JP2009236571A - Apparatus and method for measuring rotational accuracy for bearings - Google Patents

Apparatus and method for measuring rotational accuracy for bearings Download PDF

Info

Publication number
JP2009236571A
JP2009236571A JP2008080773A JP2008080773A JP2009236571A JP 2009236571 A JP2009236571 A JP 2009236571A JP 2008080773 A JP2008080773 A JP 2008080773A JP 2008080773 A JP2008080773 A JP 2008080773A JP 2009236571 A JP2009236571 A JP 2009236571A
Authority
JP
Japan
Prior art keywords
bearing
measuring
measurement
measurement reference
reference body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008080773A
Other languages
Japanese (ja)
Inventor
Mitsuho Aoki
満穂 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008080773A priority Critical patent/JP2009236571A/en
Publication of JP2009236571A publication Critical patent/JP2009236571A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing rotational accuracy measuring apparatus and method, effectively measuring the plane-deflection accuracy of a bearing required for a turntable of a machine tool, in addition to deflection in radial directions of the bearings. <P>SOLUTION: The rotational bearing accuracy measuring apparatus 10 for measuring the rotational accuracy of a bearing 1 supporting the turntable is provided with: a reference sphere 21 arranged on the center axis of a rotator 15 supported by the bearing 1; and displacement meters 41 and 42 for measuring deflection in radial directions of the reference sphere 21. The displacement meters 41 and 42 measure a deflection in radial directions in at least two or more positions L1, L2, L3 having different distances in axial directions between the bearing 1 and the reference sphere 21. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、軸受用回転精度測定装置及び測定方法に関し、より詳細には、工作機械の回転テーブルや主軸旋回ユニット等の旋回軸に使用される軸受の回転精度を測定する軸受用回転精度測定装置及び測定方法に関する。   TECHNICAL FIELD The present invention relates to a bearing rotation accuracy measuring apparatus and measurement method, and more specifically, to a bearing rotation accuracy measuring apparatus for measuring the rotation accuracy of a bearing used for a turning shaft such as a rotary table of a machine tool or a spindle turning unit. And a measuring method.

従来、玉軸受、ころ軸受、テーパころ軸受等の転がり軸受には、玉、ころ、テーパころ等の転動体の形状誤差や寸法差、内外輪各軌道面の形状誤差等に起因して、回転非同期振れ(Non Repeatable Run-out=NRRO)と呼ばれる、1回転毎に繰り返されないラジアル方向及びアキシアル方向の微小変位が発生する事が知られている。工作機械の割り出し軸や割り出し台等に組み込まれる軸受の場合には、この様な微小変位が性能に大きな影響を及ぼす。従って、転がり軸受の回転精度を測定し、上記回転非同期振れが存在した場合に、これをなくすべく対応する事が、各種機器の性能向上を図る上で重要である。   Conventionally, rolling bearings such as ball bearings, roller bearings, taper roller bearings, etc. rotate due to shape errors and dimensional differences of rolling elements such as balls, rollers, taper rollers, etc., and shape errors of the inner and outer ring raceway surfaces. It is known that a minute displacement in the radial direction and the axial direction, which is called non-synchronous run-out (Non Repeatable Run-out = NRRO), which is not repeated every rotation occurs. In the case of a bearing incorporated in an indexing shaft or indexing table of a machine tool, such a small displacement greatly affects the performance. Therefore, it is important to improve the performance of various devices by measuring the rotational accuracy of the rolling bearing and dealing with the occurrence of the above-mentioned rotational asynchronous vibration in order to eliminate it.

このような目的で、軸受の回転精度を測定する装置が種々考案されている(例えば、特許文献1参照。)。特許文献1に記載の測定装置100は、図11に示すように、表面に球面座103が形成された治具本体101と、表面に基準球115を背面に球面座103に合致する球面部114をそれぞれ備えた真球取付台102とからなる。真球取付台102は、球面部114が球面座103に案内されて変位可能に、且つ固定可能に治具本体101に装着される。真球の中心点C2は、球面部・球面座の中心点C1に対して僅かに位置ずれしており、治具本体101は真球取付台102を球面座103に沿って調整変位可能としている。これにより、測定対象が回転した状態で、非接触式の変位センサで基準球115のラジアル方向変位を測定することにより、回転精度を測定する。
実公平6−5075号公報(第1図)
For this purpose, various devices for measuring the rotational accuracy of the bearing have been devised (for example, see Patent Document 1). As shown in FIG. 11, the measuring apparatus 100 described in Patent Document 1 includes a jig main body 101 having a spherical seat 103 formed on the surface, and a spherical portion 114 that matches the spherical seat 103 on the back and a reference sphere 115 on the surface. And a spherical mounting base 102 provided with each of them. The spherical base 102 is mounted on the jig body 101 so that the spherical portion 114 can be displaced by being guided by the spherical seat 103 and can be fixed. The center point C2 of the true sphere is slightly displaced with respect to the center point C1 of the spherical surface portion / spherical seat, and the jig body 101 allows the true spherical mounting base 102 to be adjusted and displaced along the spherical seat 103. . Thus, the rotational accuracy is measured by measuring the radial displacement of the reference sphere 115 with a non-contact displacement sensor in a state where the measurement object is rotated.
Japanese Utility Model Publication No. 6-5075 (Fig. 1)

ところで、工作機械の回転テーブルや主軸旋回ユニット等の旋回軸に使用される軸受は、使用される工作機械の構造上、長さ方向に制限があり、複数の軸受を組み合わせて使用する場合にも短いスパンで回転テーブルを支持する必要がある。   By the way, the bearings used for turning shafts such as rotary tables and spindle turning units of machine tools have limitations in the length direction due to the structure of the machine tools used, and even when a plurality of bearings are used in combination. It is necessary to support the rotary table with a short span.

一方、回転テーブルにセットされる加工物は、軸受の近傍ではなく、むしろ軸受から離れた位置で加工されることが多い。主軸旋回ユニット等の旋回軸においても、旋回軸用軸受から工具先端位置までの距離が遠くなるのが一般的である。このため、工作機械の回転テーブルや主軸旋回ユニット等の旋回軸に使用される軸受では、ラジアル方向の振れだけでなく、テーブル上面の面振れとなって現れるような動きの振れ(以下、「面振れ」という)が加工精度上重要である。   On the other hand, the workpiece set on the rotary table is often processed at a position away from the bearing rather than near the bearing. Also in a turning shaft such as a spindle turning unit, the distance from the turning shaft bearing to the tool tip position is generally longer. For this reason, in bearings used for turning shafts such as rotary tables and spindle turning units of machine tools, not only radial runout but also runout that appears as surface runout on the table top surface (hereinafter referred to as “surface The “runout” is important for machining accuracy.

しかしながら、特許文献1に記載の測定装置100は、ラジアル方向の振れのみを測定するため、工作機械の主軸装置や該主軸装置の軸受を測定する場合には効果的であるが、工作機械の回転テーブルや主軸旋回ユニット等の旋回軸に使用される軸受を測定する場合には、上記した面振れを捉えることができないという課題がある。このため、軸受近傍で、ラジアル方向の振れを測定して、振れ量が小さかったとしても、回転テーブルに組み込んだ場合、テーブル上面から離れた位置での振れが小さいとは限らない。同様に、主軸旋回ユニットに組み込んだ場合、工具先端位置の振れが小さいとは限らない。   However, since the measuring apparatus 100 described in Patent Document 1 measures only the radial runout, it is effective when measuring the spindle device of a machine tool and the bearing of the spindle device. When measuring a bearing used for a turning shaft such as a table or a spindle turning unit, there is a problem that the above-described surface runout cannot be captured. For this reason, even if the radial shake is measured in the vicinity of the bearing and the shake amount is small, the shake at a position away from the table upper surface is not always small when it is incorporated in the rotary table. Similarly, when incorporated in the spindle turning unit, the tool tip position does not always have a small deflection.

また、JIS B6336−3には、テーブル上面の面振れを測定する検査方法が規定されており、図12に示すように、回転するテーブルTの中心から所定距離R離れた、少なくとも90°ごとの4箇所で、ブロックゲージとダイヤルゲージGを使用して、テーブルの振れを検査している。   Further, JIS B6336-3 defines an inspection method for measuring the surface runout of the upper surface of the table. As shown in FIG. 12, at least every 90 ° apart from the center of the rotating table T by a predetermined distance R. At four places, block gauges and dial gauges G are used to check table runout.

この検査方法を用いて面振れを測定するには、平面度がゼロに近い基準板を製作し、対象とする軸受で基準板を回転させて、基準板の上面の振れを測定すれば、軸受だけに含まれる面振れ成分が抽出できるが、平面度がゼロに近い基準板を製作するのは困難であり、事実上不可能である。   In order to measure surface runout using this inspection method, a reference plate with a flatness near zero is manufactured, the reference plate is rotated with the target bearing, and the runout of the upper surface of the reference plate is measured. However, it is difficult and practically impossible to manufacture a reference plate having a flatness close to zero.

本発明は、上記事情に鑑みてなされたもので、その目的は、軸受のラジアル方向の振れに加えて、工作機械の回転テーブルや主軸旋回ユニット等の旋回軸に必要な、軸受の面振れ精度を効果的に測定することができる軸受用回転精度測定装置及び測定方法を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to provide bearing runout accuracy required for a turning shaft such as a rotary table of a machine tool or a spindle turning unit in addition to the radial runout of the bearing. It is an object of the present invention to provide a bearing rotation accuracy measuring device and a measuring method capable of effectively measuring the above.

本発明の上記目的は、下記構成によって達成される。
(1) 軸受の回転精度を測定する軸受用回転精度測定装置であって、
前記軸受によって支持される回転体の中心軸上に配置された測定基準体と、
該測定基準体のラジアル方向の振れを測定する変位計測手段と、
を備え、
前記変位計測手段は、前記軸受と前記測定基準体との軸方向距離が異なる少なくとも2箇所以上の位置で、前記ラジアル方向の振れを測定することを特徴とする軸受用回転精度測定装置。
(2) 前記測定基準体は、基準球であることを特徴とする(1)に記載の軸受用回転精度測定装置。
(3) 前記変位計測手段は、前記軸受と前記測定基準体との軸方向距離が異なる少なくとも2箇所以上の各位置で、前記測定基準体の周囲に、前記回転体の円周方向に90度位相をずらした状態で配置される2つの変位計を備えることを特徴とする(1)又は(2)に記載の軸受用回転精度測定装置。
(4) 前記軸受と前記測定基準体との軸方向距離が異なる少なくとも2箇所以上の各位置には、前記変位計測手段が前記測定基準体の周囲に配置されると共に、前記測定基準体の回転角度を検出する角度情報計がさらに設けられることを特徴とする(1)又は(2)に記載の軸受用回転精度測定装置。
(5) 軸受の回転精度を測定する軸受用回転精度測定方法であって、
前記軸受によって支持される回転体の中心軸上に測定基準体を配置する工程と、
前記軸受と前記測定基準体との軸方向距離が異なる少なくとも2箇所以上の位置で、変位計測手段によって前記測定基準体のラジアル方向の振れを測定する工程と、
を備えることを特徴とする軸受用回転精度測定方法。
(6) 前記測定基準体は、基準球であることを特徴とする(5)に記載の軸受用回転精度方法。
(7) 前記変位計測手段は、前記軸受と前記測定基準体との軸方向距離が異なる少なくとも2箇所以上の各位置で、前記測定基準体の周囲に、前記回転体の円周方向に90度位相をずらした状態で配置される2つの変位計を備えることを特徴とする(5)又は(6)に記載の軸受用回転精度測定方法。
(8) 前記軸受と前記測定基準体との軸方向距離が異なる少なくとも2箇所以上の各位置には、前記変位計測手段が前記測定基準体の周囲に配置されると共に、前記測定基準体の回転角度を検出する角度情報計がさらに設けられることを特徴とする(5)又は(6)に記載の軸受用回転精度測定方法。
The above object of the present invention is achieved by the following configurations.
(1) A bearing rotational accuracy measuring device for measuring rotational accuracy of a bearing,
A measurement reference body disposed on a central axis of a rotating body supported by the bearing;
Displacement measuring means for measuring a radial deflection of the measurement reference body;
With
The bearing measurement accuracy measuring apparatus according to claim 1, wherein the displacement measuring unit measures the radial runout at at least two positions where the axial distance between the bearing and the measurement reference body is different.
(2) The bearing rotation accuracy measuring device according to (1), wherein the measurement reference body is a reference sphere.
(3) The displacement measuring means is 90 degrees around the measurement reference body and in the circumferential direction of the rotating body at each of at least two positions where the axial distance between the bearing and the measurement reference body is different. The bearing rotation accuracy measuring device according to (1) or (2), comprising two displacement meters arranged in a state of being shifted in phase.
(4) The displacement measuring means is arranged around the measurement reference body at each of at least two positions where the axial distance between the bearing and the measurement reference body is different, and the measurement reference body is rotated. An angle information meter for detecting an angle is further provided. The bearing rotation accuracy measuring device according to (1) or (2).
(5) A bearing rotational accuracy measuring method for measuring rotational accuracy of a bearing,
Disposing a measurement reference body on a central axis of a rotating body supported by the bearing;
Measuring at least two or more positions where the axial distance between the bearing and the measurement reference body is different, by measuring a deflection in the radial direction of the measurement reference body by a displacement measuring means;
A rotational accuracy measuring method for bearings, comprising:
(6) The bearing rotation accuracy method according to (5), wherein the measurement reference body is a reference sphere.
(7) The displacement measuring means is 90 degrees around the measurement reference body in the circumferential direction of the rotating body at at least two positions where the axial distance between the bearing and the measurement reference body is different. (2) The rotational accuracy measuring method for bearings according to (5) or (6), further comprising two displacement meters arranged in a phase shifted state.
(8) The displacement measuring means is arranged around the measurement reference body at each of at least two positions where the axial distance between the bearing and the measurement reference body is different, and the measurement reference body is rotated. An angle information meter for detecting an angle is further provided. The bearing rotation accuracy measuring method according to (5) or (6), characterized in that:

本発明の軸受用回転精度測定装置及び測定方法によれば、測定基準体のラジアル方向の振れを測定する変位計測手段が、軸受と測定基準体との軸方向距離が異なる少なくとも2箇所以上の位置で、ラジアル方向の振れを測定するので、軸受のラジアル方向の振れに加えて、工作機械の回転テーブルや主軸旋回ユニット等の旋回軸に必要な、軸受の面振れ精度を効果的に測定することができる。   According to the bearing rotational accuracy measuring device and the measuring method of the present invention, the displacement measuring means for measuring the radial deflection of the measurement reference body has at least two positions where the axial distance between the bearing and the measurement reference body is different. Therefore, in addition to the radial runout of the bearing, it is necessary to effectively measure the bearing runout accuracy required for the swivel shaft of the rotary table of the machine tool, main spindle swivel unit, etc. in addition to the radial runout of the bearing. Can do.

以下、本発明の一実施形態に係る軸受用回転精度測定装置及び測定方法について図1〜図5を参照して詳細に説明する。   Hereinafter, a bearing rotation accuracy measuring device and a measuring method according to an embodiment of the present invention will be described in detail with reference to FIGS.

本実施形態の軸受用回転精度測定装置10は、該装置10に組み込まれた測定軸受1のラジアル方向の振れに加えて、この測定軸受1によって支持される回転体15の面振れ精度を測定する。なお、この実施形態では、測定軸受1として、工作機械の回転テーブルを支持するために適用可能な組合せアンギュラ玉軸受が使用されており、内輪2、外輪3、玉4、保持器5、及び、シール部材6を備えた各玉軸受が背面組合せで配置されている。   The bearing rotation accuracy measuring device 10 according to the present embodiment measures the surface runout accuracy of the rotating body 15 supported by the measurement bearing 1 in addition to the radial runout of the measurement bearing 1 incorporated in the device 10. . In this embodiment, a combination angular contact ball bearing applicable to support a rotary table of a machine tool is used as the measurement bearing 1, and an inner ring 2, an outer ring 3, a ball 4, a cage 5, and Each ball bearing provided with the seal member 6 is arranged in a backside combination.

図1に示すように、軸受用回転精度測定装置10は、測定台11に締結固定され、測定軸受1の内輪2を挟持した状態で外嵌する固定部12と、外周面に駆動手段としての平ベルト13が巻回され、測定軸受1の外輪3を挟持した状態で内嵌する筒状の回転部14と、回転部14上に配置され、測定基準体である基準球21を回転部14を含む回転体15の中心軸上に配置するための振れ調整機構20と、基準球21のラジアル方向の振れを測定する変位計測手段40とを備える。   As shown in FIG. 1, the bearing rotational accuracy measuring device 10 is fastened and fixed to a measuring table 11, and is fitted around the inner ring 2 of the measurement bearing 1, and an outer peripheral surface as a driving means. A flat rotating belt 14 is wound and fitted in a state where the outer ring 3 of the measurement bearing 1 is sandwiched, and a cylindrical rotating part 14 is disposed on the rotating part 14. Including a shake adjusting mechanism 20 for disposing on the central axis of the rotating body 15 and a displacement measuring means 40 for measuring the shake of the reference sphere 21 in the radial direction.

また、回転部14は、軸方向端面をそれぞれ有する回転部品14a,14bを締結することで、2つの外輪3を軸方向に固定している。また、固定部12は、軸方向端面をそれぞれ有する2つの固定部品12a,12bを締結することで、2つの内輪2を軸方向に締め付け、軸受1の予圧を付与すると共に、2つの内輪2を軸方向に固定している。   The rotating unit 14 fastens the two outer rings 3 in the axial direction by fastening rotating parts 14a and 14b each having an axial end surface. In addition, the fixing portion 12 fastens the two inner rings 2 in the axial direction by fastening two fixing parts 12a and 12b each having an axial end face, and applies the preload of the bearing 1 and also fixes the two inner rings 2 to each other. It is fixed in the axial direction.

振れ調整機構20は、筒状の回転部14の上部側面に締結固定される略円板上の基準板22と、基準球21が固着される振れ調整部品23と、基準板22の上面中央部に形成された円錐穴22a、及び振れ調整部品23の下面中央部に形成された円錐穴23aとの間に配置され、これら円錐穴22a,23aと共に球関節を構成する振れ調整用ボール24と、を備える。また、振れ調整機構20は、この振れ調整部品23の周縁部に、基準板22の上面に当接する突っ張り用ボルト25と基準板22のねじ孔22bに螺合する引張り用ボルト26が円周方向に等間隔で交互に設けられている。なお、本実施形態の回転体15は、回転部14と基準板22によって構成されている。また、振れ調整機構20は、突っ張り用ボルト25無しで、引張り用ボルト26だけで構成されてもよい。   The shake adjustment mechanism 20 includes a reference plate 22 on a substantially disk that is fastened and fixed to the upper side surface of the cylindrical rotating portion 14, a shake adjustment component 23 to which the reference sphere 21 is fixed, and a center portion on the upper surface of the reference plate 22. And a conical hole 22a formed in the center of the lower surface of the shake adjusting component 23, and a shake adjusting ball 24 constituting a ball joint together with the conical holes 22a and 23a, Is provided. Further, in the shake adjusting mechanism 20, the tension bolts 25 that are in contact with the upper surface of the reference plate 22 and the tension bolts 26 that are screwed into the screw holes 22 b of the reference plate 22 are arranged in the circumferential direction. Are alternately provided at equal intervals. The rotating body 15 according to the present embodiment includes the rotating unit 14 and the reference plate 22. Further, the deflection adjusting mechanism 20 may be configured by only the tension bolt 26 without the tension bolt 25.

また、振れ調整機構20としては、図1に示す略平坦円板状の基準板22を備えるものの代わりに、図3(a)及び(b)に示すように、略平坦円板部27a,28aから振れ調整部品23の下面と対向する上面を上方に突出させたそれぞれ高さの異なる円柱部27b,28bを有する2つの基準板27,28を備える、他の2つの振れ調整機構30,31が設けられている。なお、他の2つの振れ調整機構30,31は、図4に示すように、振れ調整機構20の基準板22とスペーサsとを締結することで、円柱部27b,28bと略平坦円板部27a,28aとを形成するようにしてもよい。   Further, as shown in FIGS. 3 (a) and 3 (b), the shake adjusting mechanism 20 is provided with a substantially flat disk-shaped reference plate 22 shown in FIG. The other two shake adjustment mechanisms 30 and 31 including two reference plates 27 and 28 having cylindrical portions 27b and 28b having different heights, the upper surfaces of which are opposed to the lower surface of the shake adjustment component 23 projecting upward, are provided. Is provided. As shown in FIG. 4, the other two shake adjusting mechanisms 30 and 31 are connected to the reference plate 22 of the shake adjusting mechanism 20 and the spacer s, so that the cylindrical portions 27b and 28b and the substantially flat disc portion. 27a and 28a may be formed.

このように構成された振れ調整機構20,30,31では、適宜円周位置の突っ張り用ボルト25と引張り用ボルト26とを調節回転して、振れ調整部品23を球関節を支点に揺動変位させ、基準球21の中心点Oを回転体15の中心軸線Lから極僅か(数μm程度)位置ずれさせた位置に調節している。なお、振れ調整機構20,30,31は、基準球21の中心点を回転体15の中心軸線L上近傍に位置させるものであれば他の構成であってもよく、図9に示した従来の構成であってもよい。   In the shake adjustment mechanisms 20, 30, and 31 configured in this manner, the tension adjustment bolts 25 and the tension bolts 26 at appropriate circumferential positions are adjusted and rotated, and the shake adjustment component 23 is oscillated and displaced with the ball joint as a fulcrum. Thus, the center point O of the reference sphere 21 is adjusted to a position slightly displaced (about several μm) from the center axis L of the rotating body 15. The shake adjustment mechanisms 20, 30, and 31 may have other configurations as long as the center point of the reference sphere 21 is positioned in the vicinity of the center axis L of the rotating body 15. It may be configured as follows.

図2に示すように、変位計測手段40は、測定軸受1と基準球21との軸方向距離が異なる少なくとも2箇所以上(本実施形態では、3箇所)の各高さ位置L1,L2,L3で、基準球21の周囲に、回転体15の円周方向に90度位相をずらした状態で配置される2つの変位計41,42を備える。なお、変位計41,42は、各高さ位置L1,L2,L3毎にそれぞれ配置されてもよく、或いは、各高さ位置L1,L2、L3へ移動調整可能に配置されてもよいが、変位計が高価な場合は、移動調整式の方が低コストで済む。   As shown in FIG. 2, the displacement measuring means 40 has at least two or more (three in this embodiment) height positions L1, L2, L3 in which the axial distance between the measuring bearing 1 and the reference sphere 21 is different. Thus, around the reference sphere 21, there are provided two displacement meters 41 and 42 arranged with a phase shifted by 90 degrees in the circumferential direction of the rotating body 15. The displacement meters 41 and 42 may be arranged for each of the height positions L1, L2, and L3, respectively, or may be arranged so as to be movable and adjustable to the height positions L1, L2, and L3. If the displacement meter is expensive, the movement adjustment type is less expensive.

変位計41,42としては、被測定物である基準球21に接触することなく、この外周面の微小変位を測定自在な、レーザードップラー振動計や静電容量形変位センサ等、非接触式のものが使用される。但し、測定圧が微小で、回転非同期振れに影響を及ぼさないものであれば、電気マイクロメータ等の、接触式のものを使用することもできる。また、本実施形態のように、各高さ位置に位相を90度ずらした2つの変位計41,42を設けることにより、リサージュ波形を得ることができ、基準球21のラジアル方向の振れ(変位)が求められ、回転非同期振れの最大値等が確実に検出自在となる。   The displacement gauges 41 and 42 are non-contact type sensors such as a laser Doppler vibrometer and a capacitance type displacement sensor that can measure the minute displacement of the outer peripheral surface without contacting the reference sphere 21 as the object to be measured. Things are used. However, a contact type such as an electric micrometer can be used as long as the measurement pressure is very small and does not affect the rotational asynchronous vibration. Further, as in the present embodiment, by providing two displacement meters 41 and 42 whose phases are shifted by 90 degrees at each height position, a Lissajous waveform can be obtained, and the radial deflection (displacement) of the reference sphere 21 can be obtained. ) Is obtained, and the maximum value of the rotational asynchronous vibration can be reliably detected.

上記のように構成される回転精度測定装置10では、まず、測定軸受1を固定部12と回転部14との間に固定配置し、さらに、基準球21から測定軸受1の中間位置までの距離がL1となる振れ調整機構20を回転部14に固定して、該機構20を調節することで、回転体15の中心軸線L上近傍に基準球21を配置する。そして、平ベルト13によって回転部14を回転駆動させ、一体に回転する基準球21のラジアル方向の振れを、2つの変位計41,42によって検出する。   In the rotational accuracy measuring device 10 configured as described above, first, the measurement bearing 1 is fixedly disposed between the fixed portion 12 and the rotating portion 14, and further, the distance from the reference ball 21 to the intermediate position of the measurement bearing 1. The reference ball 21 is arranged in the vicinity of the central axis L of the rotating body 15 by fixing the shake adjusting mechanism 20 with L1 to the rotating unit 14 and adjusting the mechanism 20. Then, the rotating unit 14 is rotationally driven by the flat belt 13, and the radial deflection of the reference sphere 21 that rotates integrally is detected by the two displacement meters 41 and 42.

さらに、基準球21から測定軸受1の中間位置までの距離がそれぞれ、L2、L3となる振れ調整機構30,31を回転部14に付け替えながら、上記と同様の方法で、基準球21のラジアル方向の振れを検出する。これにより、測定軸受1の面振れ精度を測定することができる。   Further, the radial direction of the reference sphere 21 is changed in the same manner as described above while exchanging the shake adjusting mechanisms 30 and 31 having the distances from the reference sphere 21 to the intermediate position of the measurement bearing 1 to L2 and L3, respectively. Detects runout. Thereby, the surface runout accuracy of the measurement bearing 1 can be measured.

例えば、図5(a)に示すように、軸受1aがラジアル方向にだけ振れている場合には、この軸受1aを工作機械の回転テーブルに組み込んだ際、面振れは小さくなることが期待できる。一方、図6(a)に示すように、斜めに回転するような振れを持っている軸受1bの場合には、工作機械に組み込んだ後に面振れが大きくなってしまう。   For example, as shown in FIG. 5A, when the bearing 1a is swung only in the radial direction, it can be expected that the surface runout is reduced when the bearing 1a is incorporated in the rotary table of the machine tool. On the other hand, as shown in FIG. 6A, in the case of the bearing 1b having runout that rotates obliquely, the runout becomes large after being incorporated in the machine tool.

しかしながら、これを軸受単体で事前に評価するためには、従来のように、軸受の近傍1箇所で基準球21の振れを測定しただけでは両者に大きな違いがでず、評価しづらい。一方、図5(b)及び図6(b)に示すように、少なくとも2箇所以上の位置で基準球21の振れを測定することにより、軸受単体での面振れ精度を測定することができる。   However, in order to evaluate this in advance with a single bearing, just measuring the deflection of the reference ball 21 at one location in the vicinity of the bearing as in the prior art makes no significant difference between the two, making it difficult to evaluate. On the other hand, as shown in FIGS. 5B and 6B, the surface runout accuracy of the bearing alone can be measured by measuring the runout of the reference sphere 21 at at least two positions.

以上、説明したように、本実施形態の軸受用回転精度測定装置10及び測定方法によれば、基準球21のラジアル方向の振れを測定する変位計測手段40が、軸受1と基準球21との軸方向距離が異なる少なくとも2箇所以上の位置L1,L2,L3で、ラジアル方向の振れを測定するので、軸受1のラジアル方向の振れに加えて、工作機械の回転テーブルに必要な、軸受1の面振れ精度を効果的に測定することができる。   As described above, according to the bearing rotation accuracy measuring device 10 and the measuring method of the present embodiment, the displacement measuring means 40 that measures the radial deflection of the reference sphere 21 is provided between the bearing 1 and the reference sphere 21. Since the radial runout is measured at at least two positions L1, L2, and L3 having different axial distances, in addition to the radial runout of the bearing 1, the bearing 1 required for the rotary table of the machine tool is required. Surface runout accuracy can be measured effectively.

なお、本発明は、上述した実施形態に限定されるものでなく、適宜、変形、改良等が可能である。
例えば、本実施形態では、測定軸受1と基準球21との軸方向距離が異なる少なくとも2箇所以上の各位置に、変位測定手段40として、2つの変位計41,42が使用されているが、図7に示すように、基準球21の周囲に変位計41を1つ配置するとともに、基準球21の回転角度を検出する、歯車51及び検出ヘッド52を備えた角度情報計50をさらに設け、変位計41と角度情報計50とを用いてラジアル方向の振れを検出するようにしてもよい。この場合、測定結果は、ラジアル方向の振れ成分が含まれた正弦波からの誤差として与えられる。角度情報計50は、図6のような歯車式の他、磁気式エンコーダでもよい。また、測定回転速度が一定であれば、一回転信号だけを取り出して角度情報としてもよい。
In addition, this invention is not limited to embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably.
For example, in the present embodiment, two displacement meters 41 and 42 are used as the displacement measuring means 40 at each of at least two positions where the axial distance between the measurement bearing 1 and the reference sphere 21 is different. As shown in FIG. 7, one displacement meter 41 is arranged around the reference sphere 21, and an angle information meter 50 including a gear 51 and a detection head 52 that detects the rotation angle of the reference sphere 21 is further provided. The displacement in the radial direction may be detected using the displacement meter 41 and the angle information meter 50. In this case, the measurement result is given as an error from a sine wave that includes a radial shake component. The angle information meter 50 may be a magnetic encoder in addition to the gear type as shown in FIG. If the measured rotation speed is constant, only one rotation signal may be extracted and used as angle information.

また、本実施形態では、測定基準体として、真球度が得られやすい基準球21が使用されているが、面振れ成分(ラジアル方向の振れ成分)を正確に抽出可能なものであれば、任意の構成であってもよい。   Further, in the present embodiment, the reference sphere 21 in which sphericity is easily obtained is used as the measurement reference body. However, if the surface shake component (radial shake component) can be accurately extracted, Any configuration may be used.

さらに、本実施形態では、測定軸受として、組合せアンギュラ玉軸受が使用されているが、クロスローラ軸受、複列アンギュラ玉軸受、複合ローラ軸受等、工作機械の回転テーブルを支持する軸受として適用可能なものであれば、いずれの軸受であってもよい。   Furthermore, in this embodiment, a combination angular contact ball bearing is used as the measurement bearing, but it can be applied as a bearing for supporting a rotary table of a machine tool, such as a cross roller bearing, a double row angular contact ball bearing, or a composite roller bearing. Any bearing can be used.

また、本実施形態の測定装置は、測定軸受の内輪を外嵌する部材を固定部、外輪を内嵌する部材を回転部としているが、内輪を外嵌する部材を、ベルトによって回転駆動することで回転部、外輪を内嵌する部材を固定部として、この回転部に振れ調整機構を取り付けるようにしてもよい。   In the measuring apparatus of the present embodiment, the member that externally fits the inner ring of the measurement bearing is a fixed part, and the member that internally fits the outer ring is a rotating part. However, the member that externally fits the inner ring is rotationally driven by a belt. Thus, the rotating part and the member that internally fits the outer ring may be used as a fixed part, and the shake adjusting mechanism may be attached to the rotating part.

加えて、本発明の軸受用回転精度測定装置及び測定方法の測定対象は、上記実施形態のような回転テーブルを支持する軸受に限定されるものでなく、図8に示すような旋回軸用の軸受1cを対象としてもよい。   In addition, the measurement object of the rotational accuracy measuring device and measuring method for bearings of the present invention is not limited to the bearing that supports the rotary table as in the above embodiment, but for the swivel shaft as shown in FIG. The bearing 1c may be the target.

即ち、この軸受1cは、ダイレクトドライブモータ60によって駆動される旋回軸61を一対の支持アーム62に対して旋回可能に支持するものであり、組合せアンギュラ玉軸受が使用されている。そして、旋回軸61が旋回駆動することで、工具Tが取り付けられた主軸部63も矢印Aに示すように旋回駆動される。なお、この一対の支持アーム62を有する主軸ヘッド64は、矢印Bに示すように、回転割出し駆動可能に設けられている。   That is, this bearing 1c supports the turning shaft 61 driven by the direct drive motor 60 so as to be turnable with respect to the pair of support arms 62, and a combined angular ball bearing is used. Then, as the turning shaft 61 is driven to turn, the main shaft portion 63 to which the tool T is attached is also turned as shown by the arrow A. The spindle head 64 having the pair of support arms 62 is provided so as to be capable of rotational indexing as indicated by an arrow B.

このような旋回軸用の軸受1cや矢印Bの動きを支持する軸受においても、軸受1cの回転振れ精度が工具Tによる加工精度に影響するため、上記測定装置及び測定方法を適用することが有効である。   Even in such a bearing 1c for the turning shaft and a bearing that supports the movement of the arrow B, since the rotational runout accuracy of the bearing 1c affects the processing accuracy by the tool T, it is effective to apply the measuring device and the measuring method. It is.

ここで、二つの測定軸受a,bを使用して、図1に示す上記実施形態の回転精度測定装置による振れ測定を行った。図9,10は、各高さ位置L1,L2,L3で、非接触式の変位計41,42から得られる値をX軸、Y軸としてプロットしたリサージュ波形である。   Here, using two measurement bearings a and b, the run-out measurement was performed by the rotation accuracy measuring apparatus of the above-described embodiment shown in FIG. 9 and 10 are Lissajous waveforms in which the values obtained from the non-contact displacement meters 41 and 42 are plotted as the X axis and the Y axis at the respective height positions L1, L2, and L3.

図9,10の測定結果から、測定軸受bは、測定軸受aよりも軸受から遠ざかるにつれて回転精度がより大きく劣化しているのがわかる。この結果、測定軸受aの方がより回転テーブル用軸受として高精度な軸受であることが分かるとともに、本発明の測定方法を行うことで、軸受の精度を効果的に測定できることが分かる。   From the measurement results of FIGS. 9 and 10, it can be seen that the rotational accuracy of the measurement bearing b is greatly deteriorated with increasing distance from the bearing than the measurement bearing a. As a result, it can be seen that the measurement bearing a is a highly accurate bearing as a rotary table bearing, and that the accuracy of the bearing can be effectively measured by performing the measurement method of the present invention.

本発明の一実施形態に係る軸受用回転精度測定装置の断面図である。It is sectional drawing of the rotational accuracy measuring apparatus for bearings which concerns on one Embodiment of this invention. 図1に示す軸受用回転精度測定装置の上面図である。It is a top view of the rotational accuracy measuring apparatus for bearings shown in FIG. (a)は、第2の位置に使用される振れ調整機構の断面図であり、(b)は、第3の位置に使用される振れ調整機構の断面図である。(A) is sectional drawing of the shake adjustment mechanism used for a 2nd position, (b) is sectional drawing of the shake adjustment mechanism used for a 3rd position. (a)は、第2の位置に使用される振れ調整機構の変形例の断面図であり、(b)は、第3の位置に使用される振れ調整機構の変形例の断面図である。(A) is sectional drawing of the modification of the shake adjustment mechanism used for a 2nd position, (b) is sectional drawing of the modification of the shake adjustment mechanism used for a 3rd position. (a)は、面振れが小さい場合のテーブルと軸受を示す模式図であり、(b)は、本発明の面振れが小さい場合の測定方法を示す模式図である。(A) is a schematic diagram which shows a table and a bearing when a surface runout is small, (b) is a schematic diagram which shows the measuring method when the surface runout of this invention is small. (a)は、面振れが大きい場合のテーブルと軸受を示す模式図であり、(b)は、本発明の面振れが大きい場合の測定方法を示す模式図である。(A) is a schematic diagram which shows a table and a bearing when a surface runout is large, (b) is a schematic diagram which shows the measuring method when the surface runout of this invention is large. 軸受用回転精度測定装置の変形例を示す上面図である。It is a top view which shows the modification of the rotational accuracy measuring apparatus for bearings. (a)は、測定対象として旋回軸用の軸受が適用される主軸ヘッドを示す斜視図であり、(b)はその断面図である。(A) is a perspective view which shows the spindle head to which the bearing for rotation axes is applied as a measuring object, (b) is the sectional drawing. 試験軸受aを使用した場合の各軸方向位置での2つの変位計の測定結果を示す図である。It is a figure which shows the measurement result of the two displacement meters in each axial direction position at the time of using the test bearing a. 試験軸受bを使用した場合の各軸方向位置での2つの変位計の測定結果を示す図である。It is a figure which shows the measurement result of the two displacement meters in each axial direction position at the time of using the test bearing b. 従来の回転精度測定装置を示す断面図である。It is sectional drawing which shows the conventional rotational accuracy measuring apparatus. JIS B6336−3の測定方法を説明するための図である。It is a figure for demonstrating the measuring method of JISB6336-3.

符号の説明Explanation of symbols

1,1a 測定軸受
10 軸受用回転精度測定装置
15 回転体
20 振れ調整機構
21 基準球(測定基準体)
22 基準板
23 振れ調整部品
24 振れ調整用ボール
40 変位計測手段
41,42 変位計
1,1a Measuring bearing 10 Bearing rotational accuracy measuring device 15 Rotating body 20 Runout adjustment mechanism 21 Reference ball (measurement reference body)
22 Reference plate 23 Runout adjustment component 24 Runout adjustment ball 40 Displacement measuring means 41, 42 Displacement meter

Claims (8)

軸受の回転精度を測定する軸受用回転精度測定装置であって、
前記軸受によって支持される回転体の中心軸上に配置された測定基準体と、
該測定基準体のラジアル方向の振れを測定する変位計測手段と、
を備え、
前記変位計測手段は、前記軸受と前記測定基準体との軸方向距離が異なる少なくとも2箇所以上の位置で、前記ラジアル方向の振れを測定することを特徴とする軸受用回転精度測定装置。
A bearing rotation accuracy measuring device for measuring the rotation accuracy of a bearing,
A measurement reference body disposed on a central axis of a rotating body supported by the bearing;
Displacement measuring means for measuring a radial deflection of the measurement reference body;
With
The bearing measurement accuracy measuring apparatus according to claim 1, wherein the displacement measuring unit measures the radial runout at at least two positions where the axial distance between the bearing and the measurement reference body is different.
前記測定基準体は、基準球であることを特徴とする請求項1に記載の軸受用回転精度測定装置。   The bearing measurement accuracy measuring apparatus according to claim 1, wherein the measurement reference body is a reference sphere. 前記変位計測手段は、前記軸受と前記測定基準体との軸方向距離が異なる少なくとも2箇所以上の各位置で、前記測定基準体の周囲に、前記回転体の円周方向に90度位相をずらした状態で配置される2つの変位計を備えることを特徴とする請求項1又は2に記載の軸受用回転精度測定装置。   The displacement measuring means shifts the phase by 90 degrees around the measurement reference body in the circumferential direction of the rotating body at at least two positions where the axial distance between the bearing and the measurement reference body is different. The bearing rotational accuracy measuring device according to claim 1, further comprising two displacement meters arranged in a state where the bearing is rotated. 前記軸受と前記測定基準体との軸方向距離が異なる少なくとも2箇所以上の各位置には、前記変位計測手段が前記測定基準体の周囲に配置されると共に、前記測定基準体の回転角度を検出する角度情報計がさらに設けられることを特徴とする請求項1又は2に記載の軸受用回転精度測定装置。   The displacement measuring means is arranged around the measurement reference body at each of at least two positions where the axial distance between the bearing and the measurement reference body is different, and the rotation angle of the measurement reference body is detected. The bearing rotation accuracy measuring device according to claim 1, further comprising an angle information meter for performing the rotation. 軸受の回転精度を測定する軸受用回転精度測定方法であって、
前記軸受によって支持される回転体の中心軸上に測定基準体を配置する工程と、
前記軸受と前記測定基準体との軸方向距離が異なる少なくとも2箇所以上の位置で、変位計測手段によって前記測定基準体のラジアル方向の振れを測定する工程と、
を備えることを特徴とする軸受用回転精度測定方法。
A bearing rotational accuracy measurement method for measuring the rotational accuracy of a bearing,
Disposing a measurement reference body on a central axis of a rotating body supported by the bearing;
Measuring at least two or more positions where the axial distance between the bearing and the measurement reference body is different, by measuring a deflection in the radial direction of the measurement reference body by a displacement measuring means;
A rotational accuracy measuring method for bearings, comprising:
前記測定基準体は、基準球であることを特徴とする請求項5に記載の軸受用回転精度方法。   The bearing measurement accuracy method according to claim 5, wherein the measurement reference body is a reference sphere. 前記変位計測手段は、前記軸受と前記測定基準体との軸方向距離が異なる少なくとも2箇所以上の各位置で、前記測定基準体の周囲に、前記回転体の円周方向に90度位相をずらした状態で配置される2つの変位計を備えることを特徴とする請求項5又は6に記載の軸受用回転精度測定方法。   The displacement measuring means shifts the phase by 90 degrees around the measurement reference body in the circumferential direction of the rotating body at at least two positions where the axial distance between the bearing and the measurement reference body is different. The rotational accuracy measuring method for a bearing according to claim 5 or 6, further comprising two displacement meters arranged in a closed state. 前記軸受と前記測定基準体との軸方向距離が異なる少なくとも2箇所以上の各位置には、前記変位計測手段が前記測定基準体の周囲に配置されると共に、前記測定基準体の回転角度を検出する角度情報計がさらに設けられることを特徴とする請求項5又は6に記載の軸受用回転精度測定方法。   The displacement measuring means is arranged around the measurement reference body at each of at least two positions where the axial distance between the bearing and the measurement reference body is different, and the rotation angle of the measurement reference body is detected. The method according to claim 5 or 6, further comprising an angle information meter for performing the bearing rotation accuracy measurement.
JP2008080773A 2008-03-26 2008-03-26 Apparatus and method for measuring rotational accuracy for bearings Pending JP2009236571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008080773A JP2009236571A (en) 2008-03-26 2008-03-26 Apparatus and method for measuring rotational accuracy for bearings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008080773A JP2009236571A (en) 2008-03-26 2008-03-26 Apparatus and method for measuring rotational accuracy for bearings

Publications (1)

Publication Number Publication Date
JP2009236571A true JP2009236571A (en) 2009-10-15

Family

ID=41250716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008080773A Pending JP2009236571A (en) 2008-03-26 2008-03-26 Apparatus and method for measuring rotational accuracy for bearings

Country Status (1)

Country Link
JP (1) JP2009236571A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101871841A (en) * 2010-06-11 2010-10-27 宁波更大集团有限公司 Reverse assembly detection device and detection method for conical roller bearing inner ring assembly
CN102275092A (en) * 2010-06-11 2011-12-14 上海电气集团上海电机厂有限公司 Method for directly measuring deflection of double-armature rotor shaft
KR101305057B1 (en) 2012-05-29 2013-09-11 박상영 Inside or outside diameter measuring device for bearing
CN103453822A (en) * 2013-09-23 2013-12-18 中国电子科技集团公司第十四研究所 Portable bearing rotating precision comprehensive detection platform
CN103528574A (en) * 2013-11-12 2014-01-22 江苏省镇江船厂(集团)有限公司 Locating measuring tool with large barrel type base
CN103759941A (en) * 2014-01-29 2014-04-30 哈尔滨工业大学 Precise main shaft rotation accuracy detecting device and method
CN104091508A (en) * 2014-07-08 2014-10-08 扬州大学 Vertical type unit axis swing degree measuring and adjusting experimental device and experimental method
JP2017163782A (en) * 2016-03-11 2017-09-14 ファナック株式会社 Automatic measuring apparatus for axis accuracy of motor
CN108760275A (en) * 2018-06-29 2018-11-06 上海第二工业大学 Cutter-handle of a knife-axis system engaging portion Analysis on Static Stiffness device and analysis method
JP2019174169A (en) * 2018-03-27 2019-10-10 株式会社牧野フライス製作所 Three-dimensional gauge and three-dimensional position error measurement method of machine
CN110686634A (en) * 2019-10-21 2020-01-14 中国工程物理研究院机械制造工艺研究所 Fine adjustment device for displacement sensor for detecting geometric accuracy of rotary axis
CN112880991A (en) * 2021-01-14 2021-06-01 南方科技大学 Rotor experimental device for simulating maneuvering flight
CN114544173A (en) * 2022-01-21 2022-05-27 慧三维智能科技(苏州)有限公司 Bearing defect detection equipment
CN114777706A (en) * 2022-05-30 2022-07-22 山东洛轴所轴承研究院有限公司 High-precision measuring device for rotation precision of double-row cylindrical roller bearing

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102275092A (en) * 2010-06-11 2011-12-14 上海电气集团上海电机厂有限公司 Method for directly measuring deflection of double-armature rotor shaft
CN101871841A (en) * 2010-06-11 2010-10-27 宁波更大集团有限公司 Reverse assembly detection device and detection method for conical roller bearing inner ring assembly
KR101305057B1 (en) 2012-05-29 2013-09-11 박상영 Inside or outside diameter measuring device for bearing
CN103453822A (en) * 2013-09-23 2013-12-18 中国电子科技集团公司第十四研究所 Portable bearing rotating precision comprehensive detection platform
CN103528574A (en) * 2013-11-12 2014-01-22 江苏省镇江船厂(集团)有限公司 Locating measuring tool with large barrel type base
CN103759941A (en) * 2014-01-29 2014-04-30 哈尔滨工业大学 Precise main shaft rotation accuracy detecting device and method
CN103759941B (en) * 2014-01-29 2015-12-02 哈尔滨工业大学 A kind of Measuring of Axis Rotating Accuracy detection method
CN104091508A (en) * 2014-07-08 2014-10-08 扬州大学 Vertical type unit axis swing degree measuring and adjusting experimental device and experimental method
CN104091508B (en) * 2014-07-08 2016-08-17 扬州大学 Vertical unit axis throw measures regulation experiment device and experimental technique
JP2017163782A (en) * 2016-03-11 2017-09-14 ファナック株式会社 Automatic measuring apparatus for axis accuracy of motor
US10132710B2 (en) 2016-03-11 2018-11-20 Fanuc Corporation Shaft precision automatic measuring device for motor
JP2019174169A (en) * 2018-03-27 2019-10-10 株式会社牧野フライス製作所 Three-dimensional gauge and three-dimensional position error measurement method of machine
CN108760275A (en) * 2018-06-29 2018-11-06 上海第二工业大学 Cutter-handle of a knife-axis system engaging portion Analysis on Static Stiffness device and analysis method
CN108760275B (en) * 2018-06-29 2024-04-05 上海第二工业大学 Device and method for analyzing static rigidity of combination part of cutter, cutter handle and main shaft system
CN110686634A (en) * 2019-10-21 2020-01-14 中国工程物理研究院机械制造工艺研究所 Fine adjustment device for displacement sensor for detecting geometric accuracy of rotary axis
CN110686634B (en) * 2019-10-21 2024-06-04 中国工程物理研究院机械制造工艺研究所 Displacement sensor fine adjustment device for geometric accuracy detection of rotation axis
CN112880991A (en) * 2021-01-14 2021-06-01 南方科技大学 Rotor experimental device for simulating maneuvering flight
CN112880991B (en) * 2021-01-14 2022-11-25 南方科技大学 Rotor experimental device for simulating maneuvering flight
CN114544173A (en) * 2022-01-21 2022-05-27 慧三维智能科技(苏州)有限公司 Bearing defect detection equipment
CN114544173B (en) * 2022-01-21 2022-09-30 慧三维智能科技(苏州)有限公司 Bearing defect detection equipment
CN114777706A (en) * 2022-05-30 2022-07-22 山东洛轴所轴承研究院有限公司 High-precision measuring device for rotation precision of double-row cylindrical roller bearing
CN114777706B (en) * 2022-05-30 2024-04-05 山东洛轴所轴承研究院有限公司 High-precision measuring device for rotation precision of double-row cylindrical roller bearing

Similar Documents

Publication Publication Date Title
JP2009236571A (en) Apparatus and method for measuring rotational accuracy for bearings
JP2913913B2 (en) Method and apparatus for measuring the contact angle of a rolling bearing
US10502564B2 (en) Method for determining a torque acting on a rotational device or a force acting on a rotational device
JP5179852B2 (en) Measuring device for bearing rotation accuracy
CN104251764A (en) Rolling bearing vibration detection device and analysis method
US10345193B2 (en) Bearing gauge arrangement
CN104132886B (en) Precision bearing ball and the testing device for friction coefficient in retainer pocket hole
JP6822994B2 (en) Bearing adjustment support device and bearing adjustment support method
JP7347245B2 (en) Method for measuring groove diameter of bearing race, method for manufacturing rolling bearings, and method for manufacturing machines and vehicles
JP6373705B2 (en) Run-out measuring device
CN110345838B (en) Method for measuring working radius of four-axis centrifugal machine
JP2008008879A (en) Measuring instrument, measuring reference, and precision machine tool
JP6369033B2 (en) Contact angle measurement method
JP2013079856A (en) Double turntable with two orthogonal rotary axes for gyroscope calibration
Lou et al. A self-calibration method for rotary tables’ five degrees-of-freedom error motions
JP2004270898A (en) Rolling bearing unit with sensor
JP5294016B2 (en) Rotary table runout control apparatus, machine tool equipped with the same, and rotary table runout control method
JP2762636B2 (en) Method and apparatus for measuring rotational accuracy of rolling bearing
JP2004061151A (en) Contact angle measuring method and apparatus for bearing device
JP5509720B2 (en) Rolling bearing device
JP2010112929A (en) Outer diameter measuring device of roller for bearing
JP6476612B2 (en) Contact angle measuring method and contact angle measuring device
Ueyama et al. Spindle-runout generator devices to evaluate a rotary encoder's ability to detect spindle runout
CN202372094U (en) Adjustment device for inspection of circular arc end tooth gauge
Widmaier et al. New material standards for traceability of roundness measurements of large-scale rotors