JP5147914B2 - Production method of unleaded gasoline - Google Patents

Production method of unleaded gasoline Download PDF

Info

Publication number
JP5147914B2
JP5147914B2 JP2010202925A JP2010202925A JP5147914B2 JP 5147914 B2 JP5147914 B2 JP 5147914B2 JP 2010202925 A JP2010202925 A JP 2010202925A JP 2010202925 A JP2010202925 A JP 2010202925A JP 5147914 B2 JP5147914 B2 JP 5147914B2
Authority
JP
Japan
Prior art keywords
gasoline
volume
less
content
debenzene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010202925A
Other languages
Japanese (ja)
Other versions
JP2011006702A (en
Inventor
明 保泉
重行 田中
治夫 滝澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2010202925A priority Critical patent/JP5147914B2/en
Publication of JP2011006702A publication Critical patent/JP2011006702A/en
Application granted granted Critical
Publication of JP5147914B2 publication Critical patent/JP5147914B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、無鉛ガソリンに関し、詳しくは特定された蒸留性状及び特定された成分組成を有し、自動車用燃料として環境に配慮し、かつ始動性、運転性、及び吸気バルブの清浄性に優れた無鉛ガソリンに関する。   The present invention relates to unleaded gasoline, specifically has a specified distillation property and a specified component composition, is environmentally friendly as a fuel for automobiles, and has excellent startability, drivability, and cleanliness of an intake valve. It relates to unleaded gasoline.

近年、ガソリンエンジン用燃料油としては、高オクタン価で運転性能に優れると共に、環境性能にも優れるものが要望されるようになってきた。
一般に、高オクタン価ガソリンとして、重質で芳香族分含有量の多い高オクタン価基材を配合し、特定の蒸留性状及び成分組成を有するものが知られている(例えば、特許文献1参照)。
In recent years, fuel oils for gasoline engines have been demanded that have a high octane number and excellent driving performance as well as excellent environmental performance.
In general, as a high-octane gasoline, a high octane number base material having a heavy and high aromatic content and a specific distillation property and component composition are known (see, for example, Patent Document 1).

この高オクタン価ガソリンの場合、重質で芳香族分含有量が多い高オクタン価基材を配合するために、高沸点留分のオクタン価は向上するが、ガソリンの重質化、エンジン内のデポジットの生成、特に吸気バルブへのデポジットの付着、及び運転性への影響等が懸念される。
このような、ガソリンの重質化、吸気バルブへのデポジットの付着を改善するには、軽質・高オクタン価基材を配合することが重要であると考えられる。
In the case of this high-octane gasoline, the octane number of the high-boiling fraction is improved because a high-octane base material with a heavy aromatic content is added. However, the gasoline becomes heavier and produces deposits in the engine. In particular, there are concerns about deposits on the intake valves and influence on drivability.
In order to improve the heaviness of gasoline and the adhesion of deposits to the intake valve, it is considered important to add a light and high octane base material.

また、自動車排出ガス中の一酸化炭素(CO)、全炭化水素(THC)等の低減には、含酸素化合物であるメチルターシャリーブチルエーテル(MTBE)を配合したガソリンが知られている(例えば、特許文献2参照)。
ガソリンの重質化及び吸気バルブへのデポジットの付着の抑制、自動車排出ガス中のCO、THC等の低減などを図るには、軽質・高オクタン価である含酸素化合物を用いることが挙げられる。この含酸素化合物としては、例えば、上述のMTBE以外に、エチルターシャリーブチルエーテル(ETBE)やターシャリーアミルメチルエーテル(TAME)(SAE 912313)等が知られている。
そして、ETBEを配合したガソリンとして、ETBEを配合すると共に、蒸留性状を規定することでCO,NOx等の有害ガスの排出を低減したガソリン(例えば、特許文献3,4参照)、蒸留性状と蒸気圧を規定することで環境負荷を低減したガソリン(例えば、特許文献5参照)、あるいは蒸留性状とオレフィン、芳香族含有量を規定することで吸気バルブデポジット(IVD)の生成量を抑制したガソリン(例えば、特許文献6参照)等も知られているが、これらのガソリンは吸気バルブへのデポジットの付着低減、運転性等において、未だ満足できない場合もあり、一層の改良が望まれる。
In addition, gasoline that contains methyl tertiary butyl ether (MTBE), which is an oxygen-containing compound, is known for reducing carbon monoxide (CO), total hydrocarbons (THC), and the like in automobile exhaust gas (for example, Patent Document 2).
In order to increase the weight of gasoline, suppress deposit adhesion to the intake valve, and reduce CO, THC, etc. in automobile exhaust gas, it is possible to use an oxygen-containing compound that is light and has a high octane number. As this oxygen-containing compound, for example, ethyl tertiary butyl ether (ETBE) and tertiary amyl methyl ether (TAME) (SAE 912313) are known in addition to the above-mentioned MTBE.
And gasoline blended with ETBE, blended with ETBE, and regulated the distillation properties to reduce emissions of harmful gases such as CO and NOx (see, for example, Patent Documents 3 and 4), distillation properties and steam Gasoline with reduced environmental impact by regulating pressure (see, for example, Patent Document 5), or gasoline with reduced intake valve deposit (IVD) produced by regulating distillation properties, olefins, and aromatic content ( For example, Patent Document 6) is also known. However, these gasolines may still be unsatisfactory in terms of reducing deposit adhesion to the intake valve, operability, etc., and further improvements are desired.

特開平7−207286号公報JP-A-7-207286 特公平5−53197号公報Japanese Patent Publication No. 5-53197 特開2004−285204号公報JP 2004-285204 A 特開2004−285205号公報JP 2004-285205 A 特開2004−292511号公報JP 2004-292511 A 特開2004−292510号公報JP 2004-292510 A

本発明は、大気環境に配慮し、自動車の始動性や加速性及びIVD生成が抑制されて吸気バルブの清浄性にも優れた無鉛ガソリンを提供することを目的とするものである。   An object of the present invention is to provide unleaded gasoline in which startability and acceleration of an automobile and IVD generation are suppressed, and the cleanliness of an intake valve is excellent in consideration of the atmospheric environment.

本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、軽質な高オクタン価基材であるエチルターシャリーブチルエーテル(ETBE)を選定し、ETBEの特定量と特定の成分組成及び特定の蒸留性状を有するようにガソリンを構成することにより、燃料油中の芳香族分含有量を抑えつつ、吸気バルブの清浄性を改善し、かつ、優れた諸性能を有するガソリンが得られ、上記目的を達成し得ることを見出し、本発明を完成するに至った。
即ち、本発明は、以下の無鉛ガソリンの製造方法を提供する。
(i)1〜25容量%のエチルターシャリーブチルエーテル(ETBE)、
(ii)2〜20容量%の脱ベンゼン接触改質ガソリン、又は、(iii)2〜10容量%の脱ベンゼン軽質接触改質ガソリン及び2〜15容量%の脱ベンゼン重質接触改質ガソリン、
(iv)30〜70容量%の接触分解ガソリン、ならびに
(v)5〜30容量%の脱硫軽質ナフサを含み、
3環以上の多環芳香族分を含む無鉛ガソリンを製造する方法であって、以下の性状を満足するように調整することを特徴とする無鉛ガソリンの製造方法。
(1)リサーチ法オクタン価(RON)が89以上97未満
(2)モーター法オクタン価(MON)が79以上87未満
(3)リード蒸気圧(RVP)が71〜93kPa
(4)50%留出温度(T50)が75〜110℃
(5)70℃留出量(E70)が18〜40容量%
(6)芳香族分含有量が40容量%以下
(7)オレフィン分含有量が30容量%以下
(8)ベンゼン含有量が1容量%以下
(9)硫黄分含有量が10質量ppm以下
(10)60℃における気液比(V/L)が50〜70
(11)下記式(1)で表される多環芳香族指数が4以下
Y=(0.002×3R−A)+(0.01×4R−A)+(0.07×5R−A)+(0.2×6R+−A)・・・・(1)
(式中、3R−Aは3環芳香族分量を表し、4R−Aは4環芳香族分量を表し、5R−Aは5環芳香族分量を表し、6R+−Aは6環以上の芳香族分量を表す。なお、該多環芳香族分量はいずれもガソリン中の含有量で質量ppmを示す。)
As a result of intensive studies to achieve the above object, the present inventors have selected ethyl tertiary butyl ether (ETBE), which is a light high octane base material, and specified specific amounts of ETBE and specific component compositions and specifics. By configuring gasoline so as to have the distillation properties of the above, it is possible to obtain gasoline having excellent performance while improving the cleanliness of the intake valve while suppressing the aromatic content in the fuel oil. The inventors have found that the object can be achieved and have completed the present invention.
That is, the present invention provides the following method for producing unleaded gasoline.
(I) 1 to 25% by volume of ethyl tertiary butyl ether (ETBE),
(Ii) 2-20% by volume debenzene catalytic reforming gasoline, or (iii) 2-10% by volume debenzene light catalytic reforming gasoline and 2-15% by volume debenzene heavy catalytic reforming gasoline,
(Iv) 30-70% by volume catalytic cracked gasoline, and (v) 5-30% by volume desulfurized light naphtha,
A method for producing unleaded gasoline containing three or more polycyclic aromatic components, wherein the method is adjusted so as to satisfy the following properties.
(1) Research method octane number (RON) of 89 to less than 97 (2) Motor method octane number (MON) of 79 to less than 87 (3) Reed vapor pressure (RVP) of 71 to 93 kPa
(4) 50% distillation temperature (T50) is 75 to 110 ° C
(5) 70 ° C. distillate (E70) is 18 to 40% by volume
(6) Aromatic content is 40 vol% or less (7) Olefin content is 30 vol% or less (8) Benzene content is 1 vol% or less (9) Sulfur content is 10 mass ppm or less (10 ) Gas-liquid ratio (V / L) at 60 ° C. is 50 to 70
(11) The polycyclic aromatic index represented by the following formula (1) is 4 or less. Y = (0.002 × 3R−A) + (0.01 × 4R−A) + (0.07 × 5R−A) ) + (0.2 × 6R + −A) (1)
(In the formula, 3R-A represents a 3-ring aromatic content, 4R-A represents a 4-ring aromatic content, 5R-A represents a 5-ring aromatic content, and 6R + -A represents an aromatic having 6 or more rings. (The amount of polycyclic aromatics is the content in gasoline and indicates ppm by mass.)

本発明の無鉛ガソリンは、自動車のガソリンエンジンに用いられ、大気環境の保全性に優れ、始動性や運転性にも優れたものであり、実用性能を維持しつつ大気環境の保全が図られるものである。また、多環芳香族分を環数の多いものほど含有量を順次低く制限して、エンジン内のデポジットの生成の抑制、特に吸気バルブへのデポジットの付着の抑制や、排出ガス中の有害成分量の一層の低減を図っている。   The unleaded gasoline of the present invention is used in a gasoline engine of an automobile, has excellent air environment conservation, excellent startability and drivability, and can maintain the air environment while maintaining practical performance. It is. In addition, the higher the number of polycyclic aromatic components, the lower the content, and the lower the content, the less the formation of deposits in the engine, in particular, the prevention of deposit adhesion to the intake valve, and the harmful components in exhaust gas. The amount is further reduced.

以下、本発明の内容を更に詳しく説明する。
本発明の無鉛ガソリンに用いられるエチルターシャリーブチルエーテル(ETBE)は、公知の製造法から得られるもの全て使用可能であり、その製造方法は特に限定されるものではない。本発明の無鉛ガソリンにおけるETBEの配合量は1〜25容量%、好ましくは3〜20容量%、より好ましくは5〜18容量%である。ETBEの配合量が上記範囲内であれば、発熱量の低下による燃費への悪影響の懸念なく、排出ガス中のCO、THC等の低減などを図ることができる。
Hereinafter, the contents of the present invention will be described in more detail.
Any ethyl tertiary butyl ether (ETBE) used in the unleaded gasoline of the present invention can be obtained from a known production method, and the production method is not particularly limited. The blending amount of ETBE in the unleaded gasoline of the present invention is 1 to 25% by volume, preferably 3 to 20% by volume, more preferably 5 to 18% by volume. If the blending amount of ETBE is within the above range, it is possible to reduce CO, THC, etc. in the exhaust gas without fear of an adverse effect on fuel consumption due to a decrease in calorific value.

本発明の無鉛ガソリンの(a)リサーチ法オクタン価(RON)は、89以上97未満、好ましくは89〜95、(b)モーター法オクタン価(MON)は、79以上87未満、好ましくは79〜85であり、RONが89以上ならば、高い運転性能を維持することが可能となり、MONが79以上であれば高速走行時のアンチノック性の低下を防止することができる。なお、このRON及びMONは、JIS K 2280に準拠して測定した値である。   The lead-free gasoline of the present invention has (a) a research octane number (RON) of 89 or more and less than 97, preferably 89 to 95, and (b) a motor method octane number (MON) of 79 or more and less than 87, preferably 79 to 85. If RON is 89 or more, it is possible to maintain high driving performance, and if MON is 79 or more, it is possible to prevent a decrease in anti-knock property at high speed running. Note that RON and MON are values measured in accordance with JIS K 2280.

また、本発明の無鉛ガソリンのリード蒸気圧(RVP)は、45〜93kPa、好ましくは50〜90kPaである。RVPを93kPa以下にすることによって蒸発ガスの量を少なくすることができ、45kPa以上とすることで低温始動性、暖気性の低下を防ぐことができる。なお、このリード蒸気圧(RVP)は、JIS K 2258に準拠して測定した値である。   The lead vapor pressure (RVP) of the unleaded gasoline of the present invention is 45 to 93 kPa, preferably 50 to 90 kPa. By setting RVP to 93 kPa or less, the amount of evaporative gas can be reduced, and by setting it to 45 kPa or more, it is possible to prevent the low-temperature startability and warming performance from being lowered. In addition, this lead vapor pressure (RVP) is a value measured in accordance with JIS K 2258.

本発明の無鉛ガソリンの蒸留性状は、(a)50%留出温度(T50)が、75〜110℃、好ましくは75〜105℃、(b)70℃留出量(E70)が、18〜40容量%、好ましくは20〜40容量%であり、T50、及びE70が上記範囲内であれば、始動性、運転性、加速性に不具合が生じる場合を防ぐことができる。なお、これらの蒸留性状はJIS K 2254に準拠して測定した値である。   The distillation properties of the unleaded gasoline of the present invention are as follows: (a) 50% distillation temperature (T50) is 75 to 110 ° C, preferably 75 to 105 ° C, (b) 70 ° C distillation amount (E70) is 18 to If it is 40 volume%, Preferably it is 20-40 volume% and T50 and E70 are in the said range, the case where a malfunction arises in startability, operativity, and acceleration property can be prevented. These distillation properties are values measured according to JIS K 2254.

本発明の無鉛ガソリンの芳香族分含有量は、40容量%以下、好ましくは5〜35容量%である。この芳香族分含有量が40容量%以内であれば、排出ガス中の有害成分の増加を防ぐことができる。なお、この芳香族分含有量は、石油学会法JPI−5S−33−90(ガスクロマトグラフ法)に準拠して測定した値である。   The aromatic content of the unleaded gasoline of the present invention is 40% by volume or less, preferably 5 to 35% by volume. If the aromatic content is within 40% by volume, an increase in harmful components in the exhaust gas can be prevented. In addition, this aromatic content is the value measured based on the Petroleum Institute method JPI-5S-33-90 (gas chromatograph method).

本発明の無鉛ガソリンのオレフィン分含有量は、30容量%以下、好ましくは5〜27容量%である。このオレフィン分含有量が30容量%以内であれば、酸化安定性の低下を防ぐことができる。なお、このオレフィン分含有量は、石油学会法JPI−5S−33−90(ガスクロマトグラフ法)に準拠して測定した値である。   The olefin content of the unleaded gasoline of the present invention is 30% by volume or less, preferably 5 to 27% by volume. If the olefin content is within 30% by volume, a reduction in oxidation stability can be prevented. In addition, this olefin content is the value measured based on the Petroleum Institute method JPI-5S-33-90 (gas chromatograph method).

本発明の無鉛ガソリンのベンゼン含有量は、1容量%以下、好ましくは0.8容量%以下である。このベンゼン含有量が1容量%以内であれば、大気中のベンゼン濃度の増加を防止し、環境汚染を低減できる可能性がある。なお、このベンゼン含有量は、石油学会法JPI−5S−33−90(ガスクロマトグラフ法)に準拠して測定した値である。   The benzene content of the unleaded gasoline of the present invention is 1% by volume or less, preferably 0.8% by volume or less. If the benzene content is within 1% by volume, there is a possibility that an increase in the concentration of benzene in the atmosphere can be prevented and environmental pollution can be reduced. In addition, this benzene content is the value measured based on Petroleum Institute method JPI-5S-33-90 (gas chromatograph method).

本発明の無鉛ガソリンの硫黄分含有量は、10質量ppm以下、好ましくは8質量ppm以下である。この硫黄分含有量が10質量ppm以内であれば、排出ガス浄化触媒の能力低下を防止し、排出ガス中のNOx、CO、THCの濃度上昇を防止できる可能性がある。なお、この硫黄分含有量は、JIS K 2541に準拠して測定した値である。   The sulfur content of the unleaded gasoline of the present invention is 10 mass ppm or less, preferably 8 mass ppm or less. If the sulfur content is within 10 ppm by mass, there is a possibility that it is possible to prevent the exhaust gas purification catalyst from lowering its capacity and to prevent the concentration of NOx, CO and THC in the exhaust gas from increasing. The sulfur content is a value measured according to JIS K2541.

本発明の無鉛ガソリンの60℃における気液比(V/L)は、30〜70、好ましくは30〜60である。このV/Lが30以上とすることで、良好な始動性を確保することができる。また、V/Lを70以下とすることで、加速性、運転性の不具合が低減できる可能性がある。なお、このV/Lは、ASTM D 2533−93aに準拠して測定した値である。   The gas-liquid ratio (V / L) at 60 ° C. of the unleaded gasoline of the present invention is 30 to 70, preferably 30 to 60. When this V / L is 30 or more, good startability can be ensured. Further, by setting V / L to 70 or less, there is a possibility that problems in acceleration and drivability can be reduced. The V / L is a value measured according to ASTM D 2533-93a.

そして、本発明の無鉛ガソリンは、式(1)で表される多環芳香族分指数Yが4以下、好ましくは3.5以下、更に好ましくは3以下である。
Y=(0.002×3R−A)+(0.01×4R−A)+(0.07×5R−A)+(0.2×6R+−A)・・・・(1)
〔式中、3R−Aは3環芳香族分量、4R−Aは4環芳香族分量、5R−Aは5環芳香族分量、6R+−Aは6環以上の芳香族分量(何れもガソリン中の含有量で質量ppm)を示す〕
ここで、多環芳香族指数Yは、多環芳香族分の含有量とエンジン内のデポジット量の関係から求められる実験式であり、3環、4環、5環、6環以上と多環になるほど高い値を示す。これは、排出ガス中の有害成分の増加、及びエンジン内のデポジットの生成が多環ほど高くなることを示している。
該指数Yが4以下であれば、排出ガス中の有害成分の増加、及びエンジン内のデポジットの生成の増加を防ぐことができる。なお、これら多環芳香族分含有量は、以下に示すガスクロマトグラフ法により環数別の定量を行った値であり、定量法は環数別の代表的な標準試料による絶対検量線法とした。すなわち、カラムには長さ30m、内径0.25mmであるジメチルシリコンのキャピラリーカラムを用い、検出器は水素イオン化検出器(FID)、キャリアガスは流量1.3ml/minのヘリウム、スプリットレス注入、注入口温度300℃、検出器温度350℃の条件において、カラム温度を初期温度50℃より終期温度350℃まで昇温させて測定した値である。
The unleaded gasoline of the present invention has a polycyclic aromatic content index Y represented by the formula (1) of 4 or less, preferably 3.5 or less, more preferably 3 or less.
Y = (0.002 × 3R−A) + (0.01 × 4R−A) + (0.07 × 5R−A) + (0.2 × 6R + −A) (1)
[In the formula, 3R-A is a tricyclic aromatic content, 4R-A is a 4-ring aromatic content, 5R-A is a 5-ring aromatic content, 6R + -A is an aromatic content of 6 or more rings (both in gasoline) The content of (ppm by mass)]
Here, the polycyclic aromatic index Y is an empirical formula obtained from the relationship between the content of polycyclic aromatics and the amount of deposit in the engine, and is polycyclic, such as three rings, four rings, five rings, six rings or more. The higher the value is. This indicates that the increase in harmful components in the exhaust gas and the generation of deposits in the engine become higher as the polycycle increases.
If the index Y is 4 or less, it is possible to prevent an increase in harmful components in the exhaust gas and an increase in the generation of deposits in the engine. The polycyclic aromatic content is a value determined by the number of rings by the gas chromatographic method shown below, and the quantitative method is an absolute calibration curve method using typical standard samples by number of rings. . That is, a capillary column of dimethyl silicon having a length of 30 m and an inner diameter of 0.25 mm is used as the column, the detector is a hydrogen ionization detector (FID), the carrier gas is helium at a flow rate of 1.3 ml / min, splitless injection, injection This is a value measured by raising the column temperature from the initial temperature of 50 ° C. to the final temperature of 350 ° C. under conditions of an inlet temperature of 300 ° C. and a detector temperature of 350 ° C.

上記のような性状を有する無鉛ガソリンを製造するための基材については、特に制限はないが、例えば、下記のような各種留分を基材として用いることができる。
(イ)重質の直留ナフサなどを接触改質法(プラットフォーミング法、マグナフォーミング法、アロマイジング法、レニフォーミング法、フードリフォーミング法、ウルトラフォーミング法、パワーフォーミング法等)により、水素気流中で高温・加圧下で触媒(例えば、アルミナ担体に白金やロジウムと塩素とを担持したもの等)と接触処理して得られた改質ガソリンからベンゼン留分を蒸留により取り除いた脱ベンゼン接触改質ガソリン。
(ロ)上記接触改質法により接触処理して得られた改質ガソリンを蒸留により、軽質留分、ベンゼン留分、重質留分に分けた内の軽質留分(脱ベンゼン軽質接触改質ガソリン)及び重質留分(脱ベンゼン重質接触改質ガソリン)。
(ハ)灯・軽油から常圧残油に至る石油留分、好ましくは重質軽油や減圧軽油を、従来から知られている接触分解法、特に流動接触分解法(UOP法、シェル二段式法、フレキシクラッキング法、ウルトラオルソフロー法、テキサコ法、ガルフ法、ウルトラキャットクラッキング法、RCC法、HOC法等)により、固体酸触媒(例えば、シリカ・アルミナにゼオライトを配合したもの等)で分解して得られる接触分解ガソリン。
(ニ)原油を常圧蒸留した直留ナフサを脱硫処理して得られた脱硫直留ナフサを蒸留により、軽質留分と重質留分に分けた内の軽質留分である脱硫軽質ナフサ。
(ホ)イソブタンと低級オレフィン(ブテン、プロピレン等)を原料として、酸触媒(硫酸、フッ化水素、塩化アルミニウム等)の存在下で反応させて得られるアルキレート。
(ヘ)原油や粗油等の常圧蒸留時、改質ガソリン製造時、あるいは分解ガソリン製造時等に蒸留して得られるブタン、ブテン類を主成分としたC4留分。
(ト)直鎖の低級パラフィン系炭化水素の異性化によって得られるアイソメレート、あるいはアイソメレートを精密蒸留して得られるイソペンタン、接触改質ガソリンから得られるトルエン、キシレン、あるいは炭素数9以上の芳香族を主体とする成分等。
(チ)エタノール、プロパノール等の含酸素系化合物。
Although there is no restriction | limiting in particular about the base material for manufacturing unleaded gasoline which has the above properties, For example, the following various fractions can be used as a base material.
(B) Hydrogen stream by contact reforming method (Platforming method, Magnaforming method, Aromaizing method, Reforming method, Food reforming method, Ultraforming method, Powerforming method, etc.) for heavy straight-run naphtha, etc. In which the benzene fraction is removed by distillation from a reformed gasoline obtained by contact treatment with a catalyst (for example, platinum, rhodium and chlorine supported on an alumina carrier) at high temperature and pressure. Quality gasoline.
(B) The reformed gasoline obtained by contact treatment by the above catalytic reforming method is separated into light fraction, benzene fraction, and heavy fraction by distillation. Gasoline) and heavy fractions (debenzene heavy catalytic reforming gasoline).
(C) Petroleum fraction from kerosene / light oil to atmospheric residual oil, preferably heavy gas oil or vacuum gas oil, conventionally known catalytic cracking method, especially fluid catalytic cracking method (UOP method, shell two-stage type) Decomposition with solid acid catalyst (for example, silica / alumina blended with zeolite, etc.) by the method, flexi cracking method, ultra ortho flow method, texaco method, Gulf method, ultra cat cracking method, RCC method, HOC method, etc. Catalytic cracking gasoline.
(D) Desulfurized light naphtha, which is a light fraction obtained by distilling a straight-run naphtha obtained by desulfurizing straight-run naphtha obtained by atmospheric distillation of crude oil into a light fraction and a heavy fraction by distillation.
(E) An alkylate obtained by reacting isobutane with a lower olefin (butene, propylene, etc.) in the presence of an acid catalyst (sulfuric acid, hydrogen fluoride, aluminum chloride, etc.).
(F) C4 fraction mainly composed of butane and butenes obtained by distillation during the atmospheric distillation of crude oil or crude oil, during the production of reformed gasoline, or during the production of cracked gasoline.
(G) Isomerate obtained by isomerization of straight-chain lower paraffin hydrocarbons, isopentane obtained by precision distillation of isomerate, toluene, xylene obtained from catalytically reformed gasoline, or aroma having 9 or more carbon atoms Ingredients mainly composed of tribes.
(H) Oxygenated compounds such as ethanol and propanol.

上記のような各種留分を、前記各性状を満たすように、該各種留分の性状等に応じて配合量を適宜選択して、ETBEと共に適宜配合することにより本発明の無鉛ガソリンを製造することができる。例えば、(I)ETBEを1〜25容量%、(II)RONが93以上、MONが83以上、RVPが30kPa以上、沸点範囲が28〜200℃の脱ベンゼン接触改質ガソリンを2〜20容量%、又は(III)RONが78以上、MONが70以上、RVPが85kPa以上、沸点範囲が26〜80℃の脱ベンゼン軽質接触改質ガソリンを2〜10容量%、RONが101以上、MONが89以上、RVPが3kPa以上、沸点範囲が90〜200℃の脱ベンゼン重質接触改質ガソリンを2〜15容量%、及び(IV)RONが88以上、MONが77以上、RVPが40kPa以上、沸点範囲が30〜210℃の接触分解ガソリンを30〜70容量%、RONが65以上、MONが62以上、RVPが75kPa以上、沸点範囲が25〜100℃の脱硫軽質ナフサを5〜30容量%、前記各性状を満たすように配合して本発明の無鉛ガソリンを製造することができる。また、上記のような各基材の配合物に、更に(V)RONが93以上、MONが90以上、RVPが40kPa以上、沸点範囲が30〜210℃、C8留分が65容量%以上のアルキレートを3〜20容量%、又はブタン、ブテン類を主成分としたC4留分を1〜10容量%、前記各性状を満たすように配合して本発明の無鉛ガソリンを製造することもできる。   The unleaded gasoline of the present invention is produced by appropriately selecting the blending amounts of the above various fractions according to the properties of the various fractions so as to satisfy the above properties and appropriately blending with ETBE. be able to. For example, (I) ETBE is 1 to 25% by volume, (II) RON is 93 or more, MON is 83 or more, RVP is 30 kPa or more, and boiling point range is 28 to 200 ° C. % Or (III) RON is 78 or more, MON is 70 or more, RVP is 85 kPa or more, debenzene light catalytic reforming gasoline having a boiling point range of 26 to 80 ° C. is 2 to 10% by volume, RON is 101 or more, and MON is 89 or more, RVP is 3 kPa or more, debenzene heavy catalytic reformed gasoline having a boiling range of 90 to 200 ° C. is 2 to 15% by volume, and (IV) RON is 88 or more, MON is 77 or more, RVP is 40 kPa or more, 30 to 70% by volume of catalytically cracked gasoline having a boiling point range of 30 to 210 ° C, RON of 65 or more, MON of 62 or more, RVP of 75 kPa or more, and boiling point range of 25 The 100 ° C. desulfurization light naphtha 5-30 volume%, it is possible the producing unleaded gasoline blending to the present invention so as to satisfy the respective properties. In addition, the composition of each base material as described above has (V) RON of 93 or more, MON of 90 or more, RVP of 40 kPa or more, boiling range of 30 to 210 ° C., and C8 fraction of 65% by volume or more. The lead-free gasoline of the present invention can also be produced by blending 3 to 20% by volume of an alkylate or 1 to 10% by volume of a C4 fraction mainly composed of butane and butenes so as to satisfy the above properties. .

さらに、本発明の無鉛ガソリンには、必要に応じて、各種の添加剤を適宜配合することが出来る。このような添加剤としては、フェノール系、アミン系等の酸化防止剤、チオアミド化合物等の金属不活性剤、有機リン系化合物等の表面着火防止剤、コハク酸イミド、ポリアルキルアミン、ポリエーテルアミン、ポリイソブチレンアミン等の清浄分散剤、多価アルコール及びそのエーテル等の氷結防止剤、有機酸のアルカリ金属やアルカリ土類金属塩、高級アルコールの硫酸エステル等の助燃剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤等の帯電防止剤、アルケニル琥珀酸エステル等の錆止め剤、及びアゾ染料等の着色剤等、公知の燃料添加剤が挙げられる。これらを1種または数種組み合わせて添加することが出来る。これら燃料添加剤の添加量は任意であるが、通常、その合計添加量が0.1質量%以下とすることが好ましい。   Furthermore, various additives can be appropriately blended in the unleaded gasoline of the present invention as necessary. Such additives include phenolic and amine antioxidants, metal deactivators such as thioamide compounds, surface ignition inhibitors such as organophosphorus compounds, succinimides, polyalkylamines, polyetheramines. Detergents such as polyisobutylene amine, anti-freezing agents such as polyhydric alcohols and ethers thereof, organic metal alkali metal and alkaline earth metal salts, auxiliary alcohols such as higher alcohol sulfates, anionic surfactants, Known fuel additives include antistatic agents such as cationic surfactants and amphoteric surfactants, rust inhibitors such as alkenyl succinates, and colorants such as azo dyes. These can be added singly or in combination. The addition amount of these fuel additives is arbitrary, but usually the total addition amount is preferably 0.1% by mass or less.

以下に本発明の内容を実施例及び比較例により具体的に説明するが、本発明はこれらによって制限されるものではない。   The content of the present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

実施例1,2
接触分解装置、接触改質装置又は常圧蒸留装置から生成するC4留分(ブタン、ブテン類)、表2に示す性状の脱ベンゼン接触改質ガソリン、脱ベンゼン軽質接触改質ガソリン、脱ベンゼン重質接触改質ガソリン、接触分解ガソリン、アルキレート、脱硫軽質ナフサ、及びETBEを表3に示す配合比で配合することにより、表3に記載する性状のガソリンを得た。
Examples 1 and 2
C4 fractions (butane, butenes) produced from catalytic cracking equipment, catalytic reforming equipment or atmospheric distillation equipment, debenzene catalytic reforming gasoline, debenzene light catalytic reforming gasoline, debenzene heavy weight with properties shown in Table 2 By blending quality contact reformed gasoline, catalytic cracked gasoline, alkylate, desulfurized light naphtha, and ETBE at the blending ratio shown in Table 3, gasoline having properties described in Table 3 was obtained.

比較例1〜3
実施例1、2に記載のC4留分(ブタン、ブテン類)、脱ベンゼン接触改質ガソリン、脱ベンゼン軽質接触改質ガソリン、脱ベンゼン重質接触改質ガソリン、接触分解ガソリン、アルキレート、及び脱硫軽質ナフサを表3に示す配合比で配合することにより、表3に記載する性状のガソリンを得た。
Comparative Examples 1-3
C4 fraction (butane, butenes) described in Examples 1 and 2, debenzene catalytic reformed gasoline, debenzene light catalytic reformed gasoline, debenzene heavy catalytic reformed gasoline, catalytic cracked gasoline, alkylate, and By blending desulfurized light naphtha at a blending ratio shown in Table 3, gasoline having properties described in Table 3 was obtained.

上記実施例と比較例で得られたガソリンを用いて、以下に述べる各種の性能評価試験を行った。   Various performance evaluation tests described below were performed using the gasoline obtained in the above Examples and Comparative Examples.

始動性、運転性、及びデメリット点数評価を、排気量2L、直接噴射方式(DI)、オートマチックトランスミッション(AT)の車両を用い、試験温度20℃、湿度50%の条件で行った。
また、吸気バルブデポジット(IVD)試験を、排気量1.5L、マルチポイントインジェクション(MPI)方式の車両を用い、シャシーダイナモにおいて、60−100km/hの加減速×1, 500サイクル(8,000km走行)の条件で行った。
これらの評価ないし試験方法を以下に記し、結果を表3に示す。
The startability, drivability, and demerit scores were evaluated under the conditions of a test temperature of 20 ° C. and a humidity of 50% using a vehicle with a displacement of 2 L, a direct injection system (DI), and an automatic transmission (AT).
In addition, the intake valve deposit (IVD) test was performed using a 1.5 L displacement, multipoint injection (MPI) type vehicle, and a chassis dynamo with 60-100 km / h acceleration / deceleration x 1,500 cycles (8,000 km) (Running) conditions.
These evaluations or test methods are described below, and the results are shown in Table 3.

(始動性)
クランキング開始から完爆までの時間(エンジンが自力で回転が続けられるようになるまでの時間)で評価した。
(加速性)
エンジン始動後、10秒間アイドリングを行い、アクセル開度50%で車速が40km/hに到達するまでの時間で評価した。
(デメリット点数)
CRC(Coordinating Research Council)Report No.483評価方法に準拠して評価した。 評価方法としては、発生した現象の程度によって与えられるデメリット点数(Σ=デメリット評点×不具合の係数)により判断した。
なお、アイドル時及び走行中ストールは演算せず、それぞれの係数を加算した。点数が小さい方が性能が優れていることを示す。
(Startability)
It was evaluated by the time from the start of cranking to the complete explosion (time until the engine can continue to rotate on its own).
(Acceleration)
After the engine was started, idling was performed for 10 seconds, and the time until the vehicle speed reached 40 km / h at an accelerator opening of 50% was evaluated.
(Demerit points)
Evaluation was performed according to a CRC (Coordinating Research Council) Report No. 483 evaluation method. The evaluation method was determined by the demerit score given by the degree of the phenomenon that occurred (Σ = demerit score × defect coefficient).
Note that stalls during idling and running were not calculated, and the respective coefficients were added. The smaller the score, the better the performance.

Figure 0005147914
Figure 0005147914

(IVD試験)
運転前後の吸気バルブ重量を秤量することにより得られる、吸気バルブに付着したデポジット(IVD)重量及びIVD評点(Rating:CRC No.16)により評価した。なお、このRating値は、数値が大きい方が、IVD量が少ないことを示す。
(IVD test)
It evaluated by the deposit (IVD) weight and IVD score (Rating: CRC No. 16) adhering to the intake valve obtained by weighing the intake valve weight before and after operation. This Rating value indicates that the larger the numerical value, the smaller the IVD amount.

Figure 0005147914
Figure 0005147914

Figure 0005147914
Figure 0005147914

以上の結果から、本発明の無鉛ガソリンは、始動性や運転性能及び吸気バルブの清浄性に優れ、実用性能を維持しつつ大気環境の保全が図れるものであることは明らかである。   From the above results, it is clear that the unleaded gasoline of the present invention is excellent in startability, operation performance and cleanliness of the intake valve, and can maintain the atmospheric environment while maintaining practical performance.

Claims (1)

(i)1〜25容量%のエチルターシャリーブチルエーテル(ETBE)、
(ii)2〜20容量%の脱ベンゼン接触改質ガソリン、又は、(iii)2〜10容量%の脱ベンゼン軽質接触改質ガソリン及び2〜15容量%の脱ベンゼン重質接触改質ガソリン、
(iv)30〜70容量%の接触分解ガソリン、ならびに
(v)5〜30容量%の脱硫軽質ナフサを含み、
3環以上の多環芳香族分を含む無鉛ガソリンを製造する方法であって、以下の性状を満足するように調整することを特徴とする無鉛ガソリンの製造方法。
(1)リサーチ法オクタン価(RON)が89以上97未満
(2)モーター法オクタン価(MON)が79以上87未満
(3)リード蒸気圧(RVP)が71〜93kPa
(4)50%留出温度(T50)が75〜110℃
(5)70℃留出量(E70)が18〜40容量%
(6)芳香族分含有量が40容量%以下
(7)オレフィン分含有量が30容量%以下
(8)ベンゼン含有量が1容量%以下
(9)硫黄分含有量が10質量ppm以下
(10)60℃における気液比(V/L)が50〜70
(11)下記式(1)で表される多環芳香族指数が4以下
Y=(0.002×3R−A)+(0.01×4R−A)+(0.07×5R−A)+(0.2×6R+−A)・・・・(1)
(式中、3R−Aは3環芳香族分量を表し、4R−Aは4環芳香族分量を表し、5R−Aは5環芳香族分量を表し、6R+−Aは6環以上の芳香族分量を表す。なお、該多環芳香族分量はいずれもガソリン中の含有量で質量ppmを示す。)
(I) 1 to 25% by volume of ethyl tertiary butyl ether (ETBE),
(Ii) 2-20% by volume debenzene catalytic reforming gasoline, or (iii) 2-10% by volume debenzene light catalytic reforming gasoline and 2-15% by volume debenzene heavy catalytic reforming gasoline,
(Iv) 30-70% by volume catalytic cracked gasoline, and (v) 5-30% by volume desulfurized light naphtha,
A method for producing unleaded gasoline containing three or more polycyclic aromatic components, wherein the method is adjusted so as to satisfy the following properties.
(1) Research method octane number (RON) of 89 to less than 97 (2) Motor method octane number (MON) of 79 to less than 87 (3) Reed vapor pressure (RVP) of 71 to 93 kPa
(4) 50% distillation temperature (T50) is 75 to 110 ° C
(5) 70 ° C. distillate (E70) is 18 to 40% by volume
(6) Aromatic content is 40 vol% or less (7) Olefin content is 30 vol% or less (8) Benzene content is 1 vol% or less (9) Sulfur content is 10 mass ppm or less (10 ) Gas-liquid ratio (V / L) at 60 ° C. is 50 to 70
(11) The polycyclic aromatic index represented by the following formula (1) is 4 or less. Y = (0.002 × 3R−A) + (0.01 × 4R−A) + (0.07 × 5R−A) ) + (0.2 × 6R + −A) (1)
(In the formula, 3R-A represents a 3-ring aromatic content, 4R-A represents a 4-ring aromatic content, 5R-A represents a 5-ring aromatic content, and 6R + -A represents an aromatic having 6 or more rings. (The amount of polycyclic aromatics is the content in gasoline and indicates ppm by mass.)
JP2010202925A 2010-09-10 2010-09-10 Production method of unleaded gasoline Active JP5147914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010202925A JP5147914B2 (en) 2010-09-10 2010-09-10 Production method of unleaded gasoline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010202925A JP5147914B2 (en) 2010-09-10 2010-09-10 Production method of unleaded gasoline

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005030741A Division JP4611049B2 (en) 2005-02-07 2005-02-07 Unleaded gasoline

Publications (2)

Publication Number Publication Date
JP2011006702A JP2011006702A (en) 2011-01-13
JP5147914B2 true JP5147914B2 (en) 2013-02-20

Family

ID=43563688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010202925A Active JP5147914B2 (en) 2010-09-10 2010-09-10 Production method of unleaded gasoline

Country Status (1)

Country Link
JP (1) JP5147914B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103087789B (en) * 2013-03-01 2014-11-05 西安石油大学 Preparation method of environment-friendly compound methanol gasoline
CN103320185B (en) * 2013-07-05 2015-11-25 西北民族大学 Bio-based methanol gasoline antiknock sending down abnormally ascending resist and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4585175B2 (en) * 2003-03-20 2010-11-24 Jx日鉱日石エネルギー株式会社 gasoline
JP4429940B2 (en) * 2004-11-26 2010-03-10 コスモ石油株式会社 Unleaded gasoline
JP4611049B2 (en) * 2005-02-07 2011-01-12 コスモ石油株式会社 Unleaded gasoline

Also Published As

Publication number Publication date
JP2011006702A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
JP4611048B2 (en) Unleaded high octane gasoline
JP4429941B2 (en) Unleaded high octane gasoline
JP4611049B2 (en) Unleaded gasoline
JP4429940B2 (en) Unleaded gasoline
JP5147914B2 (en) Production method of unleaded gasoline
JP4913448B2 (en) Unleaded high octane gasoline
JP5147913B2 (en) Method for producing unleaded high octane gasoline
JP4913441B2 (en) Unleaded gasoline
JP4913440B2 (en) Unleaded gasoline
JP4913437B2 (en) Unleaded gasoline
JP4913439B2 (en) Unleaded gasoline
JP4913438B2 (en) Unleaded gasoline
JP4913429B2 (en) Unleaded high octane gasoline
JP4913449B2 (en) Unleaded gasoline
JP4913452B2 (en) Unleaded gasoline
JP4913450B2 (en) Unleaded gasoline
JP4913433B2 (en) Unleaded high octane gasoline
JP4913431B2 (en) Unleaded high octane gasoline
JP4913430B2 (en) Unleaded high octane gasoline
JP4913451B2 (en) Unleaded gasoline
JP4913432B2 (en) Unleaded high octane gasoline
JP4913445B2 (en) Unleaded high octane gasoline
JP4913446B2 (en) Unleaded high octane gasoline
JP4913447B2 (en) Unleaded high octane gasoline
JP4804971B2 (en) Unleaded gasoline and method for producing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121127

R150 Certificate of patent or registration of utility model

Ref document number: 5147914

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250