JP2012177277A - Groundwater catchment structure and groundwater conduction structure - Google Patents

Groundwater catchment structure and groundwater conduction structure Download PDF

Info

Publication number
JP2012177277A
JP2012177277A JP2011041657A JP2011041657A JP2012177277A JP 2012177277 A JP2012177277 A JP 2012177277A JP 2011041657 A JP2011041657 A JP 2011041657A JP 2011041657 A JP2011041657 A JP 2011041657A JP 2012177277 A JP2012177277 A JP 2012177277A
Authority
JP
Japan
Prior art keywords
water
groundwater
retaining wall
steel
water collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011041657A
Other languages
Japanese (ja)
Other versions
JP5648850B2 (en
Inventor
Masakuni Egashira
正州 江頭
Shinichi Nishimura
晋一 西村
Nobuaki Kosaka
信章 高坂
Toru Kubo
徹 久保
Takeki Hirabayashi
岳樹 平林
Taro Koide
太朗 小出
Tatsuhiro Shoji
達弘 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2011041657A priority Critical patent/JP5648850B2/en
Publication of JP2012177277A publication Critical patent/JP2012177277A/en
Application granted granted Critical
Publication of JP5648850B2 publication Critical patent/JP5648850B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a groundwater catchment structure and a groundwater conduction structure which have less impact on a construction period.SOLUTION: In a groundwater catchment structure, an earth retaining wall 13 configured by a solidification material 14 and steel core materials 15 arranged inside the solidification material at a prescribed interval is constructed in a manner that divides an underground permeable layer to collect groundwater through a gap between an internal earth retaining wall at an excavation side and the underground water permeable layer. The groundwater catchment structure uses a water catchment device 11 which has: a steel water catchment box 21 with an opening section on one face; a screen pipe (a screen section) 23 arranged inside the steel water catchment box; and a first communication hole 24 installed inside the steel water catchment box so as to be communicated with the screen pipe. The steel water catchment box is fixed to the earth retaining wall in a manner that makes the opening section thereof face the internal earth retaining wall with a peripheral portion thereof fixed thereto at a depth where the opening section can be placed in the underground water permeable layer. The first communication hole of the steel water catchment box can be connected with a water passage pipe 33.

Description

本発明は、地下水集水構造および地下水通水構造に関するものである。   The present invention relates to a groundwater collection structure and a groundwater flow structure.

ボックスカルバートなどの延長の長い構造物を築造すると、土留め壁が地下水の流れを阻害し、地下ダムのような現象が起こり、上流側では地下水の上昇、下流側では水位の低下が見られる。   When building a structure with a long extension, such as a box culvert, the retaining wall obstructs the flow of groundwater, causing a phenomenon like a subsurface dam, where the groundwater rises upstream and the water level falls downstream.

このような地下水の問題を解消するために、例えば特許文献1の技術が開示されている。この特許文献1の技術は、地下構造物よりも深い位置の透水層の地下水を通水させるのには好適であるが、地下構造物と同程度の深さの透水層の地下水を通水させるには装置が大掛かりであり、施工コストが上昇してしまうという問題があった。   In order to solve such a problem of groundwater, for example, the technique of Patent Document 1 is disclosed. Although the technique of this patent document 1 is suitable for letting the groundwater in the permeable layer located deeper than the underground structure, the groundwater in the permeable layer having the same depth as the underground structure is allowed to flow. Has a problem that the apparatus is large and the construction cost increases.

そこで、簡易な構成(安価)で地下水を通水させる方法として、水平ボーリングで上流側、下流側それぞれの開削土留め壁(ソイルセメント連続壁やモルタル杭柱列壁)に通水孔を設けると同時に壁内に通水管を取り付けた施工方法が知られている。   Therefore, as a method of allowing groundwater to flow with a simple configuration (cheap), water drainage holes (soil cement continuous walls and mortar pile column walls) on the upstream and downstream sides of the horizontal boring are provided. At the same time, a construction method in which a water pipe is installed in the wall is known.

特開2000−87380号公報JP 2000-87380 A

しかしながら、上述した地下水対策では浅層部で通水を行う際、水平ボーリングなどで施工中の開削土留め壁に通水孔を設ける必要があり、躯体構築後の施工が不可能である。つまり、躯体構築前に大掛かりな工事を行う必要があることから、工期に影響を与えてしまうという問題があった。   However, in the above-mentioned groundwater countermeasures, when water is passed through the shallow layer, it is necessary to provide a water hole in the open earth retaining wall being constructed by horizontal boring or the like, and construction after the building is impossible. In other words, there is a problem that the construction period is affected because it is necessary to perform a large-scale construction before the building construction.

そこで、本発明は、上記事情を鑑みてなされたものであり、工期に影響を与えにくい地下水集水構造および地下水通水構造を提供するものである。   Then, this invention is made | formed in view of the said situation, and provides the groundwater collection structure and groundwater water flow structure which are hard to influence a construction schedule.

上記の課題を解決するために、請求項1に記載した発明は、固化材と所定間隔で該固化材中に配設された鋼製芯材とからなる土留め壁が地中透水層を分断して構築され、該土留め壁内側の掘削側と前記地中透水層との間で地下水を集水させるための地下水集水構造であって、一面に開口部が形成された鋼製集水箱と、該鋼製集水箱の内部に配設されたスクリーン部と、該スクリーン部と連通するように前記鋼製集水箱に形成された第1連通孔と、を備えた集水装置を用い、前記鋼製集水箱は、前記開口部を前記地中透水層の深さ位置にあって前記土留め壁の内側に対向させつつ前記開口部の周縁部を前記土留め壁に固定され、前記鋼製集水箱の前記第1連通孔に通水管が連結可能とされていることを特徴としている。   In order to solve the above-mentioned problems, the invention described in claim 1 is characterized in that a retaining wall made of a solidified material and a steel core disposed in the solidified material at a predetermined interval divides the underground water permeable layer. A steel water collection box constructed to collect groundwater between the excavation side inside the retaining wall and the underground permeable layer, and having an opening formed on one side thereof A water collecting device comprising: a screen portion disposed inside the steel water collecting box; and a first communication hole formed in the steel water collecting box so as to communicate with the screen portion, The steel water collecting box has the opening at the depth position of the underground permeable layer and is opposed to the inside of the earth retaining wall, and the peripheral edge of the opening is fixed to the earth retaining wall, A water pipe is connectable to the first communication hole of the water collecting box.

請求項1に記載した発明によれば、構造物の躯体構築中または構築前に土留め壁の壁面に集水装置を設けることにより、その後の地下水通水構造の施工と構造物の躯体工事とを並行して作業することができる。したがって、躯体工事に影響を与えにくく、工期の短縮を図ることができる。   According to the invention described in claim 1, by installing a water collecting device on the wall surface of the retaining wall during or before the construction of the structure body, the construction of the subsequent groundwater flow structure and the structure work of the structure Can work in parallel. Therefore, it is difficult to affect the frame construction, and the construction period can be shortened.

請求項2に記載した発明は、前記鋼製集水箱の上面に、前記土留め壁の前記固化材を切削するために用いる高圧噴射装置を挿通可能な第2連通孔が形成されていることを特徴としている。   In the invention described in claim 2, a second communication hole is formed on the upper surface of the steel water collecting box to allow insertion of a high-pressure injection device used for cutting the solidified material of the retaining wall. It is a feature.

請求項2に記載した発明によれば、土留め壁の固化材の切削を、鋼製集水箱側から高圧噴射装置を挿入して行うことができる。したがって、鋼製集水箱に第2連通孔を形成するだけの簡易な構成で、容易にかつ所望の形状に固化材を切削することができる。   According to the second aspect of the present invention, cutting of the solidified material of the retaining wall can be performed by inserting the high-pressure injection device from the steel water collection box side. Therefore, the solidified material can be easily cut into a desired shape with a simple configuration by simply forming the second communication hole in the steel water collection box.

請求項3に記載した発明は、請求項1に記載の地下水集水構造を用いた地下水通水構造であって、少なくとも前記土留め壁内に形成された空洞からの高圧噴射によって、前記土留め壁の固化材部分が切削されて前記集水装置と前記地中透水層とが連通する切削穴が形成され、前記切削穴と前記鋼製集水箱内にフィルター材が充填されて、前記地中透水層と前記集水装置との間が通水可能となっていることを特徴としている。   The invention described in claim 3 is a groundwater flow structure using the groundwater catchment structure according to claim 1, wherein at least by the high-pressure jet from a cavity formed in the retaining wall. A solidified material portion of the wall is cut to form a cutting hole for communicating the water collecting device and the underground water permeable layer, and the cutting hole and the steel water collecting box are filled with a filter material, It is characterized in that water can pass between the water permeable layer and the water collecting device.

請求項3に記載した発明によれば、構造物の躯体構築中または構築後に土留め壁の切削をすることができるため、躯体工事に影響を与えにくく、工期の短縮を図ることができる。   According to the third aspect of the present invention, the retaining wall can be cut during or after the construction of the structural body, so that the construction work is hardly affected and the construction period can be shortened.

請求項4に記載した発明は、請求項2に記載の地下水集水構造を用いた地下水通水構造であって、少なくとも前記第2連通孔から前記鋼製集水箱内に挿入された前記高圧噴射装置による高圧噴射によって、前記土留め壁の固化材部分が切削されて前記集水装置と前記地中透水層とが連通する切削穴が形成され、前記切削穴と前記鋼製集水箱内にフィルター材が充填されて、前記地中透水層と前記集水装置との間が通水可能となっていることを特徴としている。   According to a fourth aspect of the present invention, there is provided a groundwater drainage structure using the groundwater catchment structure according to the second aspect, wherein the high-pressure jet is inserted into the steel drainage box from at least the second communication hole. The solidified material portion of the retaining wall is cut by high-pressure spraying by a device to form a cutting hole that connects the water collecting device and the underground water permeable layer, and a filter is formed in the cutting hole and the steel water collecting box. It is characterized by being filled with a material and allowing water to pass between the underground permeable layer and the water collecting device.

請求項4に記載した発明によれば、構造物の躯体構築中または構築後に土留め壁の切削をすることができるため、躯体工事に影響を与えにくく、工期の短縮を図ることができる。そして、土留め壁の固化材を切削する際に、鋼製集水箱側から高圧噴射装置を挿入して行うため、容易に固化材を切削することができる。   According to the invention described in claim 4, since the retaining wall can be cut during or after the building of the structure, it is difficult to affect the frame work and the work period can be shortened. And when cutting the solidification material of a retaining wall, since a high pressure injection device is inserted from the steel water collecting box side, the solidification material can be easily cut.

本発明の地下水集水構造および地下水通水構造によれば、構造物の躯体構築中または構築前に、土留め壁の壁面に集水装置を設けることにより、その後の地下水通水構造の施工と構造物の躯体工事とを並行して作業することができる。したがって、躯体工事に影響を与えにくく、工期の短縮を図ることができる。また、構造物の躯体構築中または構築後に土留め壁の切削をすることができるため、これによっても工期の短縮を図ることができる。   According to the groundwater collection structure and the groundwater flow structure of the present invention, the construction of the subsequent groundwater flow structure can be performed by providing a water collecting device on the wall surface of the retaining wall during or before the construction of the structure frame Work can be done in parallel with the construction of the structure. Therefore, it is difficult to affect the frame construction, and the construction period can be shortened. In addition, since the retaining wall can be cut during or after the construction of the structural body, the work period can be shortened.

本発明の実施形態における地下水通水設備の施工手順を示すフローチャートである。It is a flowchart which shows the construction procedure of the groundwater water-flow installation in embodiment of this invention. 本発明の実施形態における地下水集水構造を示す概略側面図(フローチャートのS1の状態)である。It is a schematic side view (state of S1 of a flowchart) which shows a groundwater collection structure in an embodiment of the present invention. 図2の状態を示す概略平面図である。It is a schematic plan view which shows the state of FIG. 図2の集水装置を取り付ける状態を示す地下水集水構造の概略斜視図である。It is a schematic perspective view of the groundwater collection structure which shows the state which attaches the water collection apparatus of FIG. 本発明の実施形態における集水装置を表面側から見た斜視図である。It is the perspective view which looked at the water collecting apparatus in embodiment of this invention from the surface side. 本発明の実施形態における集水装置を裏面側から見た斜視図である。It is the perspective view which looked at the water collecting apparatus in embodiment of this invention from the back surface side. 本発明の実施形態における地下水集水構造を示す概略側面図(フローチャートのS2の状態)である。It is a schematic side view (state of S2 of a flowchart) which shows a groundwater collection structure in an embodiment of the present invention. 本発明の実施形態における地下水通水構造の施工手順を示す概略側面図(フローチャートのS3の状態)である。It is a schematic side view (state of S3 of a flowchart) which shows the construction procedure of the underground water flow structure in embodiment of this invention. 本発明の実施形態における地下水通水構造の施工手順を示す概略側面図(フローチャートのS4の状態)である。It is a schematic side view (state of S4 of a flowchart) which shows the construction procedure of the groundwater flow structure in the embodiment of the present invention. 図9の状態を示す概略平面図である。FIG. 10 is a schematic plan view showing the state of FIG. 9. 本発明の実施形態における地下水通水構造の施工手順を示す概略側面図(フローチャートのS5の状態)である。It is a schematic side view (state of S5 of a flowchart) which shows the construction procedure of the groundwater flow structure in the embodiment of the present invention. 本発明の実施形態における地下水通水構造の施工手順を示す概略側面図(フローチャートのS6の状態)である。It is a schematic side view (state of S6 of a flowchart) which shows the construction procedure of the groundwater flow structure in the embodiment of the present invention. 本発明の実施形態における地下水通水構造の施工手順を示す概略側面図(フローチャートのS7の状態)である。It is a schematic side view (state of S7 of a flowchart) which shows the construction procedure of the groundwater flow structure in the embodiment of the present invention. 図13の状態を示す概略平面図である。It is a schematic plan view which shows the state of FIG. 本発明の実施形態における地下水通水構造の施工手順を示す概略側面図(フローチャートのS8の状態)である。It is a schematic side view (state of S8 of a flowchart) which shows the construction procedure of the groundwater flow structure in the embodiment of the present invention. 図15の状態を示す概略平面図である。It is a schematic plan view which shows the state of FIG. 本発明の実施形態における地下水通水構造の施工手順を示す概略側面図(フローチャートのS9の状態)である。It is a schematic side view (state of S9 of a flowchart) which shows the construction procedure of the groundwater flow structure in the embodiment of the present invention. 本発明の実施形態における地下水通水構造の施工手順を示す概略側面図(フローチャートのS10の状態)である。It is a schematic side view (state of S10 of a flowchart) which shows the construction procedure of the underground water flow structure in the embodiment of the present invention. 図19の状態を示す概略平面図である。It is a schematic plan view which shows the state of FIG. 本発明の実施形態における地下水通水構造の施工手順を示す概略図(フローチャートのS11の状態)である。It is the schematic (state of S11 of a flowchart) which shows the construction procedure of the groundwater flow structure in embodiment of this invention. 本発明の実施形態における地下水通水構造の別の態様を示す概略図である。It is the schematic which shows another aspect of the groundwater flow structure in embodiment of this invention.

本発明の実施形態を図面に基づいて説明する。
図1は本実施形態の地下水集水構造から地下水通水構造を経て地下水通水設備に至る施工手順を示すフローチャートである。図1のフローチャートおよび各工程の状態を示す図面に沿って地下水通水設備200(図20参照)の施工手順を説明する。なお、以下の施工手順では、地中構造物1を構築する工事において、地中構造物1の両外側周囲に土留め壁13が地中透水層17を分断して地下水の流れを遮断する形態で施工され、地中構造物1が構築される土留め壁内側の掘削が完了した状態から説明をする。なお、本実施形態における地下水通水設備200は地下水通水構造100を包含し、地下水通水構造100は地下水集水構造10を包含する。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a flowchart showing a construction procedure from the groundwater collection structure according to the present embodiment to the groundwater flow facility through the groundwater flow structure. The construction procedure of the groundwater water flow facility 200 (see FIG. 20) will be described with reference to the flowchart of FIG. In the following construction procedure, in the construction of the underground structure 1, the earth retaining wall 13 divides the underground permeable layer 17 around both outer sides of the underground structure 1 to block the flow of groundwater. The construction will be described from the state where excavation inside the retaining wall where the underground structure 1 is constructed is completed. In addition, the groundwater water flow facility 200 in this embodiment includes the groundwater water flow structure 100, and the groundwater water flow structure 100 includes the groundwater water collection structure 10.

まず、図2〜図4に示すように、ステップS1では、地下水集水構造10の集水装置11の鋼製集水箱21(後に詳述する)および鋼製集水箱21の上方および下方の所定範囲に土留め壁防護用の鉄板12を土留め壁13の壁面13aに取り付ける。以下詳細に説明する。   First, as shown in FIGS. 2 to 4, in step S <b> 1, predetermined upper and lower portions of the steel water collection box 21 (detailed later) and the steel water collection box 21 of the water collection device 11 of the groundwater collection structure 10. The steel plate 12 for protecting the retaining wall is attached to the wall surface 13a of the retaining wall 13 in the range. This will be described in detail below.

土留め壁13は、固化材14と所定間隔で該固化材14中に配設された鋼製芯材15とで構成された地中連続壁である。地中透水層17は調査ボーリングによって予めその位置が想定されるものであり、また土留め壁13の内側を掘削するときには、実際に地中透水層17の位置が確認できる。したがって、掘削後にこの位置を確認して流水方向上流側および下流側にそれぞれ位置する土留め壁13の壁面13aにおける鋼製集水箱21の設置位置を決める。そして、鋼製集水箱21設置予定位置の上方では地上付近まで、下方では鋼製集水箱21の下端から2m程度まで、固化材14を鋼製芯材15,15のフランジ15aの面と略面一(少なくとも固化材14がフランジ面より突出しない)になるよう、鋼製集水箱21の設置予定位置を含めて一連で削り取る(土留め壁面平滑化工程)。   The earth retaining wall 13 is an underground continuous wall composed of a solidified material 14 and a steel core material 15 disposed in the solidified material 14 at a predetermined interval. The position of the underground permeable layer 17 is assumed in advance by survey boring, and when the inside of the retaining wall 13 is excavated, the position of the underground permeable layer 17 can be actually confirmed. Therefore, this position is confirmed after excavation, and the installation position of the steel water collecting box 21 on the wall surface 13a of the retaining wall 13 located on the upstream side and the downstream side in the running water direction is determined. Then, the solidified material 14 is substantially flush with the surface of the flange 15a of the steel cores 15 and 15 up to near the ground above the planned location of the steel water collecting box 21 and to about 2 m below the lower end of the steel water collecting box 21 below. Scraping is performed in series including the planned installation position of the steel water collection box 21 so that at least the solidified material 14 does not protrude from the flange surface (soil retaining wall surface smoothing step).

次に、鋼製集水箱21を設置するが、この設置位置は、予め地下水の水位変動を見込んで、鋼製集水箱21の上端が地中透水層17の深さ位置に対応した位置であって最低地下水位よりも低い位置になるように決められている。そして、土留め壁13の隣り合う鋼製芯材15,15に、鋼製集水箱21の開口部22を土留め壁13の内側に向け、その周縁部を溶接固定する(集水装置設置工程)。   Next, a steel water collection box 21 is installed. This installation position is a position where the upper end of the steel water collection box 21 corresponds to the depth position of the underground water permeable layer 17 in consideration of fluctuations in the groundwater level in advance. It is determined to be lower than the lowest groundwater level. And the opening part 22 of the steel water collection box 21 faces the inner side of the earth retaining wall 13, and the peripheral part is weld-fixed to the steel core materials 15 and 15 which adjoin the earth retaining wall 13 (water collector installation process) ).

続いて、鋼製集水箱21の上方および下方に土留め壁防護用の鉄板12を設置する。具体的には、上記の土留め壁面平滑化工程において切削された固化材14が露出している部分を塞ぐように鉄板12を取り付ける。鉄板12は、隣り合う鋼製芯材15,15のフランジ15a間に架け渡される幅寸法を有しており、鉄板12の側縁を鋼製芯材15,15のフランジ15aに溶接して固定する。なお、上下方向に配される鉄板12,12同士(鉄板12を複数枚に分割する場合)および鉄板12と鋼製集水箱21との間も溶接固定する。また、鉄板12を溶接固定する際に、鉄板12と固化材14との間に隙間ができてしまう場合には、モルタルで隙間を充填することが望ましい。   Subsequently, an iron plate 12 for protecting the retaining wall is installed above and below the steel water collection box 21. Specifically, the iron plate 12 is attached so as to block the exposed portion of the solidified material 14 that has been cut in the earth retaining wall smoothing step. The iron plate 12 has a width dimension spanned between the flanges 15a of the adjacent steel core members 15 and 15, and the side edges of the iron plate 12 are fixed to the flanges 15a of the steel core members 15 and 15 by welding. To do. In addition, the iron plates 12, 12 arranged in the vertical direction (when the iron plate 12 is divided into a plurality of pieces) and between the iron plate 12 and the steel water collecting box 21 are also fixed by welding. Further, when a gap is formed between the iron plate 12 and the solidified material 14 when the iron plate 12 is fixed by welding, it is desirable to fill the gap with mortar.

ここで、集水装置11について説明する。図5、図6に示すように、集水装置11は、直方体形状で土留め壁13の内側(掘削側)と対向させることになる一面に開口部22が形成された鋼製集水箱21と、鋼製集水箱21の内部にその上端から下端に亘って配設されたスクリーン管(スクリーン部)23と、スクリーン管23内部と連通するように鋼製集水箱21の上面21aに形成された第1連通孔24と、土留め壁13の固化材14を切削するために用いる高圧ジェットノズル31(図13参照)を挿通可能な第2連通孔25と、を備えている。なお、第1連通孔24は鋼製集水箱21の幅方向端部近傍に形成されており、第2連通孔25は鋼製集水箱21の幅方向略中央に形成されている。また、第1連通孔24は通水管33が接続可能に構成されており、第2連通孔25は高圧ジェットノズル31やそのロッド32を鋼製集水箱21内に挿通を容易にするためのガイド管34が接続可能に構成されている。また、第1連通孔24および第2連通孔25は、通水管33およびガイド管34をそれぞれ容易に接続できるように鋼製集水箱21の上面21aから上方に突出した継手管態様の円筒形状に形成されている。さらに、本実施形態のように鋼製集水箱21に第1連通孔24および第2連通孔25が形成されている場合、第2連通孔25を利用して挿通された高圧ジェットノズル31からのジェット噴射によりスクリーン管23が傷付かないように高圧ジェットノズル31が挿入される位置とスクリーン管23との間に鋼製のパイプ材で構成された防護部材26が2本設けられている。その他、土留め壁13に固定したときの鋼製集水箱21の地中構造物1側に向かう水平方向の幅は、地中構造物1が構築されたときに支障とならない幅つまり地中構造物1に接触しない程度の小さい幅に設定されている。ちなみにスクリーン管23は、巻き線スクリーン管を用いており、管内部と管外部との間で後述のフィルター材40を通過させずに地下水だけを通過させるものである。スクリーン管23を用いずに、網目のスクリーンを用いて鋼製集水箱21内を開口部22側に対して仕切ってスクリーン部を形成し、このスクリーン部内部と第1連通孔24とを連通させるようにしてもよい。   Here, the water collecting apparatus 11 will be described. As shown in FIGS. 5 and 6, the water collecting apparatus 11 is a rectangular parallelepiped-shaped steel water collecting box 21 in which an opening 22 is formed on one surface facing the inner side (excavation side) of the retaining wall 13. The steel water collecting box 21 is formed on the upper surface 21a of the steel water collecting box 21 so as to communicate with the inside of the screen tube 23 and the screen pipe (screen portion) 23 disposed from the upper end to the lower end of the steel water collecting box 21. The 1st communicating hole 24 and the 2nd communicating hole 25 which can insert the high-pressure jet nozzle 31 (refer FIG. 13) used in order to cut the solidification material 14 of the earth retaining wall 13 are provided. The first communication hole 24 is formed in the vicinity of the end portion in the width direction of the steel water collection box 21, and the second communication hole 25 is formed in the approximate center in the width direction of the steel water collection box 21. Further, the first communication hole 24 is configured so that a water pipe 33 can be connected, and the second communication hole 25 is a guide for facilitating insertion of the high-pressure jet nozzle 31 and its rod 32 into the steel water collection box 21. The tube 34 is configured to be connectable. Moreover, the 1st communicating hole 24 and the 2nd communicating hole 25 are made into the cylindrical shape of the joint pipe | tube aspect which protruded upwards from the upper surface 21a of the steel water collection box 21 so that the water flow pipe 33 and the guide pipe 34 can each be connected easily. Is formed. Furthermore, when the 1st communicating hole 24 and the 2nd communicating hole 25 are formed in the steel water collection box 21 like this embodiment, it is from the high pressure jet nozzle 31 inserted using the 2nd communicating hole 25. Two protective members 26 made of steel pipe material are provided between the screen tube 23 and the position where the high-pressure jet nozzle 31 is inserted so that the screen tube 23 is not damaged by jet injection. In addition, the horizontal width toward the underground structure 1 side of the steel water collecting box 21 when fixed to the retaining wall 13 is a width that does not hinder when the underground structure 1 is constructed, that is, the underground structure The width is set so as not to contact the object 1. Incidentally, the screen tube 23 uses a wound screen tube, and allows only the ground water to pass between the inside of the tube and the outside of the tube without passing the filter material 40 described later. A screen portion is formed by partitioning the inside of the steel water collection box 21 with respect to the opening 22 side using a mesh screen without using the screen tube 23, and the inside of the screen portion and the first communication hole 24 are communicated with each other. You may do it.

続いて、図7に示すように、ステップS2では、鋼製集水箱21の第1連通孔24に通水管33の竪管33aを接続し、第2連通孔25にガイド管34を接続する。なお、ガイド管34は地上付近まで立ち上げられている。以上のステップまでが、本実施形態における地下水集水構造10の説明である。本地下水集水構造10は、集水装置11の鋼製集水箱21が取付け固定された位置の固化材14が切削され、地中透水層17と集水装置11が連通した場合(詳細は後述する)に、集水機能を有するようになる。なお、本ステップは地中構造物1の躯体工事を開始する前に行うことを原則とするが、地下水集水構造10の設置に差し支えない範囲であれば躯体工事を着手していてもよい。   Subsequently, as shown in FIG. 7, in step S <b> 2, the dredger pipe 33 a of the water pipe 33 is connected to the first communication hole 24 of the steel water collecting box 21, and the guide pipe 34 is connected to the second communication hole 25. The guide tube 34 is raised up to the vicinity of the ground. Up to the above steps is the explanation of the groundwater collection structure 10 in the present embodiment. In the groundwater catchment structure 10, the solidified material 14 at the position where the steel catchment box 21 of the catchment device 11 is attached and fixed is cut, and the underground water permeable layer 17 and the catchment device 11 communicate with each other (details will be described later). To have a water collecting function. In addition, although it is a principle to perform this step before the construction of the underground structure 1 is started, the construction of the structure may be started as long as it does not interfere with the installation of the groundwater collecting structure 10.

続いて、図8に示すように、ステップS3では、地中構造物1の躯体工事を開始するか、継続する。この後に説明する各工程は躯体工事と並行して行うことができる。   Then, as shown in FIG. 8, in step S3, the frame construction of the underground structure 1 is started or continued. Each process described later can be performed in parallel with the frame construction.

続いて、図9、図10に示すように、ステップS4では、地上から地中透水層17の深さより若干下方まで土留め壁13の固化材14を削孔して削孔穴(縦穴形状の空洞)28を形成する(土留め壁削孔工程)。   Subsequently, as shown in FIGS. 9 and 10, in step S <b> 4, the solidified material 14 of the retaining wall 13 is drilled from the ground to slightly below the depth of the underground permeable layer 17 to form a drilled hole (vertical hole-shaped cavity). ) 28 (clogging wall drilling step).

この削孔穴28は、地上に設置した削孔機29の削孔ロッドを用いて所定深さまで上方から下方に向かって削孔することで形成する。削孔穴28は、平面視で鋼製集水箱21に対向する位置に形成する。なお、削孔穴28は、予め後述の高圧噴射による切削穴37形成位置を決めていれば、土留め壁13構築時の固化材14の硬化前に該固化材14内に、切削穴37の上方位置まで円形パイプによる箱抜き型枠を埋設しておくことで削孔穴28を予め形成しておくこともできる。このようにすれば、削孔工程の短縮が図れる。さらには、後述の切削穴形成位置まで円形パイプによる箱抜き型枠を設置することで予め縦穴を形成して土留め壁13を構築するようにすれば、削孔工程を省略することができる。   The hole 28 is formed by drilling from the upper side to the lower side to a predetermined depth using a hole drilling rod of a hole drilling machine 29 installed on the ground. The hole 28 is formed at a position facing the steel water collection box 21 in plan view. In addition, if the drilling hole 28 has previously decided the formation position of the cutting hole 37 by the high pressure injection mentioned later, before hardening of the solidification material 14 at the time of construction of the earth retaining wall 13, it will be above this cutting hole 37 in this solidification material 14. It is also possible to preliminarily form the hole 28 by burying a box-shaped form with a circular pipe up to the position. In this way, the drilling process can be shortened. Furthermore, if the retaining wall 13 is constructed by forming a vertical hole in advance by installing a box forming mold with a circular pipe up to a cutting hole forming position to be described later, the drilling step can be omitted.

続いて、図11に示すように、ステップS5では、上記土留め壁削孔工程の途中に、削孔穴28に曲がりなどが生じていないかなどの削孔精度を確認する(削孔精度確認工程)。
具体的には、削孔穴28内に孔内傾斜計35を挿入し、適切な箇所で孔曲がり測定を行うことで削孔精度を確認する。なお、円形パイプによる箱抜き型枠で予め縦穴(空洞)を形成したところにおいては、この削孔精度確認工程は省略できる。
Subsequently, as shown in FIG. 11, in step S5, the drilling accuracy such as whether the drilling hole 28 is bent or not is confirmed during the retaining wall drilling step (drilling accuracy checking step). ).
Specifically, the drilling accuracy is confirmed by inserting an in-hole clinometer 35 into the drilling hole 28 and measuring the hole bending at an appropriate location. In addition, in the place where the vertical hole (cavity) was previously formed with the boxing mold by the circular pipe, this drilling accuracy confirmation step can be omitted.

続いて、図12に示すように、ステップS6では、削孔穴28を形成した後、削孔ロッドを地上まで引き上げる。その後、削孔穴28の穴壁保護のため削孔穴28の天端より1m程度下方まで口元管を挿入しておく。   Subsequently, as shown in FIG. 12, in step S6, after forming the hole 28, the hole rod is pulled up to the ground. Thereafter, in order to protect the hole wall of the hole 28, the mouth tube is inserted about 1 m below the top end of the hole 28.

続いて、図13、14に示すように、ステップS7では、公知の高圧ジェット噴射装置を用い、高圧噴射装置の高圧ジェットノズル31をその先端に有するロッド32を削孔穴28内に挿通させ、この削孔穴28から地中透水層17に向けて、またこの削孔穴28から鋼製集水箱21に向けて高圧ジェット噴射を行い、土留め壁13の外側に位置する地中透水層17と集水装置11(鋼製集水箱21)との間が連通するように固化材14を切削して切削穴37を形成する(土留め壁内部切削工程)。なお、地中透水層17側への切削は、ロッド32の先端を削孔穴28内の底部(鋼製集水箱21よりも下方位置になるようにする。)に至らしめた後、高圧ジェットノズル31から水ジェットを平面視で所定範囲回転させて噴射しながら所定位置上方(鋼製集水箱21よりも上方位置になるようにする。)まで引き上げていくことで行う。また、集水装置11側への切削は、地中透水層17側への切削途中に高圧ジェットノズル31を反対側に回転させて行われる。この際に注意しなければならないことは、鋼製集水箱21の開口部22内に切削範囲が納まるようにすることである。ところで、地中透水層17と集水装置11(鋼製集水箱21)との間の連通が、削孔穴28からの切削だけで済むようであれば、集水装置11の第2連通孔25は設けなくてもよい。   Subsequently, as shown in FIGS. 13 and 14, in step S7, a known high-pressure jet injection device is used, and a rod 32 having a high-pressure jet nozzle 31 of the high-pressure injection device at its tip is inserted into the hole 28, and this High-pressure jet injection is performed from the borehole 28 toward the underground water-permeable layer 17 and from the borehole 28 toward the steel water collection box 21, and the underground water-permeable layer 17 located outside the retaining wall 13 and the water collection The solidified material 14 is cut so as to communicate with the apparatus 11 (steel water collecting box 21) to form a cutting hole 37 (inner wall inner cutting process). Note that the cutting to the underground water permeable layer 17 side is performed by bringing the tip of the rod 32 to the bottom of the hole 28 (below the steel water collection box 21), and then the high pressure jet nozzle. It is performed by pulling up the water jet from 31 to a predetermined position above (to be positioned above the steel water collection box 21) while being rotated and rotated by a predetermined range in plan view. Moreover, the cutting to the water collecting apparatus 11 side is performed by rotating the high-pressure jet nozzle 31 to the opposite side during the cutting to the underground water permeable layer 17 side. At this time, care must be taken so that the cutting range is within the opening 22 of the steel water collection box 21. By the way, if the communication between the underground water permeable layer 17 and the water collecting device 11 (steel water collecting box 21) only needs to be cut from the hole 28, the second communication hole 25 of the water collecting device 11 is used. May not be provided.

高圧ジェット噴射では、例えば研磨材(けい砂)を水の中に混入して噴射する(アブレシブジェット)。研磨材を混入することで切削力を高めることができる。なお、削孔穴28から集水装置11側へのジェット噴射だけでは貫通しない場合は、第2連通孔25に接続されたガイド管34を利用し、該ガイド管34内に上述した高圧ジェットノズル31をその先端に有するロッド32を鋼製集水箱21内に挿通して集水装置11側から削孔穴28に向かい鋼製集水箱21の開口部22下端付近から上端付近に亘って高圧ジェット噴射を行い、固化材14を切削して削孔穴28と集水装置11との間を連通させて切削穴37を形成する。一方で、土留め壁13が薄い場合など、削孔穴28を土留め壁13内に形成せず、第2連通孔25、ガイド管34を利用した集水装置11側からのみの固化材14の切削によって地中透水層17に連通する切削穴37を形成してもよい。   In high-pressure jet injection, for example, an abrasive (silica sand) is mixed in water and injected (abrasive jet). Cutting force can be increased by mixing abrasives. In the case where it does not penetrate through only the jet injection from the drill hole 28 to the water collecting device 11 side, the guide pipe 34 connected to the second communication hole 25 is used, and the above-described high-pressure jet nozzle 31 is inserted into the guide pipe 34. Is inserted into the steel water collecting box 21 from the water collecting device 11 side toward the hole 28, and high pressure jet injection is performed from near the lower end of the opening 22 of the steel water collecting box 21 to the upper end thereof. Then, the solidified material 14 is cut so as to allow communication between the hole hole 28 and the water collecting device 11 to form the hole 37. On the other hand, when the retaining wall 13 is thin, the drilling hole 28 is not formed in the retaining wall 13, and the solidifying material 14 only from the side of the water collecting device 11 using the second communication hole 25 and the guide tube 34 is used. You may form the cutting hole 37 connected to the underground water permeable layer 17 by cutting.

続いて、図15、図16に示すように、ステップS8では、上述した土留め壁内部切削工程で形成された切削穴37内を切削穴28やガイド管34を介してフラッシング(洗浄)する。具体的には、前工程で使用した高圧ジェットノズル31が形成されたロッド32を用いて、該高圧ジェットノズル31より空気を噴射することにより切削穴37内をフラッシングする。集水装置11側からのみ切削する場合は、ガイド管34を介してのフラッシングとなる。   Subsequently, as shown in FIGS. 15 and 16, in step S <b> 8, the inside of the cutting hole 37 formed in the above-described retaining wall internal cutting process is flushed (cleaned) through the cutting hole 28 and the guide tube 34. Specifically, the inside of the cutting hole 37 is flushed by injecting air from the high pressure jet nozzle 31 using the rod 32 on which the high pressure jet nozzle 31 used in the previous step is formed. When cutting only from the water collecting device 11 side, flushing is performed via the guide tube 34.

続いて、図17に示すように、ステップS9では、上記土留め壁内部切削工程の後に、土留め壁13の固化材14に形成した切削穴37の切削状態を計測する(切削状態計測工程)。
具体的には、超音波測定器38を用い、該超音波測定器38の測定部39を、削孔穴28やガイド管34を利用して切削穴37内に挿入し、該切削穴37内で切削状態を計測する。あるいは、カメラを挿入して目視によることでもよい。
Then, as shown in FIG. 17, in step S9, the cutting state of the cutting hole 37 formed in the solidified material 14 of the retaining wall 13 is measured after the retaining wall internal cutting step (cutting state measuring step). .
Specifically, an ultrasonic measuring instrument 38 is used, and a measuring unit 39 of the ultrasonic measuring instrument 38 is inserted into the cutting hole 37 using the drilling hole 28 or the guide tube 34. Measure cutting condition. Alternatively, it may be visually observed after inserting a camera.

続いて、図18、19に示すように、ステップS10では、切削穴37の形成範囲内に地中透水層17の土砂がスクリーン管23の内部に流れ込まないよう、粒度調整した砂などのフィルター材40を投入する(フィルター材投入工程)。
フィルター材40の投入に先立ち削孔穴28にスクリーン管(スクリーン部)41を挿入する。スクリーン管41の上下方向の設置範囲は地中透水層17側への切削穴37形成範囲であり、その形成範囲より若干上方位置まで配置する。フィルター材40は削孔穴28からの投入で、鋼製集水箱21内にも充填される(スクリーン管23内部にはフィルター材40は充填されない。)が、鋼製集水箱21に接続されたガイド管34からも投入するようにすれば、切削穴37および鋼製集水箱21内へのフィルター材40充填がより確実になる。なお、集水装置11側からだけの切削の場合は、ガイド管34からだけのフィルター材40の投入となる。ところで、削孔穴28内のスクリーン管41は、切削穴37内のフィルター材40が目詰まりにより通水機能が衰えたときに、フラッシングするためのものなので、スクリーン管41内部は空洞に保っておく必要がある。スクリーン管41は、巻き線スクリーン管を用いており、管内部と管外部との間でフィルター材40を通過させずに水だけを通過させるものである。
Subsequently, as shown in FIGS. 18 and 19, in step S <b> 10, a filter material such as sand whose particle size is adjusted so that the earth and sand of the underground water permeable layer 17 does not flow into the screen tube 23 within the formation range of the cutting hole 37. 40 is input (filter material input step).
Prior to the introduction of the filter material 40, a screen tube (screen portion) 41 is inserted into the hole 28. The installation range in the vertical direction of the screen tube 41 is a range in which the cutting hole 37 is formed on the underground water permeable layer 17 side, and is arranged up to a position slightly above the formation range. The filter material 40 is inserted through the hole 28 and filled in the steel water collection box 21 (the filter material 40 is not filled in the screen tube 23), but the guide connected to the steel water collection box 21 is used. If the pipe 34 is also used, the filter material 40 can be more reliably filled into the cutting hole 37 and the steel water collection box 21. In the case of cutting only from the water collecting apparatus 11 side, the filter material 40 is supplied only from the guide tube 34. By the way, the screen tube 41 in the hole 28 is for flushing when the filter material 40 in the hole 37 is clogged and the water flow function is reduced, so the inside of the screen tube 41 is kept hollow. There is a need. The screen tube 41 uses a winding screen tube, and allows only water to pass between the inside of the tube and the outside of the tube without passing the filter material 40.

上述したステップS1〜S10の地下水通水構造設置工程を上流側および下流側の両方で同じ工程を行うことにより一対の地下水通水構造100,100を構築することができる。   A pair of groundwater permeable structures 100, 100 can be constructed by performing the same steps on the upstream side and the downstream side of the above-described steps S1 to S10.

続いて、図20に示すように、ステップS11では、上流側の集水装置11の通水管33(竪管33a)と、下流側の集水装置11の通水管(竪管33a)との間をサイホン方式により通水管33(横管33b)で連結する(通水管設置工程)ことで地下水通水設備200が完成する。   Subsequently, as shown in FIG. 20, in step S <b> 11, the gap between the water pipe 33 (soot pipe 33 a) of the upstream water collecting apparatus 11 and the water pipe (soot pipe 33 a) of the downstream water collecting apparatus 11. Are connected by a water pipe 33 (horizontal pipe 33b) by a siphon method (water pipe installation step) to complete the groundwater water flow facility 200.

このとき、竪管33aと横管33bとの連結箇所より上方に竪管33aが延伸しており、そこにバルブ42が設けられている。バルブ42は上流側および下流側の両方に設けられており、上流側のバルブを42aとし、下流側のバルブを42bとする。そして、通水管33に通水させるために、上流側の竪管33aに通水補助管43を連結して、バルブ42a,42bを共に開状態にする。通水補助管43から注水し、下流側のバルブ42bから水が溢れ出ることをもって通水管33(横管33b)に水が完全に充填されたものとし、この状態でバルブ42a,42bを閉状態にする。このように構成することで、以後サイホン効果により水が通水管33内を継続的に流れるようになる。なお、下流側から注水する場合は、上流側のバルブ42aから水が溢れ出ることをもって水が充填されたものとする。また、水は上流側や下流側のガイド管34や削孔穴28を利用して注水してもよい。また、図20は、両側に図示した集水装置11は掘削側からの正面視の図示であり、集水装置11,11間に図示した地中構造物1は通水管33(横管33b)が通過する位置の断面図を図示している。   At this time, the soot pipe 33a extends above the connecting portion between the soot pipe 33a and the horizontal pipe 33b, and the valve 42 is provided there. The valve 42 is provided on both the upstream side and the downstream side, and the upstream valve is 42a and the downstream valve 42b. And in order to let water flow through the water flow pipe 33, the water flow auxiliary pipe 43 is connected to the upstream side pipe 33a, and the valves 42a and 42b are both opened. Water is poured from the auxiliary water flow pipe 43, and the water overflows from the downstream valve 42b, so that the water supply pipe 33 (horizontal pipe 33b) is completely filled with water. In this state, the valves 42a and 42b are closed. To. With this configuration, the water continuously flows through the water conduit 33 due to the siphon effect thereafter. In addition, when water is poured from the downstream side, it is assumed that water is filled when water overflows from the upstream valve 42a. Further, water may be injected using the guide pipe 34 or the hole 28 on the upstream side or the downstream side. FIG. 20 is a front view of the water collecting device 11 shown on both sides from the excavation side, and the underground structure 1 shown between the water collecting devices 11 and 11 is a water pipe 33 (horizontal pipe 33b). Sectional drawing of the position which passes is illustrated.

本実施形態によれば、地中構造物1の躯体構築中(躯体構築の初期段階であれば、場合によっては集水装置11を取り付けることが可能である。)または構築前に土留め壁13の壁面13aに集水装置11を設けることにより、その後の地下水通水構造100の施工と地中構造物1の躯体工事とを並行して作業することができる。したがって、地中構造物1の躯体工事に影響を与えにくく、工期の短縮を図ることができる。また、躯体構築前に土留め壁13の壁面13aに集水装置11を取り付けるため、安全に作業することができる。また、地下水集水構造10を設置した後であって地中構造物1の躯体構築中または構築後に土留め壁13の切削をすることができるため、これによっても工期の短縮を図ることができる。さらに、地中構造物1の躯体構築中または構築後に土留め壁13の切削をする際に、地下水が多量に出水しても集水装置11を既に設けているため、出水リスクを軽減することができる。そして、鋼製集水箱21を土留め壁13の鋼製芯材15に溶接固定するだけでよいため、簡易な構成で施工コストの低減を図ることができる。   According to the present embodiment, the earth retaining wall 13 is being constructed during the building of the underground structure 1 (if it is the initial stage of building construction, the water collecting device 11 can be attached in some cases) or before construction. By providing the water collecting device 11 on the wall surface 13a, the subsequent construction of the groundwater flow structure 100 and the construction of the underground structure 1 can be performed in parallel. Therefore, it is difficult to affect the frame construction of the underground structure 1, and the construction period can be shortened. Moreover, since the water collecting apparatus 11 is attached to the wall surface 13a of the earth retaining wall 13 before the building construction, it is possible to work safely. Further, since the earth retaining wall 13 can be cut after the underground water collecting structure 10 is installed and during or after the construction of the underground structure 1, the construction period can be shortened. . Furthermore, when cutting the retaining wall 13 during or after the construction of the underground structure 1, the water collecting device 11 is already provided even if a large amount of groundwater is discharged, so the risk of water discharge is reduced. Can do. And since it is only necessary to weld and fix the steel water collecting box 21 to the steel core material 15 of the retaining wall 13, the construction cost can be reduced with a simple configuration.

また、鋼製集水箱21の上面21aに、土留め壁13の固化材14を切削するために用いる高圧ジェットノズル31を挿通可能な第2連通孔25を形成したため、土留め壁13の固化材14を切削する際に、鋼製集水箱21側から高圧ジェットノズル31を挿入して行うことができる。したがって、鋼製集水箱21に第2連通孔25を形成するだけの簡易な構成で容易に固化材14を切削することができる。   Moreover, since the 2nd communicating hole 25 which can insert the high pressure jet nozzle 31 used in order to cut the solidification material 14 of the retaining wall 13 was formed in the upper surface 21a of the steel water collection box 21, the solidification material of the retaining wall 13 When cutting 14, the high pressure jet nozzle 31 can be inserted from the steel water collecting box 21 side. Therefore, the solidified material 14 can be easily cut with a simple configuration in which the second communication hole 25 is formed in the steel water collection box 21.

また、削孔穴28の形成途中に、削孔精度を確認する削孔精度確認工程を備えることにより、所望の精度の削孔穴28を形成することができ、所望の地下水通水構造100を構築することができる。   Further, by providing a drilling accuracy confirmation step for confirming the drilling accuracy during the formation of the drilling hole 28, the drilling hole 28 with a desired accuracy can be formed, and the desired groundwater water flow structure 100 is constructed. be able to.

さらに、切削穴37を形成した後に、切削穴37の切削状態を計測する切削状態計測工程を備えることにより、土留め壁13の内部により高精度な切削穴37を形成することができ、所望の地下水通水構造100を構築することができる。   Further, by providing a cutting state measuring step of measuring the cutting state of the cutting hole 37 after forming the cutting hole 37, the cutting hole 37 with high accuracy can be formed inside the retaining wall 13, and a desired state can be formed. The groundwater flow structure 100 can be constructed.

尚、本発明は上述した実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上述した実施形態に種々の変更を加えたものを含む。すなわち、実施形態で挙げた具体的な構造や構成などはほんの一例に過ぎず、適宜変更が可能である。   The present invention is not limited to the above-described embodiment, and includes various modifications made to the above-described embodiment without departing from the spirit of the present invention. That is, the specific structure and configuration described in the embodiment are merely examples, and can be changed as appropriate.

例えば、本実施形態では、通水管33の横管33bが地中構造物1の上方を通過する場合の説明をしたが、図21に示す地下水通水設備200のように、地中構造物1の下方を通過するように構成してもよい。このとき、第1連通孔24は鋼製集水箱21の下面に形成すればよい。このように構成した場合は、掘削に伴って、集水装置11の鋼製集水箱21から通水管33の竪管33aを立ち下げる工程を行い、床付けに達したら床付け面付近に上流側と下流側との間を通水管33の横管33bで連結する工程を先行して行う。その他の工程は、上述したように地中構造物の躯体工事と並行して行うことができるため、このように構成しても工期遅延にはならない。また、このように構成することで、上流側の集水装置11から自然に通水管33を通って下流側の集水装置11内に地下水が充填される。なお、このとき、ガイド管34が空気抜きとなる。その後、下流側の集水装置11の工事が完了すると自然に通水状態とすることができる。なお、本実施形態において第1連通孔24を鋼製集水箱21の下面に形成したが、鋼製集水箱21の上面であってもよい。第1連通孔24を上面に形成した場合は、通水竪管の一部に180度曲り管を用いて下方に導くようにすればよい。   For example, in this embodiment, although the case where the horizontal pipe 33b of the water flow pipe 33 passes above the underground structure 1 was demonstrated, the underground structure 1 like the groundwater water flow installation 200 shown in FIG. You may comprise so that it may pass below. At this time, the first communication hole 24 may be formed on the lower surface of the steel water collection box 21. When comprised in this way, the process of falling down the dredging pipe 33a of the water flow pipe 33 from the steel water collecting box 21 of the water collecting device 11 is carried out along with excavation, and when the flooring is reached, the upstream side in the vicinity of the flooring surface A step of connecting the water pipe 33 and the downstream side with the horizontal pipe 33b of the water pipe 33 is performed in advance. Since the other steps can be performed in parallel with the underground construction of the underground structure as described above, the construction period is not delayed even if configured in this way. Moreover, by comprising in this way, groundwater is filled in the downstream water collecting apparatus 11 naturally through the water flow pipe 33 from the upstream water collecting apparatus 11. At this time, the guide tube 34 is vented. Thereafter, when the construction of the downstream water collecting device 11 is completed, the water flow can be made naturally. In addition, although the 1st communicating hole 24 was formed in the lower surface of the steel water collection box 21 in this embodiment, the upper surface of the steel water collection box 21 may be sufficient. When the first communication hole 24 is formed on the upper surface, a 180-degree bent pipe may be used as a part of the water culvert pipe to guide it downward.

また、上記実施形態の地下水通水構造100の施工方法は、モルタル杭柱列壁で構成される土留め壁や、ソイルセメント連続壁で構成される土留め壁などに適用することができる。たとえば、鋼製芯材としての鉄筋籠をコンクリート壁内に配設した地中連続壁の場合でも、鋼製集水箱21を掘削側の地中連続壁の鉄筋に固定し、鋼製集水箱21の全周囲で掘削側の土留め壁面の所定範囲を鉄板12で覆うようにすれば、本発明を適用できる。   Moreover, the construction method of the groundwater water flow structure 100 of the said embodiment can be applied to the earth retaining wall comprised with a mortar pile column wall, the earth retaining wall comprised with a soil cement continuous wall, etc. For example, even in the case of an underground continuous wall in which a steel bar as a steel core material is disposed in a concrete wall, the steel water collecting box 21 is fixed to the reinforcing bar of the underground continuous wall on the excavation side, and the steel water collecting box 21 If the predetermined range of the earth retaining wall on the excavation side is covered with the iron plate 12 around the entire circumference, the present invention can be applied.

1…地中構造物(構造物) 10…地下水集水構造 11…集水装置 13…土留め壁 13a…(土留め壁の)壁面 14…固化材 15…鋼製芯材 17…地中透水層 21…鋼製集水箱 21a…(鋼製集水箱の)上面 22…開口部 23…スクリーン管(スクリーン部) 24…第1連通孔 25…第2連通孔 28…削孔穴(空洞) 31…高圧ジェットノズル 32…ロッド(ロッド部材) 33…通水管 33a…竪管 33b…横管 37…切削穴 40…フィルター材 100…地下水通水構造 200…地下水通水設備   DESCRIPTION OF SYMBOLS 1 ... Underground structure (structure) 10 ... Groundwater catchment structure 11 ... Water collecting device 13 ... Earth retaining wall 13a ... Wall surface (of earth retaining wall) 14 ... Solidification material 15 ... Steel core material 17 ... Underground water permeability Layer 21 ... Steel water collection box 21a ... Upper surface (of steel water collection box) 22 ... Opening 23 ... Screen tube (screen part) 24 ... First communication hole 25 ... Second communication hole 28 ... Drilling hole (cavity) 31 ... High pressure jet nozzle 32 ... Rod (rod member) 33 ... Water pipe 33a ... Saddle pipe 33b ... Horizontal pipe 37 ... Cutting hole 40 ... Filter material 100 ... Ground water water flow structure 200 ... Ground water water flow equipment

Claims (4)

固化材と所定間隔で該固化材中に配設された鋼製芯材とからなる土留め壁が地中透水層を分断して構築され、
該土留め壁内側の掘削側と前記地中透水層との間で地下水を集水させるための地下水集水構造であって、
一面に開口部が形成された鋼製集水箱と、
該鋼製集水箱の内部に配設されたスクリーン部と、
該スクリーン部と連通するように前記鋼製集水箱に形成された第1連通孔と、を備えた集水装置を用い、
前記鋼製集水箱は、前記開口部を前記地中透水層の深さ位置にあって前記土留め壁の内側に対向させつつ前記開口部の周縁部を前記土留め壁に固定され、
前記鋼製集水箱の前記第1連通孔に通水管が連結可能とされていることを特徴とする地下水集水構造。
A retaining wall composed of a solidified material and a steel core material disposed in the solidified material at a predetermined interval is constructed by dividing the underground water permeable layer,
A groundwater collecting structure for collecting groundwater between the excavation side inside the earth retaining wall and the underground permeable layer,
A steel water collection box with an opening formed on one side;
A screen portion disposed inside the steel water collecting box;
Using a water collecting device comprising a first communication hole formed in the steel water collecting box so as to communicate with the screen portion,
The steel water collecting box is fixed to the retaining wall at the peripheral edge of the opening while the opening is at the depth of the underground water permeable layer and is opposed to the inside of the retaining wall,
A groundwater water collecting structure, wherein a water pipe is connectable to the first communication hole of the steel water collecting box.
前記鋼製集水箱の上面に、前記土留め壁の前記固化材を切削するために用いる高圧噴射装置を挿通可能な第2連通孔が形成されていることを特徴とする請求項1に記載の地下水集水構造。   The 2nd communicating hole which can insert the high-pressure injection device used in order to cut the solidification material of the earth retaining wall is formed in the upper surface of the steel water collecting box. Groundwater collection structure. 請求項1に記載の地下水集水構造を用いた地下水通水構造であって、
少なくとも前記土留め壁内に形成された空洞からの高圧噴射によって、前記土留め壁の固化材部分が切削されて前記集水装置と前記地中透水層とが連通する切削穴が形成され、
前記切削穴と前記鋼製集水箱内にフィルター材が充填されて、前記地中透水層と前記集水装置との間が通水可能となっていることを特徴とする地下水通水構造。
A groundwater flow structure using the groundwater catchment structure according to claim 1,
At least by the high-pressure injection from the cavity formed in the earth retaining wall, the solidified material portion of the earth retaining wall is cut to form a cutting hole in which the water collecting device and the underground water permeable layer communicate with each other.
A groundwater water-flowing structure, wherein the cutting hole and the steel water collecting box are filled with a filter material, and water can be passed between the underground water permeable layer and the water collecting device.
請求項2に記載の地下水集水構造を用いた地下水通水構造であって、
少なくとも前記第2連通孔から前記鋼製集水箱内に挿入された前記高圧噴射装置による高圧噴射によって、前記土留め壁の固化材部分が切削されて前記集水装置と前記地中透水層とが連通する切削穴が形成され、
前記切削穴と前記鋼製集水箱内にフィルター材が充填されて、前記地中透水層と前記集水装置との間が通水可能となっていることを特徴とする地下水通水構造。
A groundwater flow structure using the groundwater catchment structure according to claim 2,
The solidified material portion of the retaining wall is cut by high pressure injection by the high pressure injection device inserted into the steel water collection box from at least the second communication hole, and the water collection device and the underground water permeable layer are separated. A cutting hole that communicates is formed,
A groundwater water-flowing structure, wherein the cutting hole and the steel water collecting box are filled with a filter material, and water can be passed between the underground water permeable layer and the water collecting device.
JP2011041657A 2011-02-28 2011-02-28 Groundwater collection structure and groundwater flow structure Active JP5648850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011041657A JP5648850B2 (en) 2011-02-28 2011-02-28 Groundwater collection structure and groundwater flow structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011041657A JP5648850B2 (en) 2011-02-28 2011-02-28 Groundwater collection structure and groundwater flow structure

Publications (2)

Publication Number Publication Date
JP2012177277A true JP2012177277A (en) 2012-09-13
JP5648850B2 JP5648850B2 (en) 2015-01-07

Family

ID=46979282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011041657A Active JP5648850B2 (en) 2011-02-28 2011-02-28 Groundwater collection structure and groundwater flow structure

Country Status (1)

Country Link
JP (1) JP5648850B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110004988A (en) * 2019-02-11 2019-07-12 中国水电基础局有限公司 The protective device and method in a kind of extubation construction underground continuous wall connector hole
CN111962566A (en) * 2020-07-31 2020-11-20 马鞍山领瞻机械科技有限公司 Soil remediation seepage prevention structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138939A (en) * 1993-11-11 1995-05-30 Taisei Corp Construction method for continuous underground wall and continuous underground wall
JPH10317367A (en) * 1997-05-19 1998-12-02 Kubota Corp Water-returning structure using steel-pipe-column-line earth-retaining wall and method for constructing the same
JP2002021080A (en) * 2000-07-06 2002-01-23 Tobishima Corp Earth retaining wall having underground stream preserving function, and method for constructing earth retaining wall
JP2007100416A (en) * 2005-10-05 2007-04-19 Tokyu Construction Co Ltd Structure and construction method for steel sheet pile and water passing soil retaining wall
JP2008081942A (en) * 2006-09-26 2008-04-10 Shimizu Corp Construction method for water passage portion of underground wall

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138939A (en) * 1993-11-11 1995-05-30 Taisei Corp Construction method for continuous underground wall and continuous underground wall
JPH10317367A (en) * 1997-05-19 1998-12-02 Kubota Corp Water-returning structure using steel-pipe-column-line earth-retaining wall and method for constructing the same
JP2002021080A (en) * 2000-07-06 2002-01-23 Tobishima Corp Earth retaining wall having underground stream preserving function, and method for constructing earth retaining wall
JP2007100416A (en) * 2005-10-05 2007-04-19 Tokyu Construction Co Ltd Structure and construction method for steel sheet pile and water passing soil retaining wall
JP2008081942A (en) * 2006-09-26 2008-04-10 Shimizu Corp Construction method for water passage portion of underground wall

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110004988A (en) * 2019-02-11 2019-07-12 中国水电基础局有限公司 The protective device and method in a kind of extubation construction underground continuous wall connector hole
CN110004988B (en) * 2019-02-11 2023-12-19 中国水电基础局有限公司 Protection device and method for joint hole of underground diaphragm wall constructed by tube drawing method
CN111962566A (en) * 2020-07-31 2020-11-20 马鞍山领瞻机械科技有限公司 Soil remediation seepage prevention structure

Also Published As

Publication number Publication date
JP5648850B2 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
KR100939535B1 (en) Guide for execution of underground diaphragm wall
CN109208737A (en) A kind of down-stream pipeline changes move in new pipe is plugged into and former pipe blocks construction method
KR102353939B1 (en) Construction method of cast-in-placed-pile using guide apparatus
JP5990214B2 (en) Reinforcement method of hole wall in construction method of cast-in-place concrete pile.
KR101676814B1 (en) CFT pile Construction Method and the Shoring Method using the same file
KR101664368B1 (en) A cast-in place pile arrangement method for head of concrete pile exposed to outside using geo tube
KR102009077B1 (en) Earth retaining wall construction method using castinplace concrete pile of impermeable peristyle type
JP2017186783A (en) Construction method of continuous underground wall
JP5648850B2 (en) Groundwater collection structure and groundwater flow structure
CN110344439B (en) Construction method of rear retaining wall drain hole
KR20110070188A (en) Construction method for underground watertight wall
KR101702180B1 (en) A Displacement Bored Pile Method with Impermeable and Detachable Casing Shoe
JP6441692B2 (en) Underground structure with flood control function and its construction method
JP6652899B2 (en) Ground modification method
CN111042049A (en) Rainwater pipe construction process
KR101736117B1 (en) Construction equipment and construction method of underground watertight wall
JP4274898B2 (en) Groundwater flow conservation method
JP4589084B2 (en) A retaining wall with a built-in water pipe composed of a plurality of water passages, and a method for ensuring the flow of groundwater using the retaining wall
KR101342180B1 (en) Hybrid shoe member for extracting pile and extracting method using thereof
JP3407066B2 (en) Method of forming drainage wall continuously in the ground and casing for placing plate-like drainage material
JP6837364B2 (en) How to repair the culvert drainage pipe confluence drainage mass
JP2005330769A (en) Structure and construction method of water passing earth retaining wall
JP4558188B2 (en) Continuous underground wall structure and construction method
JP4439537B2 (en) Water stop method
JP3892576B2 (en) Maintenance method of water vein in underground retaining wall construction section

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141029

R150 Certificate of patent or registration of utility model

Ref document number: 5648850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150