signal of the displacement sensor 11b is observed while changing the temperature in the thermostat.
[0028]
As a result, since the output signal of the displacement sensor 11b drifts with a change in temperature, a relationship between the temperature and the output signal as shown in FIG. 4 is obtained. In order to strictly determine this relationship, it is necessary to make corrections in consideration of the thermal expansion and thermal shrinkage of the spacer 23. It can be easily performed based on the linear expansion coefficient (known) of the material to be used. If the relationship as shown in FIG. 4 obtained in this way is replaced by, for example, a mathematical expression or stored as a map in a memory attached to the arithmetic unit, the displacement sensor 11b To eliminate the influence of drift caused by a temperature change on the output signals of the displacement measuring elements 16a and 16b, and to obtain the load acting between the outer ring 1 and the hub 2 accurately and in real time. Can be. The relationship between the temperature change and the drift as shown in FIG. 4 is obtained for each of the displacement measuring elements 16a and 16b constituting the displacement sensor 11b and stored in the memory. .
[0029]
Next, FIGS. 5 and 6 show a second example of the embodiment of the present invention, which also corresponds to the first and second aspects. In the case of this example, the base end of the detected ring 12b for detecting displacement in the radial direction and the thrust direction (FIGS. 1 to 3) is provided at the inner end of the inner ring 6 which is externally fitted and fixed to the inner end of the hub 2. 2 (left end). The shape of the ring to be detected 12b is the same as that of the sensor rotor 13 incorporated in the conventional structure shown in FIGS. 9 to 10 and the prior invention structure, but is not provided with a through hole for changing magnetic characteristics. Further, a displacement sensor unit 24 is held and fixed to a cover 14 which closes an inner end opening of the outer ring 1. The detection surfaces of the displacement measuring elements 16a and 16b supported in pairs at four positions in the circumferential direction of the displacement sensor unit 24 are provided on the inner circumferential surface or the inner surface of the detected ring 12b in the radial direction or the inner circumferential surface. Are opposed to each other in the thrust direction.
[0030]
In order to apply the present invention to such a structure, in the case of this example, a temperature sensor 21 for detecting the temperature of each of the displacement measuring elements 16a and 16b is provided for each of the displacement measuring elements 16a and 16b. 21 are provided. In the case of this example, since the temperature sensors 21 and 21 are provided for each of the displacement measuring elements 16a and 16b, the temperature of each of the displacement measuring elements 16a and 16b is accurately detected, and the influence of the temperature drift is obtained. The correction for eliminating the error can be performed more accurately. Other configurations and operations are the same as those of the first example described above.
[0031]
Next, FIGS. 7 and 8 show third and fourth examples of the embodiment of the present invention corresponding to claims 1 and 3. FIG. In the case of the present example, a non-contact type temperature sensor 21a is supported on the outer peripheral surface (the third example shown in FIG. 7) or the tip end surface (the fourth example shown in FIG. 8) of the displacement sensor unit 24, The detection surface of the temperature sensor 21a is opposed to the inner peripheral surface (the third example shown in FIG. 7) or the inner side surface (the fourth example shown in FIG. 8) of the detected ring 12b. The temperature sensor 21a can freely measure the temperature of the detected ring 12b, which has a surface to be detected in which the displacement measuring element 16a, which is the detecting unit of the displacement sensor unit 24, faces in the radial direction.
[0032]
In the case of this example having such a structure, the arithmetic unit that has input the detection signals of the displacement measuring element 16a and the temperature sensor 21a determines the inner circumference of the detected ring 12b obtained based on the temperature of the detected ring 12b. The difference between the diameter of the surface and the diameter of the inner peripheral surface in a reference state (for example, at room temperature) is determined. Then, the arithmetic unit adds or subtracts the difference with respect to the distance between the detection unit of the displacement measuring element 16a and the inner peripheral surface, which is obtained from the detection signal of the displacement measuring element 16a, and calculates a correction value related to the distance. Ask. Further, the computing unit obtains a radial load acting between the outer ring 1 and the hub 2 (see FIG. 1) based on the correction value. As a result, the radial load can be accurately obtained by correcting the thermal expansion and the thermal contraction of the detected ring 12b due to the temperature change.
[0033]
The structure of the contact-type temperature sensor 21a is not particularly limited. For example, an infrared radiation thermometer may be used. In this case, if foreign matter adheres to the inner peripheral surface of the detected ring 12b, accurate temperature measurement cannot be performed. Therefore, in this case, as shown in FIGS. 7 and 8, a seal ring 25 is provided between the outer peripheral surface of the detected ring 12b and the inner peripheral surface of the cover 14, and the inner peripheral surface of the detected ring 12b is provided. Foreign matter such as grease existing in the rolling bearing unit is prevented from adhering to the surface.
[0034]
Further, when carrying out the present invention, it is preferable to combine the invention according to claim 2 and the invention according to claim 3 from the viewpoint of performing more accurate load measurement. In addition, the signal of the temperature sensor is used not only for correction for obtaining an accurate load, but also for detecting an abnormality of a rolling bearing unit portion, and is configured to give some warning when an abnormal rise in temperature occurs. An operation state monitoring device can also be configured.
Furthermore, the present invention is not limited to a rolling bearing unit for supporting wheels of an automobile, but can also be applied to a rolling bearing unit that constitutes a rotation supporting portion of various mechanical devices such as an industrial machine.
[0035]
【The invention's effect】
Since the load measuring device for a rolling bearing unit of the present invention is configured and operates as described above, the load applied to the rolling bearing unit can be accurately determined regardless of the dimensional change of the components of the rolling bearing unit due to a temperature change. Can be measured.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a first example of an embodiment of the present invention.
FIG. 2 is an enlarged view of a part A of FIG.
FIG. 3 is a perspective view showing an implementation state of an experiment for obtaining a relationship between a drift of a displacement sensor and a temperature.
FIG. 4 is a diagram showing a relationship between a change in output of a displacement sensor due to drift and temperature.
FIG. 5 is a sectional view showing a second example of the embodiment of the present invention.
FIG. 6 is an enlarged view of a portion B in FIG. 5;
FIG. 7 is a view similar to FIG. 6, showing a third example of the embodiment of the present invention;
FIG. 8 is a view similar to FIG. 6, showing the fourth example.
FIG. 9 is a cross-sectional view showing an example of a conventionally known rolling bearing unit with a load measuring device.
FIG. 10 is a sectional view showing an example of a rolling bearing unit with a load measuring device according to the invention.
FIG. 11 is a cross-sectional view taken along the line CC of FIG.
FIG. 12 is an enlarged view of a portion D in FIG. 10;
[Explanation of symbols]
REFERENCE SIGNS LIST 1 outer ring 2 hub 3 flange 4 hub body 5 nut 6 inner ring 7 outer ring track 8 inner ring track 9 rolling element 10 mounting holes 11, 11a, 11b displacement sensors 12, 12a, 12b detected rings 13, 13a sensor rotors 14 covers 15, 15a Rotation detecting sensors 16a, 16b Displacement measuring element 17 Holder 18 Cylindrical part 19 Bent part 20 Harness 21, 21a Temperature sensor 22 Detected plate 23 Spacer 24, 24a Displacement sensor unit 25 Seal ring

Claims (3)

複数個の転動体を介して相対回転を自在に組み合わされた1対の軌道輪と、これら両軌道輪同士の間の距離の変化に対応して出力を変化させる変位センサと、温度センサと、このうちの変位センサの出力の変化に基づいて上記1対の軌道輪同士の間に作用する荷重を算出する演算器とを備え、この演算器は、上記変位センサが検出する上記距離の変化に基づいて算出する荷重の値を、上記温度センサが検出する温度に基づいて補正する機能を有する転がり軸受ユニット用荷重測定装置。A pair of races that are freely combined for relative rotation via a plurality of rolling elements, a displacement sensor that changes output in response to a change in the distance between the two races, a temperature sensor, And a calculator for calculating a load acting between the pair of races based on a change in the output of the displacement sensor. The calculator is adapted to detect a change in the distance detected by the displacement sensor. A load measuring device for a rolling bearing unit having a function of correcting a value of a load calculated based on a temperature detected by the temperature sensor. 温度センサが、変位センサに隣接して配置されており、演算器は、変位センサの設置部分の温度変化に基づくこの変位センサの出力の変動を補正して荷重を算出する、請求項1に記載した転がり軸受ユニット用荷重測定装置。The temperature sensor is disposed adjacent to the displacement sensor, and the calculator calculates the load by correcting a change in the output of the displacement sensor based on a temperature change in a portion where the displacement sensor is installed. Load measuring device for rolling bearing units. 非接触式の温度センサの検出面が、変位センサの検出部が対向する被検出面を有する部材の一部に対向してこの部材の温度を測定し、演算器は、この部材の温度に基づいて求まるこの部材の被検出面の直径と、基準状態でのこの被検出面の直径との差を、上記変位センサが検出する距離に加減する事により、この距離に基づいて求める荷重の値を補正する、請求項1〜2の何れかに記載した転がり軸受ユニット用荷重測定装置。The detection surface of the non-contact type temperature sensor faces a part of the member having the detected surface to which the detection unit of the displacement sensor faces, and measures the temperature of this member. By adding or subtracting the difference between the diameter of the detected surface of this member and the diameter of the detected surface in the reference state to the distance detected by the displacement sensor, the value of the load determined based on this distance is calculated. The load measuring device for a rolling bearing unit according to claim 1, wherein the load is measured.
JP2002366883A 2002-12-18 2002-12-18 Load measuring apparatus for rolling bearing unit Withdrawn JP2004198247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002366883A JP2004198247A (en) 2002-12-18 2002-12-18 Load measuring apparatus for rolling bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002366883A JP2004198247A (en) 2002-12-18 2002-12-18 Load measuring apparatus for rolling bearing unit

Publications (1)

Publication Number Publication Date
JP2004198247A true JP2004198247A (en) 2004-07-15

Family

ID=32763956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002366883A Withdrawn JP2004198247A (en) 2002-12-18 2002-12-18 Load measuring apparatus for rolling bearing unit

Country Status (1)

Country Link
JP (1) JP2004198247A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177835A (en) * 2004-12-24 2006-07-06 Jtekt Corp Rolling bearing unit having sensor
JP2006226937A (en) * 2005-02-21 2006-08-31 Nsk Ltd Load-measuring instrument of roller bearing unit
WO2006100881A1 (en) * 2005-03-18 2006-09-28 Ntn Corporation Bearing for wheel with sensor
WO2007066593A1 (en) * 2005-12-08 2007-06-14 Ntn Corporation Sensor-equipped bearing for wheel
JP2007163247A (en) * 2005-12-13 2007-06-28 Ntn Corp Bearing for wheel with sensor
JP2007198414A (en) * 2006-01-24 2007-08-09 Jtekt Corp Rolling bearing device with sensor
WO2008059899A1 (en) * 2006-11-16 2008-05-22 Jtekt Corporation Rolling bearing device for wheel
US7819026B2 (en) 2005-09-06 2010-10-26 Ntn Corporation Sensor-equipped wheel support bearing assembly
US7856893B2 (en) 2006-03-08 2010-12-28 Ntn Corporation Bearing for wheel with sensor
CN102072259A (en) * 2011-01-24 2011-05-25 南京工大数控科技有限公司 Intelligent slewing bearing with implanted sensors
CN102109010A (en) * 2011-01-24 2011-06-29 南京工业大学 Turntable bearing capable of being monitored on line
US8021052B2 (en) 2005-12-08 2011-09-20 Ntn Corporation Sensor-equipped bearing for wheel
CN102680123A (en) * 2012-05-30 2012-09-19 西安交通大学 System and method for on-line monitoring temperature and stress of retainer
WO2013047346A1 (en) * 2011-09-29 2013-04-04 Ntn株式会社 Wheel bearing apparatus with sensor
JP2013076573A (en) * 2011-09-29 2013-04-25 Ntn Corp Bearing device for wheel with sensors
US8439568B2 (en) 2006-08-25 2013-05-14 Ntn Corporation Wheel support bearing assembly equipped with sensor
JP2013117405A (en) * 2011-12-02 2013-06-13 Ntn Corp Bearing device for wheel with sensor
JP2013140125A (en) * 2012-01-06 2013-07-18 Ntn Corp Bearing device for wheel with sensor and vehicle control device using sensor output thereof
CN115342118A (en) * 2022-08-16 2022-11-15 杭州鑫凯传动机械有限公司 Automatic circulation liquid cooling type universal joint cross

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177835A (en) * 2004-12-24 2006-07-06 Jtekt Corp Rolling bearing unit having sensor
JP2006226937A (en) * 2005-02-21 2006-08-31 Nsk Ltd Load-measuring instrument of roller bearing unit
WO2006100881A1 (en) * 2005-03-18 2006-09-28 Ntn Corporation Bearing for wheel with sensor
US7819026B2 (en) 2005-09-06 2010-10-26 Ntn Corporation Sensor-equipped wheel support bearing assembly
US8021052B2 (en) 2005-12-08 2011-09-20 Ntn Corporation Sensor-equipped bearing for wheel
WO2007066593A1 (en) * 2005-12-08 2007-06-14 Ntn Corporation Sensor-equipped bearing for wheel
US7882752B2 (en) 2005-12-08 2011-02-08 Ntn Corporation Sensor-equipped bearing for wheel
JP2007163247A (en) * 2005-12-13 2007-06-28 Ntn Corp Bearing for wheel with sensor
JP2007198414A (en) * 2006-01-24 2007-08-09 Jtekt Corp Rolling bearing device with sensor
US7856893B2 (en) 2006-03-08 2010-12-28 Ntn Corporation Bearing for wheel with sensor
US8439568B2 (en) 2006-08-25 2013-05-14 Ntn Corporation Wheel support bearing assembly equipped with sensor
WO2008059899A1 (en) * 2006-11-16 2008-05-22 Jtekt Corporation Rolling bearing device for wheel
US8033734B2 (en) 2006-11-16 2011-10-11 Jtekt Corporation Vehicle-wheel rolling bearing
CN102109010A (en) * 2011-01-24 2011-06-29 南京工业大学 Turntable bearing capable of being monitored on line
CN102072259A (en) * 2011-01-24 2011-05-25 南京工大数控科技有限公司 Intelligent slewing bearing with implanted sensors
WO2013047346A1 (en) * 2011-09-29 2013-04-04 Ntn株式会社 Wheel bearing apparatus with sensor
JP2013076573A (en) * 2011-09-29 2013-04-25 Ntn Corp Bearing device for wheel with sensors
CN103842787A (en) * 2011-09-29 2014-06-04 Ntn株式会社 Wheel bearing apparatus with sensor
US9404540B2 (en) 2011-09-29 2016-08-02 Ntn Corporation Wheel bearing apparatus with sensor
JP2013117405A (en) * 2011-12-02 2013-06-13 Ntn Corp Bearing device for wheel with sensor
JP2013140125A (en) * 2012-01-06 2013-07-18 Ntn Corp Bearing device for wheel with sensor and vehicle control device using sensor output thereof
CN102680123A (en) * 2012-05-30 2012-09-19 西安交通大学 System and method for on-line monitoring temperature and stress of retainer
CN115342118A (en) * 2022-08-16 2022-11-15 杭州鑫凯传动机械有限公司 Automatic circulation liquid cooling type universal joint cross
CN115342118B (en) * 2022-08-16 2023-12-15 杭州鑫凯传动机械有限公司 Automatic circulation liquid-cooled universal joint cross shaft

Similar Documents

Publication Publication Date Title
JP2004198247A (en) Load measuring apparatus for rolling bearing unit
EP1764521B1 (en) Sensor-equipped rolling bearing assembly
JP5274343B2 (en) Wheel bearing with sensor
WO2007105655A1 (en) Preload measuring device for double row rolling bearing unit
JP2007127253A (en) Rolling bearing device with sensor
JP2010096565A (en) Bearing for wheel with sensor
JP4269674B2 (en) Load measuring device for rolling bearing units
US20150260590A1 (en) Wheel bearing device with attached sensor
JP4269669B2 (en) Load measuring device for rolling bearing units
JP2010127376A (en) Sensor equipped bearing for wheel
JP2010230406A (en) Wheel bearing with sensor
JP4866684B2 (en) Rolling bearing device for wheels
JP4370884B2 (en) Load measuring device for rolling bearing units
JP2007078597A (en) Bearing with sensor for wheel
JP2013076573A (en) Bearing device for wheel with sensors
JP2005098771A (en) Load-measuring device of rolling bearing unit
JP4843958B2 (en) Load measuring device for rolling bearing units
JP4487528B2 (en) Load measuring device for rolling bearing unit for wheel support
JP2010101720A (en) Wheel bearing with sensor
JP4752519B2 (en) Rolling bearing device with sensor
JP5300429B2 (en) Wheel bearing with sensor
JP4370885B2 (en) Load measuring device for rolling bearing units
JP2004198173A (en) Load measuring apparatus for rolling bearing unit
JP5264206B2 (en) Wheel bearing with sensor
JP4812270B2 (en) Wheel bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060711

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070625