JP2009186428A - Device for measuring state quantity of rolling bearing unit - Google Patents

Device for measuring state quantity of rolling bearing unit Download PDF

Info

Publication number
JP2009186428A
JP2009186428A JP2008029422A JP2008029422A JP2009186428A JP 2009186428 A JP2009186428 A JP 2009186428A JP 2008029422 A JP2008029422 A JP 2008029422A JP 2008029422 A JP2008029422 A JP 2008029422A JP 2009186428 A JP2009186428 A JP 2009186428A
Authority
JP
Japan
Prior art keywords
sensors
raceway
encoders
encoder
hub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008029422A
Other languages
Japanese (ja)
Inventor
Eisei Doi
永生 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008029422A priority Critical patent/JP2009186428A/en
Publication of JP2009186428A publication Critical patent/JP2009186428A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a structure permitting diversion of an encoder for a rotation speed measuring device widely used conventionally and measuring the external forces in many directions acting between an outer ring 1 and a hub 2. <P>SOLUTION: The encoders 4a, 4b are supported and fixed at the shaft-direction middle part and shaft-direction inner end of the hub 2, respectively. Ones for the rotation speed measuring device, i.e., ones of which feature change boundary of a side to be detected is made parallel with the width direction of the side to be detected are used as both the encoders 4a and 4b, respectively. The detection parts of sensors 9A<SB>1</SB>, 9B<SB>2</SB>are opposed to the sides to be detected of both the encoders 4a, 4b, respectively at least one by one. Thereby, the external forces in the many directions can be measured based on the phase difference between output signals of the respective sensors 9A<SB>1</SB>, 9B<SB>2</SB>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

この発明に係る転がり軸受ユニットの状態量測定装置は、転がり軸受ユニットを構成する静止側軌道輪と回転側軌道輪との間に作用する外力等の状態量を測定する為に利用する。更に、この求めた状態量を、自動車等の車両の走行安定性確保を図る為に利用する。   The state quantity measuring device for a rolling bearing unit according to the present invention is used to measure a state quantity such as an external force acting between a stationary side bearing ring and a rotating side bearing ring constituting the rolling bearing unit. Further, the obtained state quantity is used for ensuring the running stability of a vehicle such as an automobile.

例えば自動車の車輪は懸架装置に対し、複列アンギュラ型等の転がり軸受ユニットにより回転自在に支持する。又、自動車の走行安定性を確保する為に、例えばアンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)、更には、電子制御式ビークルスタビリティコントロールシステム(ESC)等の車両用走行安定化装置が使用されている。この様な各種車両用走行安定化装置を制御する為には、車輪の回転速度、車体に加わる各方向の加速度等を表す信号が必要になる。そして、より高度の制御を行う為には、車輪を介して上記転がり軸受ユニットに加わる荷重(例えばラジアル荷重とアキシアル荷重との一方又は双方)の大きさを知る事が好ましい場合がある。   For example, a wheel of an automobile is rotatably supported by a rolling bearing unit such as a double-row angular type with respect to a suspension device. In addition, in order to ensure the running stability of automobiles, for example, anti-lock braking system (ABS), traction control system (TCS), and electronically controlled vehicle stability control system (ESC) etc. The device is in use. In order to control such various vehicle running stabilization devices, signals representing the rotational speed of the wheels, acceleration in each direction applied to the vehicle body, and the like are required. In order to perform higher-level control, it may be preferable to know the magnitude of a load (for example, one or both of a radial load and an axial load) applied to the rolling bearing unit via a wheel.

この様な事情に鑑みて、特許文献1には、特殊なエンコーダを使用して、転がり軸受ユニットに加わる荷重の大きさを測定する発明が記載されている。図8は、この特許文献1に記載された構造と同じ荷重の測定原理を採用している、転がり軸受ユニットの状態量測定装置に関する従来構造の1例を示している。この従来構造は、使用時に懸架装置に結合固定した状態で回転しない外輪1の内径側に、使用時に車輪を支持固定した状態でこの車輪と共に回転するハブ2を、複数個の転動体3、3を介して、回転自在に支持している。これら各転動体3、3には、背面組み合わせ型の接触角と共に、予圧を付与している。尚、図示の例では、これら各転動体3、3として玉を使用しているが、重量が嵩む自動車用の軸受ユニットの場合には、玉に代えて円すいころを使用する場合もある。   In view of such circumstances, Patent Document 1 describes an invention in which a special encoder is used to measure the magnitude of a load applied to a rolling bearing unit. FIG. 8 shows an example of a conventional structure relating to a state quantity measuring device for a rolling bearing unit that employs the same load measurement principle as the structure described in Patent Document 1. In this conventional structure, a hub 2 that rotates together with a wheel while supporting and fixing the wheel in use is fixed to a plurality of rolling elements 3 and 3 on the inner diameter side of the outer ring 1 that does not rotate while being coupled and fixed to a suspension device when used. It is rotatably supported via A preload is applied to each of the rolling elements 3 and 3 together with a contact angle of the rear combination type. In the illustrated example, balls are used as the rolling elements 3 and 3. However, in the case of an automobile bearing unit that is heavy, tapered rollers may be used instead of balls.

又、上記ハブ2の軸方向内端部(軸方向に関して「内」とは、自動車への組付け状態で車両の幅方向中央側を言い、図1及び図5〜8の右側。反対に、車両の幅方向外側となる、図1及び図5〜8の左側を、軸方向に関して「外」と言う。本明細書全体で同じ。)には、円筒状のエンコーダ4を、上記ハブ2と同心に支持固定している。このエンコーダ4は、円環状の芯金5と、この芯金5の外周面に添着固定した、永久磁石製で円筒状のエンコーダ本体6とから成る。被検出面である、このエンコーダ本体6の外周面の軸方向内半部には、S極とN極とを、円周方向に関して交互に且つ等間隔に配置している。これらS極とN極との境界は、軸方向中央部が円周方向に関して最も突出した、「く」字形となっている。   Further, the inner end of the hub 2 in the axial direction (“inner” with respect to the axial direction refers to the center in the width direction of the vehicle in the assembled state in the automobile, and is the right side of FIGS. 1 and 5 to 8. 1 and FIGS. 5 to 8, which are outside in the width direction of the vehicle, are referred to as “outside” with respect to the axial direction. The same applies to the entire specification). It is supported and fixed concentrically. The encoder 4 includes an annular cored bar 5 and a cylindrical encoder body 6 made of a permanent magnet attached and fixed to the outer peripheral surface of the cored bar 5. S poles and N poles are alternately arranged at equal intervals in the circumferential direction on the inner half portion in the axial direction of the outer peripheral surface of the encoder body 6 which is a detected surface. The boundary between these S poles and N poles has a "<" shape with the central portion in the axial direction protruding most in the circumferential direction.

又、上記外輪1の軸方向内端開口を塞ぐ、金属板製で有底円筒状のカバー7の内側に、合成樹脂製のセンサホルダ8を介して、1対のセンサ9a、9bを支持固定している。そして、この状態で、これら両センサ9a、9bの検出部を、上記エンコーダ4の被検出面の軸方向両半部に、それぞれ1つずつ近接対向させている。尚、上記両センサ9a、9bの検出部には、ホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子を組み込んでいる。   Further, a pair of sensors 9a and 9b are supported and fixed inside a cover 7 made of a metal plate and having a bottomed cylindrical shape that closes the axial inner end opening of the outer ring 1 through a sensor holder 8 made of synthetic resin. is doing. In this state, the detection portions of both the sensors 9a and 9b are respectively placed close to and opposed to both halves in the axial direction of the detected surface of the encoder 4. In addition, magnetic detection elements such as a Hall IC, a Hall element, an MR element, and a GMR element are incorporated in the detection portions of both the sensors 9a and 9b.

上述の様に構成する転がり軸受ユニットの状態量測定装置の場合、外輪1とハブ2との間にアキシアル荷重が作用する事により、これら外輪1とハブ2とがアキシアル方向に相対変位すると、これに伴って、上記両センサ9a、9bの出力信号同士の間に存在する位相差比(=位相差/1周期)が変化する。この位相差比は、上記アキシアル荷重の作用方向及び大きさ(上記相対変位の方向及び大きさ)に見合った値をとる。従って、この位相差比に基づいて、上記アキシアル荷重の作用方向及び大きさ(上記相対変位の方向及び大きさ)を求める事ができる。尚、これらを求める処理は、図示しない演算器により行う。この為、この演算器のメモリ中には、予め理論計算や実験により調べておいた、上記位相差比と、上記アキシアル方向の相対変位又は荷重との関係(零点及びゲイン)を表す、式やマップを記憶させておく。   In the state measuring device for a rolling bearing unit configured as described above, when an axial load acts between the outer ring 1 and the hub 2, the outer ring 1 and the hub 2 are displaced relative to each other in the axial direction. Accordingly, the phase difference ratio (= phase difference / 1 period) existing between the output signals of the sensors 9a and 9b changes. This phase difference ratio takes a value commensurate with the action direction and magnitude of the axial load (the direction and magnitude of the relative displacement). Therefore, based on this phase difference ratio, the direction and magnitude of the axial load (the direction and magnitude of the relative displacement) can be determined. Note that the processing for obtaining these is performed by an arithmetic unit (not shown). For this reason, in the memory of this computing unit, an equation or a formula representing the relationship (zero point and gain) between the phase difference ratio and the relative displacement or load in the axial direction, which has been examined in advance by theoretical calculation or experiment. Remember the map.

尚、上述した従来構造の場合には、エンコーダの被検出面にその検出部を対向させるセンサの数を、2個としている。これに対し、図示は省略するが、特許文献2〜3及び特願2006−345849には、当該センサの数を3個以上とする事で、多方向の変位や外力を求められる構造が記載されている。   In the case of the above-described conventional structure, the number of sensors that make the detection portion face the detection surface of the encoder is two. On the other hand, although not shown, Patent Documents 2 to 3 and Japanese Patent Application No. 2006-345849 describe a structure in which multidirectional displacement and external force are required by setting the number of sensors to three or more. ing.

ところで、上述の図8に示した転がり軸受ユニットの状態量測定装置では、ABS等を制御する為に従来から広く使用されている、転がり軸受ユニットの回転速度測定装置とは異なる構造のエンコーダ4を使用している。即ち、従来から広く使用されている回転速度測定装置用のエンコーダの場合には、被検出面の特性変化の境界を、この被検出面の幅方向に対して平行にしている(例えば特許文献4参照)。これに対し、上記エンコーダ4の場合には、被検出面の特性変化の境界を、この被検出面の幅方向に対して傾斜させている。この様なエンコーダ4を実際に造る場合には、新たな(設計、及び、新規な製造設備の為の)コストがかかる。これに対し、従来から広く使用されている回転速度検出装置用のエンコーダを、状態量測定装置用のエンコーダとして流用できれば、このエンコーダに関する新たなコストが不要になる。この為、回転速度測定装置用のエンコーダを、状態量測定装置用のエンコーダとして流用できる様にする事が望まれる。更には、この様にエンコーダを流用した構造で、多方向の変位や外力を求められる構造を実現する事が望まれる。   By the way, in the rolling bearing unit state quantity measuring apparatus shown in FIG. 8 described above, the encoder 4 having a structure different from that of the rolling bearing unit rotational speed measuring apparatus widely used in the past for controlling the ABS or the like is used. I use it. That is, in the case of an encoder for a rotational speed measuring device that has been widely used conventionally, the boundary of the characteristic change of the detected surface is made parallel to the width direction of the detected surface (for example, Patent Document 4). reference). On the other hand, in the case of the encoder 4, the boundary of the characteristic change of the detected surface is inclined with respect to the width direction of the detected surface. When such an encoder 4 is actually manufactured, new costs (for design and new manufacturing equipment) are required. On the other hand, if an encoder for a rotational speed detecting device that has been widely used in the past can be used as an encoder for a state quantity measuring device, a new cost for the encoder becomes unnecessary. For this reason, it is desired that the encoder for the rotational speed measuring device can be used as the encoder for the state quantity measuring device. Furthermore, it is desired to realize a structure that requires multidirectional displacement and external force with such a structure that uses an encoder.

特開2006−317420号公報JP 2006-317420 A 特開2006−322928号公報JP 2006-322928 A 特開2007−93580号公報JP 2007-93580 A 特開2004−309342号公報JP 2004-309342 A

本発明の転がり軸受ユニットの状態量測定装置は、上述の様な事情に鑑み、回転速度検出装置用のエンコーダを流用でき、しかも多方向の変位や外力を求められる構造を実現すべく発明したものである。   The state quantity measuring device of the rolling bearing unit of the present invention was invented in order to realize a structure in which an encoder for a rotational speed detecting device can be diverted and multi-directional displacement and external force are required in view of the circumstances as described above. It is.

本発明の転がり軸受ユニットの状態量測定装置は、転がり軸受ユニットと、状態量測定装置とを備える。
このうちの転がり軸受ユニットは、静止側周面に複列の静止側軌道を有し、使用時にも回転しない静止側軌道輪と、回転側周面に複列の回転側軌道を有し、使用時に回転する回転側軌道輪と、上記各静止側軌道と上記各回転側軌道との間にそれぞれ複数個ずつ転動自在に設けられた転動体とを備える。
又、上記状態量測定装置は、上記回転側軌道輪のうちで軸方向に離隔した2個所位置にそれぞれ1個ずつ、直接又は他の部材を介して支持固定された1対のエンコーダと、使用時にも回転しない部分に支持固定されたセンサ装置と、演算器とを備える。
このうちの1対のエンコーダはそれぞれ、上記回転側軌道輪と同心の被検出面を有し、この被検出面の特性を円周方向に関して交互に且つ等間隔で変化させている。これと共に、円周方向に隣り合う、互いに異なる特性部同士の境界をそれぞれ、上記被検出面の幅方向に対して平行にしている。
又、上記センサ装置は、上記1対のエンコーダのうちの一方のエンコーダの被検出面に検出部を対向させた1乃至複数個の第一のセンサと、他方のエンコーダの被検出面に検出部を対向させた1乃至複数個の第二のセンサとを備える。そして、これら各センサはそれぞれ、上記各被検出面のうち、自身の検出部を対向させた部分の特性変化に対応して出力信号を変化させる。
又、上記演算器は、上記各センサの出力信号同士の間に存在する位相差に基づいて、上記静止側軌道輪と上記回転側軌道輪との相対変位と、これら静止側軌道輪と回転側軌道輪との間に作用する外力とのうちの、少なくとも1種類の状態量を算出する機能を有する。
The rolling bearing unit state quantity measuring apparatus of the present invention includes a rolling bearing unit and a state quantity measuring apparatus.
Of these, the rolling bearing unit has a double-row stationary raceway on the stationary peripheral surface, a stationary raceway that does not rotate during use, and a double-row rotational raceway on the rotational peripheral surface. A rotation-side raceway that rotates at times; and a plurality of rolling elements provided between the stationary-side raceways and the rotation-side raceways.
In addition, the state quantity measuring device is used with a pair of encoders that are supported and fixed directly or via other members, one at each of two positions on the rotating side raceway that are separated in the axial direction. A sensor device that is supported and fixed to a portion that does not rotate sometimes, and an arithmetic unit.
Each of the pair of encoders has a detected surface concentric with the rotation side raceway, and the characteristics of the detected surface are changed alternately and at equal intervals in the circumferential direction. At the same time, the boundaries between the different characteristic portions adjacent to each other in the circumferential direction are parallel to the width direction of the detected surface.
The sensor device includes one or more first sensors in which a detection unit is opposed to a detection surface of one encoder of the pair of encoders, and a detection unit on a detection surface of the other encoder. 1 to a plurality of second sensors facing each other. Each of these sensors changes an output signal corresponding to a change in characteristics of a portion of each of the above-described detection surfaces facing its detection unit.
The computing unit is configured to detect relative displacement between the stationary side raceway and the rotation side raceway, based on the phase difference existing between the output signals of the sensors, and the stationary side raceway and the rotation side. It has a function of calculating at least one kind of state quantity among external forces acting between the races.

上述の様な本発明を実施する場合には、例えば請求項2に記載した様な構造、即ち、上記静止側軌道輪を、内周面に複列の外輪軌道を有する外輪とし、上記回転側軌道輪を、外周面に複列の内輪軌道を有するハブとし、上記一方のエンコーダを、このハブの軸方向中間部で1対の転動体列同士の間部分に支持固定し、上記他方のエンコーダを、上記ハブの軸方向端部に支持固定する構造を採用できる。   In carrying out the present invention as described above, for example, the structure as described in claim 2, that is, the stationary side raceway is an outer race having a double row outer raceway on the inner peripheral surface, and the rotation side The bearing ring is a hub having double-row inner ring raceways on the outer peripheral surface, and the one encoder is supported and fixed at a portion between a pair of rolling element rows at an intermediate portion in the axial direction of the hub. It is possible to adopt a structure that supports and fixes these at the axial end of the hub.

上述の様に構成する本発明の転がり軸受ユニットの状態量測定装置の場合には、1対のエンコーダとして、それぞれ従来から広く使用されている回転速度測定装置用のエンコーダ、即ち、被検出面の特性変化の境界を、この被検出面の幅方向に対して平行にしたエンコーダを流用できる。この為、上記両エンコーダに関する新たなコストが不要になる。又、本発明の場合には、回転側軌道輪のうちで軸方向に離隔した2個所位置に支持固定した1対のエンコーダ、即ち、静止側軌道輪に対し互いに異なる方向に変位し得る1対のエンコーダを使用する。この為、これら両エンコーダの被検出面に対向させた各センサの出力信号同士の間の位相差に基づいて、静止側軌道輪と回転側軌道輪との間の多方向の相対変位と、これら静止側軌道輪と回転側軌道輪との間に作用する多方向の外力とを求められる。   In the state measuring device of the rolling bearing unit of the present invention configured as described above, as a pair of encoders, encoders for rotational speed measuring devices that have been widely used conventionally, An encoder in which the boundary of the characteristic change is parallel to the width direction of the detected surface can be used. This eliminates the need for new costs for both encoders. Further, in the case of the present invention, a pair of encoders supported and fixed at two positions separated in the axial direction among the rotating side races, that is, a pair that can be displaced in different directions with respect to the stationary side races. Use the encoder. Therefore, based on the phase difference between the output signals of the sensors opposed to the detection surfaces of both encoders, the multidirectional relative displacement between the stationary side raceway and the rotation side raceway, A multidirectional external force acting between the stationary side raceway and the rotation side raceway is required.

[実施の形態の第1例]
図1〜2は、本発明の実施の形態の第1例を示している。本例の場合も、前述の図8に示した従来構造の場合と同様、使用時に懸架装置に結合固定した状態で回転しない外輪1の内径側に、使用時に車輪を支持固定した状態でこの車輪と共に回転するハブ2を、複数個の転動体3、3を介して、回転自在に支持している。これら各転動体3、3には、背面組み合わせ型の接触角と共に、予圧を付与している。尚、本例では、互いに直交するx軸、y軸、z軸から成る三次元直交座標系のうち、y軸を上記外輪1の中心軸とし、z軸を上下方向軸とし、x軸を前後方向軸として、以下の説明を行う。
[First example of embodiment]
1 and 2 show a first example of an embodiment of the present invention. Also in the case of this example, as in the case of the conventional structure shown in FIG. 8 described above, the wheel is supported and fixed on the inner diameter side of the outer ring 1 that does not rotate in the state of being coupled and fixed to the suspension device when used. The hub 2 that rotates together with it is rotatably supported via a plurality of rolling elements 3 and 3. A preload is applied to each of the rolling elements 3 and 3 together with a contact angle of the rear combination type. In this example, in the three-dimensional orthogonal coordinate system composed of the x axis, the y axis, and the z axis orthogonal to each other, the y axis is the central axis of the outer ring 1, the z axis is the vertical axis, and the x axis is the front and rear. The following description will be given as the direction axis.

本例の場合には、上記ハブ2の軸方向中間部で1対の転動体列同士の間部分(列間)と、このハブ2の軸方向内端部(軸端)とに、それぞれエンコーダ4a、4bを、このハブ2と同心に外嵌固定している。これと共に、上記両エンコーダ4a、4bの被検出面に、上記外輪1に対して支持固定したセンサ(9A1 、9A2 、9A3 )(9B1 、9B2 、9B3 )の検出部を、それぞれ3個ずつ近接対向させている。 In the case of this example, encoders are respectively provided between a pair of rolling element rows (between rows) and an inner end portion (shaft end) in the axial direction of the hub 2 at an intermediate portion in the axial direction of the hub 2. 4a and 4b are fitted and fixed concentrically with the hub 2. At the same time, the detection units of the sensors (9A 1 , 9A 2 , 9A 3 ) (9B 1 , 9B 2 , 9B 3 ) supported and fixed to the outer ring 1 are provided on the detection surfaces of the encoders 4a, 4b. Three each are close to each other.

上述した各構成要素のうち、上記両エンコーダ4a、4bは、上記ハブ2に締り嵌めで外嵌固定した円環状の芯金5a、5bと、この芯金5a、5bを構成する円輪部の側面に添着固定した、永久磁石製で円輪状のエンコーダ本体6a、6bとから成る。それぞれが被検出面である、一方(列間)のエンコーダ4aを構成するエンコーダ本体6aの軸方向外側面と、他方(軸端)のエンコーダ4bを構成するエンコーダ本体6bの軸方向内側面とには、それぞれS極とN極とを、円周方向に関して交互に且つ等間隔に配置している。それぞれが異なる特性部である、上記S極とN極との境界は、被検出面の幅方向(径方向)に対して平行にしている。又、上記両エンコーダ4a、4b同士で、被検出面に設けるS極とN極との円周方向の配置のピッチ及び位相を、互いに等しくしている。   Among the above-described components, the encoders 4a and 4b are formed of an annular core metal 5a and 5b that is externally fixed to the hub 2 by an interference fit, and an annular portion that constitutes the core metal 5a and 5b. It consists of an encoder body 6a, 6b made of a permanent magnet and attached to the side surface. An axially outer side surface of the encoder body 6a constituting one (between) encoder 4a and an inner side surface of the encoder body 6b constituting the other (shaft end) encoder 4b, each of which is a detected surface. , S poles and N poles are alternately arranged at equal intervals in the circumferential direction. The boundaries between the S pole and the N pole, which are different characteristic portions, are parallel to the width direction (radial direction) of the surface to be detected. The encoders 4a and 4b have the same pitch and phase in the circumferential arrangement of the S and N poles provided on the detected surface.

尚、図2の(A)は、上記一方(列間)のエンコーダ4aの被検出面と、この被検出面にそれぞれの検出部を対向させた、それぞれが第一のセンサである3個のセンサ9A1 、9A2 、9A3 とを、同じく(B)は、上記他方(軸端)のエンコーダ4bの被検出面と、この被検出面にそれぞれの検出部を対向させた、それぞれが第二のセンサである3個のセンサ9B1 、9B2 、9B3 とを、それぞれ図1の軸方向右側(+y側)から見た投影図である。この為、上記被検出面の奥側に各センサ9A1 、9A2 、9A3 が位置する(A)では、これら各センサ9A1 、9A2 、9A3 を白丸で、上記被検出面の手前側に各センサ9B1 、9B2 、9B3 が位置する(B)では、これら各センサ9B1 、9B2 、9B3 を黒丸で、それぞれ表している(後述する図3〜4に就いても同様)。 2 (A) shows three detection sensors, each of which is a first sensor, with the detection surface of the encoder (4a) on one side (between rows) facing each detection surface. Sensors 9A 1 , 9A 2 , 9A 3, and (B) are the detection surface of the encoder (4b) on the other side (shaft end) and the respective detection units facing this detection surface. FIG. 3 is a projection view of three sensors 9B 1 , 9B 2 , and 9B 3 that are second sensors as viewed from the right side (+ y side) in the axial direction of FIG. Therefore, in the case where the sensors 9A 1 , 9A 2 , 9A 3 are located on the back side of the detected surface (A), these sensors 9A 1 , 9A 2 , 9A 3 are white circles, and in front of the detected surface. In (B) where the sensors 9B 1 , 9B 2 , 9B 3 are located on the side, these sensors 9B 1 , 9B 2 , 9B 3 are represented by black circles (even in FIGS. 3 to 4 described later). The same).

又、上記列間に存在する3個のセンサ9A1 、9A2 、9A3 は、上記外輪1の軸方向中間部に支持固定された、それぞれが合成樹脂製である3個のセンサホルダ10の先端部に、それぞれ1個ずつ包埋支持している。これに対し、上記軸端に存在する3個のセンサ9B1 、9B2 、9B3 は、上記外輪1の軸方向内端部に固定した有底円筒状のカバー7a内に保持固定された、合成樹脂製のセンサホルダ8a内に包埋支持している。そして、本例の場合には、上記外輪1とハブ2との間に外力が作用していない中立状態で、図2に示す様に、上記両エンコーダ4a、4bの被検出面のうち、円周方向等間隔の3個所位置(θ=60度、180度、300度の位置)にそれぞれ1個ずつ、上記各センサ(9A1 、9A2 、9A3 )(9B1 、9B2 、9B3 )の検出部を近接対向させている。尚、これら各センサ(9A1 、9A2 、9A3 )(9B1 、9B2 、9B3 )の検出部には、ホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子を組み込んでいる。 Further, the three sensors 9A 1 , 9A 2 , 9A 3 existing between the rows are supported and fixed to the intermediate portion of the outer ring 1 in the axial direction, and each of the three sensor holders 10 each made of synthetic resin. Each one is embedded and supported at the tip. On the other hand, the three sensors 9B 1 , 9B 2 , 9B 3 existing at the shaft end are held and fixed in a bottomed cylindrical cover 7a fixed to the inner end in the axial direction of the outer ring 1. It is embedded and supported in a sensor holder 8a made of synthetic resin. In the case of this example, in a neutral state where no external force is acting between the outer ring 1 and the hub 2, as shown in FIG. 2, of the detected surfaces of the encoders 4a and 4b, Each of the sensors (9A 1 , 9A 2 , 9A 3 ) (9B 1 , 9B 2 , 9B 3 ), one at each of three circumferentially equidistant positions (positions of θ = 60 °, 180 °, 300 °). ) Are close to each other. The sensors (9A 1 , 9A 2 , 9A 3 ) (9B 1 , 9B 2 , 9B 3 ) incorporate magnetic sensing elements such as Hall ICs, Hall elements, MR elements, GMR elements, etc. Yes.

上述の様に構成する本例の転がり軸受ユニットの状態量測定装置の場合、外輪1とハブ2との間に外力が作用して、1対のエンコーダ4a、4bにラジアル変位が生じると、これに伴って、各センサ(9A1 、9A2 、9A3 )(9B1 、9B2 、9B3 )の出力信号の位相がずれる。ここで、この位相のずれを、位相差を1周期で除した位相差比ε(θ)で表し、上記各エンコーダ4a、4bのx軸方向、z軸方向のラジアル変位をそれぞれX、Zとすると、上記位相差比ε(θ)は、次の(1)式で表される。

Figure 2009186428
In the case of the state measuring device of the rolling bearing unit of the present example configured as described above, when an external force acts between the outer ring 1 and the hub 2 and a radial displacement occurs in the pair of encoders 4a and 4b, Accordingly, the phases of the output signals of the sensors (9A 1 , 9A 2 , 9A 3 ) (9B 1 , 9B 2 , 9B 3 ) are shifted. Here, this phase shift is expressed by a phase difference ratio ε (θ) obtained by dividing the phase difference by one period, and the radial displacements of the encoders 4a and 4b in the x-axis direction and the z-axis direction are respectively X and Z. Then, the phase difference ratio ε (θ) is expressed by the following equation (1).
Figure 2009186428

又、上記各エンコーダ4a、4bの被検出面のピッチ円直径(PCD)をd、これら各被検出面の全周に配置するS極とN極との対の数(1回転当たりの上記各センサの出力信号のパルス数)をn、上記各被検出面同士の軸方向間隔(スパン)をL、一方(列間)のエンコーダ4aのx軸方向、z軸方向のラジアル変位をそれぞれxA 、zA 、他方(軸端)のエンコーダ4bのx軸方向、z軸方向のラジアル変位をそれぞれxB 、zB とする。この場合に、これら各ラジアル変位xA 、zA 、xB 、zB により生じる、それぞれが2個のセンサの出力信号同士の間の位相差比{パルスエッジ時間差Δtをパルス周期Tで除した値Δt/T}である、上記両センサ9A2 、9A1 間の位相差比εA2-A1 と、上記両センサ9A2 、9A3 間の位相差比εA2-A3 と、上記両センサ9B2 、9B1 間の位相差比εB2-B1 と、上記両センサ9B2 、9B3 間の位相差比εB2-B3 とは、それぞれ上記(1)式に基づいて、次の(2)〜(5)式で表す事ができる。

Figure 2009186428
Figure 2009186428
Figure 2009186428
Figure 2009186428
これら(2)〜(5)式の関係より、上記各エンコーダ4a、4bのラジアル変位(xA 、zA )、(xB 、zB )は、それぞれ次の(6)〜(7)式により算出できる。
Figure 2009186428
Figure 2009186428
又、この様に各エンコーダ4a、4bのラジアル変位(xA 、zA )、(xB 、zB )が求まれば、上記ハブ2の中心Oの変位x、z及び傾きφx 、φz は、それぞれ次の(8)〜(11)式により算出できる。
Figure 2009186428
Figure 2009186428
Figure 2009186428
Figure 2009186428
尚、本例の場合、上記ハブ2の中心Oと上記一方のエンコーダ4aとのy軸方向位置は、非常に近い為、それぞれのラジアル変位(x、z)(xA 、zA )は、互いにほぼ等しく(x≒xA 、z≒zA )なる。この場合に、これらを互いに等しい(x=xA 、z=zA )と取り扱っても、測定精度に実用上問題となる程度の大きな誤差は生じない。この為、上記(8)〜(9)式の様にした。但し、これら(8)〜(9)式に代えて、上記ハブ2の中心Oの正確なラジアル変位(x、z)を表す式を採用する事もできる。この式は、上記ハブ2の中心O及び上記1対のエンコーダ4a、4bの各y軸方向位置と、これら両エンコーダ4a、4bの各ラジアル変位(xA 、zA )(xB 、z)との関係に基づいて導出する事ができる。何れにしても、以上の算出処理は、車体側に設置した図示しない演算器により行う。 Also, the pitch circle diameter (PCD) of the detected surfaces of the encoders 4a and 4b is d, and the number of pairs of S poles and N poles arranged on the entire circumference of each detected surface (each of the above-mentioned per revolution The number of pulses of the output signal of the sensor) is n, the axial distance (span) between the detected surfaces is L, and the radial displacement in the x-axis direction and z-axis direction of one (between rows) encoder 4a is x A. , Z A , and radial displacements of the other (shaft end) encoder 4b in the x-axis direction and z-axis direction are x B and z B , respectively. In this case, each of these radial displacements x A , z A , x B , and z B causes a phase difference ratio between the output signals of the two sensors {pulse edge time difference Δt divided by pulse period T. a value Δt / T}, and the phase difference ratio epsilon A2-A1 between the two sensors 9A 2, 9A 1, a phase difference ratio epsilon A2-A3 between the two sensors 9A 2, 9A 3, the two sensors 9B 2, a phase difference ratio epsilon B2-B1 between 9B 1, the phase difference ratio epsilon B2-B3 between the two sensors 9B 2, 9B 3 are each based on the equation (1), the following (2) It can represent with-(5) Formula.
Figure 2009186428
Figure 2009186428
Figure 2009186428
Figure 2009186428
From the relationship of the equations (2) to (5), the radial displacements (x A , z A ) and (x B , z B ) of the encoders 4a and 4b are respectively expressed by the following equations (6) to (7). Can be calculated.
Figure 2009186428
Figure 2009186428
If the radial displacements (x A , z A ) and (x B , z B ) of the encoders 4a and 4b are obtained in this way, the displacement x and z and the inclinations φ x and φ of the center O of the hub 2 are obtained. z can be calculated by the following equations (8) to (11).
Figure 2009186428
Figure 2009186428
Figure 2009186428
Figure 2009186428
In this example, since the position in the y-axis direction between the center O of the hub 2 and the one encoder 4a is very close, the respective radial displacements (x, z) (x A , z A ) are They are almost equal to each other (x≈x A , z≈z A ). In this case, even if these are treated as being equal to each other (x = x A , z = z A ), a large error that causes a practical problem in measurement accuracy does not occur. Therefore, the above formulas (8) to (9) are used. However, instead of these formulas (8) to (9), a formula representing an accurate radial displacement (x, z) of the center O of the hub 2 may be employed. This equation represents the center O of the hub 2 and the y-axis direction positions of the pair of encoders 4a and 4b, and the radial displacements (x A , z A ) (x B , z) of the encoders 4a and 4b. It can be derived based on the relationship. In any case, the above calculation process is performed by a calculator (not shown) installed on the vehicle body side.

又、本例の対象となる転がり軸受ユニットの場合、
(1)上記変位xと、上記外輪1と上記ハブ2との間に作用するx軸方向のラジアル荷重Fxとの間
(2)上記変位zと、上記外輪1と上記ハブ2との間に作用するz軸方向のラジアル荷重Fzとの間
(3)上記傾きφx と、上記外輪1と上記ハブ2との間に作用する、車輪を構成するタイヤの接地面から入力されるy軸方向のアキシアル荷重Fy(若しくはこのアキシアル荷重Fyに基づいて発生するx軸回りのモーメントMx)との間
(4)上記傾きφz と、上記外輪1と上記ハブ2との間に作用するz軸回りのモーメントMzとの間
には、それぞれ対象となる転がり軸受ユニットの剛性等により定まる、所定の関係が成立する。そして、これら各所定の関係は、転がり軸受ユニットの分野で広く知られている弾性接触理論等に基づいて計算により求められる他、実験(出荷時試験)によっても求められる。従って、上記演算器のメモリ中に、上記各所定の関係を表した式或はマップを記憶させておけば、上記変位xに基づいて上記ラジアル荷重Fxを、上記変位zに基づいて上記ラジアル荷重Fzを、上記傾きφx に基づいて上記アキシアル荷重Fy(モーメントMx)を、上記φz に基づいて上記モーメントMzを、それぞれ求められる。
In the case of the rolling bearing unit that is the subject of this example,
(1) Between the displacement x and the radial load Fx in the x-axis direction acting between the outer ring 1 and the hub 2 (2) Between the displacement z and the outer ring 1 and the hub 2 Between the acting radial load Fz in the z-axis direction (3) The y-axis direction inputted from the ground contact surface of the tire constituting the wheel acting between the inclination φ x and the outer ring 1 and the hub 2 (4) The inclination φ z and the z-axis rotation acting between the outer ring 1 and the hub 2 between the axial load Fy (or the moment Mx about the x-axis generated based on this axial load Fy) A predetermined relationship is established between the moment Mz and the moment Mz, which is determined by the rigidity of the subject rolling bearing unit. These predetermined relationships are obtained not only by calculation based on the elastic contact theory widely known in the field of rolling bearing units, but also by experiments (shipment tests). Therefore, if an equation or a map representing each predetermined relationship is stored in the memory of the arithmetic unit, the radial load Fx is based on the displacement x, and the radial load is based on the displacement z. the fz, the axial load Fy (moment Mx) based on the inclination phi x, the moment Mz based on the phi z, are determined, respectively.

上述の様に構成し作用する本例の転がり軸受ユニットの状態量測定装置の場合には、1対のエンコーダ4a、4bとして、それぞれ従来から広く使用されている回転速度測定装置用のもの、即ち、被検出面の特性変化の境界を、この被検出面の幅方向に対して平行にしたものを使用(流用)している。この為、上記両エンコーダ4a、4bに関する新たな設計コストが不要になる。又、本例の場合には、ハブ2のうちで軸方向に離隔した2個所位置に支持固定した1対のエンコーダ4a、4b、即ち、外輪1に対し互いに異なる方向に変位し得る1対のエンコーダ4a、4bを使用している。この為、上述した様に、これら両エンコーダ4a、4bの被検出面に対向させた各センサ(9A1 、9A2 、9A3 )(9B1 、9B2 、9B3 )の出力信号同士の間の位相差比に基づいて、上記外輪1と上記ハブ2との間の多方向の相対変位x、z、φx 、φz と、これら外輪1とハブ2との間に作用する多方向の外力Fx、Fy、Fz、Mx、Mzとを求められる。 In the case of the state quantity measuring device of the rolling bearing unit of the present example configured and operated as described above, as the pair of encoders 4a and 4b, respectively, those for rotational speed measuring devices widely used conventionally, In this case, the boundary of the characteristic change of the detected surface is made parallel to the width direction of the detected surface. This eliminates the need for a new design cost for the encoders 4a and 4b. In the case of this example, a pair of encoders 4a and 4b supported and fixed at two positions separated from each other in the axial direction in the hub 2, that is, a pair of pairs that can be displaced in different directions with respect to the outer ring 1. Encoders 4a and 4b are used. Therefore, as described above, between the output signals of the sensors (9A 1 , 9A 2 , 9A 3 ) (9B 1 , 9B 2 , 9B 3 ) opposed to the detection surfaces of both the encoders 4a, 4b Multidirectional relative displacements x, z, φ x , φ z between the outer ring 1 and the hub 2 and the multi-directional acting between the outer ring 1 and the hub 2 based on the phase difference ratio of External forces Fx, Fy, Fz, Mx, and Mz are obtained.

又、上述した様に、本例の場合には、上記相対変位及び外力を求める為に、列間に存在する各センサ9A1 、9A2 、9A3 間の位相差比と、軸端に存在する各センサ9B1 、9B2 、9B3 間の位相差比とを測定するだけで良く、双方の側を跨いだセンサ間の位相差比を測定する必要はない。この為、双方の側のエンコーダ4a、4bを組み付ける際の回転角度位置を規制して、双方の側を跨いだセンサ間の初期位相差を所定の大きさに設定すると言った作業を行わずに済む。従って、その分だけ、組み付けを容易に行える。又、本例の場合には、3個のセンサ9A1 、9A2 、9A3 (9B1 、9B2 、9B3 )の検出部の円周方向の配置を等間隔としたが、等間隔でなくても、具体的な配置の仕方に合わせて上記(2)〜(7)式を修正すれば、上述した相対変位及び外力を求められる。 Further, as described above, in this example, in order to obtain the relative displacement and the external force, the phase difference ratio between the sensors 9A 1 , 9A 2 , 9A 3 existing between the rows and the shaft end exist. It is only necessary to measure the phase difference ratio between the sensors 9B 1 , 9B 2 , and 9B 3, and there is no need to measure the phase difference ratio between the sensors across both sides. Therefore, the rotation angle position when assembling the encoders 4a and 4b on both sides is restricted, and the initial phase difference between the sensors across both sides is set to a predetermined size without performing the work. That's it. Therefore, the assembly can be easily performed by that amount. In the case of this example, the circumferential arrangement of the detectors of the three sensors 9A 1 , 9A 2 , 9A 3 (9B 1 , 9B 2 , 9B 3 ) is set at equal intervals. Even if it is not, the above-mentioned relative displacement and external force can be obtained by correcting the equations (2) to (7) according to the specific arrangement method.

[実施の形態の第2例]
図3は、本発明の実施の形態の第2例を示している。本例の場合には、1対のエンコーダ4a、4bの被検出面に対向させるセンサの個数が、上述した実施の形態の第1例の場合と異なる。即ち、本例の場合には、中立状態で、上記両エンコーダ4a、4bの被検出面のうち、x軸上で径方向反対側となる2個所位置(θ=90度、270度の位置)にそれぞれ1個ずつ、センサ9A1 、9A2 、9B1 、9B2 の検出部を対向させている。
[Second Example of Embodiment]
FIG. 3 shows a second example of the embodiment of the present invention. In the case of this example, the number of sensors opposed to the detected surfaces of the pair of encoders 4a and 4b is different from that in the first example of the above-described embodiment. That is, in the case of this example, in the neutral state, of the detected surfaces of the encoders 4a and 4b, two positions on the x axis opposite to the radial direction (positions of θ = 90 degrees and 270 degrees) Each of the sensors 9A 1 , 9A 2 , 9B 1 , and 9B 2 are made to face each other.

この様に構成する本例の場合、一方(列間)のエンコーダ4aにz軸方向の変位zA が生じる事に伴って、2個のセンサ9A1 、9A2 の出力信号の位相差が変化し、他方(軸端)のエンコーダ4bに同方向の変位zB が生じる事に伴って、2個のセンサ9B1 、9B2 の出力信号の位相差が変化する。これに対し、それぞれのエンコーダ4a、4bにy軸方向の変位yが生じても、各被検出面と各検出部との間隔が変化するだけで、上記各位相差は変化しない。更に、それぞれのエンコーダ4a、4bにx軸方向の変位xが生じても、やはり上記各位相差は変化しない。従って、本例の場合には、これら各位相差に基づいて、それぞれのエンコーダ4a、4bのz軸方向の変位zA 、zB を検出できる為、ハブ2(図1参照)の中心Oの変位zと、このハブ2のx軸回りの傾きφx を求められる。 In the case of this example configured as described above, the phase difference between the output signals of the two sensors 9A 1 and 9A 2 changes as the displacement z A in the z-axis direction occurs in one (between columns) encoder 4a. However, the phase difference between the output signals of the two sensors 9B 1 and 9B 2 changes with the occurrence of the displacement z B in the same direction in the other (shaft end) encoder 4b. On the other hand, even if a displacement y in the y-axis direction occurs in each encoder 4a, 4b, only the distance between each detection surface and each detection unit changes, and each phase difference does not change. Further, even if the displacement x in the x-axis direction occurs in each encoder 4a, 4b, the respective phase differences do not change. Accordingly, in this example, the displacements z A and z B of the encoders 4a and 4b in the z-axis direction can be detected based on these phase differences, so that the displacement of the center O of the hub 2 (see FIG. 1). z and the inclination φ x about the x-axis of the hub 2 can be obtained.

具体的には、列間に存在する2個のセンサ9A1 、9A2 の出力信号同士の間の位相差比をεA1-A2 とし、軸端に存在する2個のセンサ9B1 、9B2 の出力信号同士の間の位相差比をεB1-B2 とすると、上記ハブ2の中心Oの変位zと、このハブ2の傾きφx とは、それぞれ次の(12)〜(13)式で表される。

Figure 2009186428
Figure 2009186428
尚、これら(12)〜(13)式中の各記号d、n、Lの意味は、上述した実施の形態の第1例の場合と同様である。
従って、これら(12)〜(13)式に上記両位相差比εA1-A2 、εB1-B2 を代入し、これら(12)〜(13)式を演算器に計算させる事により、上記ハブ2の中心Oの変位zと、このハブ2の傾きφx とを求められる。 Specifically, the phase difference ratio between the output signals of the two sensors 9A 1 and 9A 2 existing between the columns is ε A1 -A2, and the two sensors 9B 1 and 9B 2 existing at the shaft end are set. If the phase difference ratio between the output signals is ε B1-B2 , the displacement z of the center O of the hub 2 and the inclination φ x of the hub 2 are expressed by the following equations (12) to (13), respectively. It is represented by
Figure 2009186428
Figure 2009186428
The meanings of the symbols d, n, and L in the equations (12) to (13) are the same as those in the first example of the embodiment described above.
Accordingly, by substituting the two phase difference ratios ε A1 -A2 and ε B1 -B2 into these equations (12) through (13) and letting the computing unit calculate these equations (12) through (13), the above hub is obtained. The displacement z of the center O of 2 and the inclination φ x of the hub 2 are obtained.

又、本例の場合も、上述した実施の形態の第1例の場合と同様、上記変位zに基づいて、外輪1(図1参照)とハブ2との間に作用するz軸方向のラジアル荷重Fzを、上記傾きφx に基づいて、これら外輪1とハブ2との間に作用するy軸方向のアキシアル荷重Fy(x軸回りのモーメントMx)を、それぞれ求められる。その他の構成及び作用は、上述した実施の形態の第1例の場合と同様である。 Also in this example, as in the case of the first example of the above-described embodiment, the radial in the z-axis direction acting between the outer ring 1 (see FIG. 1) and the hub 2 based on the displacement z. a load Fz, based on the inclination phi x, a y-axis direction of the axial load Fy (x-axis moment Mx) acting between the outer ring 1 and the hub 2, are determined, respectively. Other configurations and operations are the same as those in the first example of the embodiment described above.

[実施の形態の第3例]
図4は、本発明の実施の形態の第3例を示している。本例の場合も、1対のエンコーダ4a、4bの被検出面に対向させるセンサの個数が、前述の図1〜2に示した実施の形態の第1例の場合と異なる。即ち、本例の場合には、中立状態で、上記両エンコーダ4a、4bの被検出面のうち、x軸上の1個所位置(θ=90度の位置)にそれぞれ1個ずつ、センサ9A1 、9B1 の検出部を対向させている。
[Third example of embodiment]
FIG. 4 shows a third example of the embodiment of the present invention. Also in the case of this example, the number of sensors opposed to the detected surfaces of the pair of encoders 4a and 4b is different from the case of the first example of the embodiment shown in FIGS. That is, in the case of this example, in the neutral state, one sensor 9A 1 , one at each position (θ = 90 ° position) on the x-axis, of the detected surfaces of the encoders 4a and 4b. 9B 1 are opposed to each other.

この様に構成する本例の場合には、上記両センサ9A1 、9B1 の出力信号同士の間の位相差に基づいて、外輪1に対するハブ2(図1参照)のx軸回りの傾きφx を求められる。即ち、本例の場合には、上記外輪1に対する上記ハブ2の傾きφx が生じる事に伴って、一方(列間)のエンコーダ4aと、他方(軸端)のエンコーダ4bとに、z軸方向に関して互いに異なる大きさの変位が生じる。この結果、上記両センサ9A1 、9B1 の出力信号の同士の間の位相差が変化する。これに対し、上記外輪1に対して上記ハブ2(上記両エンコーダ4a、4b)に変位xが生じても、上記位相差は変化しない。又、上記外輪1に対する上記ハブ2(上記両エンコーダ4a、4b)にアキシアル方向の変位y又はz軸回りの傾きφz が生じても、各被検出面と各検出部との間隔が変化するだけで、上記位相差は変化しない。又、上記外輪1に対して上記ハブ2(上記両エンコーダ4a、4b)にz軸方向の変位zが生じても、上記両センサ9A1 、9B1 の出力信号の位相がそれぞれ同じ向きに同じ大きさだけ変化するだけで、上記位相差は変化しない。従って、本例の場合には、この位相差に基づいて、上記ハブ4の傾きφx を(他の方向の変位や傾きの影響を受けずに)精度良く求められる。 In the case of this example configured as described above, the inclination φ around the x-axis of the hub 2 (see FIG. 1) with respect to the outer ring 1 is based on the phase difference between the output signals of the two sensors 9A 1 and 9B 1 . x is required. That is, in the case of this example, as the inclination φ x of the hub 2 with respect to the outer ring 1 is generated, the z axis is connected to one (between rows) encoder 4a and the other (shaft end) encoder 4b. Displacements of different magnitudes with respect to the direction occur. As a result, the phase difference between the output signals of both the sensors 9A 1 and 9B 1 changes. On the other hand, even if displacement x occurs in the hub 2 (both encoders 4a and 4b) with respect to the outer ring 1, the phase difference does not change. Further, even if the displacement 2 in the axial direction or the inclination φ z around the z axis occurs in the hub 2 (both encoders 4a and 4b) with respect to the outer ring 1, the distance between each detected surface and each detecting portion changes. Only the phase difference does not change. Even if the hub 2 (both encoders 4a and 4b) is displaced in the z-axis direction with respect to the outer ring 1, the phases of the output signals of the sensors 9A 1 and 9B 1 are the same in the same direction. Only the magnitude changes, and the phase difference does not change. Therefore, in the case of this example, based on this phase difference, the inclination φ x of the hub 4 can be obtained with high accuracy (without being affected by displacement or inclination in other directions).

具体的には、上記2個のセンサ9A1 、9B1 の出力信号同士の間の位相差比をεB1-A1 とすると、上記ハブ2の傾きφx は、次の(14)式により求められる。

Figure 2009186428
尚、この(14)式中の各記号d、n、Lの意味は、前述の図1〜2に示した実施の形態の第1例の場合と同様である。
又、本例の場合も、上記ハブ2の傾きφx に基づいて、上記外輪1とこのハブ2との間に作用するアキシアル荷重Fy(モーメントMx)を求められる。その他の構成及び作用は、前述の図1〜2に示した実施の形態の第1例の場合と同様である。 Specifically, when the phase difference ratio between the output signals of the two sensors 9A 1 and 9B 1 is ε B1 -A1 , the inclination φ x of the hub 2 is obtained by the following equation (14). It is done.
Figure 2009186428
The meanings of the symbols d, n, and L in the equation (14) are the same as those in the first example of the embodiment shown in FIGS.
Also, in the present embodiment, based on the inclination phi x of the hub 2 is calculated axial load Fy (moment Mx) acting between the outer ring 1 and the hub 2. Other configurations and operations are the same as those in the first example of the embodiment shown in FIGS.

[実施の形態の第4〜6例]
上述した実施の形態の第1〜3例では、それぞれハブ2に支持固定する1対のエンコーダ4a、4bとして、双方ともに円輪状の被検出面を備えたものを採用した。但し、本発明を実施する場合には、図5に示す実施の形態の第4例の様に、ハブ2に支持固定する1対のエンコーダ4c、4dとして、双方ともに円筒状の被検出面を備えたものを採用する事もできる。これら両エンコーダ4c、4dは、上記ハブ2に締り嵌めで外嵌固定した円筒状の芯金5c、5dと、この芯金5c、5dの外周面に添着固定した、永久磁石製で円筒状のエンコーダ本体6c、6dとから成る。それぞれが被検出面である、これら両エンコーダ本体6c、6dの外周面には、それぞれS極とN極とを、円周方向に関して交互に且つ等間隔に配置している。これらS極とN極との境界は、被検出面の幅方向(径方向)に対して平行にしている。又、上記両エンコーダ4a、4b同士で、被検出面に設けるS極とN極との円周方向の配置のピッチ及び位相を、互いに等しくしている。
[Fourth to Sixth Embodiments]
In the first to third examples of the above-described embodiment, the pair of encoders 4a and 4b that are supported and fixed to the hub 2 are both provided with an annular detection surface. However, when practicing the present invention, as in the fourth example of the embodiment shown in FIG. 5, a pair of encoders 4c and 4d that are supported and fixed to the hub 2 are both cylindrical detection surfaces. You can also use what you have. These encoders 4c and 4d are cylindrical core bars 5c and 5d that are externally fixed to the hub 2 by an interference fit, and are made of permanent magnets and attached to the outer peripheral surface of the core bars 5c and 5d. It consists of encoder bodies 6c and 6d. S poles and N poles are alternately arranged at equal intervals in the circumferential direction on the outer peripheral surfaces of the encoder bodies 6c and 6d, which are detected surfaces, respectively. The boundary between these S poles and N poles is parallel to the width direction (radial direction) of the surface to be detected. The encoders 4a and 4b have the same pitch and phase in the circumferential arrangement of the S and N poles provided on the detected surface.

又、本発明を実施する場合には、図6に示す実施の形態の第5例の様に、一方(列間)のエンコーダ4aとして、円輪状の被検出面を備えたものを採用し、他方(軸端)のエンコーダ4dとして、円筒状の被検出面を備えたものを採用する事もできる。更には、図7に示す実施の形態の第6例の様に、一方(列間)のエンコーダ4cとして、円筒状の被検出面を備えたものを採用し、他方(軸端)のエンコーダ4bとして、円輪状の被検出面を備えたものを採用する事もできる。これら実施の形態の第4〜6例の場合も、上述した実施の形態の第1〜3例の場合と同様の原理で、1対のエンコーダの被検出面に対向させた各センサの出力信号同士の間に存在する位相差に基づいて、外輪1とハブ2との間の相対変位、及び、これら外輪1とハブ2との間に作用する外力を求められる。   Further, when carrying out the present invention, as in the fifth example of the embodiment shown in FIG. 6, one (between rows) of the encoder 4 a having an annular detection surface is adopted, As the other (shaft end) encoder 4d, an encoder having a cylindrical detection surface may be employed. Further, as in the sixth example of the embodiment shown in FIG. 7, one (between rows) encoder 4c is provided with a cylindrical detection surface, and the other (shaft end) encoder 4b. As an example, it is also possible to employ one having an annular surface to be detected. In the fourth to sixth examples of these embodiments, the output signals of the sensors opposed to the detected surfaces of the pair of encoders are based on the same principle as in the first to third examples of the above-described embodiments. Based on the phase difference existing between them, the relative displacement between the outer ring 1 and the hub 2 and the external force acting between the outer ring 1 and the hub 2 are obtained.

又、本発明は、上述した各実施の形態に限らず、特許請求の範囲に記載した要件を満たす、各種の構造に適用可能である。例えば、転がり軸受ユニットは、車両の車輪支持用に限らず、各種産業機械の回転支持部分に組み込むものでも良い。又、1対のエンコーダは、回転側軌道輪の軸方向両端部に支持固定しても良い。又、本発明を実施する場合、静止側軌道輪と回転側軌道輪との間に作用する外力を求める為には、必ずしもこれら静止側軌道輪と回転側軌道輪との相対変位を求める必要はない。即ち、演算器に、各センサの出力信号に基づいて、上記静止側軌道輪と上記回転側軌道輪との間に作用する外力を直接(上記相対変位を求める過程を経る事なく)算出する機能を持たせる事もできる。   The present invention is not limited to the above-described embodiments, and can be applied to various structures that satisfy the requirements described in the claims. For example, the rolling bearing unit is not limited to the vehicle wheel support, but may be incorporated in a rotation support portion of various industrial machines. Further, the pair of encoders may be supported and fixed at both ends in the axial direction of the rotating side race. In addition, when implementing the present invention, it is not always necessary to obtain the relative displacement between the stationary side race ring and the rotary side race ring in order to obtain the external force acting between the stationary side race ring and the rotary side race ring. Absent. That is, a function for directly calculating an external force acting between the stationary side raceway and the rotation side raceway based on the output signal of each sensor (without going through the process of obtaining the relative displacement). Can also be given.

本発明の実施の形態の第1例を示す断面図。Sectional drawing which shows the 1st example of embodiment of this invention. 1対のエンコーダ本体と各センサとを、軸方向に関して同じ側から見た投影図。The projection figure which looked at a pair of encoder main body and each sensor from the same side regarding the axial direction. 本発明の実施の形態の第2例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the 2nd example of embodiment of this invention. 同第3例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the 3rd example. 同第4例を示す断面図。Sectional drawing which shows the 4th example. 同第5例を示す断面図。Sectional drawing which shows the 5th example. 同第6例を示す断面図。Sectional drawing which shows the 6th example. 転がり軸受ユニットの状態量測定装置に関する従来構造の1例を示す断面図。Sectional drawing which shows an example of the conventional structure regarding the state quantity measuring apparatus of a rolling bearing unit.

符号の説明Explanation of symbols

1 外輪
2 ハブ
3 転動体
4、4a〜4d エンコーダ
5、5a〜5d 芯金
6、6a〜6d エンコーダ本体
7、7a カバー
8、8a センサホルダ
9a、9b、9A1 、9A2 、9A3 、9B1 、9B2 、9B3 センサ
10 センサホルダ
1 the outer ring 2 hub 3 rolling element 4,4a~4d encoder 5,5a~5d core metal 6,6a~6d encoder main 7,7a cover 8,8a sensor holder 9a, 9b, 9A 1, 9A 2, 9A 3, 9B 1, 9B 2, 9B 3 sensor 10 sensor holder

Claims (2)

転がり軸受ユニットと、状態量測定装置とを備え、
このうちの転がり軸受ユニットは、静止側周面に複列の静止側軌道を有し、使用時にも回転しない静止側軌道輪と、回転側周面に複列の回転側軌道を有し、使用時に回転する回転側軌道輪と、上記各静止側軌道と上記各回転側軌道との間にそれぞれ複数個ずつ転動自在に設けられた転動体とを備えたものであり、
上記状態量測定装置は、上記回転側軌道輪のうちで軸方向に離隔した2個所位置にそれぞれ1個ずつ、直接又は他の部材を介して支持固定された1対のエンコーダと、使用時にも回転しない部分に支持固定されたセンサ装置と、演算器とを備え、
このうちの1対のエンコーダはそれぞれ、上記回転側軌道輪と同心の被検出面を有し、この被検出面の特性を円周方向に関して交互に且つ等間隔で変化させると共に、円周方向に隣り合う、互いに異なる特性部同士の境界をそれぞれ、上記被検出面の幅方向に対して平行にしたものであり、
上記センサ装置は、上記1対のエンコーダのうちの一方のエンコーダの被検出面に検出部を対向させた1乃至複数個の第一のセンサと、他方のエンコーダの被検出面に検出部を対向させた1乃至複数個の第二のセンサとを備えたもので、これら各センサはそれぞれ、上記各被検出面のうち自身の検出部を対向させた部分の特性変化に対応して出力信号を変化させるものであり、
上記演算器は、上記各センサの出力信号同士の間に存在する位相差に基づいて、上記静止側軌道輪と上記回転側軌道輪との相対変位と、これら静止側軌道輪と回転側軌道輪との間に作用する外力とのうちの、少なくとも1種類の状態量を算出する機能を有するものである、
転がり軸受ユニットの状態量測定装置。
A rolling bearing unit and a state quantity measuring device;
Of these, the rolling bearing unit has a double-row stationary raceway on the stationary peripheral surface, a stationary raceway that does not rotate during use, and a double-row rotational raceway on the rotational peripheral surface. A rotation-side raceway that rotates at times, and a plurality of rolling elements provided between the respective stationary-side raceways and the respective rotation-side raceways so as to be capable of rolling, respectively.
The state quantity measuring device includes a pair of encoders that are supported and fixed directly or via other members at two positions separated from each other in the axial direction in the rotating side raceway, and in use. A sensor device supported and fixed to a non-rotating part, and an arithmetic unit;
Each of the pair of encoders has a detected surface concentric with the rotation-side raceway, and changes the characteristics of the detected surface alternately and at equal intervals in the circumferential direction, and in the circumferential direction. The boundary between adjacent characteristic parts adjacent to each other is made parallel to the width direction of the detected surface,
The sensor device includes one or more first sensors having a detection unit opposed to a detection surface of one encoder of the pair of encoders, and a detection unit opposed to a detection surface of the other encoder. 1 to a plurality of second sensors, and each of these sensors outputs an output signal corresponding to a change in characteristics of a portion of each of the detected surfaces facing its detection unit. Is to change,
Based on the phase difference existing between the output signals of the sensors, the computing unit calculates the relative displacement between the stationary side raceway and the rotation side raceway, and the stationary side raceway and the rotation side raceway. And having a function of calculating at least one state quantity of the external force acting between
State quantity measuring device for rolling bearing units.
静止側軌道輪が内周面に複列の外輪軌道を有する外輪であり、回転側軌道輪が外周面に複列の内輪軌道を有するハブであり、一方のエンコーダが、このハブの軸方向中間部で1対の転動体列同士の間部分に支持固定されており、他方のエンコーダが、上記ハブの軸方向端部に支持固定されている、請求項1に記載した転がり軸受ユニットの状態量測定装置。   The stationary side race ring is an outer ring having a double row outer ring raceway on the inner peripheral surface, and the rotation side race ring is a hub having a double row inner ring raceway on the outer peripheral surface. The amount of state of the rolling bearing unit according to claim 1, wherein the state is supported and fixed at a portion between the pair of rolling element rows at the portion, and the other encoder is supported and fixed at the axial end of the hub. measuring device.
JP2008029422A 2008-02-08 2008-02-08 Device for measuring state quantity of rolling bearing unit Pending JP2009186428A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008029422A JP2009186428A (en) 2008-02-08 2008-02-08 Device for measuring state quantity of rolling bearing unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008029422A JP2009186428A (en) 2008-02-08 2008-02-08 Device for measuring state quantity of rolling bearing unit

Publications (1)

Publication Number Publication Date
JP2009186428A true JP2009186428A (en) 2009-08-20

Family

ID=41069810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008029422A Pending JP2009186428A (en) 2008-02-08 2008-02-08 Device for measuring state quantity of rolling bearing unit

Country Status (1)

Country Link
JP (1) JP2009186428A (en)

Similar Documents

Publication Publication Date Title
JP4940937B2 (en) Rotating machine state quantity measuring device
JP2005090994A (en) Load measuring device for roller bearing unit
JP2006337356A (en) Rolling bearing unit with displacement measuring instrument, and rolling bearing unit with load measuring instrument
JP5233509B2 (en) Load measuring device for rolling bearing units
JP2008039155A (en) Rolling bearing unit with state quantity measuring device and assembling method
JP4957390B2 (en) Method for manufacturing rolling bearing unit with physical quantity measuring device
JP2007085742A (en) Rolling bearing unit with load measuring device
JP2006317434A (en) Apparatus for measuring displacement and load of rolling bearing unit
JP5092393B2 (en) Method for assembling state quantity measuring device for rolling bearing unit
JP2007225106A (en) Rolling bearing unit with state quantity measurement device
JP4957357B2 (en) Rotational support device state quantity measuring device
JP2009001201A (en) Quantity-of-state measuring device for rotary machine
JP2009019880A (en) State quantity measuring device for rolling bearing unit
JP4899612B2 (en) Load measuring device for rolling bearing units
JP2007212389A (en) Load measuring device for rolling bearing unit
JP2009186428A (en) Device for measuring state quantity of rolling bearing unit
JP2007057342A (en) Rolling bearing unit with load measuring device
JP2006258801A (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device
JP2009103629A (en) State quantity measuring device of rotation support device
JP2008122171A (en) Method of exchanging sensor of bearing unit with state quantity measuring device
JP2008224397A (en) Load measuring device for roller bearing unit
JP5003397B2 (en) Rotational support device state quantity measuring device
JP5481831B2 (en) Rotating machine state quantity measuring device
JP2009103549A (en) Device for measuring state of quantity of rolling bearing unit
JP2005091073A (en) Rotation speed detector and load measuring instrument for roller bearing unit

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100309

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100316