JP2012177137A - Gasoline composition - Google Patents

Gasoline composition Download PDF

Info

Publication number
JP2012177137A
JP2012177137A JP2012139926A JP2012139926A JP2012177137A JP 2012177137 A JP2012177137 A JP 2012177137A JP 2012139926 A JP2012139926 A JP 2012139926A JP 2012139926 A JP2012139926 A JP 2012139926A JP 2012177137 A JP2012177137 A JP 2012177137A
Authority
JP
Japan
Prior art keywords
volume
gasoline
content
base material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012139926A
Other languages
Japanese (ja)
Other versions
JP5468109B2 (en
Inventor
Akira Hoizumi
明 保泉
Atsuyasu Oshio
敦保 大塩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2012139926A priority Critical patent/JP5468109B2/en
Publication of JP2012177137A publication Critical patent/JP2012177137A/en
Application granted granted Critical
Publication of JP5468109B2 publication Critical patent/JP5468109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gasoline composition that does not contain an oxygen-containing base material but excellently prevents generation of turbidity in gasoline due to separated water, and is excellent in environmental performance in consideration of the importance of environmental issues.SOLUTION: (A) The gasoline composition comprises 5-50% by volume of a catalytically reformed gasoline base material (I) or 5-60% by volume of a catalytically reformed gasoline base material (II), wherein: the gasoline base material (I) has an aromatic composition in a predetermined ratio and has T10 and T90 at predetermined temperature; and the gasoline base material (II) has an aromatic composition in a predetermined ratio and has T10 at predetermined temperature, both ratio and temperature being different in range from those in the base material (I), and further has T90 at predetermined temperature that is in the same range as that of the base material (I). (B) The gasoline composition further comprises 10-50% by volume of a catalytically-cracked gasoline that has an unsaturated hydrocarbon composition in a predetermined ratio and has T10 and T90 at predetermined temperature. (C) The gasoline composition has a predetermined Reid vapor pressure, research octane number, distillation properties, and compositions.

Description

本発明はガソリン組成物に関し、さらに詳しくは、特定されたガソリン組成及び特定された蒸留性状を有する、水濁り防止性能及び環境性能に優れたガソリン組成物に関する。   The present invention relates to a gasoline composition, and more particularly to a gasoline composition having a specified gasoline composition and a specified distillation property, which is excellent in water turbidity prevention performance and environmental performance.

ガソリンエンジン用燃料油などの炭化水素成分は、水分の溶解度が数十〜数百ppmと小さく、その飽和溶解度は温度によって変化する。
ガソリンは輸送、貯蔵などの間に水分と接触する可能性があり、そのような場合は、飽和溶解度に近い水分を溶解していることがある。
仮に、飽和溶解度に近い水分を含有しているガソリンを輸送した場合、輸送時等の環境温度の変化により、ガソリン中の水分が分離し始め、その結果、ガソリンに濁りが発生してしまうことも考えられる。
Hydrocarbon components such as fuel oil for gasoline engines have a water solubility as low as several tens to several hundred ppm, and the saturation solubility varies depending on the temperature.
Gasoline may come into contact with moisture during transportation, storage, etc. In such cases, it may dissolve moisture close to saturation solubility.
If gasoline containing moisture close to saturation solubility is transported, moisture in the gasoline will begin to separate due to changes in environmental temperature during transportation, etc., resulting in turbidity in the gasoline. Conceivable.

水による濁り発生の改善を認識した、水濁り防止性能に優れたガソリンとして、エタノールの含有量、オレフィン含有量を規定したもの(特許文献1参照)、エチル ターシャリー ブチル エーテル(ETBE)の含有量、炭素数2以上のアルコールとETBE以外のエーテルの合計含有量を規定したもの(特許文献2参照)、ETBEの含有量、芳香族含有量を規定したもの(特許文献3参照)が提案されている。   Recognizing the improvement of turbidity caused by water, gasoline with excellent water turbidity prevention performance, with specified ethanol content and olefin content (see Patent Document 1), ethyl tertiary butyl ether (ETBE) content , Those specifying the total content of alcohols having 2 or more carbon atoms and ethers other than ETBE (see Patent Document 2), those specifying the content of ETBE and aromatic content (see Patent Document 3) have been proposed Yes.

特開2007−91922号公報JP 2007-91922 A 特開2007−45858号公報JP 2007-45858 A 特開2007−23164号公報JP 2007-23164 A

しかしながら、特許文献1〜3はいずれも、エタノールやETBEといった含酸素系基材を配合したガソリンに関するものであり、含酸素系基材を配合しないガソリンでは、水濁り防止性能を良好にするといった課題を認識し、それに着目した提案は従来されていない。しかし、含酸素系基材を配合しないガソリンにあっても、環境温度の変化に対して影響を受け難く、もし飽和溶解度に近い水分を溶解している場合に環境温度が変化したとしても、水濁りが発生し難い、水濁り防止性能に優れたガソリンが望まれる。   However, Patent Documents 1 to 3 all relate to gasoline containing an oxygen-containing base material such as ethanol or ETBE, and in gasoline not containing an oxygen-containing base material, the problem of improving water turbidity prevention performance. In the past, no proposal has been made that recognizes and focuses on this. However, even gasoline that does not contain an oxygen-containing base material is less susceptible to changes in the environmental temperature, and even if the environmental temperature changes when water close to saturation solubility is dissolved, Gasoline that is less prone to turbidity and excellent in water turbidity prevention performance is desired.

本発明は、上記のような状況に鑑み、含酸素系基材を配合しないガソリン組成物において、水濁り防止性能に優れ、かつ、環境問題の重要性を考慮して環境性能にも優れたガソリン組成物を提供することを目的とするものである。   In view of the situation as described above, the present invention is a gasoline composition that does not contain an oxygen-containing base material, has excellent water turbidity prevention performance, and has excellent environmental performance in consideration of the importance of environmental problems. The object is to provide a composition.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、ガソリン組成物の主要基材である接触改質ガソリンと接触分解ガソリンの性状を最適化させ、それによりガソリン組成物の性状を最適化させることによって、水濁り防止性能に優れ、かつ環境性能も優れたガソリン組成物が得られることを見出し、本発明を完成するに至った。ここで性状の最適化とは、芳香族分とオレフィン分の各炭素数に応じた水濁り防止性能の向上への度合いが高くなり、それらの環境性能への悪影響の度合が低く抑えられる、組成、蒸留性状その他の諸性状にすることである。   As a result of intensive studies to achieve the above object, the present inventors have optimized the properties of catalytic reformed gasoline and catalytic cracked gasoline, which are the main base materials of the gasoline composition, and thereby the properties of the gasoline composition. By optimizing the above, it was found that a gasoline composition excellent in water turbidity prevention performance and environmental performance was obtained, and the present invention was completed. Here, the optimization of properties is a composition in which the degree of improvement in water turbidity prevention performance according to the number of carbons of aromatics and olefins is increased, and the degree of adverse effects on environmental performance is kept low. It is to make the distillation property and other properties.

即ち、本発明は、上記目的を達成するために、以下のガソリン組成物を提供する。
(イ)炭素数7の芳香族含有量が10〜50容量%、炭素数8の芳香族含有量が0.1〜50容量%、そして、炭素数9以上の芳香族含有量が3〜25容量%であり、接触改質装置から留出する10容量%留出温度(T10)が100℃以上、90容量%留出温度(T90)が160℃以下の性状を有する接触改質由来ガソリン基材(I)を5〜50容量%、または炭素数7の芳香族含有量が20〜40容量%、炭素数8の芳香族含有量が20〜40容量%、そして、炭素数9以上の芳香族含有量が3〜20容量%であり、接触改質装置から留出する10容量%留出温度(T10)が50℃以上、90容量%留出温度(T90)が160℃以下の性状を有する接触改質由来ガソリン基材(II)を5〜60容量%配合し、かつ、
(ロ)炭素数5の不飽和炭化水素含有量が5〜40容量%、炭素数6の不飽和炭化水素含有量が5〜30容量%、炭素数7の不飽和炭化水素含有量が0.1〜25容量%であり、流動接触分解装置から留出する10容量%留出温度(T10)が30℃以上、90容量%留出温度(T90)が100℃以下の性状を有するガソリン基材を10〜50容量%配合したガソリン組成物であって、
(ハ)以下の性状を満足することを特徴とするガソリン組成物。
(1)リード蒸気圧(RVP)が45〜90kPa
(2)リサーチ法オクタン価(RON)が96〜103
(3)50%留出温度(T50)が75〜110℃
(4)70℃留出量(E70)が18〜40容量%
(5)芳香族分含有量が15〜45容量%
(6)オレフィン分含有量が10〜30容量%
(7)ベンゼン含有量が1容量%以下
(8)硫黄分含有量が10質量ppm以下
(9)飽和温度5℃における飽和水分量が116〜126ppm、飽和温度35℃における飽和水分量が297〜324ppmであり、かつ下記式(a)に飽和温度5、15、25および35℃における各飽和水分量を代入したときに算出される指数Yが、6.1〜6.7
Y=(4ΣTsSw−(ΣTs)(ΣSw))/(4Σ(Ts)−(ΣTs))・・(a)
(式中Tsは飽和温度(℃)、Swは飽和水分量(質量ppm)を示す。)
That is, this invention provides the following gasoline compositions in order to achieve the said objective.
(A) A C7 aromatic content of 10 to 50% by volume, an C8 aromatic content of 0.1 to 50% by volume, and an aromatic content of 9 or more carbon atoms of 3 to 25 Catalytic reforming-derived gasoline group having a capacity of 10% by volume, a 10% by volume distillation temperature (T10) distilled from the catalytic reformer is 100 ° C. or higher, and a 90% by volume distillation temperature (T90) is 160 ° C. or lower. 5 to 50% by volume of material (I), 20 to 40% by volume of aromatics having 7 carbon atoms, 20 to 40% by volume of aromatics having 8 carbon atoms, and fragrance having 9 or more carbon atoms The group content is 3 to 20% by volume, the 10% by volume distillation temperature (T10) distilled from the catalytic reformer is 50 ° C. or higher, and the 90% by volume distillation temperature (T90) is 160 ° C. or lower. Containing 5 to 60% by volume of the catalytic reforming-derived gasoline base material (II), and
(B) The content of unsaturated hydrocarbons having 5 carbon atoms is 5 to 40% by volume, the content of unsaturated hydrocarbons having 6 carbon atoms is 5 to 30% by volume, and the content of unsaturated hydrocarbons having 7 carbon atoms is 0. A gasoline base material having a property of 1 to 25% by volume, 10% by volume distillation temperature (T10) distilled from a fluid catalytic cracking apparatus is 30 ° C. or more, and 90% by volume distillation temperature (T90) is 100 ° C. or less. A gasoline composition containing 10 to 50% by volume,
(C) A gasoline composition characterized by satisfying the following properties.
(1) Reed vapor pressure (RVP) is 45 to 90 kPa
(2) Research octane number (RON) of 96 to 103
(3) 50% distillation temperature (T50) is 75 to 110 ° C
(4) Distillation at 70 ° C. (E70) is 18-40% by volume
(5) Aromatic content is 15 to 45 vol%
(6) Olefin content is 10-30% by volume
(7) Benzene content is 1% by volume or less (8) Sulfur content is 10 mass ppm or less (9) Saturated water content at a saturation temperature of 5 ° C. is 116 to 126 ppm, and saturated water content at a saturation temperature of 35 ° C. is 297 to The index Y calculated by substituting each saturated water content at saturation temperature 5, 15, 25, and 35 ° C. into the following formula (a) is 324 ppm is 6.1 to 6.7.
Y = (4ΣTsSw− (ΣTs) (ΣSw)) / (4Σ (Ts) 2 − (ΣTs) 2 ) (a)
(In the formula, Ts represents a saturation temperature (° C.) and Sw represents a saturated water content (mass ppm).)

本発明のガソリン組成物は、上記特定の構成にすることにより、環境性能に優れ、車両の運転性能を後退させることなく、優れた水濁り性能を発揮するものである。   The gasoline composition of the present invention is excellent in environmental performance and exhibits excellent water turbidity performance without retreating the driving performance of the vehicle by adopting the above specific configuration.

以下、本発明の内容をさらに詳しく説明する。
本発明のガソリン組成物は基材として以下の性状の接触改質由来ガソリン基材(I)を5〜50容量%、好ましくは10〜50容量%、または、接触改質由来ガソリン基材(II)を5〜60容量%、好ましくは10〜60容量%配合する。
接触改質由来ガソリン基材(I):炭素数7の芳香族含有量が10〜50容量%、好ましくは10〜47容量%、炭素数8の芳香族含有量が0.1〜50容量%、好ましくは0.1〜47容量%、そして、炭素数9以上の芳香族含有量が3〜25容量%、好ましくは3〜23容量%であり、10容量%留出温度(T10)が100℃以上、好ましくは105℃以上、90容量%留出温度(T90)が160℃以下、好ましくは155℃以下である。
接触改質由来ガソリン基材(II):炭素数7の芳香族含有量が20〜40容量%、好ましくは20〜38容量%、炭素数8の芳香族含有量が20〜40容量%、好ましくは20〜38容量%、そして、炭素数9以上の芳香族含有量が3〜20容量%、好ましくは3〜18容量%であり、10容量%留出温度(T10)が50℃以上、好ましくは55℃以上、90容量%留出温度(T90)が160℃以下、好ましくは158℃以下の性状を有するガソリン基材を5〜60容量%配合する。
接触改質由来ガソリン基材(I)または(II)の芳香族含有量及び蒸留性状が上記の範囲内であれば、運転性能に優れ、かつ、水濁り性に優れたガソリン組成物を調製することができる。
また、芳香族分に対する水の溶解は、炭素数が小さい芳香族分ほど溶解量が多くなる傾向があるため、接触改質由来ガソリン基材(I)または(II)の芳香族分含有量が上記の範囲内であれば、ガソリン組成物の水濁り防止性を改善することができる。
Hereinafter, the contents of the present invention will be described in more detail.
The gasoline composition of the present invention contains 5 to 50% by volume, preferably 10 to 50% by volume, or 10 to 50% by volume of a catalytic reforming-derived gasoline substrate (I) having the following properties as a substrate. 5) to 60% by volume, preferably 10 to 60% by volume.
Catalytic reforming-derived gasoline base (I): C7 aromatic content is 10-50% by volume, preferably 10-47% by volume, C8 aromatic content is 0.1-50% by volume The aromatic content of 9 or more carbon atoms is 3 to 25% by volume, preferably 3 to 23% by volume, and the 10% by volume distillation temperature (T10) is 100. C. or higher, preferably 105.degree. C. or higher, and 90% by volume distillation temperature (T90) is 160.degree. C. or lower, preferably 155.degree. C. or lower.
Catalytic reforming-derived gasoline base (II): C7 aromatic content is 20-40% by volume, preferably 20-38% by volume, C8 aromatic content is 20-40% by volume, preferably Is 20 to 38% by volume, and the aromatic content of 9 or more carbon atoms is 3 to 20% by volume, preferably 3 to 18% by volume, and 10% by volume distillation temperature (T10) is preferably 50 ° C. or higher. Is blended 5 to 60 vol% of a gasoline base material having a property of 55 ° C or more and 90 vol% distillation temperature (T90) of 160 ° C or less, preferably 158 ° C or less.
If the aromatic content and distillation properties of the catalytic reforming-derived gasoline base (I) or (II) are within the above ranges, a gasoline composition having excellent operational performance and water turbidity is prepared. be able to.
Moreover, since the dissolution of water with respect to the aromatic component tends to increase in the amount of the aromatic component with a smaller carbon number, the aromatic content of the catalytic reforming-derived gasoline base (I) or (II) If it is in said range, the water turbidity prevention property of a gasoline composition can be improved.

本発明のガソリン組成物は基材として、以下の性状の接触分解由来ガソリン基材を10〜50容量%、好ましくは15〜50容量%配合する。
接触分解由来ガソリン基材:炭素数5の不飽和炭化水素含有量が5〜40容量%、好ましくは5〜37容量%、炭素数6の不飽和炭化水素含有量が5〜30容量%、好ましくは5〜27容量%、炭素数7の不飽和炭化水素含有量が0.1〜25容量%、好ましくは0.1〜23容量%であり、蒸留性状である10容量%留出温度(T10)が30℃以上、好ましくは35℃以上、90容量%留出温度(T90)が100℃以下、好ましくは95℃以下である。
接触分解由来ガソリン基材の不飽和炭化水素含有量及び蒸留性状が上記の範囲内であれば、水濁り性に優れたガソリンを調製することができる。
また、不飽和炭化水素に対する水の溶解は、芳香族分ほどではないものの、炭素数が小さい不飽和炭化水素ほど溶解量が多くなる傾向があるため、接触分解由来ガソリン基材の不飽和炭化水素分含有量が上記の範囲内にあれば、ガソリン組成物の水濁り防止性を改善することができる。
The gasoline composition of the present invention contains 10 to 50% by volume, preferably 15 to 50% by volume, of a base material derived from catalytic cracking having the following properties as a base material.
Catalytic cracking-derived gasoline base material: 5 to 40% by volume, preferably 5 to 37% by volume of unsaturated hydrocarbons having 5 carbon atoms, preferably 5 to 30% by volume, preferably 5 to 30% by volume of unsaturated hydrocarbons having 6 carbon atoms Is 5 to 27% by volume, and the content of unsaturated hydrocarbons having 7 carbon atoms is 0.1 to 25% by volume, preferably 0.1 to 23% by volume. ) Is 30 ° C. or higher, preferably 35 ° C. or higher, and 90% by volume distillation temperature (T90) is 100 ° C. or lower, preferably 95 ° C. or lower.
If the unsaturated hydrocarbon content and distillation properties of the catalytic cracking-derived gasoline base material are within the above ranges, gasoline having excellent water turbidity can be prepared.
In addition, although dissolution of water in unsaturated hydrocarbons is not as much as aromatics, unsaturated hydrocarbons with smaller carbon numbers tend to have a higher dissolved amount, so unsaturated hydrocarbons from catalytic cracking-derived gasoline base materials. When the content is within the above range, the water turbidity preventing property of the gasoline composition can be improved.

本発明のガソリン組成物は、下式で表される指数Yが好ましくは6.0〜8.0、より好ましくは6.0〜7.5である。   In the gasoline composition of the present invention, the index Y represented by the following formula is preferably 6.0 to 8.0, more preferably 6.0 to 7.5.

Figure 2012177137
Figure 2012177137

ここで、指数Yは、温度5、15、25及び35℃におけるガソリンの飽和水分量を測定し、その温度と飽和水分量の関係から求めた式である。
該指数Yが上記範囲内であれば、環境温度の変化に対しても濁りの発生を抑えることができ好ましい。
Here, the index Y is an equation obtained by measuring the saturated water content of gasoline at temperatures of 5, 15, 25, and 35 ° C., and obtaining from the relationship between the temperature and the saturated water content.
If the index Y is within the above range, it is preferable because the occurrence of turbidity can be suppressed even when the environmental temperature changes.

ガソリン組成物の飽和水分量は次のように測定する。
常温下で110mlの有栓スクリュー瓶に、ガソリン80ml、水20ml採取し、予め飽和温度に設定した恒温槽内にセットする。液温が飽和温度になった後(約2時間後)、スクリュー瓶を取り出し2分間激しく振とうする。その後、再び恒温槽内にスクリュー瓶をセットし一晩放置する。翌日、上層と下層を分離し、上層の水分をカールフィッシャーで測定し、その水分を飽和水分とする。
例えば、飽和温度5℃で92質量ppm、15℃で129質量ppm、25℃で181質量ppm、そして、35℃で243質量ppmの飽和水分量であるガソリンの指数Yは5.0となる。
The saturated water content of the gasoline composition is measured as follows.
80 ml of gasoline and 20 ml of water are collected in a 110 ml plugged screw bottle at room temperature and set in a thermostat set to a saturation temperature in advance. After the liquid temperature reaches the saturation temperature (after about 2 hours), the screw bottle is taken out and shaken vigorously for 2 minutes. Then, set the screw bottle again in the thermostat and leave it overnight. On the next day, the upper layer and the lower layer are separated, and the moisture in the upper layer is measured with a Karl Fischer to make the moisture a saturated moisture.
For example, the index Y of gasoline having a saturated water content of 92 mass ppm at a saturation temperature of 5 ° C., 129 mass ppm at 15 ° C., 181 mass ppm at 25 ° C., and 243 mass ppm at 35 ° C. is 5.0.

本発明のガソリン組成物のリード蒸気圧(RVP)は、45〜90kPa、好ましくは50〜90kPaである。RVPを90kPa以下にすることによって蒸発ガスの量を少なくすることができ、45kPa以上とすることで低温始動性、暖気性の低下を防ぐことができる。なお、このリード蒸気圧(RVP)は、JIS K 2258に準拠して測定した値である。   The lead vapor pressure (RVP) of the gasoline composition of the present invention is 45 to 90 kPa, preferably 50 to 90 kPa. By setting RVP to 90 kPa or less, the amount of evaporative gas can be reduced, and by setting it to 45 kPa or more, it is possible to prevent the low-temperature startability and the warming property from being lowered. In addition, this lead vapor pressure (RVP) is a value measured in accordance with JIS K 2258.

本発明のガソリン組成物のリサーチ法オクタン価(RON)は、96〜103、好ましくは96〜101である。RONが96以上ならば、高い運転性能を維持することが可能であり、103以下とすることで、芳香族系高オクタン価基材の配合量が抑えられ、清浄性の低下を防ぐことができ好ましい。なお、このRONは、JIS K 2280に準拠して測定した値である。   The research method octane number (RON) of the gasoline composition of the present invention is 96 to 103, preferably 96 to 101. If RON is 96 or more, it is possible to maintain high operating performance, and by setting it to 103 or less, the blending amount of the aromatic high-octane base material can be suppressed, and a decrease in cleanliness can be prevented. . This RON is a value measured according to JIS K 2280.

本発明のガソリン組成物の蒸留性状は、50%留出温度(T50)が、75〜110℃、好ましくは75〜105℃、70℃留出量(E70)が、18〜40容量%、好ましくは20〜40容量%である。T50、E70がこの範囲内であれば、始動性、運転性、加速性に不具合が生じる場合を防ぐことができる。なお、これらの蒸留性状はJIS K 2254に準拠して測定した値である。   The distillation property of the gasoline composition of the present invention is that the 50% distillation temperature (T50) is 75 to 110 ° C, preferably 75 to 105 ° C, and the 70 ° C distillation amount (E70) is 18 to 40% by volume, preferably Is 20-40% by volume. When T50 and E70 are within this range, it is possible to prevent a case where a problem occurs in startability, drivability, and acceleration. These distillation properties are values measured according to JIS K 2254.

本発明のガソリン組成物の芳香族分含有量は、15〜45容量%、好ましくは20〜45容量%である。この芳香族分含有量を15容量%以上とすることで水濁り性が改善され、45容量%以下とすることで、排出ガス中の有害成分の増加を防ぐことができる。なお、この芳香族分含有量は、石油学会法JPI−5S−33−90(ガスクロマトグラフ法)に準拠して測定した値である。   The aromatic content of the gasoline composition of the present invention is 15 to 45% by volume, preferably 20 to 45% by volume. By setting the aromatic content to 15% by volume or more, water turbidity is improved, and by setting it to 45% by volume or less, an increase in harmful components in the exhaust gas can be prevented. In addition, this aromatic content is the value measured based on the Petroleum Institute method JPI-5S-33-90 (gas chromatograph method).

本発明のガソリン組成物のオレフィン分含有量は、10〜30容量%、好ましくは15〜27容量%である。このオレフィン分含有量を10容量%以上とすることで、水濁り性が改善され、30容量%以下とすることで、酸化安定性の低下を防ぐことができる。なお、このオレフィン分含有量は、石油学会法JPI−5S−33−90(ガスクロマトグラフ法)に準拠して測定した値である。   The olefin content of the gasoline composition of the present invention is 10 to 30% by volume, preferably 15 to 27% by volume. By setting the olefin content to 10% by volume or more, water turbidity is improved, and by setting it to 30% by volume or less, it is possible to prevent a decrease in oxidation stability. In addition, this olefin content is the value measured based on the Petroleum Institute method JPI-5S-33-90 (gas chromatograph method).

本発明のガソリン組成物のベンゼン含有量は、1容量%以下、好ましくは0.8容量%以下である。このベンゼン含有量が1容量%以下であれば、大気中のベンゼン濃度の増加を防止し、環境汚染を低減できる可能性がある。なお、このベンゼン含有量は、石油学会法JPI−5S−33−90(ガスクロマトグラフ法)に準拠して測定した値である。   The benzene content of the gasoline composition of the present invention is 1% by volume or less, preferably 0.8% by volume or less. If the benzene content is 1% by volume or less, there is a possibility that an increase in the concentration of benzene in the atmosphere can be prevented and environmental pollution can be reduced. In addition, this benzene content is the value measured based on Petroleum Institute method JPI-5S-33-90 (gas chromatograph method).

本発明のガソリン組成物の硫黄分含有量は、10質量ppm以下、好ましくは8質量ppm以下である。この硫黄分含有量が10質量ppm以下であれば、排出ガス浄化触媒の能力低下を防止し、排出ガス中の窒素酸化物(NOx)、一酸化炭素(CO)、全炭化水素(THC)の濃度上昇を防止できる可能性がある。なお、この硫黄分含有量は、JIS K 2541に準拠して測定した値である。   The sulfur content of the gasoline composition of the present invention is 10 mass ppm or less, preferably 8 mass ppm or less. If this sulfur content is 10 ppm by mass or less, the exhaust gas purification catalyst is prevented from being reduced in capacity, and nitrogen oxides (NOx), carbon monoxide (CO), and total hydrocarbons (THC) in the exhaust gas are reduced. There is a possibility that concentration rise can be prevented. The sulfur content is a value measured according to JIS K2541.

本発明のガソリン組成物に用いる接触改質由来ガソリン基材(I)や(II)の調製方法としては、特に制限はないが、一般に、重質の直留ナフサなどを従来から知られている接触改質法(プラットフォーミング法、マグナフォーミング法、アロマイジング法、レニフォーミング法、フードリフォーミング法、ウルトラフォーミング法、パワーフォーミング法等)により、水素気流中で高温・加圧下で触媒(例えば、アルミナ担体に白金やロジウムと塩素とを担持したもの等)と接触処理して得られた接触改質ガソリンから、蒸留により、軽質留分(脱ベンゼン軽質接触改質ガソリン)、ベンゼン留分、及び重質留分(脱ベンゼン重質接触改質ガソリン)に分留し、その軽質留分と重質留分を混合することによって、但し、その混合割合を得られる混合物の性状が上記接触改質由来ガソリン基材(I)や(II)の規定を満足するようにして、調製することができる。   Although there is no restriction | limiting in particular as a preparation method of the catalytic reform origin origin gasoline base materials (I) and (II) used for the gasoline composition of this invention, In general, a heavy straight run naphtha etc. are conventionally known. Catalytic reforming (plating forming method, magna forming method, aromaizing method, reni forming method, hood reforming method, ultra forming method, power forming method, etc.) under high temperature and pressure in a hydrogen stream (for example, From a catalytic reformed gasoline obtained by contact treatment with platinum carrier, rhodium and chlorine on an alumina carrier), by distillation, a light fraction (debenzene light catalytic reformed gasoline), a benzene fraction, and By distilling into a heavy fraction (debenzene heavy catalytic reformed gasoline) and mixing the light fraction and the heavy fraction, the mixing ratio is obtained. Properties of the mixture so as to satisfy the requirements of the catalytic reforming derived gasoline base material (I) and (II) that can be prepared.

本発明のガソリン組成物に用いる接触分解由来ガソリン基材の調製方法としては、一般に、灯・軽油から常圧残油に至る石油留分、好ましくは重質軽油や減圧軽油を、従来から知られている流動接触分解法(UOP法、シェル二段式法、フレキシクラッキング法、ウルトラオルソフロー法、テキサコ法、ガルフ法、ウルトラキャットクラッキング法、RCC法、HOC法等)により、固体酸触媒(例えば、シリカ・アルミナにゼオライトを配合したもの等)で分解して得られる接触分解ガソリンを、その性状が上記接触分解由来ガソリン基材の規定を満足するように適宜調製して、用いることができる。   As a method for preparing a catalytic cracking-derived gasoline base material used in the gasoline composition of the present invention, generally a petroleum fraction from kerosene / light oil to atmospheric residual oil, preferably heavy gas oil or vacuum gas oil has been conventionally known. The solid acid catalyst (for example, UOP method, shell two-stage method, flexi cracking method, ultra ortho flow method, texaco method, Gulf method, ultra cat cracking method, RCC method, HOC method, etc.) The catalytically cracked gasoline obtained by cracking with silica / alumina blended with zeolite, etc.) can be suitably prepared and used so that its properties satisfy the above-mentioned regulations of the catalytic cracking-derived gasoline base material.

本発明のガソリン組成物は、上記接触改質由来ガソリン基材(I)または(II)と、上記接触分解由来ガソリン基材を必須の基材として規定量配合し、その他の基材として、従来からガソリンの基材に用いられている各種基材を適宜用い、その配合量をその性状に応じて、得られるガソリン組成物の性状が上記本発明のガソリン組成物のリード蒸気圧(RVP)、リサーチ法オクタン価(RON)、50%留出温度(T50)、70℃留出量(E70)、芳香族分含有量、オレフィン分含有量、ベンゼン含有量、硫黄分含有量などの規定を満たすように適宜選択して配合し、調製することができる。   The gasoline composition of the present invention comprises the above-mentioned catalytic reforming-derived gasoline base material (I) or (II) and the catalytic cracking-derived gasoline base material in a prescribed amount as an essential base material. From the various base materials used for the base material of gasoline as appropriate, depending on the properties of the blended amount, the properties of the resulting gasoline composition are the lead vapor pressure (RVP) of the gasoline composition of the present invention, To meet the requirements of research method octane number (RON), 50% distillation temperature (T50), 70 ° C distillation amount (E70), aromatic content, olefin content, benzene content, sulfur content, etc. Can be appropriately selected and blended.

本発明のガソリン組成物のこの他の基材としては、例えば、以下の(a)〜(f)の成分等が挙げられる。
(a)接触分解ガソリンを蒸留により、軽質留分、重質留分に分けた内の軽質留分(軽質接触分解ガソリン)(b)原油を常圧蒸留した直留ナフサを脱硫処理して得られた脱硫直留ナフサを蒸留により、軽質留分と重質留分に分けた内の軽質留分である脱硫軽質ナフサ(c)イソブタンと低級オレフィン(ブテン、プロピレン等)を原料として、酸触媒(硫酸、フッ化水素、塩化アルミニウム等)の存在下で反応させて得られるアルキレート(d)原油や粗油等の常圧蒸留時、改質ガソリン製造時または分解ガソリン製造時等に蒸留して得られるブタン、ブテン類を主成分としたC4留分(e)直鎖の低級パラフィン系炭化水素の異性化によって得られるアイソメレートまたはアイソメレートを精密蒸留して得られるイソペンタン(f)接触改質ガソリンから得られるトルエン、キシレンまたは炭素数9以上の芳香族を主体とする成分。
Examples of other base materials of the gasoline composition of the present invention include the following components (a) to (f).
(A) Lightly distillate (light catalytic cracked gasoline) of catalytic cracked gasoline divided into light and heavy fractions by distillation (b) Obtained by desulfurizing straight-run naphtha obtained by atmospheric distillation of crude oil The desulfurized straight naphtha obtained by distillation is divided into a light fraction and a heavy fraction, and the desulfurized light naphtha (c) isobutane and lower olefins (butene, propylene, etc.), which are light fractions, are used as raw materials. Alkylate obtained by reaction in the presence of (sulfuric acid, hydrogen fluoride, aluminum chloride, etc.) (d) Distilled during atmospheric distillation of crude oil or crude oil, during production of reformed gasoline or cracked gasoline C4 fraction obtained mainly from butane and butenes (e) Isomerate obtained by isomerization of straight-chain lower paraffin hydrocarbons or isopentane (f) contact obtained by precision distillation of isomerate Components toluene obtained from petrol, xylene or having 9 or more aromatic carbon mainly.

本発明のガソリン組成物には、必要に応じて、各種の燃料添加剤を適宜配合することができる。燃料添加剤としては、例えば、フェノール系、アミン系等の酸化防止剤、チオアミド化合物等の金属不活性剤、有機リン系化合物等の表面着火防止剤、コハク酸イミド、ポリアルキルアミン、ポリエーテルアミンおよびポリイソブチレンアミン等の清浄分散剤、多価アルコールエステルやアミド化合物等の摩擦調整剤、多価アルコールおよびそのエーテル等の氷結防止剤、有機酸のアルカリ金属やアルカリ土類金属塩、高級アルコールの硫酸エステル等の助燃剤、アニオン系界面活性剤、カチオン系界面活性剤および両性界面活性剤等の帯電防止剤、アルケニル琥珀酸エステル等の錆止め剤、及びアゾ染料等の着色剤等並びに公知の燃料添加剤が挙げられる。これらを1種又は数種組み合わせて添加することができる。これら燃料添加剤の添加量は任意であるが、通常、その合計添加量は0.1質量%以下とすることが好ましい。   In the gasoline composition of the present invention, various fuel additives can be appropriately blended as necessary. Examples of fuel additives include phenolic and amine antioxidants, metal deactivators such as thioamide compounds, surface ignition inhibitors such as organophosphorus compounds, succinimides, polyalkylamines, and polyetheramines. Cleaning agents such as polyisobutylene amine, friction modifiers such as polyhydric alcohol esters and amide compounds, anti-icing agents such as polyhydric alcohols and ethers thereof, alkali metal or alkaline earth metal salts of organic acids, higher alcohols Auxiliary agents such as sulfate esters, anionic surfactants, antistatic agents such as cationic surfactants and amphoteric surfactants, rust inhibitors such as alkenyl succinates, colorants such as azo dyes, etc. and known fuels An additive is mentioned. These can be added singly or in combination. The addition amount of these fuel additives is arbitrary, but generally the total addition amount is preferably 0.1% by mass or less.

以下に本発明の内容を実施例及び比較例により具体的に説明するが、本発明はこれらによって制限されるものではない。   The content of the present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

実施例1〜3
接触分解装置、接触改質装置又は常圧蒸留装置から生成するC4留分(ブタン、ブテン類)、表1に示す性状の脱ベンゼン軽質接触改質ガソリン、脱ベンゼン重質接触改質ガソリンから調製した接触改質由来ガソリン基材(I)または(II)、軽質接触分解ガソリンからなる接触分解由来ガソリン基材、及びアルキレートを表2に示す配合比で配合することにより、表2に示す性状のガソリン組成物を得た。この際の接触改質由来ガソリン基材(I)または(II)の性状、及び接触分解由来ガソリン基材の性状は表2に示すとおりであった。
Examples 1-3
Prepared from C4 fraction (butane, butenes) produced from catalytic cracking equipment, catalytic reforming equipment or atmospheric distillation equipment, debenzene light catalytic reforming gasoline and debenzene heavy catalytic reforming gasoline with properties shown in Table 1 The properties shown in Table 2 by blending the catalytic reforming-derived gasoline base (I) or (II), the catalytic cracking-derived gasoline base composed of light catalytic cracking gasoline, and the alkylate with the blending ratio shown in Table 2. A gasoline composition was obtained. The properties of the catalytic reforming-derived gasoline substrate (I) or (II) and the properties of the catalytic cracking-derived gasoline substrate were as shown in Table 2.

比較例1
実施例1〜3記載の脱ベンゼン軽質接触改質ガソリン、脱ベンゼン重質接触改質ガソリンから調製した接触改質由来ガソリン基材(I)、軽質接触分解ガソリンからなる接触分解由来ガソリン基材、及びアルキレートを表2に示す配合比で配合することにより、表2に示す性状のガソリン組成物を得た。得られたガソリン組成物の性状は、本発明で規定するガソリン組成物の性状を逸脱したものであった。この際の接触改質由来ガソリン基材(I)の性状、及び接触分解由来ガソリン基材の性状は表2に示すとおりであった。
Comparative Example 1
De-benzene light catalytic reformed gasoline described in Examples 1 to 3, catalytic reform-derived gasoline base prepared from debenzene heavy catalytic reformed gasoline (I), catalytic cracking-derived gasoline base composed of light catalytic cracked gasoline, And the gasoline composition of the characteristic shown in Table 2 was obtained by mix | blending the alkylate with the compounding ratio shown in Table 2. The properties of the obtained gasoline composition deviated from the properties of the gasoline composition defined in the present invention. The properties of the catalytic reforming-derived gasoline substrate (I) and the properties of the catalytic cracking-derived gasoline substrate were as shown in Table 2.

比較例2
実施例1〜3記載の接触分解装置、接触改質装置又は常圧蒸留装置から生成するC4留分(ブタン、ブテン類)、脱ベンゼン軽質接触改質ガソリンから調製した接触改質由来ガソリン基材(II)、脱ベンゼン重質接触改質ガソリン、軽質接触分解ガソリン、及びアルキレートを表2に示す配合比で配合することにより、表2に示す性状のガソリン組成物を得た。得られたガソリン組成物の性状は、本発明で規定するガソリン組成物の性状を逸脱したものであった。この際の接触改質由来ガソリン基材(II)の性状、及び接触分解由来ガソリン基材の性状は表2に示すとおりであった。
Comparative Example 2
Catalytic reforming-derived gasoline base material prepared from the C4 fraction (butane, butenes) produced from the catalytic cracking apparatus, catalytic reforming apparatus or atmospheric distillation apparatus described in Examples 1 to 3, and debenzene light catalytic reforming gasoline By blending (II), debenzene-heavy catalytic reformed gasoline, light catalytic cracked gasoline, and alkylate at a blending ratio shown in Table 2, a gasoline composition having the properties shown in Table 2 was obtained. The properties of the obtained gasoline composition deviated from the properties of the gasoline composition defined in the present invention. The properties of the catalytic reforming-derived gasoline base material (II) and the properties of the catalytic cracking-derived gasoline base material were as shown in Table 2.

比較例3
実施例1〜3記載のC4留分(ブタン、ブテン類)、脱ベンゼン重質接触改質ガソリンから調製した接触改質由来ガソリン基材(I)、及び軽質接触分解ガソリンを表2に示す配合比で配合することにより、表2に示す性状のガソリン組成物を得た。得られたガソリン組成物の性状は、本発明で規定するガソリン組成物の性状を逸脱したものであった。この際の接触改質由来ガソリン基材(I)の性状は表2に示すとおりであった。
Comparative Example 3
Table 2 shows the C4 fractions (butane and butenes) described in Examples 1 to 3, the catalytic reforming-derived gasoline base (I) prepared from debenzene heavy catalytic reforming gasoline, and light catalytic cracking gasoline. By blending at a ratio, a gasoline composition having the properties shown in Table 2 was obtained. The properties of the obtained gasoline composition deviated from the properties of the gasoline composition defined in the present invention. The properties of the catalytic reforming-derived gasoline base (I) at this time were as shown in Table 2.

上記実施例と比較例で得られたガソリン組成物を用いて、以下に述べる性能評価試験を行った。
(水濁り試験)
室温下で、100mlの有栓サンプル瓶に50mlの試料を採取し、0℃の恒温槽内にセットする。試料温度が1℃降下する毎に目視で試料の状態を観察し、試料に濁りが感知された時の温度を測定し、これを濁り温度とした。この濁り温度を表2に示した。
なお、濁り温度の測定は、各試料とも水分量を100質量ppmに調製して行った。
(排出ガス試験)
国産乗用車(総排気量2.5L、MPI方式、オートマチックトランスミッション(AT)、三元触媒装着)を用いて、10・15モードでの排出ガス試験を行い、一酸化炭素(CO)、全炭化水素(THC)、窒素酸化物(NOx)を測定した。この測定結果を表2に示した。
Using the gasoline compositions obtained in the above Examples and Comparative Examples, the performance evaluation test described below was performed.
(Water turbidity test)
At room temperature, a 50 ml sample is collected in a 100 ml plugged sample bottle and set in a thermostatic chamber at 0 ° C. Each time the sample temperature decreased by 1 ° C., the state of the sample was visually observed, and the temperature when turbidity was detected in the sample was measured, and this was taken as the turbid temperature. The turbidity temperature is shown in Table 2.
The turbidity temperature was measured by adjusting the water content to 100 mass ppm for each sample.
(Exhaust gas test)
Using domestic passenger cars (total displacement 2.5L, MPI system, automatic transmission (AT), three-way catalyst installed), exhaust gas test in 10.15 mode, carbon monoxide (CO), all hydrocarbons (THC) and nitrogen oxides (NOx) were measured. The measurement results are shown in Table 2.

Figure 2012177137
Figure 2012177137

Figure 2012177137
Figure 2012177137

表2に示した試験結果から、実施例で得られたガソリン組成物が、比較例で得られたガソリン組成物に比較して、優れた環境性能を維持しつつ、水濁り防止性能が向上して優れたものとなっていることは明らかである。   From the test results shown in Table 2, the gasoline compositions obtained in the examples have improved environmental performance while maintaining excellent environmental performance as compared with the gasoline compositions obtained in the comparative examples. It is clear that it is excellent.

Claims (1)

(イ)炭素数7の芳香族含有量が10〜50容量%、炭素数8の芳香族含有量が0.1〜50容量%、そして、炭素数9以上の芳香族含有量が3〜25容量%であり、接触改質装置から留出する10容量%留出温度(T10)が100℃以上、90容量%留出温度(T90)が160℃以下の性状を有する接触改質由来ガソリン基材(I)を5〜50容量%、または
炭素数7の芳香族含有量が20〜40容量%、炭素数8の芳香族含有量が20〜40容量%、そして、炭素数9以上の芳香族含有量が3〜20容量%であり、接触改質装置から留出する10容量%留出温度(T10)が50℃以上、90容量%留出温度(T90)が160℃以下の性状を有する接触改質由来ガソリン基材(II)を5〜60容量%配合し、かつ、
(ロ)炭素数5の不飽和炭化水素含有量が5〜40容量%、炭素数6の不飽和炭化水素含有量が5〜30容量%、炭素数7の不飽和炭化水素含有量が0.1〜25容量%であり、流動接触分解装置から留出する10容量%留出温度(T10)が30℃以上、90容量%留出温度(T90)が100℃以下の性状を有するガソリン基材を10〜50容量%配合したガソリン組成物であって、
(ハ)以下の性状を満足することを特徴とするガソリン組成物。
(1)リード蒸気圧(RVP)が45〜90kPa
(2)リサーチ法オクタン価(RON)が96〜103
(3)50%留出温度(T50)が75〜110℃
(4)70℃留出量(E70)が18〜40容量%
(5)芳香族分含有量が15〜45容量%
(6)オレフィン分含有量が10〜30容量%
(7)ベンゼン含有量が1容量%以下
(8)硫黄分含有量が10質量ppm以下
(9)飽和温度5℃における飽和水分量が116〜126ppm、飽和温度35℃における飽和水分量が297〜324ppmであり、かつ下記式(a)に飽和温度5、15、25および35℃における各飽和水分量を代入したときに算出される指数Yが、6.1〜6.7
Y=(4ΣTsSw−(ΣTs)(ΣSw))/(4Σ(Ts)−(ΣTs))・・(a)
(式中Tsは飽和温度(℃)、Swは飽和水分量(質量ppm)を示す。)
(A) A C7 aromatic content of 10 to 50% by volume, an C8 aromatic content of 0.1 to 50% by volume, and an aromatic content of 9 or more carbon atoms of 3 to 25 Catalytic reforming-derived gasoline group having a capacity of 10% by volume, a 10% by volume distillation temperature (T10) distilled from the catalytic reformer is 100 ° C. or higher, and a 90% by volume distillation temperature (T90) is 160 ° C. or lower. 5 to 50% by volume of the material (I), or 20 to 40% by volume of aromatics having 7 carbon atoms, 20 to 40% by volume of aromatics having 8 carbons, and fragrance having 9 or more carbons The group content is 3 to 20% by volume, the 10% by volume distillation temperature (T10) distilled from the catalytic reformer is 50 ° C. or higher, and the 90% by volume distillation temperature (T90) is 160 ° C. or lower. Containing 5 to 60% by volume of the catalytic reforming-derived gasoline base material (II), and
(B) The content of unsaturated hydrocarbons having 5 carbon atoms is 5 to 40% by volume, the content of unsaturated hydrocarbons having 6 carbon atoms is 5 to 30% by volume, and the content of unsaturated hydrocarbons having 7 carbon atoms is 0. A gasoline base material having a property of 1 to 25% by volume, 10% by volume distillation temperature (T10) distilled from a fluid catalytic cracking apparatus is 30 ° C. or more, and 90% by volume distillation temperature (T90) is 100 ° C. or less. A gasoline composition containing 10 to 50% by volume,
(C) A gasoline composition characterized by satisfying the following properties.
(1) Reed vapor pressure (RVP) is 45 to 90 kPa
(2) Research octane number (RON) of 96 to 103
(3) 50% distillation temperature (T50) is 75 to 110 ° C
(4) Distillation at 70 ° C. (E70) is 18-40% by volume
(5) Aromatic content is 15 to 45 vol%
(6) Olefin content is 10-30% by volume
(7) Benzene content is 1% by volume or less (8) Sulfur content is 10 mass ppm or less (9) Saturated water content at a saturation temperature of 5 ° C. is 116 to 126 ppm, and saturated water content at a saturation temperature of 35 ° C. is 297 to The index Y calculated by substituting each saturated water content at saturation temperature 5, 15, 25, and 35 ° C. into the following formula (a) is 324 ppm is 6.1 to 6.7.
Y = (4ΣTsSw− (ΣTs) (ΣSw)) / (4Σ (Ts) 2 − (ΣTs) 2 ) (a)
(In the formula, Ts represents a saturation temperature (° C.) and Sw represents a saturated water content (mass ppm).)
JP2012139926A 2012-06-21 2012-06-21 Gasoline composition Active JP5468109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012139926A JP5468109B2 (en) 2012-06-21 2012-06-21 Gasoline composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012139926A JP5468109B2 (en) 2012-06-21 2012-06-21 Gasoline composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008070898A Division JP5027023B2 (en) 2008-03-19 2008-03-19 Gasoline composition

Publications (2)

Publication Number Publication Date
JP2012177137A true JP2012177137A (en) 2012-09-13
JP5468109B2 JP5468109B2 (en) 2014-04-09

Family

ID=46979174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012139926A Active JP5468109B2 (en) 2012-06-21 2012-06-21 Gasoline composition

Country Status (1)

Country Link
JP (1) JP5468109B2 (en)

Also Published As

Publication number Publication date
JP5468109B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5153147B2 (en) Gasoline composition
JP4425606B2 (en) Unleaded high octane gasoline
JP4425607B2 (en) Unleaded gasoline
JP5144325B2 (en) Gasoline composition
JP2007246744A (en) Unleaded high-octane-number gasoline
JP5027023B2 (en) Gasoline composition
JP5367143B2 (en) Gasoline composition
JP5543122B2 (en) Gasoline composition
JP4856991B2 (en) Unleaded high octane gasoline
JP5468109B2 (en) Gasoline composition
JP4429880B2 (en) Unleaded gasoline
JP5153146B2 (en) Gasoline composition
JP5052851B2 (en) Unleaded gasoline composition
JP2011006702A (en) Production method for lead-free gasoline
JP4801342B2 (en) Gasoline composition, method for producing gasoline base material, and method for producing gasoline composition
JP2007246755A (en) Unleaded gasoline
JP2007246742A (en) Unleaded high-octane-number gasoline
JP5398635B2 (en) Method for producing gasoline composition
JP2006328357A (en) Catalytically reformed gasoline and unleaded gasoline
JP2007246735A (en) Unleaded high-octane number gasoline
JP2007246743A (en) Unleaded high-octane-number gasoline
JP2007246752A (en) Unleaded gasoline
JP2007246766A (en) Unleaded gasoline
JP2007246759A (en) Unleaded high octane number gasoline
JP2007246763A (en) Unleaded gasoline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5468109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250