JP4269669B2 - Load measuring device for rolling bearing units - Google Patents

Load measuring device for rolling bearing units Download PDF

Info

Publication number
JP4269669B2
JP4269669B2 JP2002353255A JP2002353255A JP4269669B2 JP 4269669 B2 JP4269669 B2 JP 4269669B2 JP 2002353255 A JP2002353255 A JP 2002353255A JP 2002353255 A JP2002353255 A JP 2002353255A JP 4269669 B2 JP4269669 B2 JP 4269669B2
Authority
JP
Japan
Prior art keywords
sensor
load
rolling bearing
change
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002353255A
Other languages
Japanese (ja)
Other versions
JP2004184297A (en
JP2004184297A5 (en
Inventor
寛朗 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002353255A priority Critical patent/JP4269669B2/en
Publication of JP2004184297A publication Critical patent/JP2004184297A/en
Publication of JP2004184297A5 publication Critical patent/JP2004184297A5/ja
Application granted granted Critical
Publication of JP4269669B2 publication Critical patent/JP4269669B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/723Shaft end sealing means, e.g. cup-shaped caps or covers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明に係る転がり軸受ユニット用荷重測定装置は、例えば車両(自動車)の車輪を懸架装置に対して回転自在に支持すると共に、少なくともこの車輪に加わる力の大きさを測定して、車両の安定運行に寄与せしめるものである。
【0002】
【従来の技術】
車両の車輪を懸架装置に対して回転自在に支持するのに、転がり軸受ユニットを使用する。又、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)等、各種車両用姿勢安定装置を制御する為には、上記車輪の回転速度を検出する必要がある。この為、上記転がり軸受ユニットに回転速度検出装置を組み込んだ回転速度検出装置付転がり軸受ユニットにより、上記車輪を懸架装置に対して回転自在に支持すると共に、この車輪の回転速度を検出する事が、近年広く行なわれる様になっている。
【0003】
図8は、この様な目的で使用される従来構造の1例として、特許文献1に記載された回転速度検出装置付転がり軸受ユニットを示している。この回転速度検出装置付転がり軸受ユニットは、懸架装置に支持される外輪1の内径側に、車輪を結合固定するハブ2を支持している。このハブ2は、車輪を固定する為のフランジ3をその外端部(車両への組み付け状態で幅方向外側となる端部)に有するハブ本体4と、このハブ本体4の内端部(車両への組み付け状態で幅方向中央側となる端部)に外嵌されてナット5により抑え付けられた内輪6とを備える。そして、上記外輪1の内周面に形成した複列の外輪軌道7、7と上記ハブ2の外周面に形成した複列の内輪軌道8、8との間にそれぞれ複数個ずつの転動体9、9を配置して、上記外輪1の内径側での上記ハブ2の回転を自在としている。
【0004】
上述の様な転がり軸受ユニットに回転速度検出装置を組み込むべく、上記内輪6の内端部にセンサロータ10を外嵌固定すると共に、上記外輪1の内端開口部に被着したカバー11に回転検出センサ12を支持している。そして、この回転検出センサ12の検知部を、上記センサロータ10の被検出部に、微小隙間を介して対向させている。
【0005】
上述の様な回転速度検出装置付転がり軸受ユニットの使用時、車輪を固定したハブ2と共に上記センサロータ10が回転し、このセンサロータ10の被検知部が上記回転検出センサ12の検知部の近傍を走行すると、この回転検出センサ12の出力が変化する。この様にして回転検出センサ12の出力が変化する周波数は、上記車輪の回転数に比例する。従って、この回転検出センサ12の出力を図示しない制御器に送れば、ABSやTCSを適切に制御できる。
【0006】
上述した様な従来から広く知られている回転速度検出装置付転がり軸受ユニットによれば、制動時や加速時に於ける車両の走行姿勢の安定性確保を図れるが、より厳しい条件でもこの安定性の確保を図る為には、車両の走行安定性に影響するより多くの情報を取り入れて、ブレーキやエンジンの制御を行なう事が必要になる。これに対して、従来の回転速度検出装置付転がり軸受ユニットを利用したABSやTCSの場合には、タイヤと路面との滑りを検知してブレーキやエンジンを制御する、所謂フィードバック制御を行なっている。この為、これらブレーキやエンジンの制御が一瞬とは言え遅れる為、厳しい条件下での性能向上の面からは改良が望まれる。即ち、従来構造の場合には、所謂フィードフォワード制御により、タイヤと路面との間に滑りが発生しない様にしたり、左右の車輪の制動力が極端に異なる所謂ブレーキの片効きを防止する事はできない。更には、トラック等で、積載状態が不良である事に基づいて走行安定性が不良になるのを防止する事もできない。
【0007】
この様な事情に鑑みて、前記特許文献1には、図9に示す様な、転がり軸受ユニットに加わる荷重を測定自在とした構造が記載されている。この従来構造の第2例の場合には、外輪1の軸方向中間部で複列の外輪軌道7、7の間部分に、この外輪1を直径方向に貫通する取付孔13を、この外輪1の上端部にほぼ鉛直方向に形成している。そして、この取付孔13内に、荷重測定用のセンサである、円杆状(棒状)の変位センサ14を装着している。この変位センサ14の先端面(下端面)に設けた検出面は、ハブ2の軸方向中間部に外嵌固定したセンサリング15の外周面に近接対向させている。上記変位センサ14は、上記検出面と上記センサリング15の外周面との距離が変化した場合に、その変化量に対応した信号を出力する。
【0008】
上述の様に構成する従来構造の第2例の場合には、上記変位センサ14の検出信号に基づいて、この変位センサ14を組み込んだ転がり軸受ユニットに加わる荷重を求める事ができる。即ち、車両の懸架装置に支持した上記外輪1は、この車両の重量により下方に押されるのに対して、車輪を支持固定したハブ2は、そのままの位置に止まろうとする。この為、上記重量が嵩む程、上記外輪1やハブ2、並びに転動体9、9の弾性変形に基づいて、これら外輪1の中心とハブ2の中心とのずれが大きくなる。そして、この外輪1の上端部に設けた、上記変位センサ14の検出面と上記センサリング15の外周面との距離は、上記重量が嵩む程短くなる。そこで、上記変位センサ14の検出信号を制御器に送れば、予め実験等により求めた関係式等から、当該変位センサ14を組み込んだ転がり軸受ユニットに加わる荷重を求める事ができる。この様にして求めた、各転がり軸受ユニットに加わる荷重に基づいて、ABSを適正に制御する他、積載状態の不良を運転者に知らせる。
【0009】
図9に示した従来構造の第2例の場合、車両の重量に基づいて鉛直方向に加わる荷重を測定できるが、例えば旋回走行時に遠心力等に基づいて加わるモーメント荷重を測定する事はできない。この為、車両のあらゆる走行状態に応じて、安定走行の為に適切な制御を行なう為の信号を得る面からは改良が望まれる。この様な場合に使用可能な構造として、特許文献2、3に記載された構造が知られている。これら各特許文献2、3に記載された構造によれば、上記モーメント荷重を含め、車両の走行時に車輪に加わる各方向の荷重を測定できる。
【0010】
【特許文献1】
特開2001−21577号公報
【特許文献2】
特開平10−73501号公報
【特許文献3】
特開平11−218542号公報
【0011】
【先発明の説明】
更に、特願2002−203072号には、ハブに加わる荷重の方向及び大きさを、比較的簡単な構造で正確に求める事を目的に考えられた、図10〜12に示す様な、荷重測定装置付転がり軸受ユニットが開示されている。この先発明に係る構造の場合には、外輪1の軸方向中間部分の円周方向等間隔4個所位置に取付孔13a、13aを、それぞれ上記外輪1の内外両周面同士を連通させる状態で形成している。そして、これら各取付孔13a、13a内に、それぞれ変位センサ14a、14aを挿入している。
【0012】
これら各変位センサ14a、14aはそれぞれ、ハブ2のラジアル方向(径方向)の変位及びスラスト方向(軸方向)の変位を測定自在とするもので、それぞれが非接触式である、2個の変位測定素子16a、16bを有する。これら各変位測定素子16a、16bは、静電容量型の近接センサの如き、非接触式で微小変位量を測定自在なもので、上記各変位センサ14a、14aを構成する合成樹脂製のホルダ17の先端面部分と先端部側面部分とに包埋支持している。
【0013】
一方、複列の内輪軌道8、8の間に位置する、上記ハブ2の中間部に、被検出リング18を外嵌固定している。この被検出リング18は、金属板にプレス加工等の塑性加工を施す事により、断面L字形で全体を円環状としたもので、円筒部19と、この円筒部19の軸方向一端部から径方向外方に直角に折れ曲がった折れ曲がり部20とを備える。
【0014】
この様な被検出リング18に対して、上記各変位センサ14a、14aの変位測定素子16a、16bの検出部を、それぞれ近接対向させている。即ち、変位測定素子16aを上記円筒部19の外周面に近接対向させて、前記外輪1に対する上記ハブ2のラジアル方向(径方向)の変位を測定自在としている。又、上記変位測定素子16bを上記折れ曲がり部20の片側面に近接対向させて、上記外輪1に対する上記ハブ2のスラスト方向の変位を測定自在としている。
【0015】
上述の様に構成する、先発明に係る荷重測定装置付転がり軸受ユニットの場合には、上記4個の変位センサ14a、14aにより、円周方向4個所位置で、上記外輪1に対する上記ハブ2の、ラジアル方向及びスラスト方向の変位を測定する。上記各変位センサ14a、14aが測定した、これら各変位センサ14a、14a毎に2種類ずつ合計8種類の検出信号は、それぞれハーネス21、21により取り出して、図示しない制御器に入力している。そして、この制御器が、上記各変位センサ14a、14aから送り込まれる検出信号に基づき、転がり軸受ユニットに加わる、各方向の荷重を求める。
【0016】
例えば、上記各転がり軸受ユニットに、車重等に基づく鉛直方向(下向き)の荷重が加わった場合には、鉛直方向に存在する2個の変位センサ14a、14aのうち、上側の変位センサ14aで、ラジアル検出部を構成する変位測定素子16aと、ラジアル被検出面である上記円筒部19の外周面との距離が狭まり、下側の変位センサ14aでこの距離が広がる。この際の距離の変化量は、上記荷重が大きくなる程大きくなる。水平方向(前後方向)に存在する2個の変位センサ14a、14aに関しては、この距離は変化しない。
【0017】
これに対して、何らかの原因で(例えば加速や制動に伴って)前記ハブ2に水平方向の荷重が加わった場合には、水平方向に存在する2個の変位センサ14a、14aのうち、荷重の作用方向前側の変位センサ14aで、ラジアル検出部を構成する変位測定素子16aと、ラジアル被検出面である上記円筒部19の外周面との距離が縮まり、同じく作用方向後側の変位センサ14aでこの距離が広がる。この際の距離の変化量も、上記荷重が大きくなる程大きくなる。鉛直方向に存在する2個の変位センサ14a、14aに関しては、この距離は変化しない。斜め方向の荷重によっては、総ての変位センサ14a、14aに関して、上記距離が変化する。
【0018】
従って、円周方向に関して等間隔に配置された4個の変位センサ14a、14aのラジアル検出部を構成する変位測定素子16a、16aの検出信号を比較すれば、ラジアル荷重の作用する方向とその大きさとを知る事ができる。尚、上記各部の距離の変化量とラジアル荷重の大きさ及び作用方向は、予め計算式や多数の実験、或はコンピュータ解析により求めておく。
【0019】
【発明が解決しようとする課題】
前述した従来構造にしても、或は上述した先発明に係る構造にしても、転がり軸受ユニットを構成する1対の軌道輪同士の距離を、直接又はこれら各軌道輪に固定した他の部材を介して検出し、この距離の変化に基づいて、上記転がり軸受ユニットに加わる荷重を測定する。この様な機構でこの荷重を正確に測定する為には、特別な配慮を行なわない限り、この荷重がゼロの場合(無負荷運転時)には、上記1対の軌道輪同士の相対回転に拘らず、変位センサの検出部と被検出面との距離が変化しない事が前提となる。
【0020】
但し、無負荷運転時に上記変位センサの検出部と被検出面との距離が変化しない様にする為には、各部の形状並びに寸法精度を極めて高くする必要が生じる。即ち、上記検出部と被検出面との距離は、各外輪軌道7、7と内輪軌道8、8との精度、被検出面を備えた被検出リング18の精度の他、荷重測定装置付転がり軸受ユニットの構成各部材の組立精度によって、無負荷運転時にも変化する可能性がある。そして、何らの対策も施さない場合には、変位センサ14、14aの検出信号を受け入れた制御器が、上記各精度の不良に起因する上記距離の変化と荷重変化に伴う距離変化とを区別できず、上記転がり軸受ユニットに加わる荷重を正確に求める事ができなくなる。
本発明は、この様な事情に鑑みて、上記各精度の不良に起因する上記距離の変化を補正できる機能を設ける事により、転がり軸受ユニットに加わる荷重を正確に測定できる転がり軸受ユニット用荷重測定装置を低コストで実現すべく発明したものである。
【0021】
【課題を解決するための手段】
本発明の転がり軸受ユニット用荷重測定装置は、1対の軌道輪と、荷重測定用のセンサと、演算器と、記憶手段とを備える。
このうちの1対の軌道輪は、複数個の転動体を介して相対回転を自在に組み合わされている。
又、上記荷重測定用のセンサは、上記両軌道輪同士の間の距離の変化に対応して出力を変化させるものである。
又、上記演算器は、上記センサの出力の変化に基づいて、上記1対の軌道輪同士の間に作用する荷重を算出するものである。
又、上記記憶手段は、無負荷状態で上記両軌道輪が相対回転した場合に於ける上記センサの出力の変化を、補正用信号として記憶しておくものである。
そして、上記演算器は、上記1対の軌道輪が荷重を受けた状態で相対回転する際に、上記センサの出力と上記補正用信号とに基づいて、上記1対の軌道輪同士の間に加わる荷重を算出する。
更に、上記荷重測定用のセンサに加えて、上記1対の軌道輪同士の相対回転を、少なくとも基準位置からの回転角度に関して検出可能な回転検出センサを設けている。そして、上記1対の軌道輪を無負荷状態で相対回転させつつ、上記荷重測定用のセンサの出力をこれら両軌道輪同士の間の距離の変化に対応して変化させ、このセンサの出力の変化を上記回転検出センサの出力に基づいて求まる円周方向位置に対応させて上記補正用信号とし、この補正用信号を上記記憶手段に記憶させている。
【0022】
【作用】
上述の様に構成する本発明の転がり軸受ユニット用荷重測定装置は、各部の形状並びに寸法精度の不良に基づく、荷重測定用のセンサの検出部と被検出面との距離のばらつきを、補正用信号により補償できる。この為、上記各部の形状並びに寸法精度、組立精度を特に高くしなくても、1対の軌道輪同士の間に加わる荷重を正確に求める事ができる。
【0023】
【発明の実施の形態】
図1〜5は、本発明の実施の形態の第1例を示している。尚、本発明の特徴は、各部の形状精度、寸法精度、組み付け精度を特に高くしなくても、外輪1とハブ2との間に加わる荷重の大きさ及び方向を精度良く検出する為の構造にある。その他の部分の構造及び作用は、多くの点で、前述の図10〜12に示した先発明に係る構造と共通するので、同等部分には同一符号を付して、重複する説明を省略若しくは簡略にし、以下、本発明の特徴部分並びに上記図10〜12に示した構造と異なる部分を中心に説明する。
【0024】
本例の場合には、ハブ2の内端部に外嵌固定した内輪6の内端部に、ラジアル方向及びスラスト方向の変位を検出する為の被検出リング18aの基端部(図1〜2の左端部)を外嵌固定している。この被検出リング18aの形状は前述の図8〜10に示した従来構造及び先発明構造に組み込んだセンサロータ10と同様であるが、磁気特性を変化させる為の透孔は設けていない。又、外輪1の内端開口部を塞いだカバー11に、変位センサユニット22を保持固定している。そして、この変位センサユニット22の円周方向4個所位置にそれぞれ1対ずつ支持した変位測定素子16a、16bの検出面を、上記被検出リング18aの内周面或は内側面に、ラジアル方向或はスラスト方向に近接対向させている。
【0025】
この様な本例の構造の場合、外輪1の中心軸とハブ2の中心軸とが非平行になると、上記被検出リング18aの被測定面と上記各変位測定素子16a、16bとの距離が同時に、しかも円弧運動に基づいて変化する。従って、本例の構造は、荷重測定の面から見ると、モーメント荷重が加わった場合に、ラジアル方向の変位とスラスト方向の変位とを独立して検出できない。この為、変位センサユニット22に組み込んだ、ラジアル検出部である上記各変位測定素子16a、16aの検出信号と、スラスト検出部である上記各変位測定素子16b、16bの検出信号との処理が多少面倒になる。但し、この処理は数学的に可能であるし、本例の様な構造を採用すれば、転がり軸受ユニットへの上記変位センサユニット22の取付作業を容易にできる。
【0026】
上述の様に、転がり軸受ユニットの内端部に上記被検出リング18aと上記変位センサユニット22とを設ける事に合わせて、本例の場合には、ハブ2の中間部に、回転速度検出の為のセンサロータ10aを外嵌固定している。そして、外輪1の軸方向中間部で円周方向1個所位置に形成した取付孔13aに、回転検出センサ12aを挿入し、この回転検出センサ12aの検出面を、上記センサロータ10aの外周面に近接対向させている。
【0027】
本例の場合にこのセンサロータ10aは、ゴム磁石、プラスチック磁石等の永久磁石製とし、径方向に着磁している。そして、このセンサロータ10aの外周面に、図3に示す様に、S極とN極とを配置している。このセンサロータ10aの外周面のうちの軸方向片側(図3の右下側)には多数のS極とN極とを、円周方向に関して交互に且つ等間隔で配置している。これに対して、上記センサロータ10aの外周面のうちの軸方向他側(図3の左上側)には、円周方向に関して1個所のみN極(又はS極)を配置し、残りの部分はS極(又はN極)としている。
【0028】
上述の様に、永久磁石製の上記センサロータ10aの外周面の磁極変化の状態を、軸方向片側と他側とで互いに異ならせた事に合わせて、上記回転検出センサ12aには1対の磁気検出素子23a、23bを、上記センサロータ10aの軸方向(図1の左右方向)に離隔させて設けている。上記両磁気検出素子23a、23bは、ホールIC等の磁束の方向に応じて特性を変化させる素子を組み込んで成るもので、それぞれが対向する磁極に応じて出力を変化させる。この様な磁気検出素子23a、23bのうち、一方(図1の右方)の磁気検出素子23aをセンサロータ10aの外周面のうちの軸方向片側に、他方(図1の左方)の磁気検出素子23bを同じく軸方向他側に、それぞれ検出隙間を介して対向させている。
【0029】
上述の様な1対の磁気検出素子23a、23bを組み込んだ、前記回転検出センサ12aの出力信号は、ハーネス24により、回転検出用の第一の処理回路25に入力している。上記センサロータ10aの回転時にこの第一の処理回路25には、上記ハーネス24を通じて、図4に実線a、破線bで示す様な信号が送り込まれる。このうちの実線aで示した信号は、上記一方の磁気検出素子23aの出力信号で、上記センサロータ10aの回転速度に応じた周波数で変化する。又、破線bで示した信号は、上記他方の磁気検出素子23bの検出信号で、上記センサロータ10aが1回転する毎に1回だけ変化する。
【0030】
又、前記変位センサユニット22を構成する変位測定素子16a、16bの検出信号は、この変位センサユニット22のコネクタ26にその一端を接続した別のハーネスにより、荷重検出用の第二の処理回路27に送り込む様にしている。本例の場合には、この第二の処理回路27が処理した、前記転がり軸受ユニットに加わる荷重に関する信号と、上記第一の処理回路25が処理した、前記ハブ2の回転に関する信号とを、演算器を含む制御器28に入力している。この制御器28には、特許請求の範囲に記載した記憶手段であるメモリ29を付設して、次述する様にして求める、上記転がり軸受ユニットに加わる荷重に関する補正用信号を記録できる様にしている。そして、上記制御器28は、上記第二の処理回路27が処理した、上記転がり軸受ユニットに加わる荷重に関する信号と、上記メモリ29に記録されている補正用信号とにより、実際に上記転がり軸受ユニットに加わる荷重を算出する様にしている。
【0031】
上記補正用信号を求める場合には、前記外輪1を静止した状態のまま、前記ハブ2を1回転以上、無負荷状態のまま回転させ、その間の上記各変位測定素子16a、16bの検出信号及び前記磁気検出素子23bの検出信号を観察する。具体的には、この磁気検出素子23bの信号に基づいて分かる、上記ハブ2が1回転する間の、上記各変位測定素子16a、16bの検出信号を観察する。この作業は無負荷状態で行なう為、各部の誤差がなければ、これら各変位測定素子16a、16bの検出信号は変化しない。但し、前述した様に、各外輪軌道7、7及び内輪軌道8、8の精度不良、被検出面を備えた被検出リング18aの精度不良の他、前記内輪6に対するこの被検出リング18aの組み付け不良や上記外輪1に対する前記変位センサユニット22の組み付け不良等、各部の組立不良によって、無負荷運転時にも、図4に鎖線cで示す様に、上記各変位測定素子16a、16bの検出信号が変化する。この様な無負荷状態でのこれら各変位測定素子16a、16bの検出信号の変化は、上記精度不良や組立不良によるものと考えられる。
【0032】
そこで、本発明の場合には、無負荷状態で上記ハブ2が1回転する間の上記各変位測定素子16a、16bの検出信号の変化を、前記両磁気検出素子23a、23bの検出信号から求まる回転方向の位相との関係を考慮しつつ観察する。そして、基準位置(例えば、図4に破線bで示す、上記磁気検出素子23bの検出信号が立ち上がる位置)からの回転角度に応じた、図5に示す様な補正用信号を求め、前記メモリ29に記憶させる。この補正用信号は、前記転がり軸受ユニットを無負荷状態で回転させた場合に於ける、上記各変位測定素子16a、16bの検出信号の変化である。従って、これら各変位測定素子16a、16bの検出信号が上記補正用信号の様に変化する限り、上記転がり軸受ユニットには負荷が加わっていない事になる。尚、上記補正用信号を求める為には、上記ハブ2を1回転させれば良いが、複数回転させて、その平均値を上記補正用信号とする事もできる。
【0033】
実際に上記転がり軸受ユニットに負荷が加わった場合にその負荷の大きさは、上記補正用信号との差として求められる。即ち、上述の様に構成する本例の転がり軸受ユニット用荷重測定装置の運転時、前記制御器28は、前記第一の処理回路25を通じて送り込まれる前記各磁気検出素子23a、23bの検出信号との関係で、前記第二の処理回路27を通じて送り込まれる上記各変位測定素子16a、16bの検出信号を、上記メモリ29に記憶された上記補正用信号と関連付けて処理する。具体的には、上記第一の処理回路25を通じて送り込まれる検出信号により、前記ハブ2の回転方向に関する位相を求め、その位相での補正用信号の大きさを求める。更に、その位相での、上記第二の処理回路27を通じて送り込まれる信号と上記補正用信号との差を求め、この差を実際に上記転がり軸受ユニットに加わる荷重として算出する。この様にして算出した荷重は、別途設けたABSやTCSの制御器に送り、各種車両用姿勢安定装置の制御に利用する。
【0034】
本例の転がり軸受ユニット用荷重測定装置は、前記各部の精度不良の他、前記各部の組立不良に基づく、荷重測定用の変位測定素子16a、16bと、前記被検出リング18aの被検出面との距離のばらつきを、補正用信号により補償できる。この為、前記各外輪軌道7、7及び内輪軌道8、8、上記被検出リング18aの精度、前記内輪6に対するこの被検出リング18aの組み付け精度、前記外輪1に対する前記変位センサユニット22の組み付け精度を特に高くしなくても、この外輪1と上記ハブ2との間に加わる荷重を正確に求める事ができる。
【0035】
又、本例の構造の場合には前記変位センサユニット22を、前記カバー11を介して上記外輪1に支持している為、この外輪1に設ける取付孔13aが1個で済む。従って、この取付孔13aの形成作業が容易になってコスト低減を図れる他、上記外輪1の肉厚を特に大きくしなくても、この外輪1の強度確保を図れる。又、各方向の荷重によって上記外輪1と上記ハブ2とが変位した場合には、上記各変位測定素子16a、16bと上記被検出リング18aの内周面或は内側面との距離が変化するので、この変化の大きさと変化の方向とにより、上記荷重の方向と大きさとを求める事ができる。
【0036】
次に、図6〜7は、本発明の実施の形態の第2例を示している。本例の場合には、ハブ2(図1参照)の中間部に外嵌固定する、回転検出用のセンサロータ10bとして、磁性材を外歯歯車状に形成したものを使用している。そして、このセンサロータ10bの外周面に円周方向に関して等間隔に形成した複数の突部30a、30bのうち、1個の突部30bを他の突部30a、30aよりも高くしている。この様なセンサロータ10bと組み合わせる図示しない回転検出センサとしては、永久磁石と、磁性材製のポールピースと、このポールピースの周囲に巻回したコイルとから成る、所謂パッシブ型のものを使用する。
【0037】
上述の様なセンサロータ10bと回転検出センサとを使用する本例の場合、上記センサロータ10bの回転に伴って上記回転検出センサの出力信号が、図7の実線aで示す様に変化する。即ち、この回転検出センサの出力信号が、上記センサロータ10bの回転速度に比例した周波数で変化すると共に、その変化の大きさが、1回転毎に1度だけ大きくなる。そこで、この大きく変化した点を基準として、図7に鎖線cで示した各変位測定素子16a、16b(図1〜2参照)の検出信号を処理すれば、上述した第1例の場合と同様に、図5に示す様な補正用信号を得て、誤差に影響されない、正確な荷重測定を行なえる。
【0038】
尚、本発明を実施する場合には、各転動体直径の相互差は、できるだけ小さくする事が好ましい。この理由は、外輪軌道と内輪軌道との間に設ける各転動体の直径にばらつきがあると、これら各転動体の公転運動に伴って上記外輪軌道と内輪軌道との距離が変化し、その結果、変位センサと被検出面との距離も変化する為である。この様な原因による距離変化を正確に補正する事は、不可能ではないにしろ非常に難しい。従って、上記各転動体直径の相互差を、例えば1.0μm以下、好ましくは0.5μm以下と小さくして、これら各転動体の公転運動に伴って上記外輪軌道と内輪軌道との距離が変化しない様にする事が、正確な荷重測定を行なう面からは好ましい。
【0039】
又、本発明は、図示の実施の形態に限らず、前述した特許文献1〜3に記載された構造、或は図10〜12に示した先発明に係る構造で実施する事もできる。更には、自動車の車輪を支持する為の転がり軸受ユニットに限らず、産業機械等、各種機械装置の回転支持部を構成する転がり軸受ユニットで実施する事もできる。
【0040】
【発明の効果】
本発明の転がり軸受ユニット用荷重測定装置は、以上に述べた通り構成され作用するので、構成各部材の形状並びに寸法精度を極端に高くしなくても、転がり軸受ユニットに加わる荷重を正確に測定できる。従って、この荷重に基づいて制御を行なう、各種機械装置の性能向上を、極端なコスト上昇を伴う事なく実現できる。
【図面の簡単な説明】
【図1】本発明の実施の形態の1例を示す断面図。
【図2】図1のA部拡大図。
【図3】回転検出用のセンサロータの部分斜視図。
【図4】このセンサロータに対向する回転検出センサの出力信号の波形と、荷重測定用の変位センサの波形とを示す線図。
【図5】基準位置からの回転角度に応じた補正用信号を示す線図。
【図6】回転検出用のセンサロータの別例を、軸方向から見た正面図。
【図7】このセンサロータに対向する回転検出センサの出力信号の波形と、荷重測定用の変位センサの波形とを示す線図。
【図8】従来から知られている回転速度検出装置付転がり軸受ユニットの1例を示す断面図。
【図9】従来から知られている荷重測定装置付転がり軸受ユニットの1例を示す断面図。
【図10】先発明に係る荷重測定装置付転がり軸受ユニットの1例を示す断面図。
【図11】一部を省略して示す、図10のB−B断面図。
【図12】図10のC部拡大図。
【符号の説明】
1 外輪
2 ハブ
3 フランジ
4 ハブ本体
5 ナット
6 内輪
7 外輪軌道
8 内輪軌道
9 転動体
10、10a、10b センサロータ
11 カバー
12、12a 回転検出センサ
13、13a 取付孔
14、14a 変位センサ
15 センサリング
16a、16b 変位測定素子
17 ホルダ
18、18a 被検出リング
19 円筒部
20 折れ曲がり部
21 ハーネス
22 変位センサユニット
23a、23b 磁気検出素子
24 ハーネス
25 第一の処理回路
26 コネクタ
27 第二の処理回路
28 制御器
29 メモリ
30a、30b 突部
[0001]
BACKGROUND OF THE INVENTION
The load measuring device for a rolling bearing unit according to the present invention, for example, supports a vehicle (automobile) wheel rotatably with respect to a suspension device, and measures at least the magnitude of a force applied to the wheel to stabilize the vehicle. It contributes to the operation.
[0002]
[Prior art]
A rolling bearing unit is used to rotatably support the vehicle wheel with respect to the suspension system. Further, in order to control various vehicle attitude stabilizing devices such as an anti-lock brake system (ABS) and a traction control system (TCS), it is necessary to detect the rotational speed of the wheel. For this reason, the rolling bearing unit with a rotational speed detection device incorporating the rotational speed detection device in the rolling bearing unit can support the wheel rotatably with respect to the suspension device and detect the rotational speed of the wheel. In recent years, it has been widely performed.
[0003]
FIG. 8 shows a rolling bearing unit with a rotational speed detector described in Patent Document 1 as an example of a conventional structure used for such a purpose. This rolling bearing unit with a rotational speed detection device supports a hub 2 for coupling and fixing a wheel on the inner diameter side of an outer ring 1 supported by a suspension device. The hub 2 includes a hub body 4 having a flange 3 for fixing a wheel at an outer end portion (an end portion on the outer side in the width direction when assembled to the vehicle) and an inner end portion (vehicle) of the hub body 4. And an inner ring 6 that is externally fitted to the width direction center side and is held down by a nut 5. A plurality of rolling elements 9 are provided between the double row outer ring raceways 7, 7 formed on the inner peripheral surface of the outer ring 1 and the double row inner ring raceways 8, 8 formed on the outer peripheral surface of the hub 2. 9 are arranged so that the hub 2 can freely rotate on the inner diameter side of the outer ring 1.
[0004]
In order to incorporate the rotational speed detection device into the rolling bearing unit as described above, the sensor rotor 10 is fitted and fixed to the inner end of the inner ring 6 and is rotated on the cover 11 attached to the inner end opening of the outer ring 1. The detection sensor 12 is supported. And the detection part of this rotation detection sensor 12 is made to oppose the to-be-detected part of the said sensor rotor 10 via a micro clearance gap.
[0005]
When the rolling bearing unit with a rotational speed detection device as described above is used, the sensor rotor 10 rotates together with the hub 2 to which the wheel is fixed, and the detected portion of the sensor rotor 10 is in the vicinity of the detection portion of the rotation detection sensor 12. When traveling, the output of the rotation detection sensor 12 changes. The frequency at which the output of the rotation detection sensor 12 changes in this way is proportional to the number of rotations of the wheel. Therefore, if the output of the rotation detection sensor 12 is sent to a controller (not shown), the ABS and TCS can be controlled appropriately.
[0006]
According to the conventionally known rolling bearing unit with a rotational speed detection device, it is possible to ensure the stability of the running posture of the vehicle at the time of braking or acceleration, but this stability can be maintained even under severe conditions. In order to secure it, it is necessary to take in more information that affects the running stability of the vehicle and control the brake and engine. On the other hand, in the case of ABS and TCS using a conventional rolling bearing unit with a rotational speed detection device, so-called feedback control is performed in which a slip between a tire and a road surface is detected to control a brake and an engine. . For this reason, since control of these brakes and engines is delayed even for a moment, an improvement is desired in terms of performance improvement under severe conditions. That is, in the case of the conventional structure, it is possible to prevent slippage between the tire and the road surface by so-called feedforward control, or to prevent the so-called single effect of the brake in which the braking forces of the left and right wheels are extremely different. Can not. Furthermore, it is impossible to prevent the running stability of a truck or the like from being deteriorated based on the poor loading state.
[0007]
In view of such circumstances, Patent Document 1 describes a structure in which a load applied to a rolling bearing unit can be measured as shown in FIG. In the case of the second example of the conventional structure, a mounting hole 13 that penetrates the outer ring 1 in the diametrical direction is formed in a portion between the double-row outer ring raceways 7 and 7 at an axially intermediate portion of the outer ring 1. Is formed in a substantially vertical direction at the upper end of the. In the mounting hole 13, a circular (rod-shaped) displacement sensor 14, which is a load measuring sensor, is mounted. The detection surface provided on the front end surface (lower end surface) of the displacement sensor 14 is opposed to the outer peripheral surface of the sensor ring 15 that is fitted and fixed to the intermediate portion in the axial direction of the hub 2. When the distance between the detection surface and the outer peripheral surface of the sensor ring 15 changes, the displacement sensor 14 outputs a signal corresponding to the amount of change.
[0008]
In the case of the second example of the conventional structure configured as described above, the load applied to the rolling bearing unit incorporating the displacement sensor 14 can be obtained based on the detection signal of the displacement sensor 14. That is, the outer ring 1 supported by the vehicle suspension device is pushed downward by the weight of the vehicle, whereas the hub 2 supporting and fixing the wheel tends to stop at the same position. For this reason, the larger the weight, the greater the deviation between the center of the outer ring 1 and the center of the hub 2 based on the elastic deformation of the outer ring 1 and the hub 2 and the rolling elements 9 and 9. The distance between the detection surface of the displacement sensor 14 and the outer peripheral surface of the sensor ring 15 provided at the upper end of the outer ring 1 becomes shorter as the weight increases. Therefore, if the detection signal of the displacement sensor 14 is sent to the controller, the load applied to the rolling bearing unit in which the displacement sensor 14 is incorporated can be obtained from a relational expression obtained in advance through experiments or the like. Based on the load applied to each rolling bearing unit thus obtained, the ABS is appropriately controlled and the driver is informed of the poor loading state.
[0009]
In the case of the second example of the conventional structure shown in FIG. 9, the load applied in the vertical direction can be measured based on the weight of the vehicle. However, the moment load applied based on the centrifugal force or the like during, for example, turning cannot be measured. For this reason, improvement is desired from the aspect of obtaining a signal for performing appropriate control for stable running in accordance with every running state of the vehicle. As structures usable in such a case, structures described in Patent Documents 2 and 3 are known. According to the structure described in each of these Patent Documents 2 and 3, it is possible to measure the load in each direction applied to the wheel during traveling of the vehicle, including the moment load.
[0010]
[Patent Document 1]
JP 2001-21577 A
[Patent Document 2]
Japanese Patent Laid-Open No. 10-73501
[Patent Document 3]
JP 11-218542 A
[0011]
[Description of the invention]
Furthermore, Japanese Patent Application No. 2002-203072 discloses a load measurement as shown in FIGS. 10 to 12, which is intended for accurately obtaining the direction and magnitude of the load applied to the hub with a relatively simple structure. A device-equipped rolling bearing unit is disclosed. In the case of the structure according to the previous invention, mounting holes 13a and 13a are formed at four circumferentially equidistant positions in the axially intermediate portion of the outer ring 1 so that the inner and outer peripheral surfaces of the outer ring 1 are in communication with each other. is doing. Displacement sensors 14a and 14a are inserted into the mounting holes 13a and 13a, respectively.
[0012]
Each of these displacement sensors 14a, 14a is capable of measuring the radial displacement (radial direction) displacement and the thrust direction (axial direction) displacement of the hub 2, each of which is a non-contact type. It has measuring elements 16a and 16b. Each of these displacement measuring elements 16a and 16b is a non-contact type and capable of measuring a minute displacement amount, such as a capacitance type proximity sensor. A holder 17 made of a synthetic resin that constitutes each of the displacement sensors 14a and 14a. Embedded and supported at the tip surface portion and the tip portion side surface portion.
[0013]
  Meanwhile, double-row inner ring raceway8, 8A ring 18 to be detected is fitted and fixed to an intermediate portion of the hub 2 located between the two. The ring 18 to be detected is formed by subjecting a metal plate to plastic working such as press working so as to have an L-shaped cross section and an annular shape as a whole. And a bent portion 20 bent at a right angle outward in the direction.
[0014]
The detection units of the displacement measuring elements 16a and 16b of the displacement sensors 14a and 14a are respectively close to and opposed to the ring 18 to be detected. That is, the displacement measuring element 16a is brought close to and opposed to the outer peripheral surface of the cylindrical portion 19 so that the radial displacement (radial direction) of the hub 2 relative to the outer ring 1 can be measured. Further, the displacement measuring element 16b is brought close to and opposed to one side surface of the bent portion 20, so that the displacement of the hub 2 in the thrust direction relative to the outer ring 1 can be measured.
[0015]
In the case of the rolling bearing unit with a load measuring device according to the present invention configured as described above, the hub 2 with respect to the outer ring 1 is positioned at four positions in the circumferential direction by the four displacement sensors 14a and 14a. Measure radial and thrust displacements. A total of eight types of detection signals measured by the displacement sensors 14a and 14a, two for each of the displacement sensors 14a and 14a, are taken out by the harnesses 21 and 21, respectively, and input to a controller (not shown). And this controller calculates | requires the load of each direction applied to a rolling bearing unit based on the detection signal sent from each said displacement sensor 14a, 14a.
[0016]
For example, when a load in the vertical direction (downward) based on the vehicle weight or the like is applied to each rolling bearing unit, of the two displacement sensors 14a, 14a existing in the vertical direction, the upper displacement sensor 14a The distance between the displacement measuring element 16a constituting the radial detection portion and the outer peripheral surface of the cylindrical portion 19 that is the radial detection surface is narrowed, and this distance is widened by the lower displacement sensor 14a. The amount of change in distance at this time increases as the load increases. This distance does not change for the two displacement sensors 14a, 14a existing in the horizontal direction (front-rear direction).
[0017]
On the other hand, when a horizontal load is applied to the hub 2 for some reason (for example, due to acceleration or braking), the load of the two displacement sensors 14a, 14a existing in the horizontal direction The displacement sensor 14a on the front side in the action direction reduces the distance between the displacement measuring element 16a constituting the radial detection portion and the outer peripheral surface of the cylindrical portion 19 that is the radial detection surface, and the displacement sensor 14a on the rear side in the action direction similarly. This distance widens. The amount of change in distance at this time also increases as the load increases. This distance does not change for the two displacement sensors 14a, 14a present in the vertical direction. Depending on the load in the oblique direction, the distance changes for all the displacement sensors 14a, 14a.
[0018]
Therefore, if the detection signals of the displacement measuring elements 16a and 16a constituting the radial detectors of the four displacement sensors 14a and 14a arranged at equal intervals in the circumferential direction are compared, the direction in which the radial load acts and its magnitude are compared. You can know. Note that the amount of change in the distance of each part and the magnitude and direction of the radial load are obtained in advance by a calculation formula, a number of experiments, or computer analysis.
[0019]
[Problems to be solved by the invention]
Whether it is the conventional structure described above or the structure according to the previous invention, the distance between a pair of bearing rings constituting the rolling bearing unit is directly or other members fixed to the respective bearing rings. The load applied to the rolling bearing unit is measured based on the change in the distance. In order to accurately measure this load with such a mechanism, unless the special care is taken, when this load is zero (during no-load operation), the relative rotation between the pair of race rings is Regardless, it is assumed that the distance between the detection unit of the displacement sensor and the surface to be detected does not change.
[0020]
However, in order to prevent the distance between the detection part of the displacement sensor and the surface to be detected during no-load operation, the shape and dimensional accuracy of each part need to be extremely high. That is, the distance between the detection unit and the detected surface is determined by the accuracy of the outer ring raceways 7 and 7 and the inner ring raceways 8 and 8, the accuracy of the detected ring 18 having the detected surface, and rolling with a load measuring device. Depending on the assembly accuracy of each component of the bearing unit, there is a possibility that it will change even during no-load operation. If no measures are taken, the controller that has received the detection signals of the displacement sensors 14 and 14a can distinguish between the change in distance due to the above-described poor accuracy and the change in distance due to load change. Therefore, the load applied to the rolling bearing unit cannot be accurately obtained.
In view of such circumstances, the present invention provides a load measurement for a rolling bearing unit capable of accurately measuring a load applied to the rolling bearing unit by providing a function capable of correcting the change in the distance due to the above-described poor accuracy. It was invented to realize the device at low cost.
[0021]
[Means for Solving the Problems]
  The load measuring device for a rolling bearing unit according to the present invention includes a pair of race rings, a load measuring sensor, a calculator, and a storage unit.
  Of these, the pair of races are freely combined with each other via a plurality of rolling elements.
  The load measuring sensor changes the output in response to a change in the distance between the two race rings.
  The computing unit calculates a load acting between the pair of race rings based on a change in the output of the sensor.
  or,The storage means stores, as a correction signal, a change in the output of the sensor when the two race rings rotate relative to each other in an unloaded state.
  When the pair of raceways rotates relative to each other with the load applied, the computing unit is arranged between the pair of raceways based on the output of the sensor and the correction signal. Calculate the applied load.
  Further, in addition to the load measurement sensor, a rotation detection sensor capable of detecting the relative rotation between the pair of race rings at least with respect to the rotation angle from the reference position is provided. Then, while relatively rotating the pair of race rings in an unloaded state, the output of the load measuring sensor is changed in accordance with the change in the distance between the two race rings, and the output of the sensor is changed. The change is made to correspond to the circumferential position obtained based on the output of the rotation detection sensor as the correction signal, and this correction signal is stored in the storage means.
[0022]
[Action]
The load measuring device for a rolling bearing unit according to the present invention configured as described above is used for correcting variations in the distance between the detection part of the sensor for measuring the load and the surface to be detected based on the shape and dimensional accuracy of each part. It can be compensated by the signal. For this reason, the load applied between the pair of race rings can be accurately obtained without particularly increasing the shape, dimensional accuracy, and assembly accuracy of each of the above parts.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
1 to 5 show a first example of an embodiment of the present invention. The feature of the present invention is a structure for accurately detecting the magnitude and direction of the load applied between the outer ring 1 and the hub 2 without particularly increasing the shape accuracy, dimensional accuracy, and assembly accuracy of each part. It is in. The structure and operation of the other parts are common in many respects to the structure according to the previous invention shown in FIGS. 10 to 12 described above. In the following, the description will focus on the features of the present invention and the parts different from the structure shown in FIGS.
[0024]
  In the case of this example, a ring to be detected for detecting a displacement in the radial direction and the thrust direction at the inner end portion of the inner ring 6 fitted and fixed to the inner end portion of the hub 2.18aThe base end portion (the left end portion in FIGS. 1 and 2) is externally fixed. The shape of the ring 18a to be detected is the same as that of the sensor rotor 10 incorporated in the conventional structure and the structure of the previous invention shown in FIGS. 8 to 10, but no through hole is provided for changing the magnetic characteristics. The displacement sensor unit 22 is held and fixed to the cover 11 that closes the inner end opening of the outer ring 1. The detection surfaces of the displacement measuring elements 16a and 16b, which are respectively supported in pairs at four positions in the circumferential direction of the displacement sensor unit 22, are arranged in the radial direction or on the inner peripheral surface or inner surface of the detected ring 18a. Are close to each other in the thrust direction.
[0025]
In the case of such a structure of this example, when the center axis of the outer ring 1 and the center axis of the hub 2 become non-parallel, the distance between the surface to be measured of the ring 18a to be detected and the displacement measuring elements 16a and 16b is as follows. At the same time, it changes based on arc motion. Therefore, when viewed from the load measurement surface, the structure of this example cannot detect the displacement in the radial direction and the displacement in the thrust direction independently when a moment load is applied. For this reason, the processing of the detection signals of the displacement measuring elements 16a and 16a, which are radial detectors, incorporated in the displacement sensor unit 22 and the detection signals of the displacement measuring elements 16b, 16b, which are thrust detectors, are somewhat processed. It becomes troublesome. However, this process is mathematically possible, and if the structure as in this example is adopted, the operation of mounting the displacement sensor unit 22 to the rolling bearing unit can be facilitated.
[0026]
As described above, in the case of this example, the rotational speed is detected at the intermediate portion of the hub 2 in accordance with the provision of the detected ring 18a and the displacement sensor unit 22 at the inner end of the rolling bearing unit. The sensor rotor 10a for this purpose is fitted and fixed. Then, the rotation detection sensor 12a is inserted into the mounting hole 13a formed at one position in the circumferential direction at the axial intermediate portion of the outer ring 1, and the detection surface of the rotation detection sensor 12a is connected to the outer peripheral surface of the sensor rotor 10a. Closely opposed.
[0027]
In the case of this example, the sensor rotor 10a is made of a permanent magnet such as a rubber magnet or a plastic magnet, and is magnetized in the radial direction. And as shown in FIG. 3, the south pole and the north pole are arrange | positioned in the outer peripheral surface of this sensor rotor 10a. A number of S poles and N poles are alternately arranged at equal intervals in the circumferential direction on one axial side (the lower right side in FIG. 3) of the outer peripheral surface of the sensor rotor 10a. On the other hand, on the other side in the axial direction (upper left side in FIG. 3) of the outer peripheral surface of the sensor rotor 10a, only one N pole (or S pole) is arranged in the circumferential direction, and the remaining portion. Is the S pole (or N pole).
[0028]
As described above, the rotation detection sensor 12a has a pair of magnetic poles in a state where the state of magnetic pole change on the outer peripheral surface of the sensor rotor 10a made of a permanent magnet is different between the one side and the other side in the axial direction. The magnetic detection elements 23a and 23b are provided apart from each other in the axial direction of the sensor rotor 10a (left and right direction in FIG. 1). Both the magnetic detection elements 23a and 23b are configured by incorporating elements that change characteristics according to the direction of magnetic flux, such as a Hall IC, and change the output according to the magnetic poles facing each other. Among such magnetic detection elements 23a and 23b, one (right side in FIG. 1) magnetic detection element 23a is on one side in the axial direction of the outer peripheral surface of the sensor rotor 10a, and the other (left side in FIG. 1) is magnetic. Similarly, the detection element 23b is opposed to the other axial side via a detection gap.
[0029]
The output signal of the rotation detection sensor 12a incorporating the pair of magnetic detection elements 23a and 23b as described above is input to the first processing circuit 25 for rotation detection by the harness 24. When the sensor rotor 10a is rotated, signals as indicated by a solid line a and a broken line b in FIG. 4 are sent to the first processing circuit 25 through the harness 24. Of these, the signal indicated by the solid line a is an output signal of the one magnetic detection element 23a and changes at a frequency corresponding to the rotational speed of the sensor rotor 10a. A signal indicated by a broken line b is a detection signal of the other magnetic detection element 23b, and changes only once every time the sensor rotor 10a rotates once.
[0030]
The detection signals of the displacement measuring elements 16a and 16b constituting the displacement sensor unit 22 are sent to a second processing circuit 27 for load detection by another harness having one end connected to the connector 26 of the displacement sensor unit 22. To send it to. In the case of this example, a signal regarding the load applied to the rolling bearing unit processed by the second processing circuit 27 and a signal regarding the rotation of the hub 2 processed by the first processing circuit 25, It inputs into the controller 28 containing a calculating unit. The controller 28 is provided with a memory 29 as storage means described in the claims so that a correction signal relating to the load applied to the rolling bearing unit, which is obtained as described below, can be recorded. Yes. Then, the controller 28 actually uses the rolling bearing unit processed by the signal relating to the load applied to the rolling bearing unit processed by the second processing circuit 27 and the correction signal recorded in the memory 29. The load applied to is calculated.
[0031]
When obtaining the correction signal, the hub 2 is rotated for one rotation or more with no load while the outer ring 1 is stationary, and the detection signals of the displacement measuring elements 16a and 16b in the meantime, The detection signal of the magnetic detection element 23b is observed. Specifically, the detection signals of the displacement measuring elements 16a and 16b, which are known based on the signal of the magnetic detection element 23b, are observed while the hub 2 makes one rotation. Since this operation is performed in a no-load state, the detection signals of these displacement measuring elements 16a and 16b do not change unless there is an error in each part. However, as described above, the accuracy of the outer ring raceways 7 and 7 and the inner ring raceways 8 and 8 and the accuracy of the detection ring 18a provided with the detection surface are not limited, and the detection ring 18a is assembled to the inner ring 6. As shown by the chain line c in FIG. 4, the detection signals of the displacement measuring elements 16a and 16b are generated even during no-load operation due to defective assembly or defective assembly of the displacement sensor unit 22 to the outer ring 1 or the like. Change. The change in the detection signal of each of the displacement measuring elements 16a and 16b in such a no-load state is considered to be due to the above-described accuracy failure or assembly failure.
[0032]
Therefore, in the case of the present invention, changes in the detection signals of the displacement measuring elements 16a and 16b during one rotation of the hub 2 in a no-load state are obtained from the detection signals of the magnetic detection elements 23a and 23b. Observe while considering the relationship with the phase in the rotation direction. Then, a correction signal as shown in FIG. 5 corresponding to the rotation angle from the reference position (for example, the position where the detection signal of the magnetic detection element 23b rises as indicated by the broken line b in FIG. 4) is obtained, and the memory 29 Remember me. This correction signal is a change in the detection signal of each of the displacement measuring elements 16a and 16b when the rolling bearing unit is rotated in an unloaded state. Therefore, as long as the detection signals of these displacement measuring elements 16a and 16b change like the correction signal, no load is applied to the rolling bearing unit. In order to obtain the correction signal, the hub 2 may be rotated once. However, it is possible to rotate the hub 2 a plurality of times and use the average value as the correction signal.
[0033]
When a load is actually applied to the rolling bearing unit, the magnitude of the load is obtained as a difference from the correction signal. That is, during the operation of the rolling bearing unit load measuring device of this example configured as described above, the controller 28 detects the detection signals of the magnetic detection elements 23a and 23b sent through the first processing circuit 25. Therefore, the detection signals of the displacement measuring elements 16a and 16b sent through the second processing circuit 27 are processed in association with the correction signal stored in the memory 29. Specifically, the phase relating to the rotation direction of the hub 2 is obtained from the detection signal sent through the first processing circuit 25, and the magnitude of the correction signal at that phase is obtained. Further, a difference between the signal sent through the second processing circuit 27 and the correction signal at the phase is obtained, and this difference is calculated as a load actually applied to the rolling bearing unit. The load calculated in this manner is sent to a separately provided ABS or TCS controller and used for controlling various vehicle attitude stabilizers.
[0034]
The load measuring device for a rolling bearing unit of the present example includes the load measuring displacement measuring elements 16a and 16b, the detected surface of the detected ring 18a, and the detected surface of the detected ring 18a. Can be compensated for by the correction signal. Therefore, the accuracy of the outer ring raceways 7 and 7 and the inner ring raceways 8 and 8, the detected ring 18 a, the accuracy of assembling the detected ring 18 a with respect to the inner ring 6, and the accuracy of assembling the displacement sensor unit 22 with respect to the outer ring 1 The load applied between the outer ring 1 and the hub 2 can be accurately obtained without particularly increasing the height.
[0035]
In the case of the structure of this example, since the displacement sensor unit 22 is supported by the outer ring 1 via the cover 11, only one mounting hole 13a is provided in the outer ring 1. Accordingly, the mounting hole 13a can be easily formed and the cost can be reduced, and the strength of the outer ring 1 can be secured without particularly increasing the thickness of the outer ring 1. Further, when the outer ring 1 and the hub 2 are displaced by the load in each direction, the distance between each displacement measuring element 16a, 16b and the inner peripheral surface or inner surface of the detected ring 18a changes. Therefore, the direction and magnitude of the load can be obtained from the magnitude and direction of the change.
[0036]
Next, FIGS. 6 to 7 show a second example of the embodiment of the present invention. In the case of this example, as a sensor rotor 10b for rotation detection that is externally fitted and fixed to an intermediate portion of the hub 2 (see FIG. 1), a magnetic material formed in an external gear shape is used. Of the plurality of protrusions 30a and 30b formed on the outer peripheral surface of the sensor rotor 10b at equal intervals in the circumferential direction, one protrusion 30b is made higher than the other protrusions 30a and 30a. As a rotation detection sensor (not shown) combined with such a sensor rotor 10b, a so-called passive sensor composed of a permanent magnet, a magnetic pole piece, and a coil wound around the pole piece is used. .
[0037]
In the case of this example using the sensor rotor 10b and the rotation detection sensor as described above, the output signal of the rotation detection sensor changes as indicated by the solid line a in FIG. 7 as the sensor rotor 10b rotates. That is, the output signal of the rotation detection sensor changes at a frequency proportional to the rotation speed of the sensor rotor 10b, and the magnitude of the change increases only once every rotation. Therefore, if the detection signals of the respective displacement measuring elements 16a and 16b (see FIGS. 1 and 2) indicated by the chain line c in FIG. 7 are processed on the basis of this greatly changed point, the same as in the case of the first example described above. In addition, a corrective signal as shown in FIG. 5 is obtained, and an accurate load measurement that is not affected by the error can be performed.
[0038]
In carrying out the present invention, it is preferable to make the difference between the diameters of the rolling elements as small as possible. The reason for this is that if the diameters of the rolling elements provided between the outer ring raceway and the inner ring raceway vary, the distance between the outer ring raceway and the inner ring raceway changes as the rolling motion of each rolling element results. This is because the distance between the displacement sensor and the surface to be detected also changes. It is very difficult, if not impossible, to accurately correct the distance change due to such a cause. Accordingly, the difference between the diameters of the rolling elements is reduced to, for example, 1.0 μm or less, preferably 0.5 μm or less, and the distance between the outer ring raceway and the inner ring raceway changes with the revolution movement of each rolling element. It is preferable from the viewpoint of accurate load measurement.
[0039]
The present invention is not limited to the illustrated embodiment, and can be implemented by the structure described in Patent Documents 1 to 3 described above or the structure according to the prior invention shown in FIGS. Furthermore, the present invention is not limited to a rolling bearing unit for supporting the wheels of an automobile, but may be implemented by a rolling bearing unit that constitutes a rotation support portion of various mechanical devices such as industrial machines.
[0040]
【The invention's effect】
Since the load measuring device for a rolling bearing unit of the present invention is configured and operates as described above, the load applied to the rolling bearing unit can be accurately measured without extremely increasing the shape and dimensional accuracy of each component. it can. Therefore, the performance improvement of various mechanical devices that perform control based on this load can be realized without an extreme increase in cost.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of the present invention.
FIG. 2 is an enlarged view of a portion A in FIG.
FIG. 3 is a partial perspective view of a sensor rotor for detecting rotation.
FIG. 4 is a diagram showing a waveform of an output signal of a rotation detection sensor facing the sensor rotor and a waveform of a displacement sensor for load measurement.
FIG. 5 is a diagram illustrating a correction signal according to a rotation angle from a reference position.
FIG. 6 is a front view of another example of the sensor rotor for detecting rotation as viewed from the axial direction.
FIG. 7 is a diagram showing a waveform of an output signal of a rotation detection sensor facing the sensor rotor and a waveform of a displacement sensor for load measurement.
FIG. 8 is a cross-sectional view showing an example of a conventionally known rolling bearing unit with a rotational speed detection device.
FIG. 9 is a sectional view showing an example of a conventionally known rolling bearing unit with a load measuring device.
FIG. 10 is a sectional view showing an example of a rolling bearing unit with a load measuring device according to the present invention.
11 is a cross-sectional view taken along line BB in FIG.
12 is an enlarged view of a portion C in FIG.
[Explanation of symbols]
1 outer ring
2 Hub
3 Flange
4 Hub body
5 nuts
6 inner ring
7 Outer ring raceway
8 Inner ring raceway
9 Rolling elements
10, 10a, 10b Sensor rotor
11 Cover
12, 12a Rotation detection sensor
13, 13a Mounting hole
14, 14a Displacement sensor
15 Sensoring
16a, 16b Displacement measuring element
17 Holder
18, 18a Ring to be detected
19 Cylindrical part
20 Bent part
21 Harness
22 Displacement sensor unit
23a, 23b Magnetic detection element
24 Harness
25 First processing circuit
26 Connector
27 Second processing circuit
28 Controller
29 memory
30a, 30b Projection

Claims (2)

複数個の転動体を介して相対回転を自在に組み合わされた1対の軌道輪と、これら両軌道輪同士の間の距離の変化に対応して出力を変化させる荷重測定用のセンサと、このセンサの出力の変化に基づいて上記1対の軌道輪同士の間に作用する荷重を算出する演算器と、無負荷状態でこれら両軌道輪が相対回転した場合に於ける上記センサの出力の変化を補正用信号として記憶しておく記憶手段とを備え、上記演算器は、上記1対の軌道輪が荷重を受けた状態で相対回転する際に、上記センサの出力と上記補正用信号とに基づいて、上記1対の軌道輪同士の間に加わる荷重を算出するものであり、上記荷重測定用のセンサに加えて、上記1対の軌道輪同士の相対回転を、少なくとも基準位置からの回転角度に関して検出可能な回転検出センサを設け、上記1対の軌道輪を無負荷状態で相対回転させつつ、上記荷重測定用のセンサの出力をこれら両軌道輪同士の間の距離の変化に対応して変化させ、このセンサの出力の変化を上記回転検出センサの出力に基づいて求まる円周方向位置に対応させて上記補正用信号とし、この補正用信号を上記記憶手段に記憶させた転がり軸受ユニット用荷重測定装置。A pair of race rings freely combined with each other via a plurality of rolling elements, a load measuring sensor that changes output in response to a change in the distance between the race rings, An arithmetic unit that calculates a load acting between the pair of track rings based on a change in sensor output, and a change in the sensor output when both the track rings rotate relative to each other in an unloaded state. Storage means for storing the signal as a correction signal, and the computing unit outputs an output of the sensor and the correction signal when the pair of race rings rotate relative to each other under a load. Based on this, the load applied between the pair of track rings is calculated . In addition to the load measuring sensor, the relative rotation between the pair of track rings is rotated at least from a reference position. Rotation detection sensor that can detect angle Thus, while rotating the pair of raceways relative to each other in an unloaded state, the output of the load measuring sensor is changed corresponding to the change in the distance between the raceways, and the output of the sensor is changed. A rolling bearing unit load measuring device in which a change is made to correspond to a circumferential position obtained based on an output of the rotation detection sensor and used as the correction signal, and the correction signal is stored in the storage means . それぞれが1対の軌道輪同士の間の距離の変化に対応して出力を変化させる複数のセンサが、円周方向に離隔して配置されている、請求項1に記載した転がり軸受ユニット用荷重測定装置。  The load for a rolling bearing unit according to claim 1, wherein a plurality of sensors, each of which changes an output in response to a change in a distance between a pair of race rings, are arranged apart from each other in the circumferential direction. measuring device.
JP2002353255A 2002-12-05 2002-12-05 Load measuring device for rolling bearing units Expired - Fee Related JP4269669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002353255A JP4269669B2 (en) 2002-12-05 2002-12-05 Load measuring device for rolling bearing units

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002353255A JP4269669B2 (en) 2002-12-05 2002-12-05 Load measuring device for rolling bearing units

Publications (3)

Publication Number Publication Date
JP2004184297A JP2004184297A (en) 2004-07-02
JP2004184297A5 JP2004184297A5 (en) 2006-01-26
JP4269669B2 true JP4269669B2 (en) 2009-05-27

Family

ID=32754583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002353255A Expired - Fee Related JP4269669B2 (en) 2002-12-05 2002-12-05 Load measuring device for rolling bearing units

Country Status (1)

Country Link
JP (1) JP4269669B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4843958B2 (en) * 2005-02-21 2011-12-21 日本精工株式会社 Load measuring device for rolling bearing units
JP4525423B2 (en) * 2005-03-30 2010-08-18 株式会社ジェイテクト Rolling bearing device with sensor
JP4862318B2 (en) * 2005-08-19 2012-01-25 日本精工株式会社 Load measuring device
ES2793651T3 (en) 2017-11-08 2020-11-16 Schaeffler Monitoring Services Gmbh Procedure and device for monitoring a bearing play of rolling bearings
US10975908B1 (en) 2019-10-29 2021-04-13 Schaeffler Monitoring Services Gmbh Method and device for monitoring a bearing clearance of roller bearings

Also Published As

Publication number Publication date
JP2004184297A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
US7212927B2 (en) Load-measuring device for rolling bearing unit and rolling bearing unit for load measurement
JP4940937B2 (en) Rotating machine state quantity measuring device
US7520183B2 (en) Hub unit with sensor
JP2004003918A (en) Rolling bearing unit for supporting wheel with load-measuring device
JP2007127253A (en) Rolling bearing device with sensor
WO2004076873A1 (en) Rolling bearing unit with sensor
JP4887882B2 (en) Displacement measuring device and load measuring device of rolling bearing unit
EP1674843A2 (en) Sensor-equipped rolling bearing unit
JP2004198247A (en) Load measuring apparatus for rolling bearing unit
JP4269669B2 (en) Load measuring device for rolling bearing units
JP4029736B2 (en) Rolling bearing unit with sensor and hub unit with sensor
JP2006242241A (en) Ball bearing unit
JP4269674B2 (en) Load measuring device for rolling bearing units
JP4957390B2 (en) Method for manufacturing rolling bearing unit with physical quantity measuring device
JP2006317361A (en) Load measuring apparatus for rolling bearing unit
JP2007085742A (en) Rolling bearing unit with load measuring device
JP2008292275A (en) Load measuring instrument for rolling bearing unit
JP2006258801A (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device
JP2005091073A (en) Rotation speed detector and load measuring instrument for roller bearing unit
JP2005164253A (en) Load measuring instrument for rolling bearing unit
JP2005098771A (en) Load-measuring device of rolling bearing unit
JP5458498B2 (en) State quantity measuring device for rolling bearing units
JP4843958B2 (en) Load measuring device for rolling bearing units
JP2005090993A (en) Load measuring device for roller bearing unit
JP2004198173A (en) Load measuring apparatus for rolling bearing unit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4269669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees