JP2007246744A - Unleaded high-octane-number gasoline - Google Patents

Unleaded high-octane-number gasoline Download PDF

Info

Publication number
JP2007246744A
JP2007246744A JP2006073670A JP2006073670A JP2007246744A JP 2007246744 A JP2007246744 A JP 2007246744A JP 2006073670 A JP2006073670 A JP 2006073670A JP 2006073670 A JP2006073670 A JP 2006073670A JP 2007246744 A JP2007246744 A JP 2007246744A
Authority
JP
Japan
Prior art keywords
gasoline
less
octane
volume
definite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006073670A
Other languages
Japanese (ja)
Other versions
JP4913436B2 (en
Inventor
Toshiyuki Hirose
敏之 廣瀬
Akira Hoizumi
明 保泉
Shigeyuki Tanaka
重行 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2006073670A priority Critical patent/JP4913436B2/en
Publication of JP2007246744A publication Critical patent/JP2007246744A/en
Application granted granted Critical
Publication of JP4913436B2 publication Critical patent/JP4913436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an unleaded high-octane-number gasoline excellent in cleaning property of interior of an engine while using a heavy catalytically reformed gasoline as a high-octane-number base material. <P>SOLUTION: The unleaded high-octane-number gasoline is obtained by compounding 2-60 vol.% gasoline base material and 0.5-10.0 vol.% ethanol (EtOH), wherein the gasoline base material is obtained from a catalytically reformed gasoline which has a polycyclic aromatic content index Y represented by a definite formula of ≤20 and is obtained by a catalytic reforming treatment of a desulfurized heavy naphtha fraction having definite properties which is obtained by a desulfurization treatment of a heavy straight-run naphtha having definite properties. The unleaded high-octane-number gasoline has a definite research octane number, a definite motor octane number, a definite 50 vol.% distillation temperature, a definite 90 vol.% distillation temperature and definite Reid vapor pressure and contains 50-1,000 mass ppm cleaning agent. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、無鉛高オクタン価ガソリンに関し、更に詳しくは、燃焼室内部や吸気弁などエンジン内の清浄性に優れ、排出ガス中のCO、THCをより低減できる無鉛高オクタン価ガソリンを提供することを目的とするものである。   The present invention relates to unleaded high-octane gasoline, and more specifically, to provide unleaded high-octane gasoline that is excellent in cleanliness in the engine such as the combustion chamber and intake valve and can further reduce CO and THC in exhaust gas. It is what.

近年、環境改善の観点から、自動車等からの排出ガスによる環境汚染が注目され、燃料面からの排出ガス低減に向けた取り組みが種々行われている。具体的には、エンジン排出ガス、あるいは、燃料タンクからの蒸発ガスを低減することが有効と考えられている。
エンジン排出ガスには、CO、THC(Total Hydro Carbon:炭化水素)が含まれており、COは人体に僅かでも吸収されるとヘモグロビンと結合し赤血球の酸素運搬を阻害し多大な悪影響を及ぼすことが知られている。一方THC中のメタンは地球温暖化の一因と考えられ、非メタン成分は光化学スモッグ発生の一因と考えられている。このため自動車エンジンからの排出ガスを低減することが重要である。
In recent years, environmental pollution due to exhaust gas from automobiles and the like has been attracting attention from the viewpoint of environmental improvement, and various efforts have been made to reduce exhaust gas from the fuel surface. Specifically, it is considered effective to reduce engine exhaust gas or evaporated gas from a fuel tank.
The engine exhaust gas contains CO and THC (Total Hydro Carbon: hydrocarbon). When CO is absorbed even by the human body, it binds with hemoglobin and inhibits oxygen transport of red blood cells, causing a great adverse effect. It has been known. On the other hand, methane in THC is thought to contribute to global warming, and non-methane components are thought to contribute to the generation of photochemical smog. For this reason, it is important to reduce the exhaust gas from the automobile engine.

一般に排出ガスを低減するためには、自動車に排気ガス浄化触媒システムの設置が有効であることが公知となっている。また燃料の硫黄分を低減することも、排ガス浄化触媒システムの長寿命化につながり、排出ガス低減に有効であることが知られている。一方、燃料油の改善によりエンジン内部を清浄に保つことも排出ガス低減に有効と考えられている。具体的には吸気弁デポジット(IVD:Intake Valve Deposit)及び燃焼室内部デポジット(CCD:Combustion Chamber Deposit)を抑制することが有効と考えられている。   In general, in order to reduce exhaust gas, it is known that installation of an exhaust gas purification catalyst system in an automobile is effective. It is also known that reducing the sulfur content of the fuel leads to a longer life of the exhaust gas purification catalyst system and is effective in reducing exhaust gas. On the other hand, keeping the inside of the engine clean by improving the fuel oil is also considered effective in reducing exhaust gas. Specifically, it is considered effective to suppress intake valve deposit (IVD) and combustion chamber deposit (CCD).

更に無鉛高オクタン価ガソリンの製造に当たって高オクタン価基材として用いられる改質ガソリンには、芳香族成分が多く含まれるが、芳香族成分が多く含まれるとIVDが増加する傾向を示すことが知られている(例えば、非特許文献1参照)。一般的に、このIVDを減じるためにポリエーテルアミンやポリイソブテン等の清浄剤が添加されるが、清浄剤を加えるとCCDが増加する傾向がある。そこで、ガソリンエンジンのIVD及びCCDの両方を抑制する燃料として、芳香族含有量とガソリンの蒸留性状を規定したものが提案されている(例えば、特許文献1参照)。しかしながら、この技術では、ガソリンの蒸留性状を軽質にするために重質な留分の配合量を少なくしていることから、ガソリン得率が低下してしまうという課題がある。   Furthermore, reformed gasoline used as a high-octane base material in the production of unleaded high-octane gasoline contains a lot of aromatic components, but it is known that IVD tends to increase when a lot of aromatic components are contained. (For example, refer nonpatent literature 1). Generally, a detergent such as polyetheramine or polyisobutene is added to reduce the IVD, but the CCD tends to increase when the detergent is added. In view of this, as a fuel that suppresses both IVD and CCD of a gasoline engine, a fuel that defines the aromatic content and the distillation property of gasoline has been proposed (see, for example, Patent Document 1). However, this technique has a problem in that the gasoline yield decreases because the blending amount of the heavy fraction is reduced in order to make the distillation property of gasoline light.

そこで、ガソリン得率の低下を防止するため、重質な留分を配合しながらも吸気弁デポジット(IVD(Inlet Valve Deposit))及び燃焼室内部デポジット(CCD(Combustion Chamber Deposit))を抑制し、かつ、排出ガス中のCO、THCをより低減できる無鉛高オクタン価ガソリンの提供が望まれている。   Therefore, in order to prevent a decrease in gasoline yield, the intake valve deposit (IVD (Inlet Valve Deposit)) and the combustion chamber deposit (CCD (Combustion Chamber Deposit)) are suppressed while blending heavy fractions. In addition, it is desired to provide unleaded high octane gasoline that can further reduce CO and THC in exhaust gas.

更に近年の地球温暖化問題を考慮すると、上記に加え、CO2排出量も削減した燃料の提供も望まれている。CO2排出量の対策として、バイオマス由来のエタノールあるいはそれから派生するETBEをガソリンへ混合することが考えられる。しかし、CO2削減量を多くするため、エタノールをよりガソリンに配合しようとすると、炭化水素とエタノールの共沸現象が顕著になり蒸留曲線がいびつになることで運転性などが悪化する場合があることが知られている。これを回避するために、エタノールをイソブチレンと反応させ得られるETBEをガソリンに配合することも考えらえるが、バイオマス混合によるCO2削減の観点から見ると極めて多量のETBEを配合する必要が生じ、ガソリン生産の経済性に劣ることになる。 Furthermore, in consideration of the recent global warming problem, in addition to the above, provision of fuel with reduced CO 2 emissions is also desired. As a measure against CO 2 emissions, it is conceivable to mix ethanol derived from biomass or ETBE derived from it into gasoline. However, in order to increase the amount of CO 2 reduction, if you try to add ethanol to gasoline more, the azeotropic phenomenon of hydrocarbon and ethanol becomes noticeable and the distillation curve becomes distorted, which may deteriorate the drivability. It is known. In order to avoid this, it can be considered that ETBE obtained by reacting ethanol with isobutylene is blended with gasoline, but from the viewpoint of CO 2 reduction by biomass mixing, it is necessary to blend a very large amount of ETBE, The economy of gasoline production will be inferior.

SAE Paper, Society of Automotive Engineers 922217SAE Paper, Society of Automotive Engineers 922217 特開2000-204383号公報JP 2000-204383 A

本発明の目的は、高オクタン価基材として重質な留分を用いつつも、ガソリンエンジンのIVD及びCCDの両方を抑制でき、かつ、排出ガス中のCO、THCをより低減できる無鉛高オクタン価ガソリンを提供することである。   The object of the present invention is an unleaded high octane gasoline that can suppress both IVD and CCD of a gasoline engine and can further reduce CO and THC in exhaust gas while using a heavy fraction as a high octane base. Is to provide.

本発明者らは鋭意研究を重ねた結果、一定性状の脱硫重質ナフサ留分を用いて接触改質ガソリンを得、さらに該接触改質ガソリンの多環芳香族分含有量を一定の範囲内に定め、かつ環数の多いものほど含有量を順次低く制限されるような性状に調製し、これにエタノールとエチルターシャリーブチルエーテルとを配合することにより、CO2削減量を確保するために多量に配合したとしても運転性などの悪化を生じずガソリンを経済的に処方することが可能になることを見出した。また、エタノールやETBEの混合物はオクタンブースターとしても優れた性質を有しており、これらの配合量を多くすることで、良運転性、良清浄性など車輌実用性能に好影響を与える場合が多いことを見出した。 As a result of intensive studies, the present inventors have obtained catalytic reformed gasoline using a desulfurized heavy naphtha fraction having a constant property, and further, the polycyclic aromatic content of the catalytic reformed gasoline is within a certain range. In order to ensure CO 2 reduction by blending ethanol and ethyl tertiary butyl ether, it is prepared in such a way that the content is gradually reduced as the number of rings increases. It has been found that even if it is blended in gasoline, it is possible to prescribe gasoline economically without causing deterioration in drivability. In addition, the mixture of ethanol and ETBE has excellent properties as an octane booster. Increasing the amount of these blends often has a positive impact on vehicle performance such as good driving performance and good cleanliness. I found out.

すなわち、本発明は、次の無鉛高オクタン価ガソリンを提供するものである。
(1)90容量%留出温度が160℃以下の重質直留ナフサを脱硫処理することによって得られた、硫黄濃度5質量ppm以下、窒素濃度5質量ppm以下の脱硫重質ナフサ留分を接触改質処理して得られる、下記式(I)で示される多環芳香族分指数Yが20以下の接触改質ガソリンから得られたガソリン基材を2〜60容量%、エタノール(EtOH)を0.5〜10.0容量%、エチルターシャリーブチルエーテル(ETBE)を0.5〜15.0容量%含み、以下の1)〜6)に挙げる性状を満足することを特徴とする無鉛高オクタン価ガソリン。
Y=(0.002×3R-A)+(0.01×4R-A)+(0.07×5R-A)+(0.2×6R+-A)…(I)
〔式中、3R-Aは3環芳香族分量、4R-Aは4環芳香族分量、5R-Aは5環芳香族分量、6R+-Aは6環以上の芳香族分量(何れもガソリン中の含有量で質量ppm)を示す〕
1)リサーチ法オクタン価が97〜105、
2)モーター法オクタン価が85〜92、
3)50容量%留出温度が75〜110℃、
4)90容量%留出温度が180℃以下、
5)リード蒸気圧が45〜93kPa、
6)清浄剤を50〜1000質量ppmの範囲で含有する
(2)さらに以下の1)〜7)に挙げる性状を満足することを特徴とする上記(1)に記載の無鉛高オクタン価ガソリン。
1)70℃留出量が18〜40容量%
2)芳香族含有量が45容量%以下
3)オレフィン分含有量が30容量%以下
4)ベンゼン含有量が1容量%以下
5)硫黄分含有量が10質量ppm以下
6)60℃における気液比(V/L)が30〜70
7)15℃における密度が0.68〜0.78g/cm3
(3)前記ガソリン基材が、前記接触改質ガソリンを脱ベンゼン処理して得られたものであることを特徴とする上記(1)又は(2)に記載の無鉛高オクタン価ガソリン。
That is, the present invention provides the following lead-free high octane gasoline.
(1) A desulfurized heavy naphtha fraction having a sulfur concentration of 5 mass ppm or less and a nitrogen concentration of 5 mass ppm or less, obtained by desulfurizing a heavy straight-run naphtha having a 90% by volume distillation temperature of 160 ° C. or less. 2 to 60% by volume of a gasoline base material obtained from catalytically reformed gasoline obtained by catalytic reforming and having a polycyclic aromatic content index Y represented by the following formula (I) of 20 or less, ethanol (EtOH) In an amount of 0.5 to 10.0% by volume, 0.5 to 15.0% by volume of ethyl tertiary butyl ether (ETBE), and satisfying the following properties 1) to 6): Octane gasoline.
Y = (0.002 × 3R-A) + (0.01 × 4R-A) + (0.07 × 5R-A) + (0.2 × 6R + -A)… (I)
[In the formula, 3R-A is a 3-ring aromatic content, 4R-A is a 4-ring aromatic content, 5R-A is a 5-ring aromatic content, 6R + -A is an aromatic content of 6 or more rings (both in gasoline) (Ppm by mass)
1) Research octane number is 97-105,
2) Motor method octane number is 85-92,
3) 50% by volume distillation temperature is 75-110 ° C,
4) 90% volume distillation temperature is 180 ℃ or less,
5) Reed vapor pressure is 45-93kPa,
6) The unleaded high-octane gasoline according to (1) above, which contains a detergent in the range of 50 to 1000 ppm by mass (2) and further satisfies the following properties 1) to 7).
1) Distillation at 70 ° C is 18-40% by volume
2) Aromatic content 45% or less 3) Olefin content 30% or less 4) Benzene content 1% or less 5) Sulfur content 10 mass ppm or less 6) Gas-liquid at 60 ° C Ratio (V / L) is 30-70
7) Density at 15 ° C is 0.68 to 0.78 g / cm 3
(3) The unleaded high octane gasoline according to (1) or (2) above, wherein the gasoline base material is obtained by debenzene treatment of the catalytic reformed gasoline.

本発明の無鉛高オクタン価ガソリンによれば、ガソリンを軽質化することなく、エンジン内の燃焼室内部および吸気弁へのデポジット生成を同時に抑制し、エンジン内の清浄性を向上できる。さらに排出ガス中に含まれるCO、THCといった有害成分量の一層の低減が可能となり、大気環境の保全も図れる。   According to the lead-free high-octane gasoline of the present invention, it is possible to simultaneously suppress the generation of deposits in the combustion chamber and the intake valve in the engine without reducing the gasoline, and improve the cleanliness in the engine. Furthermore, the amount of harmful components such as CO and THC contained in the exhaust gas can be further reduced, and the air environment can be preserved.

以下、本発明の内容を更に詳しく説明する。
本発明の無鉛高オクタン価ガソリンに使用する接触改質ガソリンは、常圧蒸留装置によって得られた90容量%留出温度が160℃以下の重質直留ナフサを脱硫処理し、硫黄濃度を5質量ppm以下、窒素濃度を5質量ppm以下とした後、この脱硫重質ナフサを接触改質処理し、下記式(I)で示される多環芳香族分指数Yを20以下としたものである。
Y=(0.002×3R-A)+(0.01×4R-A)+(0.07×5R-A)+(0.2×6R+-A)…(I)
〔式中、3R-Aは3環芳香族分量、4R-Aは4環芳香族分量、5R-Aは5環芳香族分量、6R+-Aは6環以上の芳香族分量(何れもガソリン中の含有量で質量ppm)を示す〕
Hereinafter, the contents of the present invention will be described in more detail.
The catalytically reformed gasoline used in the lead-free high octane gasoline of the present invention is obtained by desulfurizing heavy straight-run naphtha having a 90% by volume distillation temperature of 160 ° C. or less obtained by an atmospheric distillation apparatus, and a sulfur concentration of 5 mass. The desulfurized heavy naphtha was subjected to catalytic reforming treatment after setting the nitrogen concentration to 5 ppm or less, and the polycyclic aromatic content index Y represented by the following formula (I) to 20 or less.
Y = (0.002 × 3R-A) + (0.01 × 4R-A) + (0.07 × 5R-A) + (0.2 × 6R + -A)… (I)
[In the formula, 3R-A is a 3-ring aromatic content, 4R-A is a 4-ring aromatic content, 5R-A is a 5-ring aromatic content, 6R + -A is an aromatic content of 6 or more rings (both in gasoline) (Ppm by mass)

上記多環芳香族分指数の式(I)は、多環芳香族分の含有量とエンジン内のデポジット量の関係から求められる実験式であり、3環、4環、5環、6環と多環になるほど高い値を示す。これは排出ガス中の有害成分の増加、及びエンジン内のデポジットの生成が多環ほど高くなることを示している。接触改質ガソリンにおける多環芳香族分指数Yは20以下であり、好ましくは15以下、さらに好ましくは12以下である。20以下あれば、エンジン内デポジットの増加、及び排出ガス中の有害成分の増加を防止できる。   The formula (I) of the polycyclic aromatic content index is an empirical formula obtained from the relationship between the content of the polycyclic aromatic content and the deposit amount in the engine, and includes three rings, four rings, five rings, and six rings. The higher the value, the higher the value. This indicates that the increase of harmful components in the exhaust gas and the generation of deposits in the engine become higher as the polycycle increases. The polycyclic aromatic content index Y in the catalytic reformed gasoline is 20 or less, preferably 15 or less, more preferably 12 or less. If it is 20 or less, an increase in engine deposits and an increase in harmful components in exhaust gas can be prevented.

なお、上記多環芳香族分含有量は、以下に示すガスクロマトグラフ法により環数別の定
量を行った値であり、定量法は環数別の代表的な標準試料による絶対検量線法とした。すなわち、カラムには長さ30m、内径0.25mmであるジメチルシリコンのキャピラリーカラムを用い、検出器は水素イオン化検出器(FID)、キャリアガスは流量1.3ml/minのヘリウム、スプリットレス注入、注入口温度300℃、検出器温度350℃の条件において、カラム温度を初期温度50℃より終期温度350℃まで昇温させて測定した値である。
The polycyclic aromatic content is a value obtained by quantification according to the number of rings by the gas chromatographic method shown below, and the quantification method is an absolute calibration curve method using a typical standard sample according to the number of rings. . That is, a dimethyl silicon capillary column with a length of 30 m and an inner diameter of 0.25 mm is used as the column, the detector is a hydrogen ionization detector (FID), the carrier gas is helium at a flow rate of 1.3 ml / min, splitless injection, inlet temperature This is a value measured by raising the column temperature from the initial temperature of 50 ° C. to the final temperature of 350 ° C. under the conditions of 300 ° C. and detector temperature of 350 ° C.

本発明で脱硫重質ナフサを得るために使用する重質直留ナフサの90容量%留出温度範囲は160℃以下、好ましくは135〜160℃、より好ましくは140〜150℃である。90容量%留出温度を160℃以下とすることで、接触改質ガソリンの重質化を防止できる。さらに90容量%留出温度範囲を135℃以上とすることで、ベンゼン留分を取り除いた時の接触改質ガソリンを高オクタン価化でき、より好ましい。なお、この蒸留性状はJIS K 2254に準拠して測定した値である。   The 90 vol% distillation temperature range of the heavy straight-run naphtha used for obtaining desulfurized heavy naphtha in the present invention is 160 ° C or lower, preferably 135 to 160 ° C, more preferably 140 to 150 ° C. By setting the 90 vol% distillation temperature to 160 ° C or less, it is possible to prevent the catalytic reformed gasoline from becoming heavy. Furthermore, by setting the 90% by volume distillation temperature range to 135 ° C. or higher, the catalytic reformed gasoline when the benzene fraction is removed can be increased in octane number, which is more preferable. This distillation property is a value measured according to JIS K 2254.

また、重質直留ナフサの脱硫処理は、無機担体にVI族、VIII族金属を担持させた脱硫触媒の存在下で、反応圧力が0.1〜10MPa、好ましくは1〜3MPa、反応温度が200〜450℃、好ましくは250〜350℃、液空間速度(LHSV)が0.1〜20hr-1、好ましくは0.5〜10hr-1にて脱硫反応を行う。
得られる脱硫重質ナフサの硫黄濃度は5質量ppm以下、好ましくは1質量ppm以下、窒素濃度は5質量ppm以下、好ましくは1質量ppm以下である。硫黄濃度、窒素濃度がそれぞれ5質量ppm以下であれば、接触改質触媒の活性の失活を防止できる。なお、硫黄濃度は、JIS K2541微量電量滴定式酸化法に準拠し、窒素濃度はJIS K2609化学発光法に準拠して測定した値である。
In addition, desulfurization treatment of heavy straight-run naphtha is carried out in the presence of a desulfurization catalyst in which a group VI or VIII metal is supported on an inorganic carrier, with a reaction pressure of 0.1 to 10 MPa, preferably 1 to 3 MPa, and a reaction temperature of 200 to 200. The desulfurization reaction is performed at 450 ° C., preferably 250 to 350 ° C., and the liquid space velocity (LHSV) is 0.1 to 20 hr−1, preferably 0.5 to 10 hr−1.
The resulting desulfurized heavy naphtha has a sulfur concentration of 5 ppm by mass or less, preferably 1 ppm by mass or less, and a nitrogen concentration of 5 ppm by mass or less, preferably 1 ppm by mass or less. When the sulfur concentration and the nitrogen concentration are each 5 ppm by mass or less, the deactivation of the catalytic reforming catalyst can be prevented. The sulfur concentration is a value measured according to JIS K2541 microcoulometric titration method, and the nitrogen concentration is a value measured according to JIS K2609 chemiluminescence method.

脱硫重質ナフサの接触改質処理は、各種の接触改質法(プラットフォーミング法、マグナフォーミング法、アロマイジング法、レニフォーミング法、フードリフォーミング法、ウルトラフォーミング法、パワーフォーミング法等)により、脱硫重質ナフサを水素気流中にて高温・加圧下で触媒(例えば、アルミナ担体に白金やロジウムと塩素とを担持したもの等)と接触処理させて行うことができる。   Contact reforming treatment of desulfurized heavy naphtha is performed by various contact reforming methods (Platform forming method, Magna forming method, Aromaizing method, Reni forming method, Food reforming method, Ultra forming method, Power forming method, etc.) The desulfurized heavy naphtha can be subjected to contact treatment with a catalyst (for example, a material in which platinum, rhodium and chlorine are supported on an alumina carrier) in a hydrogen stream under high temperature and pressure.

本発明の無鉛高オクタン価ガソリンは、上記脱硫重質ナフサの接触改質処理により得られた接触改質ガソリンを基材として用いて製造される。製造方法は、特に制限されないが、一般に、次の各種留分を用いて製造することができる。すなわち;
(a)上記接触改質ガソリンからベンゼン留分を蒸留により取り除いた脱ベンゼン接触改質ガソリン、
(b)上記接触改質ガソリンを蒸留により、軽質留分、ベンゼン留分、重質留分に分けた内の軽質留分(脱ベンゼン軽質接触改質ガソリン)及び重質留分(脱ベンゼン重質接触改質ガソリン)、
(c)上記接触改質ガソリンを蒸留もしくは抽出することにより得られた、トルエンまたは炭素数9以上の芳香族を主体とする芳香族主体接触改質ガソリン
(d)灯・軽油から常圧残油に至る石油留分、好ましくは重質軽油や減圧軽油を、従来から知られている接触分解法、特に流動接触分解法(UOP法、シェル二段式法、フレキシクラッキング法、ウルトラオルソフロー法、テキサコ法、ガルフ法、ウルトラキャットクラッキング法、RCC法、HOC法等)により、固体酸触媒(例えば、シリカ・アルミナにゼオライトを配合したもの等)で分解して得られた接触分解ガソリンを蒸留して得られる軽質接触分解ガソリン、
(e)イソブタンと低級オレフィン(ブテン、プロピレン等)を原料として、酸触媒(硫酸、フッ化水素、塩化アルミニウム等)の存在下で反応させて得られるアルキレート、
(f)原油や粗油等の常圧蒸留時、改質ガソリン製造時、あるいは分解ガソリン製造時等に蒸留して得られるブタン、ブテン類を主成分としたC4留分、
(g)直鎖の低級パラフィン系炭化水素の異性化によって得られるアイソメレート、またはアイソメレートを精密蒸留して得られるイソペンタン、
等の各種留分をガソリン基材として用いる。
The lead-free high-octane gasoline of the present invention is produced using a catalytically modified gasoline obtained by catalytic reforming of the desulfurized heavy naphtha as a base material. Although a manufacturing method in particular is not restrict | limited, Generally, it can manufacture using the following various fractions. Ie;
(A) Debenzene-catalyzed reformed gasoline obtained by removing a benzene fraction from the above-mentioned catalytic reformed gasoline by distillation;
(B) The above catalytic reformed gasoline is separated by distillation into a light fraction, a benzene fraction, and a heavy fraction. The light fraction (debenzene light catalytic reformed gasoline) and the heavy fraction (debenzene heavy) Quality contact reforming gasoline),
(C) Aromatic main contact reforming gasoline mainly composed of toluene or aromatics having 9 or more carbon atoms obtained by distillation or extraction of the above catalytic reforming gasoline (d) Normal pressure residue from kerosene / light oil Petroleum fractions, preferably heavy gas oil or vacuum gas oil, are conventionally known catalytic cracking methods, especially fluid catalytic cracking methods (UOP method, shell two-stage method, flexi cracking method, ultra ortho flow method, Texaco method, Gulf method, Ultracat cracking method, RCC method, HOC method, etc.) Distill the catalytically cracked gasoline obtained by cracking with solid acid catalyst (eg silica / alumina blended with zeolite) Light catalytic cracking gasoline,
(E) an alkylate obtained by reacting isobutane with a lower olefin (butene, propylene, etc.) in the presence of an acid catalyst (sulfuric acid, hydrogen fluoride, aluminum chloride, etc.),
(F) C4 fraction mainly composed of butane and butenes obtained by distillation at the time of atmospheric distillation of crude oil, crude oil or the like, during the production of reformed gasoline, or during the production of cracked gasoline,
(G) Isomerate obtained by isomerization of linear lower paraffinic hydrocarbon, or isopentane obtained by precision distillation of isomerate,
Etc. are used as gasoline base materials.

本発明の無鉛高オクタン価ガソリンはさらに、エチルターシャリーブチルエーテル(ETBE)およびエタノール(EtOH)を含有する。エタノール(EtOH)は、純度が92.0容量%以上であって、好ましくは95.0容量%以上、更に好ましくは99.5容量%以上である。ETBEおよびエタノールは、公知の製造法から得られるもの全て使用可能であり、その製造方法は特に限定されるものではない。   The unleaded high octane gasoline of the present invention further contains ethyl tertiary butyl ether (ETBE) and ethanol (EtOH). Ethanol (EtOH) has a purity of 92.0% by volume or more, preferably 95.0% by volume or more, and more preferably 99.5% by volume or more. As ETBE and ethanol, all those obtained from known production methods can be used, and the production method is not particularly limited.

上記のような各種留分を適宜選択して用いて本発明の無鉛高オクタン価ガソリンを製造する具体例として次の例が挙げられる。すなわち;
(a’)リサーチ法オクタン価が100以上、モーター法オクタン価が88以上、リード蒸気圧が28kPa以上、沸点範囲が30〜215℃の脱ベンゼン接触改質ガソリンを2〜60容量%、または
(b’)i)リサーチ法オクタン価が78以上、モーター法オクタン価が70以上、リード蒸気圧が85kPa以上、沸点範囲が26〜80℃の脱ベンゼン軽質接触改質ガソリンを0〜15容量%、及び
ii) リサーチ法オクタン価が101以上、モーター法オクタン価が89以上、リード蒸気圧が3kPa以上、沸点範囲が90〜215℃の脱ベンゼン重質接触改質ガソリンを2〜50容量%、または
(c’)上記接触改質ガソリンまたは脱ベンゼン重質接触改質ガソリンを蒸留もしくは抽出することにより得られた、トルエンもしくは炭素数9以上の芳香族を主体とする芳香族主体接触改質ガソリンを2〜50容量%、かつ上記(b’)i)、ならびに
(d’)リサーチ法オクタン価が93以上、モーター法オクタン価が81以上、リード蒸気圧が90kPa以上、沸点範囲が25〜110℃の軽質接触分解ガソリンを5〜55容量%、
を得られる無鉛高オクタン価ガソリンが所定の性状となるように配合して本発明の無鉛高オクタン価ガソリンを製造することができる。
また、上記のような各基材の配合物に、
(e’)アルキレートを0〜40容量%、
をさらに配合して本発明の無鉛高オクタン価ガソリンを製造することもできる。
The following examples are given as specific examples for producing the unleaded high octane gasoline of the present invention by appropriately selecting and using the various fractions as described above. Ie;
(A ′) 2 to 60% by volume of debenzene-catalyzed reformed gasoline having a research octane number of 100 or more, a motor method octane number of 88 or more, a lead vapor pressure of 28 kPa or more, and a boiling point range of 30 to 215 ° C., or (b ′ ) I) Research method octane number of 78 or more, motor method octane number of 70 or more, Reed vapor pressure of 85 kPa or more, boiling point range of 26-80 ° C debenzene light catalytic reformed gasoline 0-15 vol%, and ii) Research 2-50% by volume of debenzene heavy contact reformed gasoline with a method octane number of 101 or higher, motor method octane number of 89 or higher, Reed vapor pressure of 3 kPa or higher, and boiling point range of 90-215 ° C, or (c ') above contact 2 to 50% by volume of aromatic main catalytic reformed gasoline mainly composed of toluene or aromatics having 9 or more carbon atoms, obtained by distillation or extraction of reformed gasoline or debenzene-heavy catalytic reformed gasoline And (b ′) i) and (d ′) 5 of light catalytic cracking gasoline having a research octane number of 93 or higher, a motor octane number of 81 or higher, a Reid vapor pressure of 90 kPa or higher, and a boiling point range of 25 to 110 ° C. ~ 55% by volume,
The unleaded high octane gasoline of the present invention can be produced by blending so that the unleaded high octane gasoline obtained can have a predetermined property.
In addition, in the formulation of each substrate as described above,
(E ') 0 to 40 vol% alkylate,
Can be further blended to produce the lead-free high octane gasoline of the present invention.

本発明の無鉛高オクタン価ガソリンは、上記接触改質ガソリンから得られるガソリン基材を、例えば上記例の(a)〜(c)(あるいは(a’)〜(c’))のうち少なくとも1種の留分を必須留分として含み、合計量が2〜60容量%、好ましくは20〜60容量%含む。含有量が2容量%以上であれば無鉛高オクタン価ガソリンのオクタン価を向上でき、60容量%以下であれば無鉛高オクタン価ガソリンの重質化を防止できる。
本発明の無鉛高オクタン価ガソリンはさらに、エタノールを含有する。エタノールの含有量は、ガソリン全量に対し1容量%以上15容量%以下の範囲にあり、好ましくは3容量%以上15容量%以下である。1容量%以上であれば、エタノール配合によるオクタン価向上の利点が得られ、15容量%以下とすることで他のガソリン基材との共沸現象により蒸発特性が著しく変化することがなく、ガソリン自動車の適正な運転性が確保できる。
本発明の無鉛高オクタン価ガソリンはさらに、ETBEを1〜25容量%、好ましくは3〜20容量%、更に好ましくは5〜18容量%含む。ETBEの配合量が上記範囲内であれば、発熱量の低下による燃費への悪影響の懸念なく、排出ガス中のCO、THC等の低減などを図ることができる。
他の各留分は適宜選択して、得られる無鉛高オクタン価ガソリンが所定の性状になるように、各留分の性状等に応じてそれらの配合量を適宜設定して配合することにより本発明の無鉛高オクタン価ガソリンを製造することができる。
The lead-free high-octane gasoline of the present invention is a gasoline base material obtained from the catalytic reformed gasoline, for example, at least one of (a) to (c) (or (a ′) to (c ′)) of the above examples. Are contained as essential fractions, and the total amount is 2 to 60% by volume, preferably 20 to 60% by volume. If the content is 2% by volume or more, the octane number of the unleaded high-octane gasoline can be improved, and if it is 60% by volume or less, the unleaded high-octane gasoline can be prevented from becoming heavy.
The unleaded high octane gasoline of the present invention further contains ethanol. The ethanol content is in the range of 1% to 15% by volume, preferably 3% to 15% by volume, based on the total gasoline. If it is 1% by volume or more, the advantage of improving the octane number by blending with ethanol can be obtained, and if it is 15% by volume or less, the evaporation characteristics do not change significantly due to the azeotropic phenomenon with other gasoline base materials. The proper drivability can be secured.
The unleaded high octane gasoline of the present invention further contains 1 to 25% by volume, preferably 3 to 20% by volume, more preferably 5 to 18% by volume of ETBE. If the blending amount of ETBE is within the above range, it is possible to reduce CO, THC, etc. in the exhaust gas without fear of an adverse effect on fuel consumption due to a decrease in calorific value.
The other fractions are appropriately selected, and the present invention is carried out by appropriately setting and blending their blending amounts according to the properties of each fraction so that the resulting unleaded high-octane gasoline has a predetermined property. Unleaded high octane gasoline can be produced.

本発明の無鉛高オクタン価ガソリンは、リサーチ法オクタン価が、97〜105、好ましくは98〜103、モーター法オクタン価が、85〜92、好ましくは86〜90である。リサーチ法オクタン価が97〜105ならば、いわゆるプレミアム級の高オクタン価ガソリンとして高い運転性能を維持することが可能となり、モーター法オクタン価が85〜92であれば高速走行時のアンチノック性の低下を防止することができる。なお、このリサーチ法オクタン価及びモーター法オクタン価は、JIS K 2280に準拠して測定した値である。   The unleaded high octane gasoline of the present invention has a research octane number of 97 to 105, preferably 98 to 103, and a motor octane number of 85 to 92, preferably 86 to 90. If the research octane number is 97-105, it is possible to maintain high driving performance as a so-called premium-grade high-octane gasoline. can do. The research method octane number and the motor method octane number are values measured in accordance with JIS K 2280.

また、本発明の無鉛高オクタン価ガソリンは、50容量%留出温度(T50)が75〜110℃、好ましくは85〜100℃、90容量%留出温度(T90)が180℃以下、好ましくは110〜170℃である。留出温度が上記範囲内であれば、始動性、運転性、加速性に不具合が生じる場合を防ぐことができる。なお、これらの蒸留性状はJIS K 2254に準拠して測定した値である。   The lead-free high octane gasoline of the present invention has a 50% by volume distillation temperature (T50) of 75 to 110 ° C, preferably 85 to 100 ° C, and a 90% by volume distillation temperature (T90) of 180 ° C or less, preferably 110%. ~ 170 ° C. When the distillation temperature is within the above range, it is possible to prevent a problem in starting performance, operability, and acceleration. These distillation properties are values measured in accordance with JIS K 2254.

本発明の無鉛高オクタン価ガソリンのリード蒸気圧は、45〜93kPa、好ましくは66〜75kPaである。リード蒸気圧を93kPa以下にすることによって蒸発ガスの量を少なくすることができ、45kPa以上とすることで低温始動性、暖機性の低下を防ぐことができる。なお、このリード蒸気圧は、JIS K 2258に準拠して測定した値である。   The lead vapor pressure of the unleaded high octane gasoline of the present invention is 45 to 93 kPa, preferably 66 to 75 kPa. By setting the lead vapor pressure to 93 kPa or less, the amount of evaporative gas can be reduced, and by setting it to 45 kPa or more, it is possible to prevent the low temperature startability and warm-up performance from being deteriorated. The reed vapor pressure is a value measured according to JIS K 2258.

本発明の無鉛高オクタン価ガソリンは、70℃留出量(E70)が18〜40容量%、好ましくは20〜40容量%である。E70が上記範囲内であれば始動性、運転性、加速性に不具合が生じる場合を防ぐことができる。なお、これらの蒸留性状はJIS K 2254に準拠して測定した値である。   The unleaded high octane gasoline of the present invention has a 70 ° C distillate (E70) of 18 to 40% by volume, preferably 20 to 40% by volume. If E70 is within the above range, it is possible to prevent a problem in starting performance, drivability and acceleration. These distillation properties are values measured in accordance with JIS K 2254.

本発明の無鉛高オクタン価ガソリンの芳香族分含有量は、45容量%以下、好ましくは5〜45容量%である。この芳香族分含有量が45容量%以内であれば、排出ガス中の有害成分の増加を防ぐことができる。なお、この芳香族分含有量は、石油学会法 JPI-5S-33-90(ガスクロマトグラフ法)に準拠して測定した値である。   The aromatic content of the unleaded high octane gasoline of the present invention is 45% by volume or less, preferably 5 to 45% by volume. When the aromatic content is within 45% by volume, an increase in harmful components in the exhaust gas can be prevented. The aromatic content is a value measured according to the Petroleum Institute method JPI-5S-33-90 (gas chromatographic method).

本発明の無鉛高オクタン価ガソリンのオレフィン分含有量は、30容量%以下、好ましくは5〜25容量%である。このオレフィン分含有量が30容量%以内であれば、酸化安定性の低下を防ぐことができる。なお、オレフィン分含有量は、石油学会法 JPI-5S-33-90(ガスクロマトグラフ法)に準拠して測定した値である。   The olefin content of the unleaded high octane gasoline of the present invention is 30% by volume or less, preferably 5 to 25% by volume. When the olefin content is within 30% by volume, it is possible to prevent a decrease in oxidation stability. The olefin content is a value measured according to the Japan Petroleum Institute method JPI-5S-33-90 (gas chromatographic method).

本発明の無鉛高オクタン価ガソリンのベンゼン含有量は、1容量%以下、好ましくは0.8容量%以下である。このベンゼン含有量が1容量%以内であれば、大気中のベンゼン濃度の増加を防止し、環境汚染を低減できる可能性がある。なお、このベンゼン含有量は、石油学会法JPI-5S-33-90(ガスクロマトグラフ法)に準拠して測定した値である。   The lead-free high octane gasoline of the present invention has a benzene content of 1% by volume or less, preferably 0.8% by volume or less. If the benzene content is within 1% by volume, there is a possibility that the increase in benzene concentration in the atmosphere can be prevented and environmental pollution can be reduced. The benzene content is a value measured according to the Petroleum Institute method JPI-5S-33-90 (gas chromatographic method).

本発明の無鉛高オクタン価ガソリンの硫黄分含有量は、10質量ppm以下、好ましくは8質量ppm以下である。この硫黄分含有量が10質量ppm以下であれば、排出ガス浄化触媒の能力低下を防止し、排出ガス中のCO、THCの濃度上昇を防止できる可能性がある。なお、この硫黄分含有量は、JIS K 2541に準拠して測定した値である。   The lead content of the lead-free high octane gasoline of the present invention is 10 ppm by mass or less, preferably 8 ppm by mass or less. If this sulfur content is 10 mass ppm or less, there is a possibility that the exhaust gas purification catalyst capacity can be prevented from being lowered and the concentration of CO and THC in the exhaust gas can be prevented from increasing. The sulfur content is a value measured in accordance with JIS K2541.

本発明の無鉛高オクタン価ガソリンの60℃における気液比(V/L)は、30〜70、好ましくは30〜60である。このV/Lが30以上とすることで、良好な始動性を確保することができる。また、V/Lを70以下とすることで、加速性、運転性の不具合が低減できる可能性がある。なお、このV/Lは、ASTM D 2533-93a に準拠して測定した値である。   The gas-liquid ratio (V / L) at 60 ° C. of the unleaded high octane gasoline of the present invention is 30 to 70, preferably 30 to 60. When this V / L is 30 or more, good startability can be ensured. In addition, by setting V / L to 70 or less, there is a possibility that defects in acceleration and drivability can be reduced. The V / L is a value measured according to ASTM D 2533-93a.

本発明の無鉛高オクタン価ガソリンの15℃における密度は、0.68〜0.78g/cm3、好ましくは0.69〜0.76 g/cm3である。この密度が0.68 g/cm3以上とすることで良好な燃費を確保することができる。また、密度を0.78 g/cm3以下とすることで高密度の芳香族分を低減でき、排出ガスによる大気への芳香族排出量を低減することができる。なお、この密度は、JIS K 2249に準拠して測定した値である。 Density at 15 ℃ unleaded high-octane gasoline of the present invention, 0.68~0.78g / cm 3, preferably 0.69~0.76 g / cm 3. When this density is 0.68 g / cm 3 or more, good fuel consumption can be ensured. Further, by setting the density to 0.78 g / cm 3 or less, high-density aromatics can be reduced, and the amount of aromatics discharged into the atmosphere by exhaust gas can be reduced. This density is a value measured in accordance with JIS K 2249.

本発明の無鉛高オクタン価ガソリンにおいて、炭素数9以上の芳香族分と全芳香族分の比(以下、(C9+A)/TAともいう。)は0.80以下、好ましくは0.10〜0.80である。炭素数9以上の芳香族分と全芳香族分の比が0.80以下ならば、プラグの対くすぶり性の低下を防止できる可能性があるので好ましい。なお、この芳香族分含有量は、石油学会法JPI-5S-33-90(ガスクロマトグラフ法)に準拠して測定した値である。   In the lead-free high-octane gasoline of the present invention, the ratio of aromatics having 9 or more carbon atoms to the total aromatics (hereinafter also referred to as (C9 + A) / TA) is 0.80 or less, preferably 0.10 to 0.00. 80. It is preferable that the ratio of the aromatic component having 9 or more carbon atoms and the total aromatic component is 0.80 or less because it is possible to prevent the smoldering property of the plug from being lowered. The aromatic content is a value measured in accordance with the Petroleum Institute Method JPI-5S-33-90 (gas chromatographic method).

本発明の無鉛高オクタン価ガソリンには、ポリエーテルアミン、ポリアルキルアミン、ポリイソブテンアミン、コハク酸イミド等の清浄剤を添加する。添加量は50〜1000質量ppm、好ましくは100〜500質量ppmである。添加量が50質量ppm以上ならばIVDの増加を防ぐことができ、1000質量ppm以内ならばCCDの増加を防ぐことができる。清浄剤を上記一定量添加すれば、上記本発明で用いる接触改質ガソリンのエンジン内デポジットの生成抑制効果と相まって、CCDの生成を効果的に抑制することができる。   A detergent such as polyetheramine, polyalkylamine, polyisobuteneamine, and succinimide is added to the lead-free high octane gasoline of the present invention. The addition amount is 50 to 1000 ppm by mass, preferably 100 to 500 ppm by mass. If the addition amount is 50 mass ppm or more, an increase in IVD can be prevented, and if it is within 1000 mass ppm, an increase in CCD can be prevented. When the above-mentioned constant amount of detergent is added, the generation of CCD can be effectively suppressed in combination with the effect of suppressing the generation of deposits in the engine of the catalytic reformed gasoline used in the present invention.

本発明の無鉛高オクタン価ガソリンには、更に必要に応じて、各種の添加剤を適宜配合することが出来る。このような添加剤としては、フェノール系、アミン系等の酸化防止剤、チオアミド化合物等の金属不活性剤、有機リン系化合物等の表面着火防止剤、長鎖アルキルアミン、アミド、イミド及びその誘導体等の摩擦調整剤(FM)、多価アルコール及びそのエーテル等の氷結防止剤、有機酸のアルカリ金属やアルカリ土類金属塩、高級アルコールの硫酸エステル等の助燃剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤等の帯電防止剤、アルケニル琥珀酸エステル等の錆止め剤、及びアゾ染料等の着色剤等、公知の燃料添加剤が挙げられる。これらを1種又は数種組み合せて添加することが出来る。これら燃料添加剤の添加量は任意であるが、通常、その合計添加量が0.1質量%以下とすることが好ましい。   The lead-free high-octane gasoline of the present invention can further contain various additives as required. Such additives include phenolic and amine antioxidants, metal deactivators such as thioamide compounds, surface ignition inhibitors such as organophosphorus compounds, long chain alkylamines, amides, imides and their derivatives. Friction modifiers (FM), antifreezing agents such as polyhydric alcohols and their ethers, organic acid alkali metal and alkaline earth metal salts, auxiliary alcohols such as higher alcohol sulfates, anionic surfactants, cations Well-known fuel additives such as antistatic agents such as system surfactants and amphoteric surfactants, rust inhibitors such as alkenyl succinates, and colorants such as azo dyes can be mentioned. These can be added alone or in combination. The addition amount of these fuel additives is arbitrary, but usually the total addition amount is preferably 0.1% by mass or less.

以下に本発明の内容を実施例及び比較例により更に詳しく説明するが、本発明はこれらによって制限されるものではない。   The content of the present invention will be described in more detail with reference to Examples and Comparative Examples below, but the present invention is not limited thereto.

実施例、比較例
表1に脱硫重質ナフサの性状を示し、表2に該脱硫重質ナフサを接触改質処理して得た接触改質ガソリンの性状を示した。表1、2において、脱硫重質ナフサαおよびこれから得られた接触改質ガソリン1は、本発明の性状を満たすものである。一方脱硫重質ナフサβおよびこれから得られた接触改質ガソリン2は本発明の性状を逸脱するものである。
そして、表3、4に、無鉛高オクタン価ガソリンの製造に用いたガソリン基材の性状及び組成並びに名称を示した。そして、表3、4に示す各ガソリン基材等を表5に示す割合で混合して、無鉛高オクタン価ガソリンを製造し、以下に述べる各種性能評価試験を行った。
なお、表中の密度は JIS K 2249、芳香族分、オレフィン分及びベンゼン含有量は石油学会法 JPI -5S-33-90 (ガスクロマト法)により測定した。また、清浄剤としてはポリイソブテンアミン系清浄剤を用いた。
Examples and Comparative Examples Table 1 shows properties of desulfurized heavy naphtha, and Table 2 shows properties of catalytic reformed gasoline obtained by catalytic reforming of the desulfurized heavy naphtha. In Tables 1 and 2, desulfurized heavy naphtha α and catalytically reformed gasoline 1 obtained therefrom satisfy the properties of the present invention. On the other hand, desulfurized heavy naphtha β and catalytically reformed gasoline 2 obtained therefrom depart from the properties of the present invention.
Tables 3 and 4 show the properties, composition, and names of gasoline base materials used in the production of unleaded high-octane gasoline. Then, the gasoline base materials shown in Tables 3 and 4 were mixed at the ratio shown in Table 5 to produce unleaded high octane gasoline, and various performance evaluation tests described below were conducted.
The density in the table was measured by JIS K 2249, and the aromatic content, olefin content, and benzene content were measured by the Petroleum Institute method JPI-5S-33-90 (gas chromatographic method). In addition, a polyisobuteneamine-based detergent was used as the detergent.

吸気弁デポジット(IVD)試験及び燃焼室内部デポジット(CCD)試験を、排気量2.5L、マルチポイントインジェクション(MPI)方式の車両を用い、シャシーダイナモにおいて、60−100km/hの加減速×1,500サイクル(8,000km走行)の条件で行った。その方法を以下に記し、結果を表5に示す。   Intake valve deposit (IVD) test and combustion chamber deposit (CCD) test using a 2.5-liter, multi-point injection (MPI) type vehicle with 60-100 km / h acceleration / deceleration x 1,500 cycles The test was carried out under the conditions of 8,000km. The method is described below, and the results are shown in Table 5.

(IVD試験)
運転前後の吸気弁重量を秤量することにより得られる、吸気弁に付着したデポジット(IVD)重量及びIVD評点(Rating:CRC No.16)により評価した。なお、このRating値は、数値が大きい方が、IVD量が少ないことを示す。
(CCD試験)
IVD試験後、シリンダーヘッド及びピストントップに付着したデポジット(CCD)を採取、秤量することによって行った。
(IVD test)
Evaluation was made based on the weight of the deposit (IVD) attached to the intake valve and the IVD score (Rating: CRC No. 16) obtained by weighing the intake valve weight before and after operation. The rating value indicates that the larger the numerical value, the smaller the IVD amount.
(CCD test)
After the IVD test, the deposit (CCD) adhered to the cylinder head and the piston top was collected and weighed.

(プラグのくすぶり性試験)
総排気量2L、MPI方式、オートマチックトランスミッション(AT)の車両を用い、−10℃の試験温度条件で、1サイクル約30分(エンジン始動⇒10−20km/hの加減速を10回繰り返し⇒28分間冷却)の繰返し試験を行い、そのプラグの絶縁抵抗を測定することによりプラグの汚損度を測定した。なお、プラグのくすぶりは、プラグの絶縁抵抗値が100MΩ以下で発生したと判定した。
(Plug smoldering test)
Using a vehicle with a total displacement of 2L, MPI method, automatic transmission (AT), and a test temperature condition of -10 ° C, about 30 minutes per cycle (engine start ⇒ 10-20 km / h acceleration / deceleration repeated 10 times ⇒ 28 The degree of fouling of the plug was measured by measuring the insulation resistance of the plug. It was determined that plug smoldering occurred when the plug insulation resistance value was 100 MΩ or less.

(排出ガス試験)
排出ガス試験は、国産乗用車(総排気量2 L、MPI方式、オートマチックトランスミッション(AT)、三元触媒装着)を用いて、シャシーダイナモにおいて、60−100km/hの加減速×1,500サイクル(8,000km)走行の後、11モードでの排出ガス試験を行い、一酸化炭素(CO)、全炭化水素(THC)を測定した。
(Exhaust gas test)
The exhaust gas test was conducted using a domestic passenger car (total displacement 2 L, MPI system, automatic transmission (AT), three-way catalyst installed), chassis dynamometer, acceleration / deceleration of 60-100 km / h x 1,500 cycles ( After running for 8,000 km), an exhaust gas test in 11 mode was conducted to measure carbon monoxide (CO) and total hydrocarbons (THC).

Figure 2007246744
Figure 2007246744

Figure 2007246744
Figure 2007246744

Figure 2007246744
Figure 2007246744

Figure 2007246744
Figure 2007246744

Figure 2007246744
Figure 2007246744

実施例で具体的に示すように、特に吸気弁へのデポジットの付着が抑制されている。したがって本発明は、高オクタン価基材として重質な接触改質ガソリンを用いつつも、エンジン内部の清浄性に優れ、大気環境の保全が図れるものである。   As specifically shown in the examples, deposits are particularly prevented from adhering to the intake valves. Therefore, the present invention is excellent in cleanliness inside the engine and can maintain the air environment while using heavy contact reformed gasoline as a high octane base material.

Claims (3)

90容量%留出温度が160℃以下の重質直留ナフサを脱硫処理することによって得られた、硫黄濃度5質量ppm以下、窒素濃度5質量ppm以下の脱硫重質ナフサ留分を接触改質処理して得られる、下記式(I)で示される多環芳香族分指数Yが20以下の接触改質ガソリンから得られたガソリン基材を2〜60容量%、エタノール(EtOH)を0.5〜10.0容量%、エチルターシャリーブチルエーテル(ETBE)を0.5〜15.0容量%含み、以下の1)〜6)に挙げる性状を満足することを特徴とする無鉛高オクタン価ガソリン。
Y=(0.002×3R-A)+(0.01×4R-A)+(0.07×5R-A)+(0.2×6R+-A)…(I)
〔式中、3R-Aは3環芳香族分量、4R-Aは4環芳香族分量、5R-Aは5環芳香族分量、6R+-Aは6環以上の芳香族分量(何れもガソリン中の含有量で質量ppm)を示す〕
1)リサーチ法オクタン価が97〜105、
2)モーター法オクタン価が85〜92、
3)50容量%留出温度が75〜110℃、
4)90容量%留出温度が180℃以下、
5)リード蒸気圧が45〜93kPa、
6)清浄剤を50〜1000質量ppmの範囲で含有する
Catalytic reforming of desulfurized heavy naphtha fraction with sulfur concentration of 5 mass ppm or less and nitrogen concentration of 5 mass ppm or less, obtained by desulfurization of heavy straight-run naphtha with 90 vol% distillation temperature of 160 ° C or less 2 to 60% by volume of a gasoline base material obtained from a catalytically reformed gasoline having a polycyclic aromatic content index Y represented by the following formula (I) obtained by the treatment of 20 or less and ethanol (EtOH) of 0. A lead-free high-octane gasoline containing 5 to 10.0% by volume, 0.5 to 15.0% by volume of ethyl tertiary butyl ether (ETBE), and satisfying the following properties 1) to 6).
Y = (0.002 × 3R-A) + (0.01 × 4R-A) + (0.07 × 5R-A) + (0.2 × 6R + -A)… (I)
[In the formula, 3R-A is a 3-ring aromatic content, 4R-A is a 4-ring aromatic content, 5R-A is a 5-ring aromatic content, 6R + -A is an aromatic content of 6 or more rings (both in gasoline) (Ppm by mass)
1) Research octane number is 97-105,
2) Motor method octane number is 85-92,
3) 50% by volume distillation temperature is 75-110 ° C,
4) 90% volume distillation temperature is 180 ℃ or less,
5) Reed vapor pressure is 45-93kPa,
6) Contains detergent in the range of 50 to 1000 ppm by mass
さらに以下の1)〜7)に挙げる性状を満足することを特徴とする請求項1に記載の無鉛高オクタン価ガソリン。
1)70℃留出量が18〜40容量%
2)芳香族含有量が45容量%以下
3)オレフィン分含有量が30容量%以下
4)ベンゼン含有量が1容量%以下
5)硫黄分含有量が10質量ppm以下
6)60℃における気液比(V/L)が30〜70
7)15℃における密度が0.68〜0.78g/cm3
The unleaded high octane gasoline according to claim 1, further satisfying the following properties 1) to 7).
1) Distillation at 70 ° C is 18-40% by volume
2) Aromatic content 45% or less 3) Olefin content 30% or less
4) Benzene content is 1 vol% or less 5) Sulfur content is 10 mass ppm or less 6) Gas-liquid ratio (V / L) at 60 ° C is 30 to 70
7) Density at 15 ° C is 0.68 to 0.78 g / cm 3
前記ガソリン基材が、前記接触改質ガソリンを脱ベンゼン処理して得られたものであることを特徴とする請求項1又は2に記載の無鉛高オクタン価ガソリン。   The lead-free high-octane gasoline according to claim 1 or 2, wherein the gasoline base material is obtained by debenzene treatment of the catalytic reformed gasoline.
JP2006073670A 2006-03-17 2006-03-17 Unleaded high octane gasoline Active JP4913436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006073670A JP4913436B2 (en) 2006-03-17 2006-03-17 Unleaded high octane gasoline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006073670A JP4913436B2 (en) 2006-03-17 2006-03-17 Unleaded high octane gasoline

Publications (2)

Publication Number Publication Date
JP2007246744A true JP2007246744A (en) 2007-09-27
JP4913436B2 JP4913436B2 (en) 2012-04-11

Family

ID=38591379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006073670A Active JP4913436B2 (en) 2006-03-17 2006-03-17 Unleaded high octane gasoline

Country Status (1)

Country Link
JP (1) JP4913436B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270039A (en) * 2006-03-31 2007-10-18 Idemitsu Kosan Co Ltd Gasoline composition
JP2010229336A (en) * 2009-03-27 2010-10-14 Cosmo Oil Co Ltd Unleaded gasoline
JP2010229339A (en) * 2009-03-27 2010-10-14 Cosmo Oil Co Ltd Unleaded gasoline
JP2011511132A (en) * 2008-02-04 2011-04-07 キャタリティック・ディスティレイション・テクノロジーズ Method for producing clean gasoline and bioether using ethanol
CN113355140A (en) * 2021-06-10 2021-09-07 周美强 High-tech all-round high-environmental-protection engine special-effect new energy fuel and production method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131565A (en) * 1999-11-05 2001-05-15 Tonengeneral Sekiyu Kk Automobile gasoline composition
JP2004244532A (en) * 2003-02-14 2004-09-02 Nippon Oil Corp Gasoline
JP2004285205A (en) * 2003-03-20 2004-10-14 Nippon Oil Corp Gasoline
WO2005042672A1 (en) * 2003-11-04 2005-05-12 Shell Internationale Research Maatschappij B.V. Process for upgrading a liquid hydrocarbon stream with a non-porous or nano-filtration membrane
JP2005133006A (en) * 2003-10-31 2005-05-26 Cosmo Oil Co Ltd Unleaded high-octane-number gasoline
JP2005133007A (en) * 2003-10-31 2005-05-26 Cosmo Oil Co Ltd Unleaded gasoline

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131565A (en) * 1999-11-05 2001-05-15 Tonengeneral Sekiyu Kk Automobile gasoline composition
JP2004244532A (en) * 2003-02-14 2004-09-02 Nippon Oil Corp Gasoline
JP2004285205A (en) * 2003-03-20 2004-10-14 Nippon Oil Corp Gasoline
JP2005133006A (en) * 2003-10-31 2005-05-26 Cosmo Oil Co Ltd Unleaded high-octane-number gasoline
JP2005133007A (en) * 2003-10-31 2005-05-26 Cosmo Oil Co Ltd Unleaded gasoline
WO2005042672A1 (en) * 2003-11-04 2005-05-12 Shell Internationale Research Maatschappij B.V. Process for upgrading a liquid hydrocarbon stream with a non-porous or nano-filtration membrane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007270039A (en) * 2006-03-31 2007-10-18 Idemitsu Kosan Co Ltd Gasoline composition
JP2011511132A (en) * 2008-02-04 2011-04-07 キャタリティック・ディスティレイション・テクノロジーズ Method for producing clean gasoline and bioether using ethanol
JP2010229336A (en) * 2009-03-27 2010-10-14 Cosmo Oil Co Ltd Unleaded gasoline
JP2010229339A (en) * 2009-03-27 2010-10-14 Cosmo Oil Co Ltd Unleaded gasoline
CN113355140A (en) * 2021-06-10 2021-09-07 周美强 High-tech all-round high-environmental-protection engine special-effect new energy fuel and production method

Also Published As

Publication number Publication date
JP4913436B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP4429941B2 (en) Unleaded high octane gasoline
JP2006213897A (en) Lead-free high-octane gasoline
JP4913436B2 (en) Unleaded high octane gasoline
JP2005133006A (en) Unleaded high-octane-number gasoline
JP4611049B2 (en) Unleaded gasoline
JP4856991B2 (en) Unleaded high octane gasoline
JP4913434B2 (en) Unleaded high octane gasoline
JP4913444B2 (en) Unleaded gasoline
JP4913442B2 (en) Unleaded gasoline
JP5147914B2 (en) Production method of unleaded gasoline
JP4913435B2 (en) Unleaded high octane gasoline
JP4913443B2 (en) Unleaded gasoline
JP4856992B2 (en) Unleaded gasoline
JP4913441B2 (en) Unleaded gasoline
JP4913440B2 (en) Unleaded gasoline
JP4913449B2 (en) Unleaded gasoline
JP4913438B2 (en) Unleaded gasoline
JP4913452B2 (en) Unleaded gasoline
JP4913437B2 (en) Unleaded gasoline
JP4913439B2 (en) Unleaded gasoline
JP4913430B2 (en) Unleaded high octane gasoline
JP4913450B2 (en) Unleaded gasoline
JP4913433B2 (en) Unleaded high octane gasoline
JP4913451B2 (en) Unleaded gasoline
JP4913445B2 (en) Unleaded high octane gasoline

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4913436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250