JP5003397B2 - Rotational support device state quantity measuring device - Google Patents

Rotational support device state quantity measuring device Download PDF

Info

Publication number
JP5003397B2
JP5003397B2 JP2007262873A JP2007262873A JP5003397B2 JP 5003397 B2 JP5003397 B2 JP 5003397B2 JP 2007262873 A JP2007262873 A JP 2007262873A JP 2007262873 A JP2007262873 A JP 2007262873A JP 5003397 B2 JP5003397 B2 JP 5003397B2
Authority
JP
Japan
Prior art keywords
support device
sensors
hub
displacement
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007262873A
Other languages
Japanese (ja)
Other versions
JP2009092491A5 (en
JP2009092491A (en
Inventor
一宇 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007262873A priority Critical patent/JP5003397B2/en
Publication of JP2009092491A publication Critical patent/JP2009092491A/en
Publication of JP2009092491A5 publication Critical patent/JP2009092491A5/ja
Application granted granted Critical
Publication of JP5003397B2 publication Critical patent/JP5003397B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Support Of The Bearing (AREA)

Description

この発明に係る回転支持装置の状態量測定装置は、例えば、自動二輪車(オートバイ、スクータ等)の車輪を車体に対して回転自在に支持する為の回転支持装置を構成する静止部材と回転部材との間の状態量である、これら両部材同士の間の相対変位や、これら両部材同士の間に作用する外力(荷重、モーメント)を測定する為に利用する。   A state quantity measuring device for a rotation support device according to the present invention includes, for example, a stationary member and a rotation member constituting a rotation support device for rotatably supporting a wheel of a motorcycle (motorcycle, scooter, etc.) with respect to a vehicle body. It is used to measure the relative displacement between these two members and the external force (load, moment) acting between these two members.

[従来技術に就いて]
例えば四輪自動車の車輪は懸架装置に対し、複列アンギュラ型等の転がり軸受ユニットにより、回転自在に支持する。又、自動車の走行安定性を確保する為に、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)、更には、電子制御式ビークルスタビリティコントロールシステム(ESC)等の車両用走行安定化装置が使用されている。又、自動二輪車の分野でも従来から、車両の走行安定性を確保する為に、ABS等の車両走行安定化装置が使用されている。この様な各種車両用走行安定化装置を制御する為には、車輪の回転速度、車体に加わる各方向の加速度等を表す信号が必要になる。そして、より高度の制御を行う為には、車輪を介して上記転がり軸受ユニット等の回転支持装置に加わる外力(ラジアル荷重とアキシアル荷重とモーメントとのうちの少なくとも1つ)の大きさを知る事が好ましい場合がある。
[Conventional technology]
For example, the wheels of a four-wheeled vehicle are rotatably supported by a suspension device by a rolling bearing unit such as a double row angular type. In addition, in order to ensure the running stability of automobiles, anti-brake brake system (ABS), traction control system (TCS), and electronically controlled vehicle stability control system (ESC) etc. Is used. In the field of motorcycles, conventionally, a vehicle travel stabilization device such as ABS has been used in order to ensure the vehicle travel stability. In order to control such various vehicle running stabilization devices, signals representing the rotational speed of the wheels, acceleration in each direction applied to the vehicle body, and the like are required. In order to perform more advanced control, it is necessary to know the magnitude of an external force (at least one of a radial load, an axial load and a moment) applied to the rotation support device such as the rolling bearing unit via the wheel. May be preferred.

この様な事情に鑑みて、例えば特許文献1〜2には、車輪用の回転支持装置を構成する静止部材と回転部材との間に作用する外力を、特殊なエンコーダを使用して測定可能とする発明が記載されている。これら特許文献1〜2に記載された各従来構造は、上記回転部材に支持固定された1個の特殊なエンコーダと、このエンコーダの被検出面にそれぞれの検出部を対向させた状態で、上記静止部材等の使用時にも回転しない部分に支持固定された、複数個のセンサとを備える。そして、上記外力の変化(上記静止部材に対する上記エンコーダの変位)に伴って変化する、上記各センサの出力信号同士の間の位相差に基づいて、上記外力を算出可能としている。   In view of such circumstances, for example, in Patent Documents 1 and 2, it is possible to measure an external force acting between a stationary member and a rotating member constituting a rotation support device for a wheel using a special encoder. The invention to be described is described. Each of the conventional structures described in Patent Documents 1 and 2 includes one special encoder that is supported and fixed to the rotating member, and the detection unit facing the detection surface of the encoder. And a plurality of sensors supported and fixed to a portion that does not rotate even when a stationary member or the like is used. The external force can be calculated based on the phase difference between the output signals of the sensors, which changes with the change in the external force (the displacement of the encoder with respect to the stationary member).

ところが、上記特許文献1〜2に記載された各従来構造は、四輪自動車の車輪用の回転支持装置の様に、複列の転がり軸受部に予圧が付与されている回転支持装置に適用する場合には、上記外力を精度良く測定できるが、一部の自動二輪車の車輪用の回転支持装置の様に、複列の転がり軸受部に予圧が付与されていない回転支持装置に適用する場合には、上記外力を精度良く測定するのが難しくなる可能性がある。この理由は、例えば、上記エンコーダのアキシアル変位に伴って変化する、上記各センサの出力信号同士の間の位相差に基づいて、上記静止部材と上記回転部材との間に作用するアキシアル荷重を算出する場合に、上記複列の転がり軸受部に予圧が付与されていないと、上記アキシアル変位と上記アキシアル荷重との間に安定した相関関係が成立しなくなって、上記アキシアル荷重を精度良く測定できなくなる可能性が高くなる為である。   However, each conventional structure described in Patent Documents 1 and 2 is applied to a rotation support device in which a preload is applied to a double row rolling bearing portion, like a rotation support device for a wheel of a four-wheeled vehicle. In this case, the external force can be measured with high accuracy, but when applied to a rotation support device in which preload is not applied to the double row rolling bearing portion, such as a rotation support device for a wheel of some motorcycles. May be difficult to accurately measure the external force. This is because, for example, the axial load acting between the stationary member and the rotating member is calculated based on the phase difference between the output signals of the sensors, which changes with the axial displacement of the encoder. In this case, if no preload is applied to the double row rolling bearing portion, a stable correlation is not established between the axial displacement and the axial load, and the axial load cannot be measured accurately. This is because the possibility increases.

又、特許文献3には、やはり1個の特殊なエンコーダと複数個のセンサとを備えた回転支持装置が記載されている。この特許文献3に記載された従来構造の場合には、上記エンコーダの傾きに伴って変化する、上記各センサの出力信号同士の間の位相差に基づいて、上記回転支持装置を構成する静止部材と回転部材との間に作用する、この静止部材の中心軸に対し径方向にオフセットした位置から入力されたアキシアル荷重(若しくはこのアキシアル荷重に基づいて発生したモーメント)を算出可能としている。但し、この特許文献3に記載された従来構造の場合も、上述した特許文献1〜2に記載された発明と同様に、予圧を付与されていない場合には、アキシアル荷重を精度良く測定できない。更に、上記特許文献3に記載された従来構造の場合には、上記エンコーダの被検出面の直径が小さくなる程、上記位相差の検出誤差に対する、上記アキシアル荷重(若しくはモーメント)の測定精度の悪化率が大きくなる。この為、上記特許文献3に記載された従来構造は、四輪自動車の車輪用の回転支持装置の様に、外径寸法が比較的大きく、組み付けるエンコーダの被検出面の直径も比較的大きい回転支持装置に適用する場合には、上記アキシアル荷重(若しくはモーメント)を精度良く測定できるが、自動二輪車の車輪用の回転支持装置の様に、外径寸法が比較的小さく、組み付けられるエンコーダの被検出面の直径も小さくならざるを得ない回転支持装置に適用する場合には、上記外力を精度良く測定するのが難しくなる可能性がある。   Further, Patent Document 3 describes a rotation support device that also includes one special encoder and a plurality of sensors. In the case of the conventional structure described in Patent Document 3, the stationary member constituting the rotation support device is based on the phase difference between the output signals of the sensors, which changes with the inclination of the encoder. It is possible to calculate an axial load (or a moment generated based on the axial load) input from a position offset between the rotating member and the central axis of the stationary member in the radial direction. However, even in the case of the conventional structure described in Patent Document 3, the axial load cannot be measured with high accuracy unless a preload is applied, as in the inventions described in Patent Documents 1 and 2 described above. Further, in the case of the conventional structure described in Patent Document 3, the measurement accuracy of the axial load (or moment) with respect to the detection error of the phase difference deteriorates as the diameter of the detection surface of the encoder decreases. The rate increases. For this reason, the conventional structure described in Patent Document 3 is a rotation having a relatively large outer diameter and a relatively large diameter of the detected surface of the encoder to be assembled, like a rotation support device for a wheel of a four-wheeled vehicle. When applied to a support device, the above axial load (or moment) can be measured with high accuracy, but the outer diameter is relatively small, as in the case of a rotation support device for a motorcycle wheel, and the detected encoder is installed. When applied to a rotary support device in which the diameter of the surface must be small, it may be difficult to measure the external force with high accuracy.

[先発明構造に就いて]
上述の様な事情に鑑みて特願2007−116743には、図4〜15に示す様な回転支持装置の状態量測定装置(先発明装置)が開示されている。図4〜6は、この先発明装置の第1例として、自動二輪車の車輪(従動輪である前輪)1をフロントフォーク2、2に対し回転自在に支持する為の回転支持装置に先発明を適用した場合に就いて示している。上記両フロントフォーク2、2の下端部にその両端部を結合固定した、使用時にも回転しない静止部材である軸部材3の中間部周囲に、その外周面に上記車輪1を支持固定した状態で、使用時にこの車輪1と共に回転する回転部材であるハブ4を、1対の転がり軸受5、5を介して回転自在に支持している。これら両転がり軸受5、5は、上記軸部材3の外周面と上記ハブ4の内周面との間に存在する円筒状空間の両端寄り部分に設けられており、上記軸部材3に外嵌固定した内輪6、6と、上記ハブ4に内嵌固定した外輪7、7とを、それぞれ複数個の転動体(玉)8、8を介して、互いに同心に且つ相対回転自在に組み合わせて成る。
[On the structure of the prior invention]
In view of the circumstances as described above, Japanese Patent Application No. 2007-116743 discloses a state quantity measuring device (prior invention device) for a rotary support device as shown in FIGS. 4 to 6 show, as a first example of the device according to the present invention, the prior invention is applied to a rotation support device for rotatably supporting a wheel (front wheel) 1 of a motorcycle with respect to front forks 2 and 2. The case is shown. In a state where both ends of the front forks 2 and 2 are coupled and fixed to the lower ends of the shaft member 3 which is a stationary member which does not rotate during use, and the wheel 1 is supported and fixed on the outer peripheral surface thereof. The hub 4 that is a rotating member that rotates together with the wheel 1 during use is rotatably supported via a pair of rolling bearings 5 and 5. These rolling bearings 5, 5 are provided at both end portions of a cylindrical space existing between the outer peripheral surface of the shaft member 3 and the inner peripheral surface of the hub 4, and are fitted on the shaft member 3. The fixed inner rings 6 and 6 and the outer rings 7 and 7 fitted and fixed to the hub 4 are combined with each other via a plurality of rolling elements (balls) 8 and 8 so as to be concentrically and relatively rotatable. .

又、上記両内輪6、6の軸方向の位置決めを図る為に、上記軸部材の中間部に外嵌固定した円管状の間座9と、この軸部材の両端寄り部分に外嵌固定した1対の抑え環10、10とにより、それぞれ上記両内輪6、6を軸方向両側から挟持している。又、上記両外輪7、7の軸方向の位置決めを図る為に、上記ハブ5の内周面の両端寄り部分に形成した段差面11、11に、上記両外輪7、7の互いに対向する側面を、それぞれ次述するエンコーダ13、13を構成する芯金14、14を介して突き当てている。尚、先発明装置の場合、上記両転がり軸受5、5を構成する各転動体(玉)の予圧に関しては、付与しても、或いは付与しなくても良いとされている。又、上記両抑え環10、10の外周面と上記ハブ4の両端部内周面との間に、それぞれシールリング12、12を設けて、上記円筒状空間の両端開口部を密閉している。 Further, in order to position the inner rings 6 and 6 in the axial direction, a tubular spacer 9 fitted and fixed to an intermediate portion of the shaft member 3 and an outer fitting fixed to both ends of the shaft member 3 are fixed. The pair of holding rings 10 and 10 hold the inner rings 6 and 6 from both sides in the axial direction. Further, in order to position the outer rings 7 and 7 in the axial direction, side surfaces of the outer rings 7 and 7 that face each other are formed on stepped surfaces 11 and 11 formed on both ends of the inner peripheral surface of the hub 5. Are abutted through core bars 14 and 14 constituting encoders 13 and 13 respectively described below. In the case of the prior invention device, the preload of the rolling elements (balls) constituting the rolling bearings 5 and 5 may be applied or may not be applied. Further, seal rings 12 and 12 are provided between the outer peripheral surfaces of the holding rings 10 and 10 and the inner peripheral surfaces of both ends of the hub 4 to seal the opening portions of the cylindrical space.

又、上記各外輪7、7の中間部乃至一端部(互いに対向する側の端部)に形成した小径段部16、16に、それぞれ上記各エンコーダ13、13を構成する芯金14、14を、上記各外輪7、7と同心に外嵌固定している。又、上記間座9の両端寄り部分に、それぞれ2個ずつのセンサ19A1 、19A2 (19B1 、19B2 )を、断面L字形で全体を円環状に構成した支持部材20、20を介して支持固定している。そして、この状態で、上記両エンコーダ13、13の被検出面に、それぞれ上記2個ずつのセンサ19A1 、19A2 (19B1 、19B2 )の検出部を対向させている。 Further, core bars 14 and 14 constituting the encoders 13 and 13 are respectively attached to small-diameter step portions 16 and 16 formed at intermediate portions or one end portions (end portions facing each other) of the outer rings 7 and 7. The outer rings 7 and 7 are fitted and fixed concentrically. In addition, two sensors 19A 1 and 19A 2 (19B 1 and 19B 2 ) are respectively provided at both end portions of the spacer 9 through support members 20 and 20 that are L-shaped in cross section and configured in an annular shape as a whole. Are supported and fixed. In this state, the detection units of the two sensors 19A 1 and 19A 2 (19B 1 and 19B 2 ) are opposed to the detection surfaces of the encoders 13 and 13, respectively.

このうちの両エンコーダ13、13はそれぞれ、上記芯金14と、エンコーダ本体15とを備える。このうちの芯金14は、磁性金属板により断面L字形で全体を円環状に構成しており、円筒部17と、この円筒部17の端部から径方向内方に直角に折れ曲がった円輪部18とを備える。又、上記エンコーダ本体15は、永久磁石製で全体を円輪状に構成しており、上記円輪部18の側面(軸方向に関して上記円筒部17と反対側の側面)の径方向内半部に、全周に亙り添着固定している。被検出面である、上記エンコーダ本体15の側面(上記円輪部18と反対側の側面)には、S極とN極とを、円周方向に関して交互に且つ等間隔に配置している。これらS極とN極との境界は、上記被検出面の幅方向(径方向)に対して平行にしている。即ち、上記S極とN極との境界の位相は、上記被検出面の幅方向に関して変化させていない。又、上記両エンコーダ13、13同士で、上記被検出面に設けるS極とN極との円周方向の配置のピッチを、互いに等しくしている。   Both of these encoders 13, 13 are each provided with the core metal 14 and the encoder body 15. Of these, the metal core 14 has an L-shaped cross section made of a magnetic metal plate and is formed in an annular shape as a whole. A cylindrical portion 17 and an annular ring bent at a right angle inward in the radial direction from the end of the cylindrical portion 17. Part 18. The encoder body 15 is made of a permanent magnet and has an annular shape as a whole. The encoder body 15 is formed in the radially inner half of the side surface of the annular portion 18 (the side surface opposite to the cylindrical portion 17 with respect to the axial direction). , It is fixed around the entire circumference. S poles and N poles are alternately arranged at equal intervals in the circumferential direction on the side surface (the side surface opposite to the annular portion 18) of the encoder body 15, which is the detection surface. The boundary between the S pole and the N pole is parallel to the width direction (radial direction) of the detected surface. That is, the phase of the boundary between the S pole and the N pole is not changed in the width direction of the detected surface. The encoders 13 and 13 have the same pitch in the circumferential arrangement of the S pole and the N pole provided on the detected surface.

上述の様に構成する両エンコーダ13、13は、それぞれの芯金14、14の円筒部17、17を、上記各外輪7、7の小径段部16、16に外嵌固定(上記ハブ4の両端寄り部分に内嵌)する事により、上記各外輪7、7に対し支持固定している。これと共に、それぞれの芯金14、14の円輪部18、18の径方向外半部を、上記各外輪7、7の側面と上記ハブ4の内周面の両端寄り部分に形成した段差面11、11との間に挟持する事により、軸方向の位置決めを図っている。尚、図6の(A)は、軸受A(図5の左側の転がり軸受5)側のエンコーダ本体15の被検出面と、この被検出面にそれぞれの検出部を対向させた2個のセンサ19A1 、19A2 とを、同じく(B)は、軸受B(図5の右側の転がり軸受5)側のエンコーダ本体15の被検出面と、この被検出面にそれぞれの検出部を対向させた2個のセンサ19B1 、19B2 とを、それぞれ図5の軸方向右側(+y側)から見た投影図である(後述する図7〜13に就いても同様)。この図6に示す様に、本例の場合には、上述の様にして両エンコーダ13、13を回転支持装置に組み付けた状態で、これら両エンコーダ13、13の被検出面に存在するS極とN極との円周方向の配置の位相を、これら両エンコーダ13、13同士で互いに一致させている。 In the encoders 13 and 13 configured as described above, the cylindrical portions 17 and 17 of the cores 14 and 14 are externally fixed to the small-diameter step portions 16 and 16 of the outer rings 7 and 7 (the hub 4 It is supported and fixed to each of the outer rings 7 and 7 by being internally fitted to the portions near both ends. At the same time, stepped surfaces formed on the outer half portions in the radial direction of the ring portions 18 and 18 of the core bars 14 and 14 on the side surfaces of the outer rings 7 and 7 and on both ends of the inner peripheral surface of the hub 4. 11 and 11, the positioning in the axial direction is achieved. 6A shows a detection surface of the encoder body 15 on the bearing A (the left rolling bearing 5 in FIG. 5) side, and two sensors in which the respective detection portions are opposed to the detection surface. 19A 1 and 19A 2 are the same as (B) in which the detection surface of the encoder body 15 on the bearing B (the rolling bearing 5 on the right side in FIG. 5) is made to face the detection surface. FIG. 6 is a projection view of the two sensors 19B 1 and 19B 2 as viewed from the right side (+ y side) in FIG. 5 (the same applies to FIGS. 7 to 13 described later). As shown in FIG. 6, in the case of this example, in the state where both the encoders 13 and 13 are assembled to the rotation support device as described above, the S pole existing on the detected surface of both the encoders 13 and 13 is used. The encoders 13 and 13 are made to coincide with each other in the circumferential arrangement phase of the N pole and the N pole.

又、上記各センサ19A1 、19A2 、19B1 、19B2 の検出部にはそれぞれ、ホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子を組み込んでいる。そして、互いに直交するx軸、y軸、z軸から成る三次元直交座標系のうち、y軸を上記軸部材3の中心軸とし、z軸を上下方向軸とし、x軸を前後方向軸とした場合に、上記軸部材3と上記ハブ4との間に外力が作用していない中立状態で、上記図6に示す様に、上記両エンコーダ13、13の被検出面のうち、x軸上で径方向反対側となる2個所位置(θ=90度、270度の位置)にそれぞれ1個ずつ、上記各センサ19A1 、19A2 、19B1 、19B2 の検出部を対向させている。尚、上記図6のうち、上記被検出面の手前側に各センサ19A1 、19A2 が位置する(A)では、これら各センサ19A1 、19A2 を黒丸で、上記被検出面の奥側に各センサ19B1 、19B2 が位置する(B)では、これら各センサ19B1 、19B2 を白丸で、それぞれ表している(後述する図7〜13に就いても同様)。 In addition, magnetic detection elements such as a Hall IC, a Hall element, an MR element, and a GMR element are incorporated in the detection portions of the sensors 19A 1 , 19A 2 , 19B 1 , and 19B 2 . Of the three-dimensional orthogonal coordinate system composed of the x-axis, y-axis, and z-axis that are orthogonal to each other, the y-axis is the central axis of the shaft member 3, the z-axis is the vertical axis, and the x-axis is the front-rear axis. In this case, in the neutral state where no external force is acting between the shaft member 3 and the hub 4, as shown in FIG. The detectors of the sensors 19A 1 , 19A 2 , 19B 1 , and 19B 2 are opposed to each other at two positions (θ = 90 °, 270 ° positions) opposite to each other in the radial direction. In FIG. 6, when the sensors 19A 1 and 19A 2 are located on the front side of the detected surface (A), the sensors 19A 1 and 19A 2 are black circles, and the back side of the detected surface. In (B) where the sensors 19B 1 and 19B 2 are located, these sensors 19B 1 and 19B 2 are represented by white circles (the same applies to FIGS. 7 to 13 described later).

又、前記間座9の軸方向中央部の上面には、演算器21を支持固定している。又、上記軸部材3の上面の軸方向中間部乃至一端部(図5の右端部)には、キー溝状の溝部22を設けている。これと共に、上記間座9の上端部で、上記溝部22の他端部(図5の左端部)と整合する部分に、当該部分を径方向に貫通する通孔23を設けている。そして、上記演算器21に接続した図示しない各種ケーブル{例えば、上記演算器21による、後述する変位、傾き、荷重、モーメント等の演算結果を表す信号や、上記各センサ19A1 、19A2 、19B1 、19B2 のうちの少なくとも1個のセンサのパルス波形信号(スリップ率制御用の信号)を、ABSコントローラに送信する信号ケーブル、並びに、上記演算器21に電力を供給する電源ケーブル等}を、上記通孔23及び上記溝部22を通じて外部に引き出し、車体側の各種装置(例えば、ABSコントローラ、並びに、電源装置等)に接続できる様にしている。 An arithmetic unit 21 is supported and fixed on the upper surface of the central portion in the axial direction of the spacer 9. Further, a key groove-shaped groove portion 22 is provided in an axial middle portion or one end portion (right end portion in FIG. 5) of the upper surface of the shaft member 3. At the same time, a through hole 23 is provided in the upper end portion of the spacer 9 so as to be aligned with the other end portion (left end portion in FIG. 5) of the groove portion 22 in the radial direction. Various cables (not shown) connected to the computing unit 21 (for example, signals representing computation results such as displacement, inclination, load, moment, etc. described later by the computing unit 21, and the sensors 19A 1 , 19A 2 , 19B 1 and 19B 2 , a signal cable for transmitting a pulse waveform signal (slip rate control signal) of at least one sensor to the ABS controller, a power cable for supplying power to the computing unit 21, etc. These are pulled out to the outside through the through hole 23 and the groove 22 so that they can be connected to various devices (for example, an ABS controller and a power supply device) on the vehicle body side.

上述の様に構成する先発明の回転支持装置の状態量測定装置の場合、軸受A側のエンコーダ13にz軸方向の変位zA が生じる事に伴って、2個のセンサ19A1 、19A2 の出力信号の位相差が変化し、軸受B側のエンコーダ13に同方向の変位zB が生じる事に伴って、2個のセンサ19B1 、19B2 の出力信号の位相差が変化する。これに対し、それぞれのエンコーダ13、13にy軸方向の変位yが生じても、各被検出面と各検出部との間隔が変化するだけで、上記各位相差は変化しない。更に、それぞれのエンコーダ13、13にx軸方向の変位xが生じても、やはり上記各位相差は変化しない。従って、上記先発明の回転支持装置の状態量測定装置の場合には、これら各位相差に基づいて、それぞれのエンコーダ13、13のz軸方向の変位zA 、zB を検出できる為、上記ハブ4の中心(上記両エンコーダ13、13間の幾何中心)Oの変位zと、このハブ4のx軸回りの傾きφx を求める事ができる。 In the state quantity measuring device of the rotary support device of the prior invention configured as described above, the two sensors 19A 1 and 19A 2 are accompanied by the occurrence of the displacement z A in the z-axis direction in the encoder 13 on the bearing A side. the phase difference change of the output signal, with the possible displacement z B in the same direction to the encoder 13 of the bearing B side occurs, a phase difference between the two sensors 19B 1, 19B 2 of the output signal is changed. On the other hand, even if a displacement y in the y-axis direction occurs in each encoder 13, 13, only the distance between each detection surface and each detection unit changes, and each phase difference does not change. Furthermore, even if the displacements x in the x-axis direction occur in the encoders 13 and 13, the respective phase differences are not changed. Therefore, in the case of the state quantity measuring device for the rotary support device of the above invention, the displacement z A and z B of the encoders 13 and 13 in the z-axis direction can be detected based on each phase difference. The displacement z of the center 4 (the geometric center between the encoders 13 and 13) O and the inclination φ x of the hub 4 around the x-axis can be obtained.

具体的には、上記各エンコーダ13、13の被検出面のピッチ円直径(PCD)をdとし、これら各被検出面の全周に配置するS極とN極との対の数(1回転当たりの上記各センサの出力信号のパルス数)をnとし、上記各被検出面同士の間隔(スパン)をLとし(これらd、n、Lの意味に就いては、以降の各例に於いても同様)、上記2個のセンサ19A1 、19A2 の出力信号のパルスエッジ時間差Δt(位相差)をパルス周期Tで除した値Δt/T(位相差比)をεA1-A2 とし、上記2個のセンサ19B1 、19B2 の出力信号の位相差比をεB1-B2 と定義すると、上記ハブ4の中心Oの変位zと、このハブ4の傾きφx とは、それぞれ次の(1)〜(2)式で表される。

Figure 0005003397
Figure 0005003397
従って、これら(1)〜(2)式に上記両位相差比εA1-A2 、εB1-B2 を代入し、これら(1)〜(2)式を演算器21に計算させる事により、上記ハブ4の中心Oの変位zと、このハブ4の傾きφx とを求める事ができる。 Specifically, the pitch circle diameter (PCD) of the detected surfaces of the encoders 13 and 13 is d, and the number of S-pole and N-pole pairs (one rotation) arranged on the entire circumference of each detected surface. (The number of pulses of the output signal of each sensor per unit) is n, and the interval (span) between the detected surfaces is L (the meanings of these d, n, and L are described in the following examples). The difference Δt / T (phase difference ratio) obtained by dividing the pulse edge time difference Δt (phase difference) of the output signals of the two sensors 19A 1 and 19A 2 by the pulse period T is defined as ε A1 -A2 . When the phase difference ratio of the output signals of the two sensors 19B 1 and 19B 2 is defined as ε B1 -B2 , the displacement z of the center O of the hub 4 and the inclination φ x of the hub 4 are respectively It is represented by formulas (1) to (2).
Figure 0005003397
Figure 0005003397
Therefore, by substituting the two phase difference ratios ε A1 -A2 and ε B1 -B2 into these equations (1) and (2) and letting the computing unit 21 calculate these equations (1) and (2), The displacement z of the center O of the hub 4 and the inclination φ x of the hub 4 can be obtained.

又、自動二輪車用の回転支持装置の場合、上記ハブ4の中心Oの変位zと、このハブ4と前記軸部材3との間に作用するz軸方向のラジアル荷重Fzとの間、並びに、このハブ4の傾きφx と、このハブ4と上記軸部材3との間に作用する、車輪を構成するタイヤの接地面から入力されるy軸方向のアキシアル荷重Fy(若しくはこのアキシアル荷重Fyに基づいて発生するx軸回りのモーメントMx)との間には相関関係が成立する。この理由は、本例の様な、予圧が付与されていない回転支持装置の場合、1対の転がり軸受5、5(軸受A、B)のラジアル隙間がアキシアル隙間に比べて小さい事、並びに、通常は、これら両転がり軸受5、5に車体重量等に基づくラジアル荷重Fzが作用している事から、上記両エンコーダ13、13のラジアル変位が、上記ラジアル荷重Fz及び上記アキシアル荷重Fy(モーメントMx)と無関係には変動しにくくなる為である。従って、本例の場合には、上記演算器21により、上記ハブ4の中心Oの変位zに基づいて、上記ラジアル荷重Fzを算出できる。これと共に、上記ハブ4の傾きφx に基づいて、上記アキシアル荷重Fy(モーメントMx)を算出できる。尚、上記各相関関係は、転がり軸受ユニットの分野で広く知られている弾性接触理論等に基づいて計算により求められる他、実験(出荷時試験)によっても求められる。 In the case of a rotation support device for a motorcycle, the displacement z of the center O of the hub 4 and the radial load Fz acting in the z-axis direction acting between the hub 4 and the shaft member 3, and the inclination phi x of the hub 4, acting between the hub 4 and the shaft member 3, in the y-axis direction is input from the ground surface of the tire which constitutes the wheel in the axial load Fy (or the axial load Fy A correlation is established with the moment Mx) around the x-axis generated based on this. The reason for this is that, in the case of a rotary support device to which no preload is applied as in this example, the radial gap between the pair of rolling bearings 5 and 5 (bearings A and B) is smaller than the axial gap, and Normally, since the radial load Fz based on the weight of the vehicle body acts on the rolling bearings 5 and 5, the radial displacements of the encoders 13 and 13 are the radial load Fz and the axial load Fy (moment Mx). This is because it is less likely to fluctuate regardless of. Therefore, in this example, the arithmetic unit 21 can calculate the radial load Fz based on the displacement z of the center O of the hub 4. At the same time, the axial load Fy (moment Mx) can be calculated based on the inclination φ x of the hub 4. Each of the above correlations can be obtained not only by calculation based on the elastic contact theory widely known in the field of rolling bearing units, but also by experiments (shipment test).

尚、以上に述べた様に、先発明の回転支持装置の状態量測定装置の場合には、軸受A側の2個のセンサ19A1 、19A2 の出力信号の位相差と、軸受B側の2個のセンサ19B1 、19B2 の出力信号の位相差とを測定するだけで良く、双方の側を跨いだセンサ間の位相差を測定する必要がない。この為、双方の側のエンコーダ13、13や外輪7、7を組み付ける際の回転角度位置を規制して、双方の側を跨いだセンサ間の初期位相差を所定の大きさに設定すると言った作業を行わずに済む。従って、その分だけ、組み付けを容易に行える。 As described above, in the state quantity measuring device of the rotary support device of the previous invention, the phase difference between the output signals of the two sensors 19A 1 and 19A 2 on the bearing A side and the bearing B side It is only necessary to measure the phase difference between the output signals of the two sensors 19B 1 and 19B 2 , and there is no need to measure the phase difference between the sensors straddling both sides. For this reason, the rotation angle position when assembling the encoders 13 and 13 and the outer rings 7 and 7 on both sides is regulated, and the initial phase difference between the sensors across both sides is set to a predetermined size. No need to do work. Therefore, the assembly can be easily performed by that amount.

図7は、先発明の回転支持装置の状態量測定装置の別例(第2例)を示している。本例の場合には、中立状態で、1対のエンコーダ13、13の被検出面のうち、z軸上で径方向反対側となる2個所位置(θ=0度、180度の位置)にそれぞれ1個ずつ、各センサ19A1 、19A2 、19B1 、19B2 の検出部を対向させている。言い換えれば、上述した第1例との比較で、上記各センサ19A1 、19A2 、19B1 、19B2 の検出部を、それぞれ90度ずれた位置(90度座標変換した位置)に対向させている。この為、本例の場合には、上述した第1例の場合と同様の原理で、軸部材3に対するハブ4(図5参照)の中心Oの、x軸方向の変位xと、このハブ4のz軸回りの傾きφz とを算出できる。更に、このハブ4の中心Oの、x軸方向の変位xに基づいて、このハブ4と上記軸部材3との間に作用するx軸方向のラジアル荷重Fxを算出できる。これと共に、上記ハブ4の傾きφz に基づいて、このハブ4と上記軸部材3との間に作用するz軸回りのモーメントMzを算出できる。 FIG. 7 shows another example (second example) of the state quantity measuring device for the rotary support device of the previous invention. In the case of this example, in the neutral state, out of the detected surfaces of the pair of encoders 13 and 13, at two positions (θ = 0 degrees, 180 degrees) on the opposite side in the radial direction on the z axis. Each one of the sensors 19A 1 , 19A 2 , 19B 1 , 19B 2 is made to face each other. In other words, in comparison with the first example described above, the detection units of the sensors 19A 1 , 19A 2 , 19B 1 , 19B 2 are respectively opposed to positions shifted by 90 degrees (positions obtained by 90-degree coordinate conversion). Yes. For this reason, in the case of this example, the displacement x in the x-axis direction of the center O of the hub 4 (see FIG. 5) relative to the shaft member 3 and the hub 4 on the same principle as in the case of the first example described above. The inclination φ z around the z-axis can be calculated. Further, based on the displacement x of the center O of the hub 4 in the x-axis direction, the radial load Fx in the x-axis direction acting between the hub 4 and the shaft member 3 can be calculated. At the same time, based on the inclination φ z of the hub 4, the moment Mz about the z-axis acting between the hub 4 and the shaft member 3 can be calculated.

図8は、先発明の回転支持装置の状態量測定装置の別例(第3例)を示している。本例の場合には、1対のエンコーダ13、13の被検出面に対向させるセンサ19A1 〜19A3 、19B1 〜19B3 の検出部の個数が、前述の図4〜6に示した第1例の場合と異なる。即ち、本例の場合には、中立状態で、上記1対のエンコーダ13、13の被検出面のうち、円周方向等間隔の3個所位置(θ=60度、180度、300度の位置)にそれぞれ1個ずつ、上記各センサ19A1 〜19A3 、19B1 〜19B3 の検出部を対向させている。この様に構成する本例の場合、軸部材3とハブ4との間に外力が作用して、上記両エンコーダ13、13にラジアル変位が生じると、これに伴って、上記各センサ19A1 〜19A3 、19B1 〜19B3 の出力信号の位相がずれる。ここで、この位相のずれを、位相差を1周期で除した位相差比ε(θ)で表し、上記各エンコーダ13、13のx軸方向、z軸方向のラジアル変位をそれぞれX、Zとすると、上記位相差比ε(θ)は、次の(3)式で表される。

Figure 0005003397
FIG. 8 shows another example (third example) of the state quantity measuring device of the rotary support device of the previous invention. In the case of this example, the number of the detecting portion of the first sensor 19A 1 through 19a 3 which is opposed to the detected surface of the pair of the encoder 13, 13, 19B 1 through 19b 3 are shown in Figures 4-6 of the aforementioned Different from the case of one example. That is, in the case of this example, three positions (θ = 60 degrees, 180 degrees, 300 degrees) at equal intervals in the circumferential direction on the detected surfaces of the pair of encoders 13, 13 in the neutral state. ), Each of the sensors 19A 1 to 19A 3 and 19B 1 to 19B 3 are opposed to each other. In the case of this example configured as described above, when an external force acts between the shaft member 3 and the hub 4 and a radial displacement occurs in both the encoders 13 and 13, the sensors 19 A 1 to 19 A 1 . The phases of the output signals 19A 3 and 19B 1 to 19B 3 are shifted. Here, this phase shift is expressed by a phase difference ratio ε (θ) obtained by dividing the phase difference by one period, and the radial displacements of the encoders 13 and 13 in the x-axis direction and the z-axis direction are respectively X and Z. Then, the phase difference ratio ε (θ) is expressed by the following equation (3).
Figure 0005003397

又、ここで、軸受A側のエンコーダ13のx軸方向、z軸方向のラジアル変位をそれぞれxA 、zA とし、軸受B側のエンコーダ13のx軸方向、z軸方向のラジアル変位をそれぞれxB 、zB とする。そして、これら各ラジアル変位xA 、zA 、xB 、zB により生じる、それぞれが2個のセンサの出力信号同士の間の位相差比である、上記両センサA2 、A1 間の位相差比εA2-A1 と、上記両センサA2 、A3 間の位相差比εA2-A3 と、上記両センサB2 、B1 間の位相差比εB2-B1 と、上記両センサB2 、B3 間の位相差比εB2-B3 とは、それぞれ上記(3)式に基づいて、次の(4)〜(7)式で表す事ができる。

Figure 0005003397
Figure 0005003397
Figure 0005003397
Figure 0005003397
これら(4)〜(7)式の関係より、上記各エンコーダ13、13のラジアル変位(xA 、zA )、(xB 、zB )は、それぞれ次の(8)〜(9)式により算出できる。
Figure 0005003397
Figure 0005003397
又、この様に各エンコーダ13、13のラジアル変位(xA 、zA )、(xB 、zB )が求まれば、上記ハブ4の中心Oの変位x、z及び傾きφx 、φz は、それぞれ次の(10)〜(13)式により算出できる。
Figure 0005003397
Figure 0005003397
Figure 0005003397
Figure 0005003397
Here, the radial displacements of the encoder 13 on the bearing A side in the x-axis direction and the z-axis direction are x A and z A , respectively, and the radial displacements of the encoder 13 on the bearing B side in the x-axis direction and z-axis direction are respectively represented. Let x B and z B be the same. Then, each of these radial displacement x A, z A, x B , caused by z B, a phase difference ratio between an output signal with each other, each two sensors, the two sensors A 2, A place between 1 The phase difference ratio ε A2 -A1, the phase difference ratio ε A2 -A3 between the two sensors A 2 and A 3 , the phase difference ratio ε B2 -B1 between the two sensors B 2 and B 1 , and the two sensors B The phase difference ratio ε B2 -B3 between 2 and B 3 can be expressed by the following equations (4) to (7) based on the above equation (3).
Figure 0005003397
Figure 0005003397
Figure 0005003397
Figure 0005003397
From the relationship of these equations (4) to (7), the radial displacements (x A , z A ) and (x B , z B ) of the encoders 13 and 13 are respectively expressed by the following equations (8) to (9). Can be calculated.
Figure 0005003397
Figure 0005003397
When the radial displacements (x A , z A ) and (x B , z B ) of the encoders 13 and 13 are obtained in this way, the displacement x and z and the inclinations φ x and φ of the center O of the hub 4 are obtained. z can be calculated by the following equations (10) to (13).
Figure 0005003397
Figure 0005003397
Figure 0005003397
Figure 0005003397

更に、本例の場合も、上記ハブ4の中心Oのx軸方向の変位xに基づいて、このハブ4と上記軸部材3(図5参照)との間に作用するラジアル荷重Fxを、このハブ4の中心Oのz軸方向の変位zに基づいて、このハブ4と上記軸部材3との間に作用するラジアル荷重Fzを、このハブ4の傾きφx に基づいて、このハブ4と上記軸部材3との間に作用するx軸回りのモーメントMxを、このハブ4の傾きφz に基づいて、このハブ4と上記軸部材3との間に作用するz軸回りのモーメントMz(アキシアル荷重Fy)を、それぞれ算出できる。
尚、上述した第3例では、3個のセンサ19A1 〜19A3 (19B1 〜19B3 )の検出部の円周方向の配置を等間隔としたが、等間隔でなくても、具体的な配置の仕方に合わせて上記(4)〜(9)式を修正すれば、上述した変位、傾き、荷重、モーメントを求められる。
Furthermore, also in this example, based on the displacement x of the center O of the hub 4 in the x-axis direction, the radial load Fx acting between the hub 4 and the shaft member 3 (see FIG. 5) is Based on the displacement z in the z-axis direction of the center O of the hub 4, a radial load Fz acting between the hub 4 and the shaft member 3 is determined based on the inclination φ x of the hub 4 and the hub 4. the x-axis moment Mx acting between the shaft member 3, on the basis of the inclination phi z of the hub 4, z axis moment Mz acting between the hub 4 and the shaft member 3 ( Axial loads Fy) can be calculated respectively.
In the above-described third example, the circumferential positions of the detection units of the three sensors 19A 1 to 19A 3 (19B 1 to 19B 3 ) are set at equal intervals. If the above equations (4) to (9) are corrected in accordance with a proper arrangement, the above-described displacement, inclination, load, and moment can be obtained.

次に、図9は、先発明の回転支持装置の状態量測定装置の別例(第4例)を示している。本例の場合には、1対のエンコーダ13、13の被検出面に対向させるセンサ19A1 、19B1 の検出部の個数が、前述の図4〜6に示した第1例の場合と異なる。即ち、本例の場合には、中立状態で、上記1対のエンコーダ13、13の被検出面のうち、x軸上の1個所位置(θ=90度の位置)にそれぞれ1個ずつ、上記各センサ19A1 、19B1 の検出部を対向させている。 Next, FIG. 9 shows another example (fourth example) of the state quantity measuring device of the rotation support device of the previous invention. In the case of this example, the number of detection parts of the sensors 19A 1 and 19B 1 opposed to the detected surfaces of the pair of encoders 13 and 13 is different from the case of the first example shown in FIGS. . That is, in the case of this example, in the neutral state, each of the detected surfaces of the pair of encoders 13 and 13 is located at one position on the x-axis (position of θ = 90 degrees). The detection parts of the sensors 19A 1 and 19B 1 are opposed to each other.

この様に構成する本例の場合には、これら両センサ19A1 、19B1 の出力信号同士の間の位相差に基づいて、軸部材3に対するハブ4(図5参照)のx軸回りの傾きφx を求められる。即ち、本例の場合には、上記軸部材3に対する上記ハブ4の傾きφx が生じる事に伴って、軸受A側のエンコーダ13と、軸受B側のエンコーダ13とが、z軸方向に関して互いに逆向きに変位する。この結果、上記両センサ19A1 、19B1 の出力信号の位相差が変化する。これに対し、上記軸部材3に対して上記ハブ4(上記両エンコーダ13、13)に変位xが生じても、上記位相差は変化しない。又、上記軸部材3に対する上記ハブ4(上記両エンコーダ13、13)に、アキシアル方向の変位y又はz軸回りの傾きφz が生じても、各被検出面と各検出部との間隔が変化するだけで、上記位相差は変化しない。又、上記軸部材3に対して上記ハブ4(上記両エンコーダ13、13)にz軸方向の変位zが生じても、上記両センサ19A1 、19B1 の出力信号の位相がそれぞれ同じ向きに同じ大きさだけ変化するだけで、上記位相差は変化しない。従って、本例の場合には、この位相差に基づいて、上記ハブ4の傾きφx を(他の方向の変位や傾きの影響を受けずに)求める事ができる。
具体的には、上記2個のセンサ19A1 、19B1 の出力信号の位相差比をεB1-A1 と定義すると、上記ハブ4の傾きφx は、次の(14)式により求める事ができる。

Figure 0005003397
更に、このハブ4の傾きφx に基づいて、上記軸部材3とこのハブ4との間に作用するアキシアル荷重Fy(又はx軸回りのモーメントMx)を精度良く算出できる。 In the case of this example configured as described above, the inclination of the hub 4 (see FIG. 5) about the x-axis with respect to the shaft member 3 based on the phase difference between the output signals of these sensors 19A 1 and 19B 1 . φ x can be obtained. That is, in the case of this example, the bearing 13 side encoder 13 and the bearing B side encoder 13 are mutually connected in the z-axis direction as the inclination φ x of the hub 4 with respect to the shaft member 3 is generated. Displaces in the opposite direction. As a result, the phase difference between the output signals of both the sensors 19A 1 and 19B 1 changes. On the other hand, even if a displacement x occurs in the hub 4 (both encoders 13 and 13) with respect to the shaft member 3, the phase difference does not change. Further, even if the axial displacement y or the inclination φ z around the z axis occurs in the hub 4 (both encoders 13 and 13) with respect to the shaft member 3, the distance between each detected surface and each detecting portion is maintained. Only the change does not change the phase difference. Even if a displacement z in the z-axis direction occurs in the hub 4 (both encoders 13 and 13) with respect to the shaft member 3, the phases of the output signals of the sensors 19A 1 and 19B 1 are in the same direction. The phase difference does not change only by changing by the same magnitude. Therefore, in the case of this example, based on the phase difference, the inclination phi x of the hub 4 (without being influenced by the other direction of displacement and tilt) can be obtained.
Specifically, if the phase difference ratio between the output signals of the two sensors 19A 1 and 19B 1 is defined as ε B1-A1 , the inclination φ x of the hub 4 can be obtained by the following equation (14). it can.
Figure 0005003397
Further, the axial load Fy (or moment Mx around the x axis) acting between the shaft member 3 and the hub 4 can be calculated with high accuracy based on the inclination φ x of the hub 4.

尚、以上に述べた様に、本例の場合には、軸受A側のセンサ19A1 の出力信号と軸受B側のセンサ19B1 の出力信号との間に存在する、位相差を測定する必要がある。この為、双方の側のエンコーダ13、13や外輪7、7(図5参照)を組み付ける際の回転角度位置を規制して、上記両センサ19A1 、19B1 の出力信号の初期位相差を所定の大きさに設定する必要がある。この場合に、上記回転角度位置を規制する方法として、例えば、上記各外輪7、7に対して上記各エンコーダ13、13を、上記ハブ4に対してこれら各外輪7、7を、それぞれ所望の回転角度位置で嵌合できる様にする為のキー係合部等のガイドを設ける方法を採用できる。 Incidentally, as described above, in the case of this example, exists between the output signal of the sensor 19B 1 of the output signal of the sensor 19A 1 of the bearing A side and the bearing B side, necessary to measure the phase difference There is. For this reason, the rotational angle position when assembling the encoders 13 and 13 and the outer rings 7 and 7 (see FIG. 5) on both sides is regulated, and the initial phase difference between the output signals of both the sensors 19A 1 and 19B 1 is predetermined. It is necessary to set to the size of. In this case, as a method of restricting the rotational angle position, for example, the encoders 13 and 13 are set to the outer rings 7 and 7, and the outer rings 7 and 7 are set to the hub 4 as desired. A method of providing a guide such as a key engaging portion for enabling fitting at a rotational angle position can be adopted.

次に、図10は、先発明の回転支持装置の状態量測定装置の別例(第5例)を示している。本例の場合には、1対のエンコーダ13、13の被検出面に対する各センサ19A1 、19B1 の検出部の対向位置が、上述した実施の形態の第4例の場合と異なる。即ち、本例の場合には、中立状態で、上記1対のエンコーダ13、13の被検出面のうち、z軸上の1個所位置(θ=180度の位置)にそれぞれ1個ずつ、上記各センサ19A1 、19B1 の検出部を対向させている。言い換えれば、上述した実施の形態の第4例との比較で、上記各センサ19A1 、19B1 の検出部を、それぞれ90度ずれた位置(90度座標変換した位置)に対向させている。この為、本例の場合には、上述した実施の形態の第4例の場合と同様の原理で、軸部材3に対するハブ4(図5参照)の、z軸回りの傾きφz を算出できる。更に、このハブ4の傾きφz に基づいて、これら軸部材3とハブ4との間に作用するz軸回りのモーメントMzを算出できる。 Next, FIG. 10 shows another example (fifth example) of the state quantity measuring device of the rotary support device of the previous invention. In the case of this example, the opposing positions of the detection units of the sensors 19A 1 and 19B 1 with respect to the detected surfaces of the pair of encoders 13 and 13 are different from the case of the fourth example of the above-described embodiment. That is, in the case of this example, in the neutral state, one of the detected surfaces of the pair of encoders 13 and 13 is located at one position on the z-axis (position of θ = 180 degrees). The detection parts of the sensors 19A 1 and 19B 1 are opposed to each other. In other words, in comparison with the fourth example of the above-described embodiment, the detection units of the sensors 19A 1 and 19B 1 are opposed to positions shifted by 90 degrees (positions obtained by 90-degree coordinate conversion). Therefore, in this example, the inclination φ z around the z axis of the hub 4 (see FIG. 5) with respect to the shaft member 3 can be calculated on the same principle as in the fourth example of the above-described embodiment. . Further, based on the inclination φ z of the hub 4, a moment Mz about the z axis acting between the shaft member 3 and the hub 4 can be calculated.

次に、図11は、先発明の回転支持装置の状態量測定装置の別例(第6例)を示している。本例の場合には、上述した先発明構造の第4例の構造と第5例の構造とを組み合わせた構造を採用している。即ち、本例の場合には、中立状態で、1対のエンコーダ13、13の被検出面のうち、x軸上の1個所位置(θ=90度の位置)と、z軸上の1個所位置(θ=180度の位置)とに、それぞれ1個ずつ、各センサ19A1 、19A2 、19B1 、19B2 の検出部を対向させている。この様に構成する本例の場合には、上述した先発明構造の第4〜5例の場合と同様の原理で、軸部材3に対するハブ4(図5参照)の、上記x軸回りの傾きφx と、上記z軸回りの傾きφz とを算出できる。更に、このハブ4の傾きφx と傾きφz とに基づいて、それぞれ上記軸部材3とこのハブ4との間に作用するアキシアル荷重Fy(モーメントMx)とモーメントMzとを算出できる。 Next, FIG. 11 shows another example (sixth example) of the state quantity measuring device of the rotary support device of the previous invention. In the case of this example, a structure combining the structure of the fourth example and the structure of the fifth example of the above-described invention structure is adopted. That is, in the case of this example, in the neutral state, one position on the x-axis (position of θ = 90 degrees) and one position on the z-axis among the detected surfaces of the pair of encoders 13 and 13. The detectors of the sensors 19A 1 , 19A 2 , 19B 1 , 19B 2 are made to face each other (one position at θ = 180 degrees). In the case of this example configured as described above, the inclination of the hub 4 (see FIG. 5) with respect to the shaft member 3 around the x-axis is based on the same principle as that of the fourth to fifth examples of the above-described invention structure. and phi x, of the z-axis and a tilt phi z can be calculated. Furthermore, on the basis of the inclination phi x and tilt phi z of the hub 4, it can be calculated and axial load Fy (moment Mx) and moment Mz acting between respectively the shaft member 3 and the hub 4.

尚、上述した第6例の場合には、上記ハブ4の中心Oにx軸方向の変位x又はz軸方向の変位zが生じる事に伴って、軸受A側の2個のセンサ19A1 、19A2 間の位相差(位相差比εA1-A2 )と、軸受B側の2個のセンサ19B1 、19B2 間の位相差(位相差比εB1-B2 )とが、それぞれ変化する。但し、これら各位相差は、上記双方の変位x、zに伴って変化する。この為、これら各位相差から、これら双方の変位x、zを分離して測定する事はできない。但し、使用状態で、これら双方の変位x、zのうちの何れか一方の変位のみが発生する用途であれば、上記各位相差から当該変位を測定する事ができる。例えば、使用状態で、上記変位xが0となる用途では、上記変位zを、次の(15)式により算出できる。

Figure 0005003397
更に、この変位zから、上記軸部材3とハブ4との間に作用する、z軸方向のラジアル荷重Fzを求める事ができる。 In the case of the sixth example described above, the two sensors 19A 1 on the bearing A side are accompanied by the occurrence of the displacement x in the x-axis direction or the displacement z in the z-axis direction at the center O of the hub 4. The phase difference between 19A 2 (phase difference ratio ε A1-A2 ) and the phase difference between the two sensors 19B 1 and 19B 2 on the bearing B side (phase difference ratio ε B1-B2 ) change. However, each of these phase differences changes with both displacements x and z. For this reason, it is not possible to measure these displacements x and z separately from each phase difference. However, if it is an application in which only one of these two displacements x and z is generated in use, the displacement can be measured from each of the phase differences. For example, in an application where the displacement x is 0 in use, the displacement z can be calculated by the following equation (15).
Figure 0005003397
Furthermore, the radial load Fz in the z-axis direction acting between the shaft member 3 and the hub 4 can be obtained from the displacement z.

次に、図12は、先発明の回転支持装置の状態量測定装置の別例(第7例)を示している。本例の場合には、軸受B側のエンコーダ13の被検出面に対向させるセンサの個数が、前述の第1例の場合と異なる。即ち、本例の場合には、中立状態で、軸受A側のエンコーダ13の被検出面には、x軸上で径方向反対側となる2個所位置(θ=90度、270度の位置)にそれぞれ1個ずつ、各センサ19A1 、19A2 の検出部を対向させている。これに対し、軸受B側のエンコーダ13の被検出面には、x軸上の1個所位置(θ=90度の位置)にのみ、1個のセンサ19B1 の検出部を対向させている。 Next, FIG. 12 shows another example (seventh example) of the state quantity measuring device of the rotary support device of the previous invention. In the case of this example, the number of sensors opposed to the surface to be detected of the encoder 13 on the bearing B side is different from that in the first example. That is, in the case of this example, in the neutral state, on the detection target surface of the encoder 13 on the bearing A side, there are two positions (θ = 90 degrees, 270 degrees positions) on the x axis on the opposite side in the radial direction. Each of the sensors 19A 1 and 19A 2 are opposed to each other. On the other hand, the detection portion of one sensor 19B 1 is opposed to the detected surface of the encoder 13 on the bearing B side only at one position on the x-axis (position of θ = 90 degrees).

この様に構成する本例の場合には、上記各センサ19A1 、19A2 、19B1 の出力信号同士の間の位相差に基づいて、軸部材3に対するハブ4の中心O(図5参照)の、z軸方向の変位zと、このハブ4の、x軸回りの傾きφx とを求められる。即ち、本例の場合には、前述の図9に示した第4例の場合と同様、軸受A側と軸受B側との円周方向同位置に対向する2個のセンサ19A1 、19B1 間の位相差(位相差比εB1-A1 )に基づいて、上記x軸回りのハブ4の傾きφx を求められる。又、前述の第1例の場合と同様、軸受A側の2個のセンサ19A1 、19A2 間の位相差(位相差比εA1-A2 )に基づいて、軸受A側のエンコーダ13の、z軸方向の変位zA を求められる。この為、この変位zA と上記傾きφx とに基づいて、上記ハブ4の中心Oの、z軸方向の変位zを求められる。具体的には、この変位zを、次の(16)式により算出できる。

Figure 0005003397
更に、この変位zから、上記軸部材3とハブ4との間に作用する、z軸方向のラジアル荷重Fzを、上記傾きφx から、これら軸部材3とハブ4との間に作用するアキシアル荷重Fy(又はx軸回りのモーメントMx)を、それぞれ求める事ができる。 In the case of this example configured as described above, the center O of the hub 4 with respect to the shaft member 3 (see FIG. 5) based on the phase difference between the output signals of the sensors 19A 1 , 19A 2 , 19B 1 . The displacement z in the z-axis direction and the inclination φ x about the x-axis of the hub 4 are obtained. That is, in the case of this example, as in the case of the fourth example shown in FIG. 9, the two sensors 19A 1 and 19B 1 facing the same position in the circumferential direction on the bearing A side and the bearing B side are provided. Based on the phase difference between them (phase difference ratio ε B1-A1 ), the inclination φ x of the hub 4 around the x axis can be obtained. Further, as in the case of the first example described above, the encoder 13 on the bearing A side is controlled based on the phase difference between the two sensors 19A 1 and 19A 2 on the bearing A side (phase difference ratio ε A1 -A2 ). A displacement z A in the z-axis direction is obtained. Therefore, on the basis of the displacement z A and the inclination phi x, the center O of the hub 4, is determined the displacement z of the z-axis direction. Specifically, this displacement z can be calculated by the following equation (16).
Figure 0005003397
Further, from this displacement z, a radial load Fz acting between the shaft member 3 and the hub 4 in the z-axis direction is changed from an inclination φ x to an axial acting between the shaft member 3 and the hub 4. The load Fy (or the moment Mx around the x axis) can be obtained.

次に、図13は、先発明の回転支持装置の状態量測定装置の別例(第8例)を示している。本例の場合には、1対のエンコーダ13、13の被検出面に対する各センサ19A1 、19A2 、19B1 の検出部の対向位置が、上述した第7例の場合と異なる。即ち、本例の場合には、中立状態で、軸受A側のエンコーダ13の被検出面のうち、z軸上で径方向反対側となる2個所位置(θ=0度、180度の位置)にそれぞれ1個ずつ、各センサ19A1 、19A2 の検出部を対向させている。これと共に、軸受B側のエンコーダ13の被検出面のうち、z軸上の1個所位置(θ=180度の位置)に、1個のセンサ19B1 の検出部を対向させている。言い換えれば、上述した第7例との比較で、上記各センサ19A1 、19A2 、19B1 の検出部を、それぞれ90度ずれた位置(90度座標変換した位置)に対向させている。この為、本例の場合には、上述した第7例の場合と同様の原理で、軸部材3に対するハブ4(図5参照)の中心Oの、x軸方向の変位xと、このハブ4の、z軸回りの傾きφz とを算出できる。更に、このハブ4の中心Oの変位xに基づいて、上記軸部材3とこのハブ4との間に作用するラジアル荷重Fxを、上記ハブ4の傾きφz に基づいて、上記軸部材3とこのハブ4との間に作用するモーメントMzを、それぞれ求められる。 Next, FIG. 13 shows another example (eighth example) of the state quantity measuring device of the rotary support device of the previous invention. In the case of this example, the opposing positions of the detection portions of the sensors 19A 1 , 19A 2 , 19B 1 with respect to the detected surfaces of the pair of encoders 13 and 13 are different from those in the seventh example described above. That is, in the case of this example, in the neutral state, among the detected surfaces of the encoder 13 on the bearing A side, two positions on the z axis that are radially opposite to each other (positions of θ = 0 degrees and 180 degrees) Each of the sensors 19A 1 and 19A 2 are opposed to each other. At the same time, the detection part of one sensor 19B 1 is made to face one position (position of θ = 180 degrees) on the z-axis on the detected surface of the encoder 13 on the bearing B side. In other words, in comparison with the seventh example described above, the detection units of the sensors 19A 1 , 19A 2 , and 19B 1 are opposed to positions that are shifted by 90 degrees (positions that have undergone 90-degree coordinate conversion). For this reason, in the case of this example, the displacement x in the x-axis direction of the center O of the hub 4 (see FIG. 5) with respect to the shaft member 3 and the hub 4 on the principle similar to the case of the seventh example described above. The inclination φ z around the z axis can be calculated. Further, based on the displacement x of the center O of the hub 4, the radial load Fx acting between the shaft member 3 and the hub 4 is changed based on the inclination φ z of the hub 4 with the shaft member 3. The moments Mz acting between the hub 4 and the hub 4 are respectively determined.

次に、図14は、先発明の回転支持装置の状態量測定装置の別例(第9例)を示している。本例の場合には、1対のエンコーダ13、13を、それぞれハブ4の軸方向両端寄り部分に内嵌固定している。又、円管状の間座9の軸方向中央部の上面には、演算器21(図4〜5参照)を設置していない。本例の場合には、この演算器21を、車体側の一部{例えば、フロントフォーク2(図5参照)の一部、或いは、ABSコントローラの近傍や、このABSコントローラの内部等}に設置している。又、本例の場合には、各センサ19A1 、19B1 に接続した図示しないケーブル(これら各センサ19A1 、19B1 の出力信号を、上記演算器21や上記ABSコントローラに送信する信号ケーブル)を、上記間座9に形成した通孔23、及び、軸部材3に形成した溝部22を通じて外部に引き出し、車体側の各種装置(例えば、上記演算器21や上記ABSコントローラ等)に接続できる様にしている。又、本例の場合には、上記両エンコーダ13、13を、予め上記ハブ4に内嵌固定する構造を採用している為、これら両エンコーダ13、13の円周方向の位相合わせを容易に行える。 Next, FIG. 14 shows another example (9th example) of the state quantity measuring device of the rotation support device of the previous invention. In the case of this example, a pair of encoders 13 and 13 are fitted and fixed to portions near both ends of the hub 4 in the axial direction. Moreover, the calculator 21 (refer FIGS. 4-5) is not installed in the upper surface of the axial center part of the cylindrical spacer 9. FIG. In the case of this example, this computing unit 21 is installed on a part of the vehicle body {for example, a part of the front fork 2 (see FIG. 5), the vicinity of the ABS controller, or the inside of the ABS controller}. is doing. Further, in the case of this example, a cable (not shown) connected to the sensors 19A 1, 19B 1 (these output signals of the sensors 19A 1, 19B 1, the signal cable to be transmitted to the computing unit 21 and the ABS controller) To the outside through the through hole 23 formed in the spacer 9 and the groove 22 formed in the shaft member 3 so that it can be connected to various devices on the vehicle body side (for example, the arithmetic unit 21 and the ABS controller). I have to. In the case of this example, a structure in which both the encoders 13 and 13 are fitted and fixed to the hub 4 in advance is adopted, so that the phase alignment of the encoders 13 and 13 in the circumferential direction can be easily performed. Yes.

尚、上述した各例の場合には、各センサの出力信号同士の間の初期位相差を0に設定している。但し、これら各センサ間の初期位相差を所定の大きさに設定すれば、使用時に、これら各センサ間で、出力信号のパルスエッジタイミングが逆転する(パルスエッジの追い越しが起こる)事を防止できる。この為、この逆転の有無を見張る事なく、上記各センサ間の位相差を正常に検出できる。更にこの場合、使用状態で、それぞれの位相が互いに一致しない、複数個のセンサの出力信号のパルス波形を利用(これら複数個のセンサの出力信号のパルス波形の逓倍処理を実施したものを利用)して、ABSによる車輪のスリップ率制御を行えば、1個のセンサの出力信号のパルス波形のみを利用してスリップ制御を行う場合に比べて、このスリップ制御を的確に行える。   In each example described above, the initial phase difference between the output signals of the sensors is set to zero. However, if the initial phase difference between these sensors is set to a predetermined magnitude, it is possible to prevent the pulse edge timing of the output signal from being reversed (passing of the pulse edge) between these sensors during use. . Therefore, it is possible to normally detect the phase difference between the sensors without monitoring the presence or absence of the reverse rotation. Further, in this case, the pulse waveforms of the output signals of a plurality of sensors whose phases do not coincide with each other in use are used (use of those obtained by multiplying the pulse waveforms of the output signals of the plurality of sensors). If the slip ratio control of the wheel by ABS is performed, this slip control can be performed more accurately than when the slip control is performed using only the pulse waveform of the output signal of one sensor.

又、上述した各例では、1対のエンコーダの被検出面がそれぞれ円輪状であり、各センサの検出部がこれら両被検出面に対し軸方向に対向している構造を採用したが、先発明は、1対のエンコーダの被検出面がそれぞれ円筒状であり、各センサの検出部がこれら両被検出面に対し径方向に対向している構造を採用する事もできる。例えば、何れか一方のエンコーダとセンサとの組み合わせとして、図15に示す様な、エンコーダ13aと6個のセンサ19A1 〜19A6 との組み合わせを採用する事もできる。このうちのエンコーダ13aは、全体を円筒状に構成している。そして、被検出面である外周面にS極とN極とを、円周方向に関して交互に且つ等間隔で配置すると共に、この被検出面の軸方向両半部を、それぞれ上記S極とN極との境界の位相が軸方向に対して互いに逆方向に互いに同じ角度で漸次変化する、第一、第二特性変化部24、25としている。又、上記各センサ19A1 〜19A6 のうちの1個のセンサ19A1 の検出部を上記第一特性変化部24に、別の1個のセンサ19A2 の検出部を上記第二特性変化部25で円周方向に関する位相が上記センサ19A1 と一致する部分に、残りの各センサ19A3 〜19A6 の検出部を、それぞれ上記第一特性変化部24又は上記第二特性変化部25のうち他のセンサの検出部を対向させる部分に対して円周方向に離隔した部分に、それぞれ対向させている。この様な構造を採用すれば、それぞれが上記6個のセンサ19A1 〜19A6 のうちから選択された2個のセンサの出力信号同士の間に存在する位相差であって、且つ、互いに異なる2個ずつのセンサの組み合わせに関する5つの位相差に基づいて、上記エンコーダ13aの、x軸方向の変位xと、y軸方向の変位yと、z軸方向の変位zと、x軸回りの傾きφx と、z軸回りの傾きφz とを、それぞれ算出できる。 Further, in each of the above examples, the detection surfaces of the pair of encoders are each in the shape of a ring, and the structure in which the detection part of each sensor is opposed to both the detection surfaces in the axial direction is employed. The invention can also employ a structure in which the detection surfaces of the pair of encoders are cylindrical, and the detection portions of the sensors face the detection surfaces in the radial direction. For example, as a combination of one of the encoder and the sensor, such as shown in FIG. 15, it is also possible to employ a combination of the encoder 13a and six sensors 19A 1 through 19a 6. Of these, the encoder 13a is entirely cylindrical. Then, S poles and N poles are alternately arranged at equal intervals in the circumferential direction on the outer peripheral surface, which is the detected surface, and both axial halves of the detected surface are respectively connected to the S pole and N pole. The first and second characteristic changing sections 24 and 25 are configured such that the phase at the boundary with the pole gradually changes at the same angle in opposite directions with respect to the axial direction. Of the sensors 19A 1 to 19A 6 , the detection unit of one sensor 19A 1 is used as the first characteristic change unit 24, and the detection unit of another sensor 19A 2 is used as the second characteristic change unit. 25, the detection portions of the remaining sensors 19A 3 to 19A 6 are connected to the portions of the first characteristic changing portion 24 or the second characteristic changing portion 25 where the phase in the circumferential direction coincides with the sensor 19A 1. It is made to oppose to the part spaced apart in the circumferential direction with respect to the part which the detection part of another sensor opposes, respectively. If such a structure is adopted, each is a phase difference existing between the output signals of two sensors selected from the six sensors 19A 1 to 19A 6 , and they are different from each other. Based on the five phase differences relating to the combination of two sensors, the displacement x in the x-axis direction, the displacement y in the y-axis direction, the displacement z in the z-axis direction, and the inclination around the x-axis of the encoder 13a φ x and the inclination φ z around the z axis can be calculated respectively.

又、上述した各例では、エンコーダを永久磁石製とすると共に、このエンコーダの被検出面に設ける第一特性部をS極に着磁した部分とし、第二特性部をN極に着磁した部分とする構成を採用している。但し、先発明を実施する場合には、エンコーダを単なる磁性金属板製とすると共に、このエンコーダの被検出面に設ける第一特性部を透孔(又は凹部)とし、第二特性部を柱部(又は凸部)とする構成を採用する事もできる。この様な構成を採用する場合には、各センサ側に永久磁石を組み込む。   In each example described above, the encoder is made of a permanent magnet, the first characteristic portion provided on the detection surface of the encoder is a portion magnetized to the S pole, and the second characteristic portion is magnetized to the N pole. The structure which makes it a part is adopted. However, when carrying out the prior invention, the encoder is made of a simple magnetic metal plate, the first characteristic portion provided on the detection surface of the encoder is a through hole (or a concave portion), and the second characteristic portion is a column portion. It is also possible to adopt a configuration that is (or a convex portion). When such a configuration is adopted, a permanent magnet is incorporated on each sensor side.

更に、上述した各例では、各センサ間の位相差に基づいてハブ4の変位や傾きを算出した後、この変位や傾きに基づいて、軸部材3とハブ4との間に作用する外力を算出する構成を採用している。但し、この外力の測定のみが目的であれば、上記変位や傾きを算出せずに、上記各センサ間の位相差に基づいて直接、上記外力を求める事もできる。この場合には、実際に外力を負荷して行う出荷時試験によって、この外力と上記各センサ間の位相差との関係を調べておき、この関係を利用する。   Furthermore, in each example described above, after calculating the displacement and inclination of the hub 4 based on the phase difference between the sensors, the external force acting between the shaft member 3 and the hub 4 is applied based on the displacement and inclination. A calculation configuration is adopted. However, if only the measurement of the external force is intended, the external force can be directly obtained based on the phase difference between the sensors without calculating the displacement and inclination. In this case, the relationship between the external force and the phase difference between the sensors is examined by a shipping test performed by actually applying the external force, and this relationship is used.

[先発明構造で改良が望まれる点]
上述の様な先発明に係る回転支持装置の状態量測定装置は、上記軸部材3等の静止部材と上記ハブ4等の回転部材との間に荷重が加わった場合に於ける、これら静止部材と回転部材との相対変位量を測定し、この荷重を推定する。この場合に、この荷重の測定精度を確保する面からは、前記両転がり軸受5、5として、各玉(転動体)8、8に予圧を付与したものを使用する事が好ましい。この理由は、次の通りである。上記軸部材3と上記ハブ4との間に荷重が加わった状態での、これら両部材3、4同士の相対変位量の大きさは、これら両部材3、4同士の間に設けられている上記両転がり軸受5、5の剛性に、ほぼ反比例する。又、これら両転がり軸受5、5の剛性は、上記予圧が大きくなる程大きくなる。
[Points where improvement is desired in the structure of the prior invention]
The above-described state quantity measuring device for the rotation support device according to the invention as described above is such a stationary member when a load is applied between the stationary member such as the shaft member 3 and the rotating member such as the hub 4. The relative displacement between the rotating member and the rotating member is measured, and this load is estimated. In this case, from the viewpoint of ensuring the measurement accuracy of the load, it is preferable to use the rolling bearings 5 and 5 provided with preloads on the balls (rolling elements) 8 and 8. The reason for this is as follows. The magnitude of the relative displacement amount between the two members 3 and 4 when a load is applied between the shaft member 3 and the hub 4 is provided between the two members 3 and 4. It is almost inversely proportional to the rigidity of the rolling bearings 5 and 5. The rigidity of the rolling bearings 5 and 5 increases as the preload increases.

上記両転がり軸受5、5として、上記各玉8、8に予圧を付与しないものを使用しても、自動二輪車を含めて車輪を回転自在に支持する為の回転支持装置を構成する転がり軸受の場合、使用時に於いては、負荷圏(外輪回転型の車輪用回転支持装置の場合には下側部分)に存在する玉8、8には、予圧と同様の荷重が加わり続ける。但し、非負荷圏(同様の場合で上側乃至両側部分)に存在する玉8、8には予圧の如き荷重は加わらない。言い換えれば、非負荷圏に存在する玉8、8の転動面と、内輪6の外周面に設けた内輪軌道26又は外輪7の内周面に設けた外輪軌道27との間に正の隙間(ラジアル隙間とアキシアル隙間との一方又は双方)が存在する状態となる。この様な状態では、上記両部材3、4同士の間に加わる荷重(モーメント)の大きさ及び方向が少し変化しただけでも、これら両部材3、4同士が大きく相対変位し易い。この結果、これら両部材3、4同士の間に加わる荷重とこれら両部材3、4同士の相対変位量との関係が複雑になり、これら両部材3、4同士の間に加わる荷重を精度良く求める事が難しくなる。   The rolling bearings 5 and 5 are rolling bearings that constitute a rotation support device for rotatably supporting a wheel including a motorcycle, even if a bearing that does not apply preload to the balls 8 and 8 is used. In this case, in use, a load similar to the preload continues to be applied to the balls 8 and 8 existing in the load zone (the lower portion in the case of the outer ring rotating type wheel rotation support device). However, a load such as a preload is not applied to the balls 8 and 8 existing in the non-load zone (upper side or both side portions in the same case). In other words, there is a positive gap between the rolling surfaces of the balls 8, 8 existing in the non-load zone and the inner ring raceway 26 provided on the outer peripheral surface of the inner ring 6 or the outer ring raceway 27 provided on the inner peripheral surface of the outer ring 7. (One or both of a radial gap and an axial gap) is present. In such a state, even if the magnitude and direction of the load (moment) applied between the members 3 and 4 are slightly changed, the members 3 and 4 are easily relatively displaced. As a result, the relationship between the load applied between the members 3 and 4 and the relative displacement between the members 3 and 4 becomes complicated, and the load applied between the members 3 and 4 can be accurately calculated. It becomes difficult to ask.

これに対して、上記両転がり軸受5、5として、上記各玉8、8に予圧を付与したものを使用すれば、上記非負荷圏に関しても、これら玉8、8の転動面と内輪軌道26及び外輪軌道27との間に正の隙間が存在しない様にできる。そして、上記両部材3、4同士の間に加わる荷重の大きさ及び方向と、これら両部材3、4同士の相対変位の大きさ及び方向との関係を、予圧を付与しない場合に比べて単純化し、上記両部材3、4同士の間に加わる荷重を精度良く求め易くできる。但し、この荷重を精度良く求めるられのは、上記各玉8、8に付与された予圧が安定している事が条件となる。この予圧が、温度変化等により変化すると、上記各転がり軸受5、5の剛性が変化し、上記両部材3、4同士の相対変位の大きさ及び方向に基づく荷重の測定精度が悪化する可能性がある。   On the other hand, if the rolling bearings 5 and 5 are each provided with a preload applied to the balls 8 and 8, the rolling surfaces and inner ring raceways of the balls 8 and 8 are also applied to the non-load zone. 26 and the outer ring raceway 27 can be prevented from having a positive gap. The relationship between the magnitude and direction of the load applied between the members 3 and 4 and the magnitude and direction of the relative displacement between the members 3 and 4 is simpler than when no preload is applied. Thus, the load applied between the members 3 and 4 can be easily obtained with high accuracy. However, this load can be obtained with high accuracy under the condition that the preload applied to the balls 8 and 8 is stable. If this preload changes due to a temperature change or the like, the rigidity of the rolling bearings 5 and 5 may change, and the measurement accuracy of the load based on the magnitude and direction of relative displacement between the members 3 and 4 may deteriorate. There is.

一方、自動二輪車の車輪を車体に対し回転自在に支持する為の回転支持装置を構成する1対の転がり軸受5、5は、前述の図4〜5、14に示した様に、それぞれの外輪7、7をハブ4に内嵌し、それぞれの内輪6、6を軸部材3に外嵌している。又、これら両外輪7、7は、互いに対向する軸方向端面を上記ハブ4の内周面に形成した段差面11、11に、直接又は前記芯金14、14を介して突き当てる事により、互いに近付く方向への変位を制限している。この状態で、上記両転がり軸受5、5の玉8、8に予圧を付与する為には、上記両内輪6、6を互いに近付く方向に押圧した状態のまま、これら両内輪6、6を上記軸部材3に対し固定する。この状態で上記各玉8、8に、背面組み合わせ型(DB型)の接触角と共に予圧が付与される。この状態でこの予圧が一定であれば、上記荷重の大きさ及び方向と上記相対変位の大きさ及び方向との関係を安定させて、この相対変位に基づく荷重の測定精度を良好にできる。   On the other hand, as shown in FIGS. 4 to 5 and 14 described above, a pair of rolling bearings 5 and 5 constituting a rotation support device for rotatably supporting the wheels of the motorcycle with respect to the vehicle body are provided for each outer ring. 7 and 7 are fitted in the hub 4, and the respective inner rings 6 and 6 are fitted on the shaft member 3. Further, these outer rings 7 and 7 are brought into contact with the stepped surfaces 11 and 11 formed on the inner peripheral surface of the hub 4 with the axial end surfaces facing each other directly or via the core bars 14 and 14, respectively. Displacement in the direction of approaching each other is limited. In this state, in order to apply a preload to the balls 8 and 8 of the both rolling bearings 5 and 5, the inner rings 6 and 6 are moved in the above-described state while the inner rings 6 and 6 are pressed in a direction approaching each other. It is fixed to the shaft member 3. In this state, a preload is applied to each of the balls 8 and 8 together with a contact angle of a rear combination type (DB type). If the preload is constant in this state, the relationship between the magnitude and direction of the load and the magnitude and direction of the relative displacement can be stabilized, and the measurement accuracy of the load based on the relative displacement can be improved.

但し、自動二輪車の走行時には、上記軸部材3及び上記ハブ4の温度が、路面からの輻射熱や、上記両転がり軸受5、5内部の転がり抵抗に基づく発熱等によって上昇する。上記軸部材3及び上記ハブ4の材質及び温度上昇の程度が同じであれば、上記予圧は殆ど変化せず、上記荷重の測定を精度良く行える。但し、上記軸部材3は、強度及び剛性を確保する必要上、一般的には、炭素鋼、ステンレス鋼等の鉄系合金により造り、上記ハブ4は、軽量化の為、アルミニウム系合金、マグネシウム合金等の軽金属により造る場合が多い。この場合、温度上昇に伴う熱膨張量は、上記軸部材3に比べて上記ハブ4が多くなり、この熱膨張量の相違に伴って、上記予圧が変化する傾向になる。具体的には、径方向(ラジアル方向)に関しては、このハブ4の内周面と上記軸部材3の外周面との間隔が広がり、予圧を低下させる傾向になる。又、軸方向に関しては、上記ハブ4に支持された1対の外輪7、7同士の間隔が広がる程度が、上記軸部材3に支持された1対の内輪6、6の間隔が広がる程度よりも著しくなる。そして、上記各玉8、8に背面組み合わせ型の接触角が付与されている場合には、軸方向(アキシアル方向)に関して予圧を増大させる傾向になる。   However, when the motorcycle is running, the temperature of the shaft member 3 and the hub 4 rises due to radiant heat from the road surface, heat generation based on the rolling resistance inside the rolling bearings 5 and 5, and the like. If the material of the shaft member 3 and the hub 4 and the degree of temperature rise are the same, the preload hardly changes and the load can be measured with high accuracy. However, in order to ensure strength and rigidity, the shaft member 3 is generally made of an iron-based alloy such as carbon steel or stainless steel, and the hub 4 is made of an aluminum-based alloy or magnesium for weight reduction. Often made from light metals such as alloys. In this case, the amount of thermal expansion accompanying a rise in temperature is greater in the hub 4 than in the shaft member 3, and the preload tends to change with the difference in the amount of thermal expansion. Specifically, with respect to the radial direction (radial direction), the distance between the inner peripheral surface of the hub 4 and the outer peripheral surface of the shaft member 3 increases, and the preload tends to decrease. Further, with respect to the axial direction, the extent to which the distance between the pair of outer rings 7, 7 supported by the hub 4 increases is greater than the extent to which the distance between the pair of inner rings 6, 6 supported by the shaft member 3 increases. Will also be remarkable. And when the contact angle of the back combination type is given to each of the balls 8, 8, the preload tends to increase in the axial direction (axial direction).

上述の様に、鉄系合金製の軸部材3の外周面と軽合金製のハブ4の内周面との間に設けた1対の転がり軸受5、5を構成する各玉8、8に付与する予圧は、温度上昇に伴って変化する傾向になる。又、径方向と軸方向とで、この予圧を変化させる(増減させる)傾向は互いに逆になる。但し、上記各玉8、8に付与している接触角にもよるが、自動二輪車の車輪を支持する為の回転支持装置の場合も含め、一般的な(例えば接触角が25〜45度程度の)転がり軸受5、5の場合には、径方向の寸法変化に伴って予圧が変化する程度は、軸方向の寸法変化に伴って予圧が変化する程度よりも小さくなる。この理由は、上記軸部材3と上記ハブ4との軸方向の寸法変化の差が、そのまま予圧変化に結び付くのに対して、径方向の寸法変化は、そのままは予圧変化に結び付かない為である。即ち、この径方向の寸法変化は、先ず、上記両部材3、4及び上記各軌道輪6、7を弾性変形させる事に繋がり、これら各軌道輪6、7の直径変化が、初めて上記予圧の変化に結び付く為である。言い換えれば、上記両部材3、4の径方向の寸法変化のうちのかなりの部分は、これら両部材3、4と上記各軌道輪6、7との嵌合部の締め代変化に消費され、上記予圧変化に結び付くのはその一部のみとなる。従って、温度変化に伴う、上記両内輪6、6の外径と両外輪7、7の内径との差の変化量は、上記両部材3、4の内外径の差の変化量よりも少なくなる。   As described above, the balls 8, 8 constituting the pair of rolling bearings 5, 5 provided between the outer peripheral surface of the shaft member 3 made of iron-based alloy and the inner peripheral surface of the hub 4 made of light alloy. The preload to be applied tends to change as the temperature rises. Also, the tendency to change (increase / decrease) the preload is opposite between the radial direction and the axial direction. However, although it depends on the contact angle given to each of the balls 8 and 8, a general (for example, a contact angle of about 25 to 45 degrees is included) including a case of a rotation support device for supporting a wheel of a motorcycle. In the case of the rolling bearings 5, 5, the degree to which the preload changes with the dimensional change in the radial direction is smaller than the degree to which the preload changes with the dimensional change in the axial direction. This is because the difference in axial dimension between the shaft member 3 and the hub 4 directly leads to a change in preload, whereas a radial dimension change does not directly lead to a change in preload. is there. That is, the dimensional change in the radial direction first leads to elastic deformation of the members 3 and 4 and the track rings 6 and 7, and the diameter change of the track rings 6 and 7 is the first time the preload is changed. Because it leads to change. In other words, a considerable portion of the dimensional change in the radial direction of both the members 3 and 4 is consumed by the change in the tightening margin of the fitting portion between the both members 3 and 4 and the race rings 6 and 7. Only a part of the change in the preload is connected. Therefore, the change amount of the difference between the outer diameters of the inner rings 6 and 6 and the inner diameters of the outer rings 7 and 7 due to the temperature change is smaller than the change amount of the difference between the inner and outer diameters of the members 3 and 4. .

これらの事から分かる様に、温度上昇時に、径方向と軸方向とで予圧を変化させる傾向が互いに逆になるとは言え、その程度は相違し、温度変化に伴う予圧変化は、軸方向寸法の伸縮に伴う変化が支配的になる。具体的には、上記両転がり軸受5、5を構成する各玉8、8に背面組み合わせ型の接触角が付与されている場合、上記両部材3、4が同じ様に温度上昇すると、軸方向に関して予圧を増大させる傾向になる。そして、この予圧増大分のうちの一部のみが、上記両部材3、4の径方向に関する寸法変化に伴う予圧低下分で相殺される。結局、温度上昇時に上記両転がり軸受5、5を構成する各玉8、8に付与されている予圧は増大する。   As can be seen from these facts, when the temperature rises, the tendency to change the preload in the radial direction and the axial direction is opposite to each other, but the degree is different. Changes due to expansion and contraction become dominant. Specifically, in the case where a contact angle of the back combination type is given to the balls 8, 8 constituting the both rolling bearings 5, 5, when the temperature of both the members 3, 4 increases similarly, the axial direction Tend to increase the preload. Only a part of the increase in the preload is offset by the decrease in the preload accompanying the dimensional change in the radial direction of the members 3 and 4. Eventually, the preload applied to the balls 8 and 8 constituting the rolling bearings 5 and 5 increases when the temperature rises.

温度変化に伴う予圧変化量は限られており、自動二輪車を含む、各種機械装置の回転支持装置の、動トルク、耐久性を含む性能に及ぼす影響は限られている。但し、前述した先発明に係る回転支持装置の状態量測定装置の場合には、予圧変化に伴う支持剛性の変化が、そのまま測定値の誤差に結び付く。この為、この測定値の精度を確保する為には、上記予圧変化を抑えられる構造の実現が望まれる。但し、例えば、自動二輪車の車輪用の回転支持装置の場合には、上記軸部材3と上記ハブ4とを同じ材質で造る事は、これら両部材3、4のうち、少なくとも何れか一方に要求される性能を犠牲にする場合がある為、避ける事が好ましい。   The amount of change in the preload accompanying the temperature change is limited, and the influence on the performance including dynamic torque and durability of the rotation support device of various mechanical devices including motorcycles is limited. However, in the state quantity measuring device of the rotary support device according to the above-described invention, the change in the support rigidity accompanying the change in the preload directly leads to an error in the measured value. For this reason, in order to ensure the accuracy of the measurement value, it is desired to realize a structure that can suppress the change in the preload. However, for example, in the case of a rotation support device for a motorcycle wheel, it is required for at least one of the members 3 and 4 to make the shaft member 3 and the hub 4 from the same material. It is preferable to avoid this because it may sacrifice the performance.

特開2006−133045号公報JP 2006-133045 A 特開2006−322928号公報JP 2006-322928 A 特開2007−93580号公報JP 2007-93580 A

本発明の回転支持装置の状態量測定装置は、上述の様な事情に鑑み、自動二輪車の車輪用の回転支持装置の様に、複列の転がり軸受装置により相対回転自在に支持される静止部材の材質と回転部材の材質とが互いに異なる場合でも、温度変化に拘らず、上記複列転がり軸受装置を構成している、各転動体に付与されている予圧の変化を抑え、上記回転支持装置を構成する静止部材と回転部材との間に作用する外力を精度良く測定できる構造を実現すべく発明したものである。   In view of the circumstances as described above, the state quantity measuring device of the rotation support device according to the present invention is a stationary member that is relatively rotatably supported by a double row rolling bearing device like a rotation support device for a wheel of a motorcycle. Even if the material of the rotating member and the material of the rotating member are different from each other, the rotation support device is configured to suppress the change in the preload applied to each rolling element, constituting the double row rolling bearing device, regardless of the temperature change. The invention was invented to realize a structure capable of accurately measuring an external force acting between a stationary member and a rotating member.

本発明の回転支持装置の状態量測定装置は、回転支持装置と、状態量測定装置とを備える。
このうちの回転支持装置は、静止側周面に1対の静止側軌道を設け、使用時にも回転しない静止部材と、回転側周面に1対の回転側軌道を設け、使用時に回転する回転部材と、これら両回転側軌道と上記両静止側軌道の間にそれぞれ複数個ずつ、それぞれ転動自在に設けられた転動体とを備える。
又、上記状態量測定装置は、上記回転部材のうち軸方向に離隔した2個所位置に支持されてこの回転部材と共に回転する1対のエンコーダと、使用時にも回転しない部分に支持固定されたセンサ装置と、演算器とを備える。
このうちの1対のエンコーダはそれぞれ、上記回転部材と同心の被検出面を有し、これら両被検出面の特性を円周方向に関して交互に且つ互いに同じピッチで変化させたものである。
又、上記センサ装置は、上記両エンコーダのうちの一方のエンコーダの被検出面に検出部を対向させた1乃至複数個のセンサと、他方のエンコーダの被検出面に検出部を対向させた1乃至複数個のセンサとを備えたもので、これら各センサはそれぞれ、上記両エンコーダの被検出面のうち自身の検出部を対向させた部分の特性変化に対応して出力信号を変化させるものである。
更に、上記演算器は、上記各センサの出力信号同士の間に存在する位相差に基づいて、上記静止部材と上記回転部材との相対変位を求める機能を有するものである。
以上の構成は、前述した先発明に係る回転支持装置の状態量測定装置と同様である。
The state quantity measuring device for a rotation support device of the present invention includes a rotation support device and a state quantity measurement device.
Among these, the rotation support device is provided with a pair of stationary side tracks on the stationary side circumferential surface, a stationary member that does not rotate even when in use, and a pair of rotation side tracks on the rotating side circumferential surface, which rotates when in use. A member, and a plurality of rolling elements are provided between the rotating side tracks and the stationary side tracks.
In addition, the state quantity measuring device includes a pair of encoders that are supported at two positions separated from each other in the axial direction of the rotating member and rotate together with the rotating member, and a sensor that is supported and fixed to a portion that does not rotate even when used. A device and a computing unit.
Each of the pair of encoders has a detected surface concentric with the rotating member, and the characteristics of both the detected surfaces are alternately changed at the same pitch in the circumferential direction.
In the sensor device, one or a plurality of sensors having a detection unit opposed to a detection surface of one of the encoders, and a detection unit having a detection unit opposed to a detection surface of the other encoder. Or a plurality of sensors, each of which changes an output signal in response to a characteristic change of a portion of the detected surfaces of both encoders facing the detection unit. is there.
Further, the arithmetic unit has a function of obtaining a relative displacement between the stationary member and the rotating member based on a phase difference existing between output signals of the sensors.
The above configuration is the same as that of the state quantity measuring device of the rotary support device according to the above-described invention.

特に、本発明の回転支持装置の状態量測定装置は、上記両静止側軌道と上記両回転側軌道とのうちの少なくとも1個の軌道は、当該軌道をその周面に設けた静止部材又は回転部材である相手部材に、円環状の軌道輪部材(外輪又は内輪)を嵌合する事により設けたものである。
又、上記軌道輪部材の軸方向一端面に円筒状の間座の軸方向一端面を突き当てると共に、この間座の軸方向他端面を、上記相手部材に固定の部分若しくはこの相手部材に嵌合された別の軌道輪部材に突き当てている。
そして、上記間座を構成する材料の線膨張係数と上記相手部材を構成する材料の線膨張係数とを互いに異ならせる事により、温度変化に伴う、上記両静止側軌道と上記両回転側軌道との間に設置した上記各転動体の予圧変化を抑えている。
更に、上記1対のエンコーダの被検出面はそれぞれ、次の(1)(2)のうちの何れか一方である。
(1) 当該被検出面の特性変化の位相が当該被検出面の幅方向に対して変化していない被検出面(前述の図6〜13に記載した構造)。
(2) 当該被検出面の幅方向両半部に、使用状態でセンサの検出部が少なくとも1個ずつ対向する第一、第二両特性変化部を有し、これら両特性変化部のうちの少なくとも一方の特性変化部の特性変化の位相が当該被検出面の幅方向に関し、他方の特性変化部と異なる状態で漸次変化している被検出面(前述の図15に記載した構造)。
In particular, the state quantity measuring device for a rotation support device according to the present invention is characterized in that at least one of the both stationary side tracks and the both rotation side tracks is a stationary member or a rotating member provided with the track on its peripheral surface. It is provided by fitting an annular race ring member (outer ring or inner ring) to a mating member which is a member.
The axial end of the cylindrical spacer is abutted against the axial end of the bearing ring member, and the other axial end of the spacer is fixed to the mating member or fitted to the mating member. It is abutted against another bearing ring member.
And, by making the linear expansion coefficient of the material constituting the spacer different from the linear expansion coefficient of the material constituting the mating member, the both stationary side orbits and the both rotating side orbits accompanying the temperature change The change in the preload of each rolling element installed during the period is suppressed.
Further, the detected surfaces of the pair of encoders are each one of the following (1) and (2).
(1) A detected surface in which the phase of the characteristic change of the detected surface does not change with respect to the width direction of the detected surface (the structure described in FIGS. 6 to 13 described above).
(2) There are first and second characteristic change portions in which at least one detection portion of the sensor is opposed to each other in the width direction half of the detected surface in the use state. The detected surface in which the phase of the characteristic change of at least one of the characteristic changing portions is gradually changed in a state different from the other characteristic changing portion with respect to the width direction of the detected surface (structure shown in FIG. 15 described above).

上述した本発明の回転支持装置の状態量測定装置を実施する場合に、例えば請求項2に記載した発明の様に、上記静止部材を、炭素鋼、ステンレス鋼等の鉄系合金製の軸部材とする。そして、それぞれが静止側軌道である1対の内輪軌道をこの軸部材の外周面に、この軸部材に対する軸方向の変位を阻止した状態で、直接又は内輪を介して設ける。
又、上記回転部材を、アルミニウム系合金、マグネシウム系合金等の軽合金製のハブとする。そして、それぞれが回転側軌道である1対の外輪軌道を、それぞれこのハブに内嵌された1対の外輪の内周面に形成されたものとする。言い換えれば、それぞれの内周面に外輪軌道を形成した1対の外輪を、上記ハブに内嵌支持する。
更に、上記間座を、熱膨張に伴って上記両外輪同士の間隔を広げる方向に配置する。
When the above-described state quantity measuring device of the rotary support device of the present invention is implemented, the stationary member is a shaft member made of an iron-based alloy such as carbon steel or stainless steel as in the invention described in claim 2. And Then, a pair of inner ring raceways, each of which is a stationary side raceway, is provided on the outer peripheral surface of the shaft member directly or via an inner ring in a state where axial displacement relative to the shaft member is prevented.
The rotating member is a hub made of a light alloy such as an aluminum alloy or a magnesium alloy. A pair of outer ring raceways, each of which is a rotation side raceway, is formed on the inner peripheral surface of a pair of outer rings fitted inside the hub. In other words, a pair of outer rings, each having an outer ring raceway formed on each inner peripheral surface, are fitted and supported on the hub.
Further, the spacer is arranged in a direction in which the interval between the outer rings is increased with thermal expansion.

この様な請求項2に記載した発明を実施する場合に、例えば請求項3に記載した発明の様に、互いに線膨張係数が異なる金属材料により造られた第一、第二の間座を、軸方向に関して互いに直列に配置する。
この様な請求項3に記載した発明を実施する場合に、例えば請求項4に記載した発明の様に、上記第一の間座を、炭素鋼、ステンレス鋼等の鉄系合金製とし、上記第二の間座を、アルミニウム系合金、マグネシウム系合金等の軽合金製とする。
When carrying out the invention described in claim 2, for example, as in the invention described in claim 3, first and second spacers made of metal materials having different linear expansion coefficients from each other, They are arranged in series with respect to the axial direction.
When carrying out the invention described in claim 3, for example, as in the invention described in claim 4, the first spacer is made of an iron-based alloy such as carbon steel or stainless steel, and The second spacer is made of a light alloy such as an aluminum alloy or a magnesium alloy.

上述の様な本発明を実施する場合に好ましくは、請求項5に記載した発明の様に、互いに直交するx軸、y軸、z軸から成る三次元直交座標系のうちのy軸を静止部材の中心軸に一致させた場合に、前記演算器に、各センサの出力信号同士の間に存在する位相差に基づいて、上記静止部材に対する回転部材の、x軸方向の変位xと、y軸方向の変位yと、z軸方向の変位zと、x軸回りの傾きφx と、z軸回りの傾きφz とのうちの、少なくとも1つの変位若しくは傾きを算出する機能を持たせる。 Preferably, when the present invention as described above is implemented, the y-axis of the three-dimensional orthogonal coordinate system composed of the x-axis, y-axis, and z-axis orthogonal to each other is stationary as in the invention described in claim 5. When matched with the central axis of the member, the calculator calculates the displacement x in the x-axis direction of the rotating member relative to the stationary member based on the phase difference existing between the output signals of the sensors, and y It has a function of calculating at least one displacement or inclination among the displacement y in the axial direction, the displacement z in the z-axis direction, the inclination φ x around the x axis, and the inclination φ z around the z axis.

又、上述の様な本発明を実施する場合に、例えば請求項6に記載した発明の様に、上記1対のエンコーダの被検出面をそれぞれ円輪状とし、上記各センサの検出部をこれら両被検出面に対し軸方向に対向させる。
或いは、請求項7に記載した発明の様に、上記1対のエンコーダの被検出面をそれぞれ円筒状とし、上記各センサの検出部をこれら両被検出面に対し径方向に対向させる。
Further, when the present invention as described above is implemented, for example, as in the invention described in claim 6 , the detected surfaces of the pair of encoders are each in the shape of a ring, and the detection portions of the sensors are set to both of them. Opposite the surface to be detected in the axial direction.
Alternatively, as in the seventh aspect of the present invention, the detected surfaces of the pair of encoders are cylindrical, and the detection portions of the sensors are opposed to the detected surfaces in the radial direction.

又、上述の様な本発明を実施する場合に、例えば請求項8に記載した発明の様に、前記演算器に、自身が算出した、前記静止部材に対する前記回転部材の変位若しくは傾きに基づき、これら静止部材と回転部材との間に作用する外力を算出する機能を持たせる。
更に、上述の様な本発明を実施する場合に、例えば請求項9に記載した発明の様に、前記回転支持装置を、自動二輪車の車輪支持用の回転支持装置とする。そして、上記静止部材を、軸部材等、使用状態でこの自動二輪車の車体に支持固定される部材とし、上記回転部材を、ホイールのハブ等、上記車輪を支持固定する部材又はこの車輪の一部を構成する部材とする。
Further, when implementing the present invention as described above, for example, as in the invention described in claim 8 , based on the displacement or inclination of the rotating member relative to the stationary member calculated by the computing unit, A function of calculating an external force acting between the stationary member and the rotating member is provided.
Furthermore, when carrying out the present invention as described above, for example, as in the invention described in claim 9 , the rotation support device is a rotation support device for supporting a wheel of a motorcycle. The stationary member is a member such as a shaft member that is supported and fixed to the motorcycle body in use, and the rotating member is a member that supports and fixes the wheel, such as a wheel hub, or a part of the wheel. It is set as the member which comprises.

上述の様に構成する本発明の回転支持装置の状態量測定装置によれば、自動二輪車の車輪用の回転支持装置の様に、複列の転がり軸受装置により相対回転自在に支持される静止部材の材質と回転部材の材質とが互いに異なる場合でも、温度変化に拘らず、上記複列転がり軸受装置を構成している、各転動体に付与されている予圧の変化を抑えられる。そして、上記回転支持装置を構成する静止部材と回転部材との間に作用する外力を精度良く測定できる。   According to the state quantity measuring device of the rotational support device of the present invention configured as described above, like a rotational support device for a wheel of a motorcycle, a stationary member that is rotatably supported by a double row rolling bearing device. Even when the material of the rotating member and the material of the rotating member are different from each other, the change in the preload applied to each rolling element constituting the double row rolling bearing device can be suppressed regardless of the temperature change. And the external force which acts between the stationary member and rotation member which comprise the said rotation support apparatus can be measured with a sufficient precision.

即ち、本発明の回転支持装置の状態両測定装置の場合には、軌道輪部材の軸方向一端面と相手部材に固定の部分若しくはこの相手部材に嵌合された別の軌道輪部材との間に円筒状の間座を配置している。この間座を構成する材料の線膨張係数は上記相手部材を構成する材料の線膨張係数と異なる為、温度変化に伴う、上記相手部材の周面に設けた1対の軌道面の軸方向間隔(ピッチ)の変化量は、この相手部材の伸縮量でなく、上記間座の伸縮量により定まる。従って、この間座の材質を適正に規制し、温度変化に伴う上記両軌道面の軸方向間隔(ピッチ)の変化量を、この温度変化に伴う、静止側軌道と回転側軌道との直径の差の変化との関係で適切に規制すれば、これら両軌道間に設置した上記各転動体の予圧変化を抑えられる。例えば、請求項2〜4に記載した発明の如き具体例によれば、この予圧変化を十分に抑えられる。 That is, in the case of both the state measuring devices of the rotation support device of the present invention, between the one end surface in the axial direction of the race ring member and a portion fixed to the counterpart member or another race ring member fitted to this counterpart member. A cylindrical spacer is arranged in Since the linear expansion coefficient of the material constituting the spacer is different from the linear expansion coefficient of the material constituting the mating member, an axial interval between a pair of raceway surfaces provided on the peripheral surface of the mating member accompanying a temperature change ( The change amount of the pitch is determined not by the expansion / contraction amount of the mating member but by the expansion / contraction amount of the spacer. Therefore, the material of the spacer is properly regulated, and the change in the axial interval (pitch) between the both raceway surfaces due to the temperature change is the difference in diameter between the stationary side track and the rotary side track due to this temperature change. If it regulates appropriately in relation to the change of the above, it is possible to suppress the change in the preload of each of the rolling elements installed between these two tracks. For example, according to the specific examples of the invention described in claims 2 to 4, this change in the preload can be sufficiently suppressed.

又、請求項5に記載した発明の如き構成を採用すれば、自動二輪車の車輪用の回転支持装置の様に、組み付けられるエンコーダの被検出面の直径が小さくならざるを得ない、小径の回転支持装置に適用した場合でも、この回転支持装置を構成する静止部材と回転部材との間に作用する外力を精度良く測定できる。
即ち、本発明の場合には、前述した先発明の場合と同様に、前記静止部材に対し前記回転部材が変位する(1対のエンコーダが互いに異なる状態で変位する)と、これに伴って、これら両エンコーダの被検出面にそれぞれの検出部を対向させた複数個のセンサの出力信号同士の間の位相差が変化する。この為、この位相差に基づいて、静止部材に対する回転部材の変位や傾きを算出できる。しかも、上記静止部材に対する上記回転部材の変位や傾きが、互いに間隔をあけて配置された1対のエンコーダの変位に反映される。この為、これら両エンコーダの被検出面の直径が小さくなる事に伴って生じる、上記各位相差の検出誤差に対する、上記変位や傾きの算出精度の悪化率の増加を十分に抑えられる。従って、自動二輪車の車輪用の回転支持装置の様に、外径寸法が比較的小さく、組み付けられるエンコーダの被検出面の直径も比較的小さくならざるを得ない回転支持装置に適用する場合でも、上記各位相差に基づいて、静止部材に対する回転部材の変位や傾きを精度良く算出できる。
Further, if the configuration as in the invention described in claim 5 is adopted, the rotation of the small-diameter rotation is unavoidable because the detected surface of the encoder to be assembled must be small like the rotation support device for a wheel of a motorcycle. Even when applied to the support device, it is possible to accurately measure the external force acting between the stationary member and the rotation member constituting the rotation support device.
That is, in the case of the present invention, as in the case of the previous invention described above, when the rotating member is displaced relative to the stationary member (a pair of encoders are displaced in different states), along with this, The phase difference between the output signals of a plurality of sensors in which the detection units are opposed to the detection surfaces of both encoders changes. For this reason, based on this phase difference, the displacement and inclination of the rotating member relative to the stationary member can be calculated. In addition, the displacement and inclination of the rotating member with respect to the stationary member are reflected in the displacement of a pair of encoders arranged at a distance from each other. For this reason, an increase in the deterioration rate of the displacement and inclination calculation accuracy with respect to the detection error of each phase difference, which occurs as the diameters of the detected surfaces of both encoders become smaller, can be sufficiently suppressed. Therefore, even when applied to a rotation support device, such as a rotation support device for a motorcycle wheel, the outer diameter is relatively small, and the diameter of the detected surface of the encoder to be assembled must be relatively small. Based on each phase difference, the displacement and inclination of the rotating member relative to the stationary member can be calculated with high accuracy.

図1〜3は、本発明の実施の形態の1例を示している。尚、本例は、次の(a) 〜(e) の構造を採用する事を前提としている。
(a) 使用時にも回転しない静止部材は、自動二輪車の車体の一部であるフロントフォーク2、2の下端部にその両端部を支持された軸部材3aで、鉄系合金製である。
(b) 使用時に回転する回転部材は、自動二輪車の前車輪のホイールの中心部に設けられた、アルミニウム系合金製のハブ4aであって、それぞれが単列深溝型(アンギュラ型でも良い)である1対の転がり軸受5、5により、上記軸部材3aの周囲に回転自在に支持されている。
(c) これら両転がり軸受5、5を構成している各玉8、8に、背面組み合わせ型の接触角と共に、予圧を付与している。
(d) 上記両転がり軸受5、5を構成する1対の内輪6、6は上記軸部材3aの外周面の軸方向に離隔した2個所位置に、それぞれこの軸部材3aに対し軸方向への変位を阻止された状態で、外嵌固定されている。
(e) 上記両転がり軸受5、5を構成する1対の外輪7a、7b同士の間に第一、第二の外輪間座29、30を設け、これら両外輪間座29、30の線膨張係数を、上記軸部材3aを構成する鉄系合金の線膨張係数(更に、必要に応じて、上記ハブ4aを構成するアルミニウム系合金の線膨張係数)、上記両転がり軸受5、5を構成する内輪6、6及び外輪7a、7bの軸受材3a及びハブ4aに対する締め代等を含む、他の仕様との関係で適正に規制する。
本例の構造は、上記(a) 〜(e) の構造を採用する事により、温度変化に拘らず、上記両転がり軸受5、5を構成している、上記各玉8、8に付与されている予圧の変化を抑える様にしている。
1 to 3 show an example of an embodiment of the present invention. In this example, it is assumed that the following structures (a) to (e) are adopted.
(a) The stationary member that does not rotate even when in use is a shaft member 3a that is supported by the lower ends of the front forks 2 and 2 that are part of the body of the motorcycle, and is made of an iron-based alloy.
(b) The rotating members that rotate when in use are aluminum alloy hubs 4a provided at the center of the front wheel of the motorcycle, each of which is a single-row deep groove type (or an angular type). A pair of rolling bearings 5 and 5 are rotatably supported around the shaft member 3a.
(c) A preload is applied to the balls 8 and 8 constituting the rolling bearings 5 and 5 together with the contact angle of the rear combination type.
(d) The pair of inner rings 6 and 6 constituting the both rolling bearings 5 and 5 are positioned in two axial positions on the outer peripheral surface of the shaft member 3a in the axial direction with respect to the shaft member 3a. The outer fitting is fixed while the displacement is prevented.
(e) The first and second outer ring spacers 29, 30 are provided between the pair of outer rings 7a, 7b constituting the both rolling bearings 5, 5, and the linear expansion of these outer ring spacers 29, 30 is provided. The linear expansion coefficient of the iron-based alloy constituting the shaft member 3a (and, if necessary, the linear expansion coefficient of the aluminum-based alloy constituting the hub 4a) and the double rolling bearings 5 and 5 are constituted. The inner rings 6 and 6 and the outer rings 7a and 7b are appropriately regulated in relation to other specifications including the allowance for the bearing material 3a and the hub 4a .
The structure of this example is applied to each of the balls 8 and 8 constituting the both rolling bearings 5 and 5 regardless of the temperature change by adopting the structures of the above (a) to (e). I try to suppress changes in preload.

以下、本例の構造に就いて、具体的に説明する。
上記軸部材3aは、それぞれが鉄系合金製である内筒31と外筒32とを嵌め合わせ固定して成る。上記両内輪6、6は、このうちの外筒32の外周面の軸方向両端寄り部分に、締り嵌めで、それぞれ上記軸部材3aに対する軸方向の変位を阻止した状態で外嵌固定している。この為に、上記両内輪6、6の軸方向内端面(軸方向中央寄りの端面)を上記外筒32の外周面の軸方向両端寄り部分に形成した外向の段差面33、33に突き当てると共に、上記両内輪6、6の軸方向外端面(軸方向両端寄りの端面)を、それぞれ抑え環10a、10bの軸方向内端面により抑え付けている。尚、これら両抑え環10a、10bのうち、一方(図1の左方)の抑え環10aの軸方向外端面は、フロントフォーク2の下端部内側面に突き当てている。更に、上記内筒31の軸方向一端部(図1の左端部)に螺着したボルト35の頭部36により、上記フロントフォーク2の下端部外側面を抑え付けている。これに対して、他方(図1の右方)の抑え環10bの軸方向外端面は、上記内筒31の一部で上記外筒32よりも突出した部分に形成した、別の段差面34に突き当てている。この構成により、前記(d) の様に上記両内輪6、6を上記軸部材3aの外周面の軸方向に離隔した2個所位置に、それぞれこの軸部材3aに対し軸方向への変位を阻止した状態で固定している。尚、状態量測定用のセンサ19A、19Bは上記外筒32の一部に、センサケース39を介して設置し、これら各センサ19A、19Bの出力信号を上記一方の抑え環10aに設けた取り出し孔37を通じて外部に取り出す様にしている。但し、この部分に関しては、前述した先発明と同様に構成できる等、本発明の特徴と関係しない為、詳しい説明は省略する。
Hereinafter, the structure of this example will be specifically described.
The shaft member 3a is formed by fitting and fixing an inner cylinder 31 and an outer cylinder 32 each made of an iron-based alloy. The inner rings 6 and 6 are fixedly fitted on the outer peripheral surface of the outer cylinder 32 near the both ends in the axial direction by interference fitting while preventing axial displacement with respect to the shaft member 3a. . For this purpose, the inner end surfaces in the axial direction (end surfaces near the center in the axial direction) of the inner rings 6 and 6 are brought into contact with the outward step surfaces 33 and 33 formed on the outer peripheral surface of the outer cylinder 32 near the both ends in the axial direction. At the same time, the outer end surfaces in the axial direction of the inner rings 6 and 6 (end surfaces near both ends in the axial direction) are held down by the inner end surfaces in the axial direction of the holding rings 10a and 10b, respectively. Of these holding rings 10 a and 10 b, the outer end surface in the axial direction of one (left side in FIG. 1) of the holding ring 10 a abuts against the inner surface of the lower end of the front fork 2. Further, the outer surface of the lower end portion of the front fork 2 is held down by a head portion 36 of a bolt 35 screwed to one end portion in the axial direction of the inner cylinder 31 (left end portion in FIG. 1). On the other hand, the axially outer end surface of the other (right side in FIG. 1) holding ring 10 b is another stepped surface 34 formed in a part of the inner cylinder 31 protruding from the outer cylinder 32. It has hit against. With this configuration, as in (d), the inner rings 6 and 6 are prevented from being displaced in the axial direction with respect to the shaft member 3a at two positions in the axial direction of the outer peripheral surface of the shaft member 3a. It is fixed in the state. The state quantity measuring sensors 19A and 19B are installed in a part of the outer cylinder 32 through a sensor case 39, and the output signals of these sensors 19A and 19B are taken out from the one holding ring 10a. The outside is taken out through the hole 37. However, since this part is not related to the features of the present invention, such as being able to be configured in the same manner as the previous invention described above, detailed description thereof is omitted.

又、前記ハブ4aはアルミニウム系合金製で、内周面の中間部一端寄り(図1の左寄り)部分に、径方向内方に突出する突条部38を、全周に亙って形成している。そして、前記両転がり軸受5、5を構成する外輪7a、7bのうち、一方(図1の左方)の外輪7aの軸方向内端面を、上記突条部38の軸方向片側面に突き当てている。これに対して、他方(図1の右方)の外輪7bは、上記ハブ4aの内周面の他端寄り(図1の右寄り)部分に、軽い締り嵌め乃至隙間嵌により内嵌している。従って上記他方の外輪7bは、少なくとも軸方向に強い力が加わった場合には、上記ハブ4aに対し軸方向に変位する。更に、上記他方の外輪7bの軸方向内端面と上記突条部38の軸方向他側面との間に、前記第一、第二の外輪間座29、30を、軸方向に関して互いに直列に配置した状態で設けている。これら両外輪間座29、30は、上記他方の外輪7bと上記突条部38との間で突っ張る。従って、これら他方の外輪7bと突条部38との間隔、延ては、上記両外輪7a、7b同士の間隔は、上記両外輪間座29、30の軸方向長さにより規制される。尚、これら両外輪間座29、30のうちの一方の間座(例えば第一の外輪間座29)は鉄系合金製とし、他方の間座(例えば第二の外輪間座30)はアルミニウム系合金製としている。   The hub 4a is made of an aluminum-based alloy, and a ridge portion 38 projecting radially inward is formed over the entire circumference at a portion near one end of the intermediate portion of the inner peripheral surface (leftward in FIG. 1). ing. Then, of the outer rings 7a and 7b constituting the rolling bearings 5 and 5, the inner end surface in the axial direction of one (left side in FIG. 1) of the outer ring 7a is abutted against one side surface of the protruding portion 38 in the axial direction. ing. On the other hand, the other outer ring 7b (on the right side in FIG. 1) is fitted into the portion near the other end (right side in FIG. 1) of the inner peripheral surface of the hub 4a by a light interference fit or gap fit. . Accordingly, the other outer ring 7b is displaced in the axial direction with respect to the hub 4a when a strong force is applied at least in the axial direction. Further, the first and second outer ring spacers 29, 30 are arranged in series with respect to the axial direction between the inner end surface in the axial direction of the other outer ring 7b and the other side surface in the axial direction of the protruding portion 38. Provided. These outer ring spacers 29, 30 are stretched between the other outer ring 7b and the protrusion 38. Accordingly, the distance between the other outer ring 7b and the protrusion 38, and the distance between the outer rings 7a and 7b, is regulated by the axial lengths of the outer ring spacers 29 and 30. One of the outer ring spacers 29, 30 (for example, the first outer ring spacer 29) is made of an iron-based alloy, and the other spacer (for example, the second outer ring spacer 30) is made of aluminum. Made of a base alloy.

前述の様に、前記両内輪6、6を前記軸部材3aの外周面2個所位置に固定すると共に、上述の様に、上記両外輪7a、7bを上記ハブ4aの内周面2個所位置に支持した状態で、前記各玉8、8に、背面組み合わせ型の接触角と共に、予圧を付与している。この為に、上記突条部38及び上記両外輪間座29、30の軸方向寸法の和を、付与すべき接触角及び予圧の大きさを考慮しつつ、前記両段差面33、33同士の間隔との関係で規制している。材質が異なる1対の外輪間座29、30を使用する点を除き、接触角及び予圧を付与する場合の、基本的な設計手法に就いては、一般的な背面組み合わせ型の複列玉軸受の場合と同様であるから、詳しい説明は省略する。   As described above, the inner rings 6 and 6 are fixed at the positions of the two outer peripheral surfaces of the shaft member 3a, and the outer rings 7a and 7b are positioned at the positions of the two inner peripheral surfaces of the hub 4a as described above. In the supported state, a preload is applied to each of the balls 8 and 8 together with a contact angle of the rear combination type. For this purpose, the sum of the axial dimensions of the protrusion 38 and the outer ring spacers 29, 30 is taken into consideration between the stepped surfaces 33, 33 while taking into account the contact angle to be applied and the size of the preload. Regulated in relation to the interval. Except for the use of a pair of outer ring spacers 29, 30 made of different materials, a general back combination type double row ball bearing is used for the basic design method when applying contact angle and preload. Since this is the same as the case of, detailed description is omitted.

上述の様に構成する本例の回転支持装置の状態量測定装置は、前述した先発明に係る回転支持装置の状態量測定装置と同様にして、上記軸部材3aと上記ハブ4aとの相対変位の方向及び大きさを求め、これら両部材3a、4a同士の間に作用する力(外力)の方向及び大きさを求める事ができる。
特に、本例の回転支持装置の状態量測定装置の場合には、温度変化に伴う、鉄系合金製の上記軸部材3aとアルミニウム系合金製の上記ハブ4aとの熱膨張量の差に拘らず、前記両転がり軸受5、5を構成する各玉8、8に付与されている予圧の変化を抑えられる。そして、上記両部材3a、4a同士の間に作用する外力を精度良く測定できる。
The state quantity measuring device of the rotation support device of the present example configured as described above is a relative displacement between the shaft member 3a and the hub 4a in the same manner as the state quantity measurement device of the rotation support device according to the previous invention. And the direction and magnitude of the force (external force) acting between these members 3a and 4a can be obtained.
In particular, in the case of the state quantity measuring device of the rotation support device of this example, regardless of the difference in thermal expansion amount between the shaft member 3a made of iron alloy and the hub 4a made of aluminum alloy accompanying a temperature change. Therefore, the change in the preload applied to the balls 8 and 8 constituting the both rolling bearings 5 and 5 can be suppressed. And the external force which acts between the said both members 3a and 4a can be measured with a sufficient precision.

上述の様に、温度変化に拘らず上記予圧の変化を抑えられる理由に就いて、図2〜3を参照しつつ、以下に説明する。
先ず、背面組み合わせ型の接触角を付与し、鉄系合金製の軸部材3aの外周面とアルミニウム系合金製のハブ4aの内周面との間に設けた複列アンギュラ型玉軸受の予圧が、温度上昇に伴って変化する状況に就いて、図2により説明する。
As described above, the reason why the change in the preload can be suppressed regardless of the temperature change will be described below with reference to FIGS.
First, a contact angle of the back combination type is provided, and the preload of the double row angular contact ball bearing provided between the outer peripheral surface of the iron-based alloy shaft member 3a and the inner peripheral surface of the aluminum-based alloy hub 4a is obtained. The situation that changes as the temperature rises will be described with reference to FIG.

上記両部材3a、4aは、温度上昇に伴って膨張するが、それぞれの膨張量は、径方向に関しても、軸方向に関しても、アルミニウム系合金製のハブ4aの方が鉄系合金製の軸部材3aよりも大きくなる。
このうちの径方向の膨張量の差に起因して、上記予圧が低下する傾向になる。即ち、上記軸部材3aの外周面と上記ハブ4aの内周面との間隔が拡がり、前記両内輪6、6の外周面に設けた内輪軌道26、26の外径が拡がる程度に比べて、前記両外輪7a、7bの内周面に形成した外輪軌道27、27の内径が拡がる程度が著しくなり、上記予圧が低下する傾向になる。
これに対して、軸方向の膨張量の差に起因して、上記予圧が上昇する傾向になる。即ち、上記両内輪6、6同士の間隔が拡がる程度に比べて、上記両外輪7a、7b同士の間隔が拡がる程度が著しくなり、上記予圧が上昇する傾向になる。
Both the members 3a and 4a expand as the temperature rises. The expansion amount of each of the members 3a and 4a is greater than that of the hub 4a made of an aluminum alloy in both the radial direction and the axial direction. It becomes larger than 3a.
Due to the difference in the amount of expansion in the radial direction, the preload tends to decrease. That is, the distance between the outer peripheral surface of the shaft member 3a and the inner peripheral surface of the hub 4a is increased, and the outer diameters of the inner ring raceways 26 and 26 provided on the outer peripheral surfaces of the inner rings 6 and 6 are increased. The degree to which the inner diameters of the outer ring races 27, 27 formed on the inner peripheral surfaces of the outer rings 7a, 7b are increased is prominent, and the preload tends to decrease.
On the other hand, the preload tends to increase due to the difference in the expansion amount in the axial direction. That is, compared with the extent to which the distance between the inner rings 6 and 6 is increased, the degree to which the distance between the outer rings 7a and 7b is increased, and the preload tends to increase.

但し、前述した通り、上記径方向の膨張量の差に起因して上記予圧が低下する程度に比べて、上記軸方向の膨張量の差に起因してこの予圧が上昇する程度が著しくなる。この為、そのままでは、温度上昇に伴う予圧の上昇分を同じく低下分で相殺し切れず、温度上昇時に前記両転がり軸受5、5を構成する各玉8、8に付与されている予圧が上昇する。この結果、上記両部材3a、4a同士の間に作用する外力の測定精度が悪化する。要するに、上記両内輪6、6同士の間に鉄系合金製の内輪間座(鉄系合金製の軸部材3aの一部でも同じ)を、上記両外輪7a、7b同士の間にアルミニウム系合金製の外輪間座(アルミニウム系合金製のハブ4aの一部でも同じ)を、ぞれぞれ挟持しただけでは、図3の(A)に示す様に、温度上昇時に於ける、上記両間座同士の膨張量の差△Lが過大になる。そして、この膨張量の差△Lに基づく、上記予圧の上昇分を、上記径方向の膨張量の差に基づくこの予圧の低下分で相殺し切れず、上述の様に予圧が上昇する。尚、図3の(A)(B)は、外輪間座及び内輪間座の温度が、20℃から80℃に上昇した場合に於ける、これら両間座の全長及び熱膨張分を表している。   However, as described above, the degree to which the preload increases due to the difference in the amount of expansion in the axial direction becomes more significant than the degree to which the preload decreases due to the difference in the amount of expansion in the radial direction. For this reason, as it is, the increase in the preload due to the temperature rise cannot be completely offset by the decrease, and the preload applied to the balls 8 and 8 constituting the rolling bearings 5 and 5 increases when the temperature rises. To do. As a result, the measurement accuracy of the external force acting between the members 3a and 4a is deteriorated. In short, an inner ring spacer made of an iron-based alloy (the same applies to a part of the shaft member 3a made of an iron-based alloy) is provided between the inner rings 6 and 6, and an aluminum-based alloy is formed between the outer rings 7a and 7b. If the outer ring spacer made of aluminum (same for a part of the hub 4a made of aluminum alloy) is simply clamped, as shown in FIG. The difference ΔL in the amount of expansion between the seats becomes excessive. The increase in the preload based on the difference ΔL in the expansion amount cannot be completely offset by the decrease in the preload based on the difference in the expansion amount in the radial direction, and the preload increases as described above. 3A and 3B show the total length and thermal expansion of both spacers when the temperature of the outer ring spacer and the inner ring spacer increases from 20 ° C to 80 ° C. Yes.

これに対して本例の場合には、上記両外輪7a、7b同士の間に、鉄系合金製の第一の外輪間座29とアルミニウム系合金製の第二の外輪間座30とを、熱膨張の方向である軸方向に関して、互いに直列に配置しているので、図3の(B)に示す様に、温度上昇時に於ける、これら両外輪間座29、30と内輪間座との膨張量の差δLを小さく抑えられる。この為、この膨張量の差δLに基づく、上記予圧の上昇分を、上記径方向の膨張量の差に基づくこの予圧の低下分でほぼ相殺できて、温度上昇時にも予圧の変化を抑えられる。この結果、温度変化に拘らず、上記両部材3a、4a同士の間に作用する外力を精度良く測定できる。上記差δLの大きさは、上記両間座29、30の長さの割合を変える事により、任意に調節できる。   On the other hand, in the case of this example, between the outer rings 7a, 7b, a first outer ring spacer 29 made of an iron alloy and a second outer ring spacer 30 made of an aluminum alloy, Since they are arranged in series with respect to the axial direction, which is the direction of thermal expansion, as shown in FIG. 3B, the outer ring spacers 29, 30 and the inner ring spacers at the time of temperature rise. The difference in expansion amount δL can be kept small. For this reason, the increase in the preload based on the difference in expansion amount δL can be almost offset by the decrease in the preload based on the difference in the expansion amount in the radial direction, and the change in the preload can be suppressed even when the temperature rises. . As a result, the external force acting between the members 3a and 4a can be accurately measured regardless of the temperature change. The magnitude of the difference δL can be arbitrarily adjusted by changing the ratio of the lengths of the spacers 29 and 30.

尚、本例の場合には、上記両外輪7a、7b同士の間に、材質が異なる第一、第二の外輪間座29、30を配置している。この理由は、特殊な合金製の間座を使用する事のコストアップや剛性の不足を避ける為である。但し、本発明を実施する場合に、必ずしも上記両外輪7a、7b同士の間に複数の外輪間座を配置する必要はない。上記図3の(B)に示す様な、内輪間座との熱膨張量の差δLを実現できる合金等の金属材料を使用し、単一の外輪間座で上記予圧の変化を抑える事もできる。   In the case of this example, first and second outer ring spacers 29, 30 made of different materials are disposed between the outer rings 7a, 7b. The reason for this is to avoid an increase in cost and lack of rigidity due to the use of a special alloy spacer. However, when carrying out the present invention, it is not always necessary to arrange a plurality of outer ring spacers between the outer rings 7a and 7b. As shown in FIG. 3B, a metal material such as an alloy capable of realizing a difference in thermal expansion δL from the inner ring spacer is used, and the change in the preload can be suppressed by a single outer ring spacer. it can.

本発明は、自動二輪車の車輪用の回転支持装置に限らず、2列の転がり軸受部を有する各種の回転支持装置に適用可能である。例えば、工作機械用のスピンドル軸をハウジングの内側に回転自在に支持する回転支持装置にも適用可能である。工作機械では、熱膨張による各構成部材の寸法変化が加工精度に影響し、又、被加工物への押し当て力も加工精度に影響する。この為、スピンドル軸の変位及び傾きや、スピンドル軸に作用する外力を測定し、これらの測定値を工作機械の制御器にフィードバックする事で、高精度加工を実現できる。   The present invention is not limited to a rotation support device for a wheel of a motorcycle, and can be applied to various rotation support devices having two rows of rolling bearing portions. For example, the present invention can be applied to a rotation support device that rotatably supports a spindle shaft for a machine tool inside a housing. In a machine tool, the dimensional change of each component due to thermal expansion affects the processing accuracy, and the pressing force against the workpiece also affects the processing accuracy. Therefore, high-precision machining can be realized by measuring the displacement and inclination of the spindle shaft and the external force acting on the spindle shaft and feeding back these measured values to the controller of the machine tool.

本発明の実施の形態の1例を示す断面図。Sectional drawing which shows one example of embodiment of this invention. 温度上昇時に予圧変化に結び付く各部材の熱膨張の状態を説明する為の模式図。The schematic diagram for demonstrating the state of the thermal expansion of each member connected with a preload change at the time of a temperature rise. 外輪間座と内輪間座との熱膨張量の差を説明する為の図。The figure for demonstrating the difference of the thermal expansion amount of an outer ring spacer and an inner ring spacer. 先発明の実施の形態の第1例を、自動二輪車に組み付けた状態で示す略断面図。1 is a schematic cross-sectional view showing a first example of an embodiment of the prior invention in a state assembled to a motorcycle. 同じく断面図。Similarly sectional drawing. 1対のエンコーダ本体と各センサとを、軸方向に関して同じ側から見た投影図。The projection figure which looked at a pair of encoder main body and each sensor from the same side regarding the axial direction. 先発明の実施の形態の第2例を示す、図6と同様の図。The figure similar to FIG. 6 which shows the 2nd example of embodiment of prior invention. 同第3例を示す、図6と同様の図。The figure similar to FIG. 6 which shows the 3rd example. 同第4例を示す、図6と同様の図。The figure similar to FIG. 6 which shows the 4th example. 同第5例を示す、図6と同様の図。The figure similar to FIG. 6 which shows the said 5th example. 同第6例を示す、図6と同様の図。The figure similar to FIG. 6 which shows the 6th example. 同第7例を示す、図6と同様の図。The figure similar to FIG. 6 which shows the 7th example. 同第8例を示す、図6と同様の図。The figure similar to FIG. 6 which shows the 8th example. 同第9例を示す、図5と同様の図。The figure similar to FIG. 5 which shows the 9th example. 先発明を実施する場合に使用できる、エンコーダとセンサとの組み合わせの他の1例を示す斜視図。The perspective view which shows another example of the combination of an encoder and a sensor which can be used when implementing prior invention.

符号の説明Explanation of symbols

1 車輪
2 フロントフォーク
3、3a 軸部材
4、4a ハブ
5 転がり軸受
6 内輪
7、7a、7b 外輪
8 玉
9 間座
10、10a、10b 抑え環
11 段差面
12 シールリング
13、13a エンコーダ
14 芯金
15 エンコーダ本体
16 小径段部
17 円筒部
18 円輪部
19A、19A 1 〜19A6 、19B、19B 1 〜19B3 センサ
20 支持部材
21 演算器
22 溝部
23 通孔
24 第一特性変化部
25 第二特性変化部
26 内輪軌道
27 外輪軌道
29 第一の外輪間座
30 第二の外輪間座
31 内筒
32 外筒
33 段差面
34 段差面
35 ボルト
36 頭部
37 取り出し孔
38 突条部
39 センサケース
DESCRIPTION OF SYMBOLS 1 Wheel 2 Front fork 3, 3a Shaft member 4, 4a Hub 5 Rolling bearing 6 Inner ring 7, 7a, 7b Outer ring 8 Ball 9 Spacer 10, 10a, 10b Retaining ring 11 Step surface 12 Seal ring 13, 13a Encoder 14 Core metal 15 encoder main body 16 cylindrical portion 17 cylindrical portion 18 circular ring portion 19A, 19A 1 ~19A 6, 19B , 19B 1 ~19B 3 sensor 20 support member 21 operator 22 groove 23 holes 24 first characteristic change portion 25 second Characteristic changing portion 26 Inner ring raceway 27 Outer ring raceway 29 First outer ring spacer 30 Second outer ring spacer 31 Inner cylinder 32 Outer cylinder 33 Stepped surface 34 Stepped surface 35 Bolt 36 Head 37 Extraction hole 38 Projection portion 39 Sensor case

Claims (9)

回転支持装置と状態量測定装置とを備え、
このうちの回転支持装置は、静止側周面に1対の静止側軌道を設け、使用時にも回転しない静止部材と、回転側周面に1対の回転側軌道を設け、使用時に回転する回転部材と、これら両回転側軌道と上記両静止側軌道の間にそれぞれ複数個ずつ、それぞれ転動自在に設けられた転動体とを備えたものであり、
上記状態量測定装置は、上記回転部材のうち軸方向に離隔した2個所位置に支持されてこの回転部材と共に回転する1対のエンコーダと、使用時にも回転しない部分に支持固定されたセンサ装置と、演算器とを備え、
このうちの1対のエンコーダはそれぞれ、上記回転部材と同心の被検出面を有し、これら両被検出面の特性を円周方向に関して交互に且つ互いに同じピッチで変化させたものであって、上記両エンコーダの被検出面はそれぞれ、当該被検出面の特性変化の位相が当該被検出面の幅方向に対して変化していない被検出面と、当該被検出面の幅方向両半部に、使用状態でセンサの検出部が少なくとも1個ずつ対向する第一、第二両特性変化部を有し、これら両特性変化部のうちの少なくとも一方の特性変化部の特性変化の位相が当該被検出面の幅方向に関し、他方の特性変化部と異なる状態で漸次変化している被検出面とのうちの、何れか一方であり、
上記センサ装置は、上記両エンコーダのうちの一方のエンコーダの被検出面に検出部を対向させた1乃至複数個のセンサと、他方のエンコーダの被検出面に検出部を対向させた1乃至複数個のセンサとを備えたもので、これら各センサはそれぞれ、上記両エンコーダの被検出面のうち自身の検出部を対向させた部分の特性変化に対応して出力信号を変化させるものであり、
上記演算器は、上記各センサの出力信号同士の間に存在する位相差に基づいて、上記静止部材と上記回転部材との相対変位を求める機能を有するものである回転支持装置の状態量測定装置であって、
上記両静止側軌道と上記両回転側軌道とのうちの少なくとも1個の軌道は、当該軌道をその周面に設けた静止部材又は回転部材である相手部材に円環状の軌道輪部材を嵌合する事により設けたものであり、
上記軌道輪部材の軸方向一端面に円筒状の間座の軸方向一端面を突き当てると共に、この間座の軸方向他端面を、上記相手部材に固定の部分若しくはこの相手部材に嵌合された別の軌道輪部材に突き当てており、
上記間座を構成する材料の線膨張係数と上記相手部材を構成する材料の線膨張係数とを互いに異ならせる事により、温度変化に伴う、上記両静止側軌道と上記両回転側軌道との間に設置した上記各転動体の予圧変化を抑えた
回転支持装置の状態量測定装置。
A rotation support device and a state quantity measurement device;
Among these, the rotation support device is provided with a pair of stationary side tracks on the stationary side circumferential surface, a stationary member that does not rotate even when in use, and a pair of rotation side tracks on the rotating side circumferential surface, which rotates when in use. A plurality of members, and a plurality of rolling elements provided between the rotating side tracks and the stationary side tracks, each provided in a freely rotatable manner,
The state quantity measuring device includes a pair of encoders that are supported at two axially separated positions of the rotating member and that rotate together with the rotating member, and a sensor device that is supported and fixed to a portion that does not rotate during use. And a computing unit,
Each of the pair of encoders has a detected surface concentric with the rotating member, and the characteristics of both the detected surfaces are changed alternately and at the same pitch in the circumferential direction , The detected surfaces of the encoders are respectively detected on the detected surface where the phase of the characteristic change of the detected surface does not change with respect to the width direction of the detected surface and on both halves of the detected surface in the width direction. The sensor has at least one first and second characteristic changing portions opposed to each other in the use state, and the phase of the characteristic change of at least one of the two characteristic changing portions With respect to the width direction of the detection surface, it is either one of the detected surface gradually changing in a state different from the other characteristic change portion,
The sensor device includes one or more sensors having a detection unit opposed to a detection surface of one of the encoders, and one or more sensors having a detection unit opposed to a detection surface of the other encoder. Each of these sensors, each of these sensors is to change the output signal corresponding to the characteristic change of the portion of the detection surface of both encoders facing the detection unit,
The arithmetic unit has a function of obtaining a relative displacement between the stationary member and the rotating member based on a phase difference existing between output signals of the sensors. Because
At least one of the both stationary-side tracks and the both rotating-side tracks is fitted with an annular race ring member on a mating member that is a stationary member or a rotating member provided on the peripheral surface of the track. It was established by doing
One end surface in the axial direction of the cylindrical spacer is abutted against one end surface in the axial direction of the bearing ring member, and the other end surface in the axial direction of the spacer is fitted to a portion fixed to the mating member or the mating member Against another bearing ring member,
By making the coefficient of linear expansion of the material constituting the spacer different from the coefficient of linear expansion of the material constituting the mating member, the space between the stationary side track and the rotational side track due to temperature change is different. An apparatus for measuring the amount of state of a rotary support device that suppresses a change in the preload of each of the rolling elements installed in the above.
静止部材が鉄系合金製の軸部材であって、それぞれが静止側軌道である1対の内輪軌道がこの軸部材の外周面に、この軸部材に対する軸方向の変位を阻止した状態で設けられており、
回転部材が軽合金製のハブであって、それぞれが回転側軌道である1対の外輪軌道が、それぞれこのハブに内嵌された1対の外輪の内周面に形成されたものであり、
間座が、熱膨張に伴ってこれら両外輪同士の間隔を広げる方向に配置されている、
請求項1に記載した回転支持装置の状態量測定装置。
The stationary member is a shaft member made of an iron-based alloy, and a pair of inner ring raceways, each of which is a stationary side raceway, are provided on the outer peripheral surface of the shaft member in a state in which axial displacement relative to the shaft member is prevented. And
The rotating member is a hub made of a light alloy, and a pair of outer ring raceways, each of which is a rotation side raceway, are formed on the inner peripheral surfaces of a pair of outer rings fitted into the hub,
The spacer is arranged in a direction to increase the interval between these outer rings with thermal expansion.
The state quantity measuring device of the rotation support device according to claim 1.
互いに線膨張係数が異なる金属材料により造られた第一、第二の間座を軸方向に関して互いに直列に配置した、請求項2に記載した回転支持装置の状態量測定装置。   The state quantity measuring device for a rotary support device according to claim 2, wherein first and second spacers made of metal materials having different linear expansion coefficients are arranged in series in the axial direction. 第一の間座が鉄系合金製であり第二の間座が軽合金製である、請求項3に記載した回転支持装置の状態量測定装置。   The state quantity measuring device for a rotary support device according to claim 3, wherein the first spacer is made of an iron-based alloy and the second spacer is made of a light alloy. 互いに直交するx軸、y軸、z軸から成る三次元直交座標系のうちのy軸を静止部材の中心軸に一致させた場合に、演算器は、各センサの出力信号同士の間に存在する位相差に基づいて、上記静止部材に対する回転部材の、x軸方向の変位xと、y軸方向の変位yと、z軸方向の変位zと、x軸回りの傾きφ と、z軸回りの傾きφ とのうちの、少なくとも1つの変位若しくは傾きを算出する機能を有するものである、
請求項1〜4のうちの何れか1項に記載した回転支持装置の状態量測定装置。
When the y-axis of the three-dimensional orthogonal coordinate system consisting of the x-axis, y-axis, and z-axis orthogonal to each other matches the central axis of the stationary member, the arithmetic unit exists between the output signals of the sensors. Based on the phase difference, the rotation member x with respect to the stationary member in the x-axis direction displacement x, the y-axis direction displacement y, the z-axis direction displacement z, the inclination φ x about the x-axis, and the z-axis of the surrounding slope phi z, and has a function of calculating at least one displacement or inclination,
The state quantity measuring device of the rotation support device according to any one of claims 1 to 4.
1対のエンコーダの被検出面がそれぞれ円輪状であり、各センサの検出部がこれら両被検出面に対し軸方向に対向している、請求項1〜5のうちの何れか1項に記載した回転支持装置の状態量測定装置。 A pair of the detected face is a circle ring each encoder, the detection unit of the sensor is opposed in the axial direction with respect to the both the sensed surface, according to any one of claims 1 to 5 State quantity measuring device for the rotating support device. 1対のエンコーダの被検出面がそれぞれ円筒状であり、各センサの検出部がこれら両被検出面に対し径方向に対向している、請求項1〜5のうちの何れか1項に記載した回転支持装置の状態量測定装置。 A sensed surface of a pair of encoders each cylinder, detecting portions of the sensors is opposed in the radial direction with respect to the both the sensed surface, according to any one of claims 1 to 5 State quantity measuring device for the rotating support device. 演算器が、自身が算出した静止部材に対する回転部材の変位若しくは傾きに基づき、これら静止部材と回転部材との間に作用する外力を算出する機能を有する、請求項1〜7のうちの何れか1項に記載した回転支持装置の状態量測定装置。 Calculator, based on the displacement or inclination of the rotary member relative to the stationary member that it has calculated, has a function of calculating the external force acting between these stationary member rotating member, any one of the preceding claims 1. A state quantity measuring device for a rotary support device according to item 1. 回転支持装置が、自動二輪車の車輪用の回転支持装置であり、使用状態で、静止部材が自動二輪車の車体に支持固定される部材となり、回転部材が車輪を支持固定する部材又はこの車輪の一部を構成する部材となる、請求項1〜8のうちの何れか1項に記載した回転支持装置の状態量測定装置。 The rotation support device is a rotation support device for a wheel of a motorcycle, and in use, the stationary member becomes a member that is supported and fixed to the motorcycle body, and the rotation member supports or fixes the wheel or one of the wheels. The state quantity measuring device of the rotation support device according to any one of claims 1 to 8 , which is a member constituting the part.
JP2007262873A 2007-10-09 2007-10-09 Rotational support device state quantity measuring device Expired - Fee Related JP5003397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007262873A JP5003397B2 (en) 2007-10-09 2007-10-09 Rotational support device state quantity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007262873A JP5003397B2 (en) 2007-10-09 2007-10-09 Rotational support device state quantity measuring device

Publications (3)

Publication Number Publication Date
JP2009092491A JP2009092491A (en) 2009-04-30
JP2009092491A5 JP2009092491A5 (en) 2010-08-05
JP5003397B2 true JP5003397B2 (en) 2012-08-15

Family

ID=40664619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007262873A Expired - Fee Related JP5003397B2 (en) 2007-10-09 2007-10-09 Rotational support device state quantity measuring device

Country Status (1)

Country Link
JP (1) JP5003397B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104608859B (en) * 2015-01-05 2017-08-11 颜伟荣 High stable Intelligent self-balancing device and its control method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329602Y2 (en) * 1980-08-01 1988-08-09
JPH06307441A (en) * 1993-04-21 1994-11-01 Fanuc Ltd Fixed position bearing device
JP3901317B2 (en) * 1997-12-10 2007-04-04 本田技研工業株式会社 Wheel acting force measuring device and wheel acting force measuring method
JP3949801B2 (en) * 1997-12-16 2007-07-25 東芝機械株式会社 Bearing device for machine tool spindle
JP2005106214A (en) * 2003-09-30 2005-04-21 Koyo Seiko Co Ltd Rolling bearing device
JP4844010B2 (en) * 2004-05-26 2011-12-21 日本精工株式会社 Rolling bearing unit with load measuring device
JP2006088783A (en) * 2004-09-22 2006-04-06 Okiso:Kk Manufacturing method of forged hub made of aluminum
JP2006226809A (en) * 2005-02-17 2006-08-31 Ntn Corp Load detector and load detection method
JP2006337356A (en) * 2005-05-02 2006-12-14 Nsk Ltd Rolling bearing unit with displacement measuring instrument, and rolling bearing unit with load measuring instrument

Also Published As

Publication number Publication date
JP2009092491A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
JP4940937B2 (en) Rotating machine state quantity measuring device
JP2007127253A (en) Rolling bearing device with sensor
JP4946177B2 (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load measuring device
JP2006300086A (en) Rolling bearing unit with load measuring device
JP2005090994A (en) Load measuring device for roller bearing unit
JP2006322928A (en) Displacement measuring device and load measuring device for rolling bearing unit
JP5094457B2 (en) Wheel bearing with sensor
JP2006337356A (en) Rolling bearing unit with displacement measuring instrument, and rolling bearing unit with load measuring instrument
JP5003397B2 (en) Rotational support device state quantity measuring device
JP4957357B2 (en) Rotational support device state quantity measuring device
JP2008039155A (en) Rolling bearing unit with state quantity measuring device and assembling method
JP2009103629A (en) State quantity measuring device of rotation support device
JP4887816B2 (en) Load measuring device for rolling bearing units
JP2007225106A (en) Rolling bearing unit with state quantity measurement device
JP2007057257A (en) Wheel bearing with sensor
JP2009001201A (en) Quantity-of-state measuring device for rotary machine
JP5092393B2 (en) Method for assembling state quantity measuring device for rolling bearing unit
JP2006292730A (en) Rolling bearing unit with displacement-measuring device, and rolling bearing unit with load-measuring device
JP2008215977A (en) Wheel bearing with sensor
JP2006258801A (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load cell device
JP2009025009A (en) State quantity measuring device for rolling bearing unit
JP2008128812A (en) Roller bearing device equipped with sensor
JP2007071652A (en) Wheel bearing with sensor
JP2006329692A (en) Rolling bearing unit with load measuring instrument
JP5742392B2 (en) Physical quantity measuring device for rotating machine, machine tool, and automobile

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees