JP2004061151A - Contact angle measuring method and apparatus for bearing device - Google Patents

Contact angle measuring method and apparatus for bearing device Download PDF

Info

Publication number
JP2004061151A
JP2004061151A JP2002216172A JP2002216172A JP2004061151A JP 2004061151 A JP2004061151 A JP 2004061151A JP 2002216172 A JP2002216172 A JP 2002216172A JP 2002216172 A JP2002216172 A JP 2002216172A JP 2004061151 A JP2004061151 A JP 2004061151A
Authority
JP
Japan
Prior art keywords
frequency
contact angle
vibration
measuring
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002216172A
Other languages
Japanese (ja)
Inventor
Hisakazu Tadokoro
田所 久和
Takashi Maeda
前田 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2002216172A priority Critical patent/JP2004061151A/en
Publication of JP2004061151A publication Critical patent/JP2004061151A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and an apparatus that reduce measurement time and inspect a contact angle on an in-line (manufacturing line) even if the rotational speed of a turning wheel is low. <P>SOLUTION: A contact angle α is obtained by obtaining one fundamental frequency of an inner ring frequency fi, a revolution frequency fc, an outer ring frequency fo, a rolling element frequency fb from harmonic components in a waviness frequency. The fundamental frequency is estimated by extracting an n-order harmonic component, and the measurement time is reduced to 1/nz in that case, thus contributing to a decrease in measurement time in a line. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば予圧が付与された組み合わせ軸受装置の接触角を測定する方法及び装置に関するものである。
【0002】
【従来の技術】
例えば、図4に断面を示すアンギュラ玉軸受1は、内周面に外輪軌道2を有する外輪3と、外周面に内輪軌道4を有する内輪5と、上記外輪軌道2と内輪軌道4との間に転動自在に設けられた、転動体である複数の玉6、6とから構成される。この玉6、6の転動に基づき、上記外輪3を内嵌支持したハウジング等の部材と、上記内輪5を外嵌支持した軸等の部材との相対的回転を自在とする。
【0003】
更に、アンギュラ玉軸受1は、ラジアル方向の荷重だけでなくアキシャル方向の荷重も支承出来る様に、各玉6、6と外輪軌道2及び内輪軌道4との接触点を結ぶ直線aを、各玉6、6の中心同士を結ぶ直線bに対して、角度αだけ傾斜させている。接触角と呼ばれるこの角度αは、玉軸受1の性能に大きな影響を及ぼす為、所定の値になる様に規制する必要がある。特に、高性能玉軸受の場合には、上記接触角αを厳密に規制する必要がある。又、図示は省略したが、円錐ころ軸受に於ける転動体であるころの接触角も、同様に、厳密に規制する必要がある。
【0004】
ところで、軸受装置の接触角を測定する方法及び装置が特開平4−364408公報に開示されている。かかる方法及び装置は、軸受の外輪と内輪の内、一方の輪の一部を押圧することで回転不能とした状態で他方を回転させ、外輪又は内輪の振動を測定し、測定値から回転輪の回転周波数と転動体の公転周波数とを求めることで、接触角を求めるものである。
【0005】
特開平4−364408公報に開示された転がり軸受の接触角を測定する方法によれば、外輪又は内輪の回転角と転動体を保持する保持器の回転角とから接触角を求めていたそれ以前の測定方法及び装置に比べて、測定可能な軸受が限定されず十分に高精度の測定が行え、且つ測定作業の自動化が可能となり、転がり軸受の製造ライン中に測定装置を組み込むことで転がり軸受の接触角をライン上で検査することも可能となった。
【0006】
【発明が解決しようとする課題】
ところで、外輪の内周面と、内輪の外周面とにそれぞれ複列の軌道を形成し、両軌道の間に設けられた転動体に予圧を付与したごとき組み合わせ軸受の公転周波数を求める場合、各列毎に振動が発生し、公転周波数が2種類求められる。この場合、組み合わせ軸受の各列の接触角が隣接していたり、各列の接触角がほぼ等しいと、2つの公転周波数の差が小さいために、何れの公転周波数が何れの列のものであるかを特定できないことがあった。
【0007】
しかるに、上述の従来技術によれば、外輪又は内輪の何れか一方を回転不能にする押圧力を変化させ、各列の転動体の接触角を異るものにし2種類の公転周波数に違いを持たせることで、何れの公転周波数が何れの列のものであるかを特定できるようにしている。
【0008】
【発明が解決しようとする課題】
しかしながら、上述の従来技術では、実用回転数で外輪又は内輪の何れか一方を回転させ各列毎に接触角を測定するので、組み合わせ軸受の2種類の公転周波数の差が小さいと、測定する時間が長くなり、インライン(製造ライン)上での検査が困難なことがあった。特に、かかる回転数が低い場合、組み合わせ軸受の2種類の公転周波数の差が小さいと、何れの列の転動体の公転周波数であるかを識別することが困難なため、十分な測定が行えないなどの問題があった。
【0009】
本発明は、予圧が付与された組み合わせ軸受の接触角の測定方法及び装置において、測定する時間を短縮でき、また、回転輪の回転数が低回転であっても、インライン(製造ライン)上で接触角を検査可能な方法及び装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために、第1の本発明の軸受装置の接触角測定方法は、
外輪と、内輪と、両輪間に転動自在に配置された転動体とを有する軸受装置(例えば円錐ころ軸受)の接触角を測定する接触角測定方法において、
前記内輪と前記外輪の一方を回転させたとき、固定された輪に発生する半径方向振動又は軸方向振動の少なくとも一方を測定し、測定結果により得られるウェビネスによる振動周波数の基本波または高調波成分に基づいて、前記転動体の接触角を求めることを特徴とする。
【0011】
第2の本発明の軸受装置の接触角測定装置は、
外輪と、内輪と、両輪間に転動自在に配置された転動体とを有する軸受装置(例えば円錐ころ軸受)の接触角を測定する接触角測定装置において、
前記内輪と前記外輪の一方を回転させたとき、固定された輪に発生する半径方向振動又は軸方向振動の少なくとも一方を測定する測定手段と、
前記測定手段が測定した振動を解析してウェビネスによる振動周波数の基本波または高調波成分を求める解析手段と、
前記基本波又は高調波成分に基づいて、前記転動体の接触角を求める演算手段とを有することを特徴とする。
【0012】
【作用】
転がり軸受を構成する各部材は極めて精密に仕上げられるが、その表面形状並びに寸法に全く誤差がない事はありえない。例えば、1個の転がり軸受に組み込まれる複数の転動体の外径は同じとするのが理想であるが、不可避的な製造誤差により、通常は各転動体毎に外径が僅かに異なっている。この様に外径が微妙に異なる複数の転動体の公転に基づき、回転輪もしくは固定輪が、半径方向、軸方向に振動する。この振動を解析することで、転動体のウェビネスによる振動周波数がわかる。
【0013】
又、外輪軌道と内輪軌道とは何れも、微小のうねりが存在する。回転輪の回転時には、このうねりに基づいて、回転輪及び固定輪が、半径方向、軸方向に振動する。この振動を解析すれば、回転輪のウェビネスによる振動周波数及び固定輪のウェビネス周波数がわかる。
【0014】
特に、複列の転動体を含む組み合わせ軸受の場合、接触角が2個存在するために各振動成分のスペクトラムは、隣接した2本の線スペクトラムとして計測される。このときの転動体の公転周波数をfc1、fc2として、例えば固定輪のうねり(ウェビネス)による半径方向の振動のn次成分を計測し、この転動体の公転周波数をnzfc1、nzfc2とすると、各々の転動体の公転周波数による評価の比較を示す(nzfc1−nzfc2)/(fc1−fc2)はnz倍の周波数になり、転動体の公転周波数fc1、fc2による評価のnz倍になる。従って、n次成分の転動体の公転周波数nzfcにより接触角を評価する場合、周波数分析のために必要な測定時間は1/nzに短縮され、インラインで予圧が付与された軸受の接触角を全数計測することが可能になる。これは、転動体の公転周波数の高次成分を検出することで、同じ検出精度を得るための周波数分解能は低くても良いからである。
【0015】
ここで、各ウェビネス周波数のn次成分は、以下のように表せる。
(1)半径方向振動
回転輪ウェビネス:n・fi±fr 又は n・fo±fr
固定輪ウェビネス:n・Z・fc
転動体ウェビネス:2・n・fb±fc
(2)軸方向振動
回転輪ウェビネス:n・fi 又は n・fo
固定輪ウェビネス:n・Z・fc
転動体ウェビネス:2・n・fb
但し、fiは内輪周波数、fcは公転周波数、foは外輪周波数、fbは転動体周波数である。これらと接触角との関係を以下に示す
【数1】

Figure 2004061151
【数2】
Figure 2004061151
【数3】
Figure 2004061151
【数4】
Figure 2004061151
但し、式中でZはボール数、Dはボール径、dmはピッチ径、αは接触角、frは回転輪の回転数である。
【0016】
本発明によれば、上述したウェビネス周波数の高調波成分から、内輪周波数fi、公転周波数fc、外輪周波数fo、転動体周波数fbのいずれかの基本周波数を求めることで、(1)〜(4)式のいずれかに基づいて接触角αを求めることができる。ここで、n次の高調波成分を抽出することで基本周波数を推定できるが、その場合の測定時間は1/nzに短縮され、ラインでの測定時間短縮に寄与する。尚、内輪周波数fi、公転周波数fc、外輪周波数fo、転動体周波数fbのいずれを用いて接触角αを求めるかは任意であるが、実際の測定時には、回転輪と共に回転するスピンドルの振れ成分や、ノイズ等が現れるので、それらの影響が最も少ない周波数を選択すればよい。尚、軸受の回転数が変動する場合は、回転輪の回転数に一致する振動を同時に計測することで、その影響を回避できる。
【0017】
【発明の実施の形態】
以下、本発明による実施の形態について図面を用いて説明する。図1は本発明の実施の形態による接触角測定装置の半径方向振動を計測する場合の断面図である。
【0018】
図1に示すように、接触角αを測定すべき、予圧が付与された組み合わせ軸受1は、内周面に複列の外輪軌道2、2を有する外輪3と、外周面に複列の内輪軌道4、4を有する内輪5と、上記外輪軌道2、2と内輪軌道4、4との間に転動自在に設けられた、転動体の一種である複数の玉6a、6a、6b、6bとから構成される。上記接触角αの測定作業時には、この組み合わせ軸受1の内輪5が、後述するエアースピンドル17、サーボモ−タ19等と共に駆動装置を構成するアーバ16に外嵌支持される。
【0019】
上記アーバ16は、スピンドル17の一端面中心部に形成されたテーパ孔47に嵌合固定される。そしてこのスピンドル17は、フレーム18の内側に回転自在に支持される。このスピンドルを支持する軸受として好ましくは、静圧気体軸受、磁気軸受、超電導軸受等、上記スピンドル17の回転に伴なって振動を発生しない構造のものを使用する。
【0020】
この様にしてフレーム18に支持されたスピンドル17は、サーボモータ19により回転駆動自在とされる。又、スピンドル17をエアスピンドルとすることで、サーボモータ19によるスピンドル17の回転駆動時に、このスピンドル17が振動する事を防止する。図示の実施の形態では、スピンドル17とサーボモータ19の出力軸とを同心に配置し、マグネットカップリング等を介して、上記スピンドル17を回転駆動する。上記サーボモータ19への通電により上記スピンドル17は、例えば1800回転毎分程度の一定速度で回転駆動される。
【0021】
尚、図示の実施の形態とは別に、スピンドル17の他端面中心部に固定した従動プーリとサーボモータ19の出力軸に固定した駆動プーリとの間に、無端ベルトを掛け渡すことで、上記スピンドル17を回転駆動する事もできる。
【0022】
押圧装置23が、組み合わせ軸受1と並行して設けられ、押圧リング26がアーバ16に支持された組み合わせ軸受1の外輪3の端面に対向した状態で設けられる。この押圧装置23は、支持体24に対して回転自在に支持されたネジ軸25と、ネジ軸25に螺合し、その回転により軸方向に移動するボールスクリューナット28と、ボールスクリューナット28に一端を固定し、他端を継手29に固定したアーム27と、外輪3の端面を覆う押圧リング26とを有する。
【0023】
前記押圧リング26は、ネジ軸25上のボールスクリューナット28が下方向に移動することに伴なってアーム27及び継手29が下降するので、前記組み合わせ軸受1の外輪3の端面に押し付けられ、この外輪3をアキシャル方向(図1の下方向)に押圧する。この押圧により、前記内輪5がサーボモータ19への通電に基づいて回転した場合に於いても、この外輪3が回転するのが防止される。
【0024】
尚、この押し付け作業時に、前記押圧リング26を外輪3の端面に、全周に亙って均等な力で押し付ける役目を有する揺動継手(図示せず)を継手29に替えて取り付けたり、上記押圧装置23を構成する各部材で生じる振動が外輪3に伝達されるのを防止する役目を有する緩衝材(不図示)を外輪3と押圧リング26との間に設けてもよい。又、前記押圧リング26をアキシャル方向に押圧する為の手段は、予圧シリンダ、ソレノイド等、他の機構とする事も出来る。
【0025】
測定手段すなわち振動測定素子である振動ピックアップ33が、外輪3の外周面に当接して配置されている。この振動ピックアップ33は、外輪3のラジアル方向(半径方向)に亙る振動を測定し、測定値を表わす信号Aをアンプ35に送る。尚、振動測定素子としては、上記振動ピックアップ33の他、変位計、速度計、加速度計等、上記ラジアル方向に亙る振動を検出できるものであれば、何れも使用可能である。又、外輪3のアキシアル方向(軸方向)の振動を測定しても良い。
【0026】
上記アンプ35は増幅器とローパスフィルタとを含む。従って、このアンプ35からは、増幅された信号Bが、周波数分析器36に送られる。尚、ローパスフィルタは、次述するフーリエ変換器38による処理を行なう際の、折り返し防止の為に設けられる。
【0027】
分析手段である周波数分析器36は、A/D変換器37と、フーリエ変換器38と、メモリ39とを含む。上記フーリエ変換器38は、高速フーリエ変換(FFT:fast fourier transform)を利用して、上記アンプ35から送り込まれ、A/D変換器37によりディジタル信号に変換された信号Bに基づいて、振動の周波数成分を求めることができる。
【0028】
尚、メモリ39は、前記サーボモータ19による内輪5の回転にむらが生じる恐れのある場合に、これを補正するのに利用される。回転むらを補正する場合には、A/D変換器37から送り出された信号は、メモリ39を介して上記フーリエ変換器38に送られる。このフーリエ変換器38は、回転輪の回転数frと公転周波数のn次成分n・fcとを、同じ時間軸データから求めるようになっている。
【0029】
即ち、上記アンプ35から周波数分析器36に送られる信号Bには、上記回転数frに関する信号と、公転周波数のn次成分n・fcに関する信号とが、互いに重なり合った状態で含まれる。スペクトルもあるが、本実施形態の場合には、公転周波数のn次成分、n・fcの中で重ならないスペクトルを分析している。
【0030】
上記内輪5の回転にむらがない場合には、上記回転数frに結び付く信号の処理を第1の計測時間内の信号Bで行ない、公転周波数のn次成分n・fcに結び付く信号の処理を、この第1の計測時間とは重ならない第2の計測時間内の信号B′で行なっても良い(メモリ39は不要)。ところが、内輪5の回転にむらがあると、第1の計測時間の間の回転数frと第2の計測時間の間の公転周波数のn次成分n・fcとが対応しなくなり、この結果求められる接触角αが不正確となる。そこで、この様な場合には、上記メモリ39を利用する事で、上記回転数frと公転周波数のn次成分n・fcとを何れも同じ時間軸に存在する信号Bから求めることができる。
【0031】
この為、上記内輪5の回転にむらが生じても、このむらが上記回転数frと公転周波数のn次成分n・fcとの比率fc/n・frに影響を与える事はなくなる。最終的に求めるべき接触角αは、前記(1)式から明らかな様に、上記回転数frと公転周波数fcとの比率により求められる為、この比率が正しければ、正確な接触角αを得られる。
【0032】
この様に、周波数分析器36を構成するフーリエ変換器38により求められた、内輪5の回転数frと玉6、6の公転周波数のn次成分n・fcとを表わす信号Cは、玉6、6の外径Da及び玉6、6のピッチ直径dmを表わす信号と共に、パーソナルコンピュータ等の接触角演算器40に送り込まれる。それに基づき、演算手段である接触角演算器40が、前記(1)式に基づいて、前記組み合わせ軸受1の接触角αを求めるようになっている。
【0033】
以上のように構成された本実施の形態による組み合わせ軸受の接触角測定装置を、いわゆるハブIII軸受に適用した例について図1を用いて説明する。
【0034】
ハブIII軸受の場合、加工、組立工程での寸法誤差により接触角αは変化するが、D/dmに与える影響は無視できるほど小さく、例えばPCD44.5mmと比較的サイズの小さい軸受でもD/dmの誤差は0.2%程度であり、一定とみなすことができるため、(1)〜(4)の各式における振動成分のみを計測すれば接触角αを推定することができる。また、仮にnz倍のウェビネス成分を計測に用いても誤差の影響度は変わることはない。
【0035】
図2に示すように、周波数分析器により複列の組み合わせ軸受における接触角αを評価するための、各列の転動体の公転周波数n・Z・fc1とn・Z・fc2が2本抽出されれば、fc1、fc2を推定でき、接触角演算器により(1)〜(4)に示した式に従って、2つの接触角αを求めて評価することができる。
【0036】
次に、軸受を低速で回転させた場合の接触角を求める例について図3を用いて説明する。図3は、軸受を600回転毎分で回転させた場合の転動体の公転周波数fcを示すグラフである。図3に示すように、軸受を600回転毎分と低速で回転させて、転動体の公転周波数fcの1次、2次、3次成分を計測し、1次、2次、3次成分について隣接する2本の周波数の差分を求め、その値を図中△にプロットした。図3より図中の△印はリニアな関係にあることから、2次、3次成分の周波数より1次成分周波数に換算した場合でも、1次成分の周波数を精度良く推定できることを示している。従って、高次成分から基本成分の周波数を推定することができる。
【0037】
さらに、図中の表は実際に2次、3次成分より換算した1次成分相当の周波数であり、この表より隣接している2本の周波数は共にほぼ1次成分と同じ周波数の値である。このことからも、2次、3次成分の周波数より1次成分の周波数を精度良く推定できる。
【0038】
図3のデータにより、例えば転動体の公転周波数の3次成分を計測すれば、1次成分の周波数を精度良く推定することができ、1次成分を計測する場合に比べて1/3の計測時間で接触角αを推定することができる。
【0039】
従って、高次成分から基本成分の周波数を推定することができるだけでなく、基本成分の周波数を計測する場合に比べて、次数分の一の計測時間で接触角αを推定でき、計測時間を短縮することができる。
【0040】
【発明の効果】
本発明によれば、測定する時間を短縮でき、また、回転輪の回転数が低回転であっても、インライン(製造ライン)上で接触角を検査可能な方法及び装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態による接触角測定装置の半径方向振動を計測する場合の断面図である。
【図2】周波数分析例を示すグラフである。
【図3】軸受を600回転毎分で回転させた場合の転動体の公転周波数fcを示すグラフである。
【図4】軸受装置の一例であるアンギュラ玉軸受の断面図である。
【符号の説明】
1 組み合わせ軸受
3 外輪
5 内輪
6a、6b 玉(転動体)
17 スピンドル
18 フレーム
19 サーボモータ
23 押圧装置
33 振動ピックアップ
35 アンプ
36 周波数分析器
40 接触角演算器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for measuring the contact angle of a pre-loaded combination bearing device, for example.
[0002]
[Prior art]
For example, an angular contact ball bearing 1 having a cross section shown in FIG. 4 has an outer race 3 having an outer raceway 2 on an inner peripheral surface, an inner race 5 having an inner raceway 4 on an outer peripheral surface, and a space between the outer raceway 2 and the inner raceway 4. And a plurality of balls 6, which are rolling elements, provided so as to be able to roll freely. Based on the rolling of the balls 6, 6, relative rotation between a member such as a housing in which the outer ring 3 is internally supported and a member such as a shaft in which the inner ring 5 is externally supported is enabled.
[0003]
Further, the angular contact ball bearing 1 draws a straight line a connecting the contact points of the balls 6, 6 with the outer ring raceway 2 and the inner ring raceway 4 so as to support not only the radial load but also the axial load. 6 and 6 are inclined by an angle α with respect to a straight line b connecting the centers of each other. This angle α, which is called a contact angle, has a great effect on the performance of the ball bearing 1, and therefore it is necessary to regulate the angle α to a predetermined value. In particular, in the case of a high-performance ball bearing, it is necessary to strictly control the contact angle α. Although not shown, the contact angle of the rollers as the rolling elements in the tapered roller bearing also needs to be strictly regulated.
[0004]
Incidentally, a method and apparatus for measuring the contact angle of a bearing device is disclosed in Japanese Patent Application Laid-Open No. 4-364408. Such a method and apparatus are to rotate one of the outer ring and the inner ring of the bearing in a state where rotation is impossible by pressing a part of one of the rings, measure the vibration of the outer ring or the inner ring, and measure the rotation of the rotating ring from the measured value. The contact angle is obtained by obtaining the rotation frequency of the rolling element and the revolution frequency of the rolling element.
[0005]
According to the method for measuring the contact angle of a rolling bearing disclosed in Japanese Patent Application Laid-Open No. 4-364408, before the contact angle was determined from the rotation angle of the outer ring or the inner ring and the rotation angle of the cage holding the rolling elements. As compared with the measurement method and apparatus of the above, the measurementable bearing is not limited, and sufficiently high-precision measurement can be performed, and the measurement operation can be automated. The rolling bearing can be incorporated into the rolling bearing manufacturing line by incorporating the measurement apparatus. It has also become possible to inspect the contact angle on the line.
[0006]
[Problems to be solved by the invention]
By the way, when the revolving frequency of the combined bearing is obtained by forming a double row of tracks on the inner peripheral surface of the outer ring and the outer peripheral surface of the inner ring, and applying a preload to the rolling elements provided between the two tracks, Vibration occurs for each row, and two kinds of revolution frequencies are obtained. In this case, if the contact angles of each row of the combined bearing are adjacent to each other or the contact angles of each row are substantially equal, the difference between the two revolution frequencies is small, so that any of the revolution frequencies is that of any of the rows. Sometimes it was not possible to identify.
[0007]
However, according to the above-described conventional technology, the pressing force that makes one of the outer ring and the inner ring unrotatable is changed to make the contact angles of the rolling elements in each row different so that the two kinds of revolution frequencies have a difference. By doing so, it is possible to identify which orbital frequency belongs to which column.
[0008]
[Problems to be solved by the invention]
However, in the above-described prior art, since either the outer ring or the inner ring is rotated at a practical rotation speed and the contact angle is measured for each row, if the difference between the two types of revolving frequencies of the combined bearing is small, the measurement time is reduced. And the inspection in an in-line (manufacturing line) was sometimes difficult. In particular, when the rotation speed is low, if the difference between the two kinds of revolution frequencies of the combined bearing is small, it is difficult to identify which row of the rolling elements is the revolution frequency, so that sufficient measurement cannot be performed. There was such a problem.
[0009]
The present invention provides a method and an apparatus for measuring a contact angle of a combined bearing to which a preload is applied, in which the measuring time can be shortened, and even when the rotation speed of a rotating wheel is low, in-line (production line) An object of the present invention is to provide a method and an apparatus capable of inspecting a contact angle.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a first method for measuring a contact angle of a bearing device according to the present invention comprises:
In a contact angle measuring method for measuring a contact angle of a bearing device (for example, a tapered roller bearing) having an outer ring, an inner ring, and a rolling element rotatably arranged between the two wheels,
When one of the inner ring and the outer ring is rotated, at least one of radial vibration and axial vibration generated in the fixed ring is measured, and a fundamental or harmonic component of a vibration frequency based on the waviness obtained by the measurement result is measured. The contact angle of the rolling element is obtained based on
[0011]
A contact angle measuring device for a bearing device according to a second aspect of the present invention comprises:
In a contact angle measuring device for measuring a contact angle of a bearing device (for example, a tapered roller bearing) having an outer ring, an inner ring, and a rolling element rotatably arranged between the two wheels,
Measuring means for measuring at least one of radial vibration and axial vibration generated in a fixed wheel when one of the inner ring and the outer ring is rotated,
Analyzing means for analyzing the vibration measured by the measuring means to determine a fundamental or harmonic component of the vibration frequency by webininess,
Calculating means for calculating a contact angle of the rolling element based on the fundamental wave or the harmonic component.
[0012]
[Action]
Although each member constituting the rolling bearing is finished very precisely, it is impossible that there is no error in its surface shape and dimensions. For example, it is ideal that the outer diameters of a plurality of rolling elements incorporated in one rolling bearing are the same, but the outer diameters are usually slightly different for each rolling element due to unavoidable manufacturing errors. . As described above, the rotating wheel or the fixed wheel vibrates in the radial direction and the axial direction based on the revolution of the plurality of rolling elements having slightly different outer diameters. By analyzing this vibration, the vibration frequency due to the waviness of the rolling element can be found.
[0013]
In addition, both the outer raceway and the inner raceway have minute undulations. When the rotating wheel rotates, the rotating wheel and the fixed wheel vibrate in the radial and axial directions based on the undulation. By analyzing this vibration, the vibration frequency due to the waviness of the rotating wheel and the waviness frequency of the fixed wheel can be found.
[0014]
In particular, in the case of a combination bearing including double-row rolling elements, since there are two contact angles, the spectrum of each vibration component is measured as two adjacent line spectra. Assuming that the revolution frequencies of the rolling elements at this time are fc1 and fc2, for example, the nth-order component of the radial vibration due to the undulation (webiness) of the fixed wheel is measured. (Nzfc1-nzfc2) / (fc1-fc2), which shows a comparison of the evaluation based on the revolution frequency of the rolling element, is nz times the frequency, and is nz times the evaluation based on the revolution frequencies fc1 and fc2 of the rolling elements. Therefore, when the contact angle is evaluated based on the revolution frequency nzfc of the rolling element of the nth order component, the measurement time required for frequency analysis is reduced to 1 / nz, and the contact angle of the bearing to which the preload is applied in-line is completely reduced It becomes possible to measure. This is because the frequency resolution for obtaining the same detection accuracy may be low by detecting a higher-order component of the revolution frequency of the rolling element.
[0015]
Here, the nth-order component of each webiness frequency can be expressed as follows.
(1) Radial vibration rotating wheel waviness: n · fi ± fr or n · fo ± fr
Fixed wheel webiness: n ・ Z ・ fc
Rolling element webiness: 2 · n · fb ± fc
(2) Axial vibration rotating wheel webiness: n · fi or n · fo
Fixed wheel webiness: n ・ Z ・ fc
Rolling element webiness: 2 ・ n ・ fb
Here, fi is the inner ring frequency, fc is the revolution frequency, fo is the outer ring frequency, and fb is the rolling element frequency. The relationship between these and the contact angle is shown below.
Figure 2004061151
(Equation 2)
Figure 2004061151
[Equation 3]
Figure 2004061151
(Equation 4)
Figure 2004061151
In the equation, Z is the number of balls, D is the ball diameter, dm is the pitch diameter, α is the contact angle, and fr is the number of revolutions of the rotating wheel.
[0016]
According to the present invention, any one of the basic frequencies of the inner ring frequency fi, the revolving frequency fc, the outer ring frequency fo, and the rolling element frequency fb is obtained from the above-described harmonic component of the webininess frequency, thereby obtaining (1) to (4). The contact angle α can be obtained based on any of the equations. Here, the fundamental frequency can be estimated by extracting the n-th harmonic component, but the measurement time in that case is reduced to 1 / nz, which contributes to the reduction of the measurement time in the line. The contact angle α may be determined using any of the inner ring frequency fi, the revolving frequency fc, the outer ring frequency fo, and the rolling element frequency fb. , Noise, etc. appear, so that the frequency having the least influence on them may be selected. When the rotational speed of the bearing fluctuates, the influence can be avoided by simultaneously measuring the vibrations corresponding to the rotational speed of the rotating wheel.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view of a contact angle measuring device according to an embodiment of the present invention when measuring radial vibration.
[0018]
As shown in FIG. 1, a preloaded bearing 1 for which the contact angle α is to be measured includes an outer ring 3 having multiple rows of outer raceways 2 and 2 on the inner peripheral surface, and a double row inner race on the outer peripheral surface. A plurality of balls 6a, 6a, 6b, 6b, which are a kind of rolling elements, are provided between the outer raceways 2, 2 and the inner raceways 4, 4 so as to roll freely. It is composed of At the time of measuring the contact angle α, the inner ring 5 of the combined bearing 1 is externally supported by an arbor 16 which constitutes a driving device together with an air spindle 17 and a servo motor 19 to be described later.
[0019]
The arbor 16 is fitted and fixed in a tapered hole 47 formed at the center of one end surface of the spindle 17. The spindle 17 is rotatably supported inside the frame 18. As the bearing for supporting the spindle, it is preferable to use a static pressure gas bearing, a magnetic bearing, a superconducting bearing or the like having a structure that does not generate vibration with the rotation of the spindle 17.
[0020]
The spindle 17 supported on the frame 18 in this manner is rotatably driven by a servomotor 19. Also, by using the spindle 17 as an air spindle, the spindle 17 is prevented from vibrating when the spindle 17 is rotationally driven by the servo motor 19. In the illustrated embodiment, the spindle 17 and the output shaft of the servomotor 19 are arranged concentrically, and the spindle 17 is driven to rotate via a magnetic coupling or the like. When the servo motor 19 is energized, the spindle 17 is driven to rotate at a constant speed of, for example, about 1800 revolutions per minute.
[0021]
In addition, separately from the illustrated embodiment, the endless belt is stretched between a driven pulley fixed to the center of the other end surface of the spindle 17 and a drive pulley fixed to the output shaft of the servomotor 19, thereby obtaining the spindle. 17 can also be driven to rotate.
[0022]
A pressing device 23 is provided in parallel with the combination bearing 1, and is provided in a state where the pressing ring 26 faces the end surface of the outer ring 3 of the combination bearing 1 supported by the arbor 16. The pressing device 23 includes a screw shaft 25 rotatably supported by a support 24, a ball screw nut 28 screwed onto the screw shaft 25, and moving in the axial direction by the rotation thereof, and a ball screw nut 28. It has an arm 27 having one end fixed and the other end fixed to a joint 29, and a pressing ring 26 covering the end surface of the outer race 3.
[0023]
The pressing ring 26 is pressed against the end face of the outer ring 3 of the combined bearing 1 because the arm 27 and the joint 29 are lowered as the ball screw nut 28 on the screw shaft 25 moves downward. The outer ring 3 is pressed in the axial direction (downward in FIG. 1). This pressing prevents the outer ring 3 from rotating even when the inner ring 5 rotates based on the energization of the servomotor 19.
[0024]
During this pressing operation, a rocking joint (not shown) having a function of pressing the pressing ring 26 on the end face of the outer ring 3 with an even force over the entire circumference is attached to the joint 29 instead of the joint 29. A cushioning member (not shown) having a function of preventing the vibration generated by each member constituting the pressing device 23 from being transmitted to the outer ring 3 may be provided between the outer ring 3 and the pressing ring 26. The mechanism for pressing the pressing ring 26 in the axial direction may be another mechanism such as a preload cylinder or a solenoid.
[0025]
A vibration pickup 33, which is a measuring means, that is, a vibration measuring element, is disposed in contact with the outer peripheral surface of the outer race 3. The vibration pickup 33 measures the vibration of the outer ring 3 in the radial direction (radial direction) and sends a signal A representing the measured value to the amplifier 35. In addition, as the vibration measuring element, in addition to the vibration pickup 33, any one that can detect the vibration in the radial direction, such as a displacement meter, a speedometer, and an accelerometer, can be used. Further, the vibration of the outer ring 3 in the axial direction (axial direction) may be measured.
[0026]
The amplifier 35 includes an amplifier and a low-pass filter. Therefore, the amplified signal B is sent from the amplifier 35 to the frequency analyzer 36. The low-pass filter is provided to prevent aliasing when performing processing by the Fourier transformer 38 described below.
[0027]
The frequency analyzer 36, which is an analysis means, includes an A / D converter 37, a Fourier converter 38, and a memory 39. The Fourier transformer 38 uses a fast Fourier transform (FFT) to transmit vibration from the amplifier 35 based on the signal B that is sent from the amplifier 35 and converted into a digital signal by the A / D converter 37. Frequency components can be determined.
[0028]
The memory 39 is used to correct uneven rotation of the inner ring 5 caused by the servo motor 19 when there is a possibility. When correcting rotational unevenness, the signal sent from the A / D converter 37 is sent to the Fourier transformer 38 via the memory 39. The Fourier transformer 38 determines the rotational frequency fr of the rotating wheel and the n-th component n · fc of the revolution frequency from the same time axis data.
[0029]
That is, the signal B sent from the amplifier 35 to the frequency analyzer 36 includes the signal related to the rotation speed fr and the signal related to the n-order component n · fc of the revolution frequency in a state where they overlap each other. Although there is a spectrum, in the case of the present embodiment, a spectrum that does not overlap in the n-order component of the revolution frequency, n · fc, is analyzed.
[0030]
If the rotation of the inner ring 5 is not uneven, the processing of the signal linked to the rotation frequency fr is performed by the signal B within the first measurement time, and the processing of the signal linked to the n-th component n · fc of the revolution frequency is performed. Alternatively, the measurement may be performed with the signal B 'within the second measurement time which does not overlap with the first measurement time (the memory 39 is unnecessary). However, if the rotation of the inner ring 5 is uneven, the number of revolutions fr during the first measurement time and the n-order component n · fc of the revolution frequency during the second measurement time do not correspond to each other. The contact angle α is inaccurate. Therefore, in such a case, by using the memory 39, the rotation speed fr and the n-th component n · fc of the revolution frequency can be obtained from the signal B existing on the same time axis.
[0031]
For this reason, even if the rotation of the inner ring 5 is uneven, the unevenness does not affect the ratio fc / n · fr between the rotation speed fr and the nth-order component n · fc of the revolution frequency. The contact angle α to be finally obtained is determined from the ratio between the rotational speed fr and the revolution frequency fc, as is apparent from the above equation (1). Therefore, if this ratio is correct, an accurate contact angle α can be obtained. Can be
[0032]
As described above, the signal C representing the rotational frequency fr of the inner ring 5 and the n-order component n · fc of the revolving frequency of the balls 6, 6, which is obtained by the Fourier transformer 38 constituting the frequency analyzer 36, is , 6 and a signal representing the pitch diameter dm of the balls 6, 6, are sent to a contact angle calculator 40 such as a personal computer. Based on this, the contact angle calculator 40, which is a calculating means, calculates the contact angle α of the combined bearing 1 based on the equation (1).
[0033]
An example in which the contact angle measuring device for a combined bearing according to the present embodiment configured as described above is applied to a so-called hub III bearing will be described with reference to FIG.
[0034]
In the case of the hub III bearing, the contact angle α changes due to a dimensional error in the machining and assembling processes. However, the influence on D / dm is negligibly small. For example, even a bearing having a relatively small size of PCD 44.5 mm has a D / dm. Is about 0.2% and can be regarded as constant. Therefore, the contact angle α can be estimated by measuring only the vibration components in the equations (1) to (4). Further, even if the webiness component of nz times is used for the measurement, the influence of the error does not change.
[0035]
As shown in FIG. 2, two frequency orbits n · Z · fc1 and n · Z · fc2 of the rolling elements in each row are extracted by the frequency analyzer to evaluate the contact angle α in the double row combination bearing. Then, fc1 and fc2 can be estimated, and two contact angles α can be obtained and evaluated by the contact angle calculator according to the equations shown in (1) to (4).
[0036]
Next, an example of obtaining a contact angle when the bearing is rotated at a low speed will be described with reference to FIG. FIG. 3 is a graph showing the revolution frequency fc of the rolling element when the bearing is rotated at 600 revolutions per minute. As shown in FIG. 3, the bearing is rotated at a low speed of 600 revolutions per minute, and the primary, secondary, and tertiary components of the revolution frequency fc of the rolling element are measured. The difference between two adjacent frequencies was determined, and the value was plotted as 図 in the figure. 3 indicates that the frequency of the primary component can be accurately estimated even when the frequency of the secondary and tertiary components is converted to the frequency of the primary component since the symbol Δ in the diagram has a linear relationship. . Therefore, the frequency of the fundamental component can be estimated from the higher-order component.
[0037]
Further, the table in the figure is the frequency corresponding to the primary component actually converted from the secondary and tertiary components, and the two adjacent frequencies from this table are almost the same frequency value as the primary component. is there. From this, the frequency of the primary component can be accurately estimated from the frequency of the secondary and tertiary components.
[0038]
For example, if the tertiary component of the revolution frequency of the rolling element is measured from the data of FIG. 3, the frequency of the primary component can be accurately estimated. The contact angle α can be estimated in time.
[0039]
Therefore, not only can the frequency of the basic component be estimated from the higher-order components, but also the contact angle α can be estimated in a measurement time that is a fraction of the order compared to the case where the frequency of the basic component is measured, reducing the measurement time can do.
[0040]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the method and apparatus which can shorten the measurement time and can inspect a contact angle in-line (production line) even if the rotation speed of a rotating wheel is low can be provided. .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view when measuring a radial vibration of a contact angle measuring device according to an embodiment of the present invention.
FIG. 2 is a graph showing an example of frequency analysis.
FIG. 3 is a graph showing a revolution frequency fc of a rolling element when a bearing is rotated at 600 revolutions per minute.
FIG. 4 is a sectional view of an angular contact ball bearing which is an example of a bearing device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Combination bearing 3 Outer ring 5 Inner ring 6a, 6b Ball (rolling element)
17 Spindle 18 Frame 19 Servo motor 23 Pressing device 33 Vibration pickup 35 Amplifier 36 Frequency analyzer 40 Contact angle calculator

Claims (2)

外輪と、内輪と、両輪間に転動自在に配置された転動体とを有する軸受装置の接触角を測定する接触角測定方法において、
前記内輪と前記外輪の一方を回転させたとき、固定された輪に発生する半径方向振動又は軸方向振動の少なくとも一方を測定し、測定結果により得られるウェビネスによる振動周波数の基本波または高調波成分に基づいて、前記転動体の接触角を求めることを特徴とする軸受装置の接触角測定方法。
An outer ring, an inner ring, and a contact angle measuring method for measuring a contact angle of a bearing device having a rolling element rotatably disposed between the two wheels,
When one of the inner ring and the outer ring is rotated, at least one of a radial vibration and an axial vibration generated in a fixed wheel is measured, and a fundamental frequency or a harmonic component of a vibration frequency based on the waviness obtained by the measurement result is measured. A contact angle measuring method for a bearing device, wherein a contact angle of the rolling element is obtained based on the following.
外輪と、内輪と、両輪間に転動自在に配置された転動体とを有する軸受装置の接触角を測定する接触角測定装置において、
前記内輪と前記外輪の一方を回転させたとき、固定された輪に発生する半径方向振動又は軸方向振動の少なくとも一方を測定する測定手段と、
前記測定手段が測定した振動を解析してウェビネスによる振動周波数の基本波または高調波成分を求める解析手段と、
前記基本波又は高調波成分に基づいて、前記転動体の接触角を求める演算手段とを有することを特徴とする軸受装置の接触角測定装置。
In a contact angle measuring device for measuring a contact angle of a bearing device having an outer ring, an inner ring, and a rolling element arranged to be able to roll between the two wheels,
Measuring means for measuring at least one of radial vibration and axial vibration generated in a fixed wheel when one of the inner ring and the outer ring is rotated,
Analyzing means for analyzing the vibration measured by the measuring means to determine a fundamental or harmonic component of the vibration frequency by webininess,
Calculating means for determining a contact angle of the rolling element based on the fundamental wave or the harmonic component.
JP2002216172A 2002-07-25 2002-07-25 Contact angle measuring method and apparatus for bearing device Pending JP2004061151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002216172A JP2004061151A (en) 2002-07-25 2002-07-25 Contact angle measuring method and apparatus for bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002216172A JP2004061151A (en) 2002-07-25 2002-07-25 Contact angle measuring method and apparatus for bearing device

Publications (1)

Publication Number Publication Date
JP2004061151A true JP2004061151A (en) 2004-02-26

Family

ID=31937996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002216172A Pending JP2004061151A (en) 2002-07-25 2002-07-25 Contact angle measuring method and apparatus for bearing device

Country Status (1)

Country Link
JP (1) JP2004061151A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102192718A (en) * 2010-03-16 2011-09-21 Skf公司 Determining the contact angle of a ball bearing
CN102749063A (en) * 2012-07-31 2012-10-24 无锡市第二轴承有限公司 Method and device for measuring contact angle of ball bearing
WO2014167942A1 (en) * 2013-04-12 2014-10-16 Ntn株式会社 Inspection device
CN105157621A (en) * 2015-08-26 2015-12-16 无锡双益精密机械有限公司 Bearing contact angle detection device
CN105865791A (en) * 2016-05-20 2016-08-17 江苏南方轴承股份有限公司 Full-automatic test device for rotating flexibility of bearing
CN106248042A (en) * 2016-08-05 2016-12-21 文海 A kind of spindle-less lasso percent ripple instrument
CN112284584A (en) * 2019-07-12 2021-01-29 斯凯孚公司 Method for estimating bearing load using strain parameters that account for contact angle variations
JP2021032797A (en) * 2019-08-28 2021-03-01 日本精工株式会社 Method and system for monitoring state of rolling bearing

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102192718A (en) * 2010-03-16 2011-09-21 Skf公司 Determining the contact angle of a ball bearing
CN102749063A (en) * 2012-07-31 2012-10-24 无锡市第二轴承有限公司 Method and device for measuring contact angle of ball bearing
US9683915B2 (en) 2013-04-12 2017-06-20 Ntn Corporation Inspection device
JP2014206448A (en) * 2013-04-12 2014-10-30 Ntn株式会社 Inspection device
CN105122027A (en) * 2013-04-12 2015-12-02 Ntn株式会社 Inspection device
EP2985583A4 (en) * 2013-04-12 2016-12-07 Ntn Toyo Bearing Co Ltd Inspection device
WO2014167942A1 (en) * 2013-04-12 2014-10-16 Ntn株式会社 Inspection device
CN105157621A (en) * 2015-08-26 2015-12-16 无锡双益精密机械有限公司 Bearing contact angle detection device
CN105865791A (en) * 2016-05-20 2016-08-17 江苏南方轴承股份有限公司 Full-automatic test device for rotating flexibility of bearing
CN106248042A (en) * 2016-08-05 2016-12-21 文海 A kind of spindle-less lasso percent ripple instrument
CN106248042B (en) * 2016-08-05 2018-11-20 大连贝林轴承仪器有限公司 A kind of spindle-less lasso percent ripple instrument
CN112284584A (en) * 2019-07-12 2021-01-29 斯凯孚公司 Method for estimating bearing load using strain parameters that account for contact angle variations
JP2021032797A (en) * 2019-08-28 2021-03-01 日本精工株式会社 Method and system for monitoring state of rolling bearing
JP7388051B2 (en) 2019-08-28 2023-11-29 日本精工株式会社 Rolling bearing condition monitoring method and rolling bearing condition monitoring system

Similar Documents

Publication Publication Date Title
JP2913913B2 (en) Method and apparatus for measuring the contact angle of a rolling bearing
JP2882105B2 (en) Method and apparatus for measuring the preload of a rolling bearing
JP3648919B2 (en) Bearing preload measuring method and measuring apparatus
JP3419015B2 (en) Manufacturing method of rolling bearing device to which preload is applied
JP2009236571A (en) Apparatus and method for measuring rotational accuracy for bearings
US20220049955A1 (en) Method for acquiring contact angle of angular contact ball bearing and method for manufacturing wheel bearing device
JP3793888B2 (en) Ball bearing inspection method
JP2004061151A (en) Contact angle measuring method and apparatus for bearing device
CN1717575A (en) Load measurement on rolling bearing with particular revolution speed measurements
JP2008070305A (en) Method of measuring radial clearance of single-row radial ball bearing
JP4753654B2 (en) Evaluation method for rolling bearing parts
WO2008032831A1 (en) Method for manufacturing wheel supporting roller bearing unit, and method for testing double-race roller bearing unit
JPH07324972A (en) Apparatus for measuring vibration of roller bearing
JP2004270898A (en) Rolling bearing unit with sensor
JPH11153425A (en) Method and device for measuring bearing clearance of radial ball bearing
JP6941594B2 (en) How to monitor and measure the preload of spindle bearings
CN112989513B (en) Method for obtaining bearing working clearance by combining test and numerical calculation
JP2005344842A (en) Monitor and monitoring method
JPH112239A (en) Device to measure various property of rolling bearing
JP3358366B2 (en) Load measuring device for rolling bearings
JPH11248441A (en) Measuring method for surface waviness and device therefor
JP2007322280A (en) Inspection apparatus and inspection method for bearing device for wheel
JP2005283323A (en) Load measuring instrument for roller bearing unit
JP2003004593A (en) Method and apparatus for measuring pre-load of bearing device
JP3906142B2 (en) Bearing NRRO measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070301