JP2012172067A - Modified coal material for producing sintered ore and method for producing the same - Google Patents
Modified coal material for producing sintered ore and method for producing the same Download PDFInfo
- Publication number
- JP2012172067A JP2012172067A JP2011035740A JP2011035740A JP2012172067A JP 2012172067 A JP2012172067 A JP 2012172067A JP 2011035740 A JP2011035740 A JP 2011035740A JP 2011035740 A JP2011035740 A JP 2011035740A JP 2012172067 A JP2012172067 A JP 2012172067A
- Authority
- JP
- Japan
- Prior art keywords
- carbon material
- producing
- lime
- nox
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Organic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Combustion & Propulsion (AREA)
- Oil, Petroleum & Natural Gas (AREA)
Abstract
Description
本発明は、焼結鉱製造用の改質炭材及びその製造方法に関する。 The present invention relates to a modified carbon material for producing sintered ore and a method for producing the same.
製鐵所の焼結鉱製造においては、燃料として使用する炭材の燃焼により排ガス中に窒素酸化物(NOx)が発生する。このNOxの低減は、大気汚染の改善において、重要な課題である。当該NOxを低減する手段として、アンモニアを還元剤とする排ガス脱硝技術がある。
しかし、当該技術に係る排ガス脱硝設備は建設費が高額で、またアンモニアが高価である為に操業費が高くなる。また、窒素の含有量が少ない無煙炭を使用する手段もあるが、窒素の含有量が少ない無煙炭は、資源枯渇により採掘環境が劣化してきており、その使用は制限をうける。
In the manufacturing of sintered ore at a steelworks, nitrogen oxides (NOx) are generated in exhaust gas by combustion of carbonaceous materials used as fuel. This reduction of NOx is an important issue in improving air pollution. As means for reducing the NOx, there is an exhaust gas denitration technique using ammonia as a reducing agent.
However, the exhaust gas denitration equipment according to the technology has a high construction cost, and the operation cost is high because ammonia is expensive. There is also a means to use anthracite with a low nitrogen content, but anthracite with a low nitrogen content has deteriorated in the mining environment due to resource depletion, and its use is limited.
一方、焼結鉱の製造方法によるものとして、触媒によるNOxの除去技術が開示されている(特許文献1参照)。CaO含有量が5〜50重量%であるCaO−FexO系複合酸化物を主成分とする触媒であり、窒素酸化物を還元または分解して窒素酸化物を除去する技術である。
粗コークス粒体の表面に上記触媒を被覆する造粒体(S型)によるものと、微細コークス粒体と微粉末の上記触媒を混合した造粒体(P型)によるものが開示されている(特許文献2)。
On the other hand, as a method for producing sintered ore, a NOx removal technique using a catalyst is disclosed (see Patent Document 1). A catalyst CaO content is composed mainly of CaO-Fe x O composite oxide is 5 to 50 wt%, is a technique for nitrogen oxide reduction or decomposition to remove nitrogen oxides.
There are disclosed a granulated body (S type) covering the surface of the coarse coke granule with the catalyst and a granulated body (P type) in which the fine coke granule and the fine catalyst are mixed. (Patent Document 2).
しかしながら、前記微細コークス粒体と上記微粉末触媒が混合した造粒体(P型)によるNOxの除去技術の場合、1,000℃以下の低温度領域でのNOxの低減効果が小さいという問題がある(特許文献2の図7参照)。この理由は、後述するように、コークスの燃焼によるNOxは、低温領域で多く発生する性質があるが、造粒体(P型)の中の微細コークス粒体は低温領域で燃焼してしまうために、NOxが多量に発生し、NOx除去の効果は小さくなるものと考えられる。一方、粗コークス粒体の表面に上記触媒を被覆した造粒体(S型)によるNOxの除去技術の場合、コークス表面を十分に被覆すると、コークスの燃焼速度が遅くなり、焼結機の生産性を阻害する弊害が生じる(特許文献2の図3参照)。
このため、コークスの表面が露出する程度に被覆せざるを得ず、NOx除去の効果が低下するという問題がある(特許文献2の図2、図4、請求項4参照)。
However, in the case of the NOx removal technology using the granulated material (P type) in which the fine coke particles and the fine powder catalyst are mixed, there is a problem that the effect of reducing NOx in a low temperature region of 1,000 ° C. or less is small. Yes (see FIG. 7 of Patent Document 2). The reason for this is that, as will be described later, NOx due to the combustion of coke is often generated in the low temperature region, but fine coke particles in the granulated body (P type) burn in the low temperature region. In addition, a large amount of NOx is generated, and the effect of removing NOx is considered to be small. On the other hand, in the case of NOx removal technology using the granulated material (S type) with the catalyst coated on the surface of the coarse coke particles, if the surface of the coke is sufficiently coated, the combustion rate of the coke becomes slow, and the production of the sintering machine The harmful effect which inhibits sex arises (refer to Drawing 3 of patent documents 2).
For this reason, there is a problem that the surface of the coke must be covered to the extent that it is exposed, and the effect of removing NOx is reduced (see FIGS. 2, 4, and 4 of Patent Document 2).
本発明の目的は、(1)低温領域でのNOxの発生を抑制し、かつ、(2)焼結機の生産性を阻害することのない焼結鉱製造用の改質炭材及びその製造方法を提供することである。 The object of the present invention is to (1) suppress the generation of NOx in a low temperature region and (2) a modified carbon material for the production of sintered ore that does not hinder the productivity of the sintering machine and the production thereof Is to provide a method.
(1)炭材表面に、石灰系原料由来のCaを36質量%以上含有する被覆物を被覆した焼結鉱製造用の改質炭材であって、
1mm以上の改質炭材の表面被覆物に含有するCaが4〜42g/m2であり、かつ、
1mm未満、0.25mm以上の改質炭材の表面被覆物に含有するCaが5〜20g/m2であることを特徴とする焼結鉱製造用の改質炭材。
(2)前記(1)に記載の焼結鉱製造用の改質炭材であって、
0.25mm未満の改質炭材が、全体の改質炭材の量に対し、17質量%以下であることを特徴とする焼結鉱製造用の改質炭材。
(3)前記(1)に記載の焼結鉱製造用の改質炭材の製造方法であって、
1mm以上の炭材の表面被覆物に含有するCaが4g/m2未満、又は、
1mm未満、0.25mm以上の炭材の表面被覆物に含有するCaが5g/m2未満の少なくともいずれかのときに、
炭材の量に対する石灰系原料の添加量を増加し、表面被覆物に含有するCaを増量することを特徴とする焼結鉱製造用の改質炭材の製造方法。
(4)前記(1)に記載の焼結鉱製造用の改質炭材の製造方法であって、
1mm以上の炭材の表面被覆物に含有するCaが42g/m2以上、又は、
1mm未満、0.25mm以上の炭材の表面被覆物に含有するCaが20g/m2以上の少なくともいずれかのときに、
炭材の量に対する石灰系原料の添加量を減少し、表面被覆物に含有するCaを減量することを特徴とする焼結鉱製造用の改質炭材の製造方法。
(5)前記(2)に記載の焼結鉱製造用の改質炭材の製造方法であって、
粉鉄鉱石、炭材、石灰系原料その他の副原料の混合、造粒において、
0.25mm未満の炭材が、全体の炭材の量に対し、17質量%を超えるとき、
混合、造粒の水分を増加し、かつ混合、造粒の時間を長くすることを特徴とする焼結鉱製造用の改質炭材の製造方法。
ここに粒子径は直径を用いて表記している。
(1) A modified carbon material for the production of sintered ore coated with a coating containing 36% by mass or more of Ca derived from a lime-based raw material on the surface of the carbon material,
Ca contained in the surface coating of the modified carbon material of 1 mm or more is 4 to 42 g / m 2 , and
A modified carbon material for producing sintered ore, wherein Ca contained in a surface coating of a modified carbon material of less than 1 mm and 0.25 mm or more is 5 to 20 g / m 2 .
(2) A modified carbon material for producing sinter according to (1),
A modified carbon material for producing sintered ore, wherein the modified carbon material of less than 0.25 mm is 17% by mass or less based on the total amount of the modified carbon material.
(3) A method for producing a modified carbon material for producing sintered ore as described in (1) above,
Ca contained in the surface coating of carbon material of 1 mm or more is less than 4 g / m 2 , or
When Ca contained in the surface covering of carbon material of less than 1 mm and 0.25 mm or more is at least any of less than 5 g / m 2 ,
The manufacturing method of the modified carbon material for sinter ore production characterized by increasing the addition amount of the lime-type raw material with respect to the quantity of a carbon material, and increasing Ca contained in a surface coating.
(4) A method for producing a modified carbon material for producing sintered ore as described in (1) above,
Ca contained in the surface covering of carbon material of 1 mm or more is 42 g / m 2 or more, or
When the Ca contained in the surface covering of the carbonaceous material of less than 1 mm and 0.25 mm or more is at least any of 20 g / m 2 or more,
A method for producing a modified carbon material for producing sintered ore, characterized in that the amount of lime-based raw material added to the amount of carbon material is reduced, and the amount of Ca contained in the surface coating is reduced.
(5) A method for producing a modified carbon material for producing a sintered ore according to (2) above,
In mixing and granulation of fine iron ore, carbonaceous material, lime-based raw materials and other auxiliary raw materials,
When the carbonaceous material less than 0.25 mm exceeds 17% by mass with respect to the total amount of the carbonaceous material,
A method for producing a modified carbon material for the production of sintered ore, characterized by increasing the moisture of mixing and granulation and lengthening the time of mixing and granulation.
Here, the particle diameter is expressed using the diameter.
低温領域でのNOxの発生を抑制し、焼結機の生産性を阻害することのない焼結鉱製造用の改質炭材及びその製造方法を提供することができる。 It is possible to provide a modified carbon material for producing sintered ore and a method for producing the same, which suppress the generation of NOx in a low temperature region and do not hinder the productivity of the sintering machine.
コークス燃焼によるNOx転換率と温度の関係を図1に示す。ここで、NOx転換率は、下記の式(1)により算出したものである。 FIG. 1 shows the relationship between the NOx conversion rate and temperature due to coke combustion. Here, the NOx conversion rate is calculated by the following equation (1).
NOx転換率(mol%)
=100×NOx発生量(mol)/燃料窒素入量(mol)・・・・・(1)
NOx conversion rate (mol%)
= 100 x NOx generation amount (mol) / fuel nitrogen input amount (mol) (1)
焼結で生成するNOxは、炭材中の窒素が酸化したものであり、図1に示されるように、1,000℃以下の低温で生成することが確認されている。したがって、NOx生成を抑制するためには、炭材を極力、高温燃焼させることが重要である。
ここで、炭材とは、コークス、無煙炭その他の焼結鉱製造に用いられる燃料をいう。
NOx produced by sintering is obtained by oxidizing nitrogen in the carbonaceous material, and as shown in FIG. 1, it is confirmed that it is produced at a low temperature of 1,000 ° C. or less. Therefore, in order to suppress NOx generation, it is important to burn the carbonaceous material as high as possible.
Here, a carbon material means the fuel used for coke, anthracite, and other sintered ore manufacture.
また、炭材中の微粉は、低温で燃焼し、NOxを増大させる。コークス粒度とNOx発生量の関係を図2に示す。炭材中の微粉は、燃焼速度が速く、低温で燃焼が完了するため、NOxを増大させると考えられる。微粉炭材を除去することができれば、NOx発生量を低減できると考えられる。 Moreover, the fine powder in the carbonaceous material burns at a low temperature and increases NOx. The relationship between the coke particle size and the amount of NOx generated is shown in FIG. The fine powder in the carbonaceous material is considered to increase NOx because the combustion speed is high and combustion is completed at a low temperature. If the fine carbonaceous material can be removed, it is considered that the amount of NOx generated can be reduced.
微粉炭材を除去したとしても、NOx発生を抑制するためには、炭材の低温燃焼を避け、高温燃焼させる必要がある。炭材表面を高温領域で溶融する被覆層で覆い、低温領域で周囲の大気中の酸素を遮断できれば、NOx発生を抑制することができる。 Even if the fine carbonaceous material is removed, in order to suppress the generation of NOx, it is necessary to avoid low temperature combustion of the carbonaceous material and to perform high temperature combustion. If the surface of the carbon material is covered with a coating layer that melts in a high temperature region, and oxygen in the surrounding atmosphere can be blocked in the low temperature region, the generation of NOx can be suppressed.
特許文献1には、CaO含有量が5〜50重量%のCaO−FexO系複合酸化物を表面に被覆した炭材を用いてCaO−FexO系複合酸化物の触媒作用により、炭材の燃焼時に生成するNOxを還元または分解し除去することが開示されている。このCaO含有量を50重量%以下に制限したCaO−FexO系複合酸化物は、融点が低く、1200℃以上の高温域で溶融するため、これを炭材の表面に被覆することで、ある程度のNOx低減効果は期待される。 Patent Document 1, by the catalytic action of CaO-Fe x O composite oxide with a carbonaceous material which CaO content was coated with CaO-Fe x O composite oxide of 5-50 wt% on the surface, charcoal It is disclosed to reduce or decompose and remove NOx produced during combustion of a material. The CaO content of CaO-Fe x O composite oxide was limited to 50% by weight or less has a low melting point, to melt at a high temperature range of not lower than 1200 ° C., to coat it on the surface of the carbonaceous material, A certain amount of NOx reduction effect is expected.
しかしながら、CaO−FexO系複合酸化物は、石灰系原料と鉄鉱石を溶融成形して製造されるため通常の焼結で副原料として使用される石灰系原料に比べて高価である。本発明は、上記のような高価な酸化物を用いずに通常の焼結副原料として用いられる石灰系原料を炭材表面の被覆物として用い、被覆物層中のCaO成分の含有量をCa換算で36質量%以上とすることにより炭材燃焼時のNOx低減を可能とするものである。 However, CaO-Fe x O composite oxide is more expensive than the lime material used as a secondary raw material in a conventional sintering because it is produced by melting a lime raw material and iron ore. In the present invention, a lime-based raw material used as a normal sintering auxiliary material without using the expensive oxide as described above is used as a coating on the surface of the carbonaceous material, and the content of the CaO component in the coating layer is Ca. By making it 36% by mass or more in terms of conversion, it is possible to reduce NOx during combustion of carbonaceous materials.
本発明において、炭材表面の被覆層は、水酸化カルシウム、炭酸カルシウム、石灰乳、ホタル石などの石灰系原料を含有していることが望ましく、これらの混合物でもよい。石灰系原料は溶剤としての機能を有しており、高温下で周囲に存在する鉄鉱石粉と容易に低融点物質のカルシウムフェライトを生成し溶融することで炭材の燃焼を促進し高温燃焼を可能とするためである。被覆層に含有する石灰系原料は水酸化カルシウムが特に望ましい。水酸化カルシウムはバインダーとなり炭材表面に密着した被覆層を形成するため、配合原料との混合時や、焼結機への原料装入までの搬送過程での炭材表面の被覆物の脱離が抑制できるためである。 In the present invention, the coating layer on the surface of the carbonaceous material desirably contains lime-based raw materials such as calcium hydroxide, calcium carbonate, lime milk, and fluorite, and may be a mixture thereof. The lime-based raw material has a function as a solvent. It promotes the combustion of carbonaceous material by high-temperature combustion by easily generating and melting iron ore powder and calcium ferrite, which is a low melting point material, at high temperatures. This is because. As the lime-based raw material contained in the coating layer, calcium hydroxide is particularly desirable. Calcium hydroxide acts as a binder to form a coating layer that adheres closely to the surface of the carbonaceous material, so that the coating on the surface of the carbonaceous material is detached during mixing with the blended raw materials and during the conveyance process until the raw material is charged into the sintering machine. It is because it can suppress.
炭材表面の石灰系原料由来の被覆層中のCa含有量は、36質量%以上とした。
Ca含有量が36質量%未満では、溶剤量が少なく、周囲は鉄鉱石濃度が高い状態であり、炭材表面での溶融反応が遅くなり炭材の燃焼を促進させる効果が小さくなるためである。
The Ca content in the coating layer derived from the lime-based raw material on the surface of the carbonaceous material was set to 36% by mass or more.
When the Ca content is less than 36% by mass, the amount of the solvent is small, the surroundings are in a high iron ore concentration, and the melting reaction on the surface of the carbonaceous material is delayed, and the effect of promoting the combustion of the carbonaceous material is reduced. .
石灰系原料に水酸化カルシウムを用いる場合は、被覆層中の水酸化カルシウムの含有量を67質量%以上とすることがより望ましく、100質量%とすることが特に望ましい。さらに石灰系原料として炭酸カルシウムや石灰乳、ホタル石などを用いる場合は被覆層中のこれらの化合物の含有量を100質量%とすることが特に望ましい。 When calcium hydroxide is used for the lime-based raw material, the content of calcium hydroxide in the coating layer is more preferably 67% by mass or more, and particularly preferably 100% by mass. Furthermore, when calcium carbonate, lime milk, fluorite, or the like is used as the lime-based raw material, it is particularly desirable that the content of these compounds in the coating layer is 100% by mass.
焼結で生成するNOxは、炭材の1,000℃以下の低温燃焼で生成されるため、NOx生成を抑制するためには、炭材の低温燃焼を抑制し、極力高温燃焼させることが必要である。
炭材の燃焼初期である低温領域では炭材表面は被覆層で覆われているため、被覆層内の炭材の燃焼を抑えてNOxの発生を抑制するが、1,200℃以上の高温領域に到達すると、被覆層中の石灰系原料由来のCaOは、周囲の鉱石と反応し、低融点のカルシウムフェライトとして溶融し、溶け落ちる。炭材表面は、被覆層が消失して裸の状態になるが、裸の状態の炭材であっても、すでに、1,200℃以上の高温領域での燃焼であるため、NOx発生は少なく、活発な燃焼によって生産性を損なわない。
Since NOx produced by sintering is produced by low temperature combustion of the carbonaceous material at 1,000 ° C. or lower, in order to suppress NOx production, it is necessary to suppress low temperature combustion of the carbonaceous material and to perform high temperature combustion as much as possible. It is.
Since the surface of the carbonaceous material is covered with the coating layer in the low temperature region at the initial stage of combustion of the carbonaceous material, the combustion of the carbonaceous material in the coating layer is suppressed and the generation of NOx is suppressed. , CaO derived from the lime-based raw material in the coating layer reacts with surrounding ore, melts as a low melting point calcium ferrite, and melts down. The surface of the carbonaceous material becomes bare with the coating layer disappearing, but even in the case of the bare carbonaceous material, it is already burned in a high temperature region of 1,200 ° C. or higher, so NOx generation is small. No loss of productivity due to active combustion.
以上のことより、焼結工程でNOxの発生を抑制するには、(1)粗粒炭材の表面を石灰系原料由来のCaを36質量%以上含有する被覆物で被覆することが必要であり、さらに(2)微粉炭材を除去することが好ましい。 From the above, in order to suppress the generation of NOx in the sintering process, (1) it is necessary to coat the surface of the coarse-grained carbon material with a coating containing 36 mass% or more of Ca derived from the lime-based raw material. Yes, and (2) it is preferable to remove the pulverized carbonaceous material.
本発明に係る改質炭材においては、1mm以上の粗粒炭材の表面被覆物に含有するCaが4〜42g/m2であり、1mm未満、0.25mm以上の粗粒炭材の表面被覆物に含有するCaが5〜20g/m2であることを特徴とする。これらの粗粒炭材のCa付着量が少ないと、炭材表面の被覆物の層厚が薄くなり、一部の表面が露出し、低温域での大気中の酸素の遮断によるNOx低減効果が得られなくなるからである。又、粗粒炭材と鉄鉱石、返鉱等との混合工程又はその後のハンドリング工程で、粗粒炭材の表面被覆が剥離し、被覆層のNOx抑制効果が減少するからである。
粗粒炭材の表面被覆物が過多の場合、NOx抑制に支障をきたす。即ち、1mm以上の炭材の単位面積当りの被覆物に含有するCaが42g/m2を超え、又は、1mm未満、0.25mm以上の炭材の表面被覆物に含有するCaが20g/m2を超えるとき、高温域で石灰系原料からカルシウムフェライト生成が遅れることで高温域での炭材の燃焼を阻害し、焼結機の生産性を低下させるからである。
In the reforming carbonaceous material according to the present invention, Ca is contained in the surface coating of 1mm or more coarse carbonaceous material is 4~42g / m 2, 1mm below the surface of 0.25mm or more coarse carbonaceous material Ca contained in the coating is 5 to 20 g / m 2 . When the amount of Ca adhering to these coarse carbonaceous materials is small, the layer thickness of the coating on the carbonaceous material surface becomes thin, and some surfaces are exposed, and the NOx reduction effect by blocking oxygen in the air at low temperatures is effective. This is because it cannot be obtained. Moreover, it is because the surface coating of the coarse-grained carbon material is peeled off in the mixing step of the coarse-grained carbon material and iron ore, returning or the like, or the subsequent handling step, and the NOx suppressing effect of the coating layer is reduced.
If the surface coating of coarse carbonaceous material is excessive, it will hinder NOx suppression. That is, Ca contained in a coating per unit area of 1 mm or more of carbonaceous material exceeds 42 g / m 2 , or Ca contained in a surface coating of carbonaceous material of less than 1 mm and 0.25 mm or larger is 20 g /
本発明に係る改質炭材は、0.25mm未満の微粉炭材が、全体の炭材の量に対し、17質量%以下であることが好ましい。前述のように、微粉炭材は、燃焼速度が速く、低温で燃焼が完了するため、NOxを増大させるからである。 In the modified carbon material according to the present invention, it is preferable that the pulverized carbon material of less than 0.25 mm is 17% by mass or less with respect to the total amount of the carbon material. This is because, as described above, the pulverized carbon material has a high combustion rate and completes combustion at a low temperature, thereby increasing NOx.
本発明における原料の混合、造粒方法を説明する。
なお、以下の説明では、表面被覆炭材は、表面被覆物として石灰系原料の他に粉鉄鉱石の原料を用いた実施形態を示したが、これに限定されるものではない。つまり、表面被覆物中の石灰系原料由来のCa含有量が36質量%以上であれば、石灰系原料以外の他の原料として、粉鉄鉱石その他の原料を用いることができる。なお、ここで、粉鉄鉱石その他の原料としては、粉鉄鉱石、石灰系原料以外の副原料(珪石、蛇紋岩、かんらん岩等)を意味する。
The raw material mixing and granulating method in the present invention will be described.
In addition, in the following description, although the surface covering carbon | charcoal material showed embodiment using the raw material of a fine iron ore other than the lime-type raw material as a surface covering, it is not limited to this. That is, if the Ca content derived from the lime-based raw material in the surface coating is 36% by mass or more, fine iron ore and other raw materials can be used as other raw materials other than the lime-based raw material. Here, the powdered iron ore and other raw materials mean secondary raw materials (silica, serpentine, peridotite, etc.) other than the powdered iron ore and lime-based raw materials.
表面被覆炭材は、粗粒炭材を核粒子として石灰系原料及び粉鉄鉱石を混合、造粒することで製造される。前記粉鉄鉱石は、製鐵所内の発生ダストが含まれていてもよい。粗粒炭材を粉鉄鉱石及び石灰系原料と混合、造粒する方法は、ドラムミキサー、遠心力利用造粒機その他の混合、造粒機であればよい。これにより、粗粒炭材を核粒子として、石灰系原料および粉鉄鉱石が被覆された表面被覆炭材が形成される。石灰系原料としてバインダー機能のない炭酸カルシウム、石灰乳、ホタル石などを用いる場合は、これらにバインダーを添加することが望ましい。バインダーは有機系バインダーのCMCやアラビアゴム、無機系バインダーの水ガラスなどがある。バインダー添加により炭材表面に密着した被覆層が形成されるため、配合原料との混合時や、焼結機への原料装入までの搬送過程で炭材表面の被覆物の脱離を抑制し、焼結時に発生するNOxをより安定的に低減することができる。
表面被覆炭材は、粗粒炭材と石灰系原料を混合、造粒することで製造してもよい。この場合は、表面被覆炭材の被覆層は、石灰系原料のみからなる。
The surface-covered carbon material is produced by mixing and granulating a lime-based raw material and fine iron ore using coarse carbon material as core particles. The dust iron ore may contain generated dust in the ironworks. The method for mixing and granulating the coarse carbonaceous material with the powdered iron ore and the lime-based raw material may be a drum mixer, a centrifugal granulator using other centrifugal force, or a granulator. As a result, a surface-coated carbon material coated with the lime-based raw material and fine iron ore is formed using the coarse-grained carbon material as core particles. When calcium carbonate, lime milk, fluorite or the like having no binder function is used as the lime-based raw material, it is desirable to add a binder to these. Binders include organic binder CMC and gum arabic, and inorganic binder water glass. Since a coating layer that adheres to the carbonaceous material surface is formed by the addition of a binder, detachment of the coating on the carbonaceous material surface is suppressed during the mixing process with the blended raw materials and during the conveyance process until the raw material is charged into the sintering machine. Further, NOx generated during sintering can be more stably reduced.
The surface-coated carbon material may be produced by mixing and granulating a coarse-grained carbon material and a lime-based raw material. In this case, the coating layer of the surface covering carbon material is made of only a lime-based raw material.
次に、表面被覆炭材は、別途、表面被覆炭材に用いられる原料以外の原料からなる配合原料に添加される。即ち、別途、表面被覆炭材に用いられる原料以外の原料をドラムミキサーその他の混合、造粒機により混合、造粒して製造した造粒物に、表面被覆炭材は添加され、混合される。別途、表面被覆炭材以外の原料を混合、造粒した造粒物に、表面被覆炭材を添加し、混合するのは、石灰系原料が炭材以外の配合原料の表面に付着するのを避けるためである。又、配合原料の混合、造粒の際に、改質炭材の被覆層が崩壊、剥離されてしまうことを避けるためである。 Next, the surface-coated carbon material is separately added to a blended raw material composed of raw materials other than the raw materials used for the surface-coated carbon material. That is, separately, the surface-coated carbon material is added to and mixed with the granulated material produced by mixing and granulating raw materials other than the raw material used for the surface-coated carbon material with a drum mixer or other granulator. . Separately, the raw material other than the surface-coated carbon material is mixed and granulated, and the surface-coated carbon material is added and mixed so that the lime-based raw material adheres to the surface of the mixed raw material other than the carbon material. This is to avoid it. Moreover, it is for avoiding that the coating layer of a modified | denatured carbon material collapse | crumbles and peels in the case of mixing and granulation of a mixing | blending raw material.
本発明の1,2に規定する石灰の被覆状態を得るために、炭材と石灰源原料の比率や水分、造粒時間などの造粒条件を制御することになる。しかし、その適正値を事前に予測することは困難である。従って、実際の製造は試行錯誤的に行う。すなわち、ある条件で製造して得た表面被覆炭材を分析し、その結果を踏まえて操業条件を調整する。また、この手続きは日常の操業変動にともなう操業調整の場合も同様である。
具体的には、本発明の3〜5で規定した方法が好ましい。すなわち、
1mm以上の炭材の表面被覆物に含有するCaが4g/m2未満、又は、1mm未満、0.25mm以上の炭材の表面被覆物に含有するCaが5g/m2未満の少なくともいずれかのときは、炭材の表面に付着した表面被覆物の量が少なく、NOx生成を抑制する効果が小さい。このような場合は、炭材の量に対する石灰系原料の添加量を増加し、表面被覆物に含有するCaを増量することで、NOx生成を抑制することができる焼結鉱製造用の改質炭材を製造することができる。
In order to obtain the lime covering state defined in 1 and 2 of the present invention, the granulation conditions such as the ratio between the carbonaceous material and the lime source material, moisture, and granulation time are controlled. However, it is difficult to predict the appropriate value in advance. Therefore, actual manufacturing is performed by trial and error. That is, the surface-coated carbon material obtained by manufacturing under certain conditions is analyzed, and the operating conditions are adjusted based on the results. This procedure is the same in the case of operation adjustment accompanying daily operation fluctuations.
Specifically, the method defined in 3 to 5 of the present invention is preferable. That is,
The Ca contained in the surface coating of a carbon material of 1 mm or more is less than 4 g / m 2 or at least one of Ca contained in the surface coating of a carbon material of less than 1 mm or 0.25 mm or less of less than 5 g / m 2 . In this case, the amount of the surface coating adhered to the surface of the carbon material is small, and the effect of suppressing the generation of NOx is small. In such a case, the amount of lime-based raw material added to the amount of carbonaceous material is increased, and the amount of Ca contained in the surface coating is increased, so that NOx formation can be suppressed, and this is a modification for the production of sintered ore. Carbon material can be manufactured.
一方、1mm以上の炭材の表面被覆物に含有するCaが42g/m2以上、又は、1mm未満、0.25mm以上の炭材の表面被覆物に含有するCaが20g/m2以上の少なくともいずれかのときは、炭材に対する石灰系原料の表面被覆物の量が過多となり、炭材の燃焼の障害となる虞がある。このような場合は、炭材の量に対する石灰系原料の添加量を減量し、表面被覆物に含有するCaを減少することで、適切な焼結鉱製造用の改質炭材を製造することができる。 On the other hand, at least 42 g / m 2 or more of Ca contained in the surface coating of a carbon material of 1 mm or more, or 20 g / m 2 or more of Ca contained in the surface coating of a carbon material of less than 1 mm or more than 0.25 mm. In any case, the amount of the surface coating of the lime-based raw material with respect to the carbon material becomes excessive, and there is a concern that the combustion of the carbon material may become an obstacle. In such cases, reduce the amount of lime-based raw material added to the amount of carbonaceous material, and reduce the amount of Ca contained in the surface coating to produce an appropriate modified coal for sinter production. Can do.
又、粉鉄鉱石、炭材、石灰系原料その他の副原料の混合、造粒において、0.25mm未満の炭材が、全体の炭材の量に対し、17質量%を超えるときは、炭材の造粒が不十分で、微粉炭材が過多である。このような場合は、混合、造粒の水分を増加し、かつ混合、造粒の時間を長くすることで、微粉の少ない焼結鉱製造用の改質炭材を製造することができる。 In addition, in the mixing and granulation of fine iron ore, carbonaceous material, lime-based raw materials and other auxiliary raw materials, when the carbonaceous material of less than 0.25 mm exceeds 17% by mass with respect to the total amount of carbonaceous material, Insufficient granulation of the material and excessive pulverized coal. In such a case, a modified carbon material for producing a sintered ore with less fine powder can be produced by increasing the water content for mixing and granulation and lengthening the time for mixing and granulation.
次に、本発明における被覆厚み等の決定根拠および本発明の効果を実施例を用いて説明する。なお、本発明の実施の形態は、これに限られるものではない。
焼結NOx生成に及ぼす単位面積当りの被覆物に含有するCaの影響をコークス粒度毎に調査する実験を行った。実施に用いた焼結鍋試験装置の概略図を図3に示す。
この焼結鍋試験装置は、点火炉1、焼結鍋2、風箱3、ブロアー4及び分析計5を備える。
この焼結鍋試験装置では、焼結鍋2に試験体となる表面被覆炭材を装入し、点火炉1で点火して表面被覆炭材を加熱する。同時にブロアー4を起動して、風箱3を介して焼結鍋2で生じた排気ガスを排出し、この排気ガスを分析計5で分析する。
石灰被覆炭材は粉コークスと消石灰に水分を添加しながら混練造粒処理して製造した。消石灰配合量は粉コークスの質量に対して10〜40%(内数)、混練造粒時間は1〜4分、石灰被覆炭材の水分は8〜14.5%の範囲で変更し、種々の被覆厚みとなるものとした。
完成した前記炭材のCa分の被覆厚みを、次のように測定した。粉コークスの粒度分布データから表面積を計算し、石灰被覆炭材を分級して取り出した0.25mm以上1mm未満の粒子および1mm以上の粒子についてCaとCの成分分析を行う。以上の結果より、被覆量に対応するCa/Cの値を粉コークスの表面積で除して被覆厚みの指標を計算した。
焼結鍋2の直径は、300mm、層高600mmであり、排ガスはCO,CO2,O2,NOx,SOxを分析した。前記石灰被覆炭材と鉱石等に水分7.5質量%を外添し、直径1,000mmのドラムミキサーを用いて4分間、混合、造粒した。造粒に際しては石灰被覆炭材の造粒中の崩壊を防止するため、それ以外の原料をまず3分間造粒し、その後石灰被覆炭材を加えて1分造粒した。
混合、造粒した配合原料を焼結鍋試験装置に充填し、点火90秒、風量1.6Nm3/分一定の条件で焼成した。焼成中は、層高の異なる3ヶ所で焼結層内の温度測定と排ガス中のNOxの濃度を測定した。試験に用いた原料配合を表1に示す。以下、表中の%は質量%を意味する。
Next, the basis for determining the coating thickness and the like according to the present invention and the effects of the present invention will be described using examples. The embodiment of the present invention is not limited to this.
An experiment was conducted to investigate the effect of Ca contained in the coating per unit area on the formation of sintered NOx for each coke particle size. A schematic diagram of the sintering pot test apparatus used for the implementation is shown in FIG.
The sintering pot test apparatus includes an ignition furnace 1, a
In this sintering pot test apparatus, the surface covering carbon material used as a test body is inserted into the
The lime-covered carbon material was produced by kneading and granulating while adding water to powdered coke and slaked lime. The amount of slaked lime is 10 to 40% (inner number) with respect to the mass of the powder coke, the kneading granulation time is 1 to 4 minutes, and the moisture of the lime-coated carbonaceous material is changed in the range of 8 to 14.5%. The coating thickness was as follows.
The coating thickness of Ca of the completed carbon material was measured as follows. The surface area is calculated from the particle size distribution data of the powder coke, and component analysis of Ca and C is performed on particles of 0.25 mm to less than 1 mm and particles of 1 mm or more that are extracted by classifying the lime-coated carbonaceous material. From the above results, the coating thickness index was calculated by dividing the Ca / C value corresponding to the coating amount by the surface area of the powder coke.
The diameter of the
The blended raw materials mixed and granulated were filled in a sintering pot test apparatus, and fired under the conditions of ignition for 90 seconds and constant air volume of 1.6 Nm 3 / min. During firing, the temperature in the sintered layer and the concentration of NOx in the exhaust gas were measured at three locations with different layer heights. Table 1 shows the raw material composition used in the test. Hereinafter,% in the table means mass%.
コークスは、平均粒径が、1.2mmのもの(粒度1)と、2.1mmのもの(粒度2)の2種類を用いた。粒度分布と表面積を表2に示す。粉コークス表面積は以下のように算出した。まず、粉コークスを0.25mm、0.5mm、1mm、3mmで分級し粒度区分ごとの質量比率を求めた。粒度区分ごとの粉コークスは粒度区分の代表径rを持つ球体と仮定し、1粒子あたりの表面積は4πr2、体積は(4/3)・πr3で計算した。これらの値と1mg/mm3とした粉コークス密度を用いて重量あたりの表面積を求めた後、粒度区分ごとの質量比率を掛け合わせて全体の粉コークス表面積を算出した。 Two types of coke were used, one having an average particle size of 1.2 mm (particle size 1) and 2.1 mm (particle size 2). Table 2 shows the particle size distribution and surface area. The powder coke surface area was calculated as follows. First, the powder coke was classified into 0.25 mm, 0.5 mm, 1 mm, and 3 mm, and the mass ratio for each particle size category was determined. The powder coke for each particle size category was assumed to be a sphere having a representative diameter r of the particle size category, and the surface area per particle was calculated as 4πr 2 and the volume as (4/3) · πr 3 . After determining the surface area per weight using these values and the powder coke density of 1 mg / mm 3 , the total powder coke surface area was calculated by multiplying the mass ratio for each particle size category.
NOx転換率(ηNO)は、式(2)により算出した。
ηNO=100×NOx/((CO+CO2)・NCOKE/(CLPG+CCOKE+CLS))/10000
・・・・・・・・(2)
ただし、ηNO:NOx転換率(%)、NOx:排ガスNOx(ppm)
CO:排ガスCO(%)、CO2:排ガスCO(%)、
NCOKE:コークス中N(mol)、CLPG:点火ガス中C(mol)、
CCOKE:コークス中C(mol)、CLS:石灰石中C(mol)
The NOx conversion rate (ηNO) was calculated by equation (2).
ηNO = 100 × NOx / ((CO + CO 2 ) · N CAKE / (C LPG + C CAKE + C LS )) / 10000
... (2)
However, ηNO: NOx conversion rate (%), NOx: exhaust gas NOx (ppm)
CO: exhaust gas CO (%), CO 2 : exhaust gas CO (%),
N CAKE : N (mol) in coke, C LPG : C (mol) in ignition gas,
C CAKE : C (mol) in coke, C LS : C (mol) in limestone
1mm以上コークスの単位面積当りの被覆物に含有するCaとNOx転換率の関係を図4に示す。表面被覆していない通常のコークスの場合、NOx転換率は、26%を超える。表面被覆量が、4g/m2未満の場合、又は42g/m2以上の場合、NOx転換率は、24.9%を超えた。これに対し、4〜42g/m2Caを被覆した場合は、NOx転換率は、24.9%未満であった。 FIG. 4 shows the relationship between Ca contained in the coating per unit area of 1 mm or more coke and the NOx conversion rate. For normal coke without surface coating, the NOx conversion is over 26%. When the surface coverage was less than 4 g / m 2 or 42 g / m 2 or more, the NOx conversion rate exceeded 24.9%. On the other hand, when 4 to 42 g / m 2 Ca was coated, the NOx conversion rate was less than 24.9%.
1mm未満、0.25mm以上のコークスの単位面積当りの被覆物に含有するCaとNOx転換率の関係を図5に示す。5〜20g/m2Caを被覆した場合は、NOx転換率は、24.9%未満であった。 FIG. 5 shows the relationship between the Ca contained in the coating per unit area of coke less than 1 mm and 0.25 mm or more and the NOx conversion rate. When 5 to 20 g / m 2 Ca was coated, the NOx conversion rate was less than 24.9%.
図4及び図5に示す実施例におけるNOx転換率のデータを表3に示す。1mm以上の炭材の表面被覆物に含有するCaが4〜42g/m2であり、1mm未満、0.25mm以上の炭材の表面被覆物に含有するCaが5〜20g/m2の場合に、NOx転換率が小さいことを示している。
0.25mm未満のコークスの全体の被覆コークスに対する割合とNOx転換率の関係を図6に示す。0.25mm未満のコークスの全体の被覆コークスに対する割合が17質量%以下の場合、NOx転換率は、低下した。
さらに、図4〜図5においてコークスの元の粒度の違いによる適正被覆厚みの差は認められないことから、本発明の規定が石灰被覆炭材の幅広い粒度構成に亘って適用できることが確認できた。
FIG. 6 shows the relationship between the ratio of coke less than 0.25 mm to the total coated coke and the NOx conversion rate. When the ratio of coke of less than 0.25 mm to the total coated coke was 17% by mass or less, the NOx conversion rate decreased.
Furthermore, since the difference of the appropriate coating thickness by the difference in the original particle size of coke is not recognized in FIGS. 4-5, it has confirmed that the prescription | regulation of this invention was applicable over the wide particle size structure of a lime covering carbon material. .
低温領域でのNOxの発生を抑制し、焼結機の生産性を阻害することのない粉コークス燃焼制御による焼結NOxの低減を図ることができる。 Generation of NOx in a low temperature region can be suppressed, and reduction of sintered NOx by powder coke combustion control without impeding the productivity of the sintering machine can be achieved.
1…点火炉、2…焼結鍋、3…風箱、4…ブロアー、5…分析計 DESCRIPTION OF SYMBOLS 1 ... Ignition furnace, 2 ... Sintering pan, 3 ... Wind box, 4 ... Blower, 5 ... Analyzer
Claims (5)
1mm以上の改質炭材の表面被覆物に含有するCaが4〜42g/m2であり、かつ、
1mm未満、0.25mm以上の改質炭材の表面被覆物に含有するCaが5〜20g/m2であることを特徴とする焼結鉱製造用の改質炭材。 A modified carbon material for the production of sintered ore coated with a coating containing 36 mass% or more of Ca derived from a lime-based raw material on the surface of the carbon material,
Ca contained in the surface coating of the modified carbon material of 1 mm or more is 4 to 42 g / m 2 , and
A modified carbon material for producing sintered ore, wherein Ca contained in a surface coating of a modified carbon material of less than 1 mm and 0.25 mm or more is 5 to 20 g / m 2 .
0.25mm未満の改質炭材が、全体の改質炭材の量に対し、17質量%以下であることを特徴とする焼結鉱製造用の改質炭材。 A modified carbon material for producing sinter according to claim 1,
A modified carbon material for producing sintered ore, wherein the modified carbon material of less than 0.25 mm is 17% by mass or less based on the total amount of the modified carbon material.
1mm以上の炭材の表面被覆物に含有するCaが4g/m2未満、又は、
1mm未満、0.25mm以上の炭材の表面被覆物に含有するCaが5g/m2未満の少なくともいずれかのときに、
炭材の量に対する石灰系原料の添加量を増加し、表面被覆物に含有するCaを増量することを特徴とする焼結鉱製造用の改質炭材の製造方法。 A method for producing a modified carbon material for producing sinter according to claim 1,
Ca contained in the surface coating of carbon material of 1 mm or more is less than 4 g / m 2 , or
When Ca contained in the surface covering of carbon material of less than 1 mm and 0.25 mm or more is at least any of less than 5 g / m 2 ,
The manufacturing method of the modified carbon material for sinter ore production characterized by increasing the addition amount of the lime-type raw material with respect to the quantity of a carbon material, and increasing Ca contained in a surface coating.
1mm以上の炭材の表面被覆物に含有するCaが42g/m2以上、又は、
1mm未満、0.25mm以上の炭材の表面被覆物に含有するCaが20g/m2以上の少なくともいずれかのときに、
炭材の量に対する石灰系原料の添加量を減少し、表面被覆物に含有するCaを減量することを特徴とする焼結鉱製造用の改質炭材の製造方法。 A method for producing a modified carbon material for producing sinter according to claim 1,
Ca contained in the surface covering of carbon material of 1 mm or more is 42 g / m 2 or more, or
When the Ca contained in the surface covering of the carbonaceous material of less than 1 mm and 0.25 mm or more is at least any of 20 g / m 2 or more,
A method for producing a modified carbon material for producing sintered ore, characterized in that the amount of lime-based raw material added to the amount of carbon material is reduced, and the amount of Ca contained in the surface coating is reduced.
0.25mm未満の炭材が、全体の炭材の量に対し、17質量%を超えるとき、
混合、造粒の水分を増加し、かつ混合、造粒の時間を長くすることを特徴とする焼結鉱製造用の改質炭材の製造方法。 A method for producing a modified carbon material for producing sinter according to claim 2,
When the carbonaceous material less than 0.25 mm exceeds 17% by mass with respect to the total amount of the carbonaceous material,
A method for producing a modified carbon material for the production of sintered ore, characterized by increasing the moisture of mixing and granulation and lengthening the time of mixing and granulation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011035740A JP5621653B2 (en) | 2011-02-22 | 2011-02-22 | A modified coal for producing sintered ore and a method for producing a sintered ore using the modified coal. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011035740A JP5621653B2 (en) | 2011-02-22 | 2011-02-22 | A modified coal for producing sintered ore and a method for producing a sintered ore using the modified coal. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012172067A true JP2012172067A (en) | 2012-09-10 |
JP5621653B2 JP5621653B2 (en) | 2014-11-12 |
Family
ID=46975274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011035740A Active JP5621653B2 (en) | 2011-02-22 | 2011-02-22 | A modified coal for producing sintered ore and a method for producing a sintered ore using the modified coal. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5621653B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015200007A (en) * | 2014-03-31 | 2015-11-12 | 新日鐵住金株式会社 | Production method of sintered ore |
CN109468455A (en) * | 2018-12-26 | 2019-03-15 | 中天钢铁集团有限公司 | A kind of sintering process NOx abatement method and apparatus |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5282603A (en) * | 1975-12-30 | 1977-07-11 | Nippon Steel Corp | Low no# sintering operation |
JPS53130206A (en) * | 1977-04-20 | 1978-11-14 | Nippon Steel Corp | Operating method for sintering generating small amount of nox |
JPS5893794A (en) * | 1981-12-01 | 1983-06-03 | Nippon Steel Corp | Preparation of powder coke for sintering iron ore |
JPS5939333A (en) * | 1982-08-31 | 1984-03-03 | Yoshikawa Kogyo Kk | Granulation of fine powdery coke in high efficiency |
JPS61126199A (en) * | 1984-11-21 | 1986-06-13 | Nippon Steel Corp | Preparation of powder coke for sintered fuel |
-
2011
- 2011-02-22 JP JP2011035740A patent/JP5621653B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5282603A (en) * | 1975-12-30 | 1977-07-11 | Nippon Steel Corp | Low no# sintering operation |
JPS53130206A (en) * | 1977-04-20 | 1978-11-14 | Nippon Steel Corp | Operating method for sintering generating small amount of nox |
JPS5893794A (en) * | 1981-12-01 | 1983-06-03 | Nippon Steel Corp | Preparation of powder coke for sintering iron ore |
JPS5939333A (en) * | 1982-08-31 | 1984-03-03 | Yoshikawa Kogyo Kk | Granulation of fine powdery coke in high efficiency |
JPS61126199A (en) * | 1984-11-21 | 1986-06-13 | Nippon Steel Corp | Preparation of powder coke for sintered fuel |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015200007A (en) * | 2014-03-31 | 2015-11-12 | 新日鐵住金株式会社 | Production method of sintered ore |
CN109468455A (en) * | 2018-12-26 | 2019-03-15 | 中天钢铁集团有限公司 | A kind of sintering process NOx abatement method and apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP5621653B2 (en) | 2014-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4870247B2 (en) | Method for producing sintered ore | |
JP5810836B2 (en) | Method for producing modified coal for sinter production | |
JP5480969B2 (en) | Raw pellets | |
JP5454503B2 (en) | Carbon material reforming equipment | |
EA033946B1 (en) | Method and apparatus for preheating and smelting manganese ore sinter | |
TW200948980A (en) | Producing method of reduced iron | |
JP5621653B2 (en) | A modified coal for producing sintered ore and a method for producing a sintered ore using the modified coal. | |
Zhao et al. | Effects of nano-TiO2 on combustion and desulfurization | |
JP4837799B2 (en) | Method for producing sintered ore | |
JP5817629B2 (en) | Method for producing sintered ore using finely granulated carbon | |
JP2012036464A (en) | Method of manufacturing sintered ore | |
JP5703913B2 (en) | Method for producing sintered ore | |
JP5510361B2 (en) | Method for producing sintered ore | |
JP2012255189A (en) | Reforming apparatus for carbon material | |
Su et al. | CO2 capture and attrition performance of competitive eco‐friendly calcium‐based pellets in fluidized bed | |
JP2013023729A (en) | Method for producing sintered ore | |
JP5747675B2 (en) | Carbon material reforming equipment | |
JP6167852B2 (en) | Method for producing sintered ore | |
JP7187971B2 (en) | Method for producing sintered ore | |
JP5733075B2 (en) | Method for producing sintered ore | |
Meng et al. | Effect of raw material composition on combustion behavior of quasi‐particles in the iron ore sintering process | |
CN109181808A (en) | A kind of Ore Sintering Process nitrogen oxides discharge-reducing method | |
CN1302225C (en) | N in combustion apparatus2Method for suppressing discharge of O and NOx | |
JP2019143183A (en) | Method for manufacturing molding and sintering raw material and method for manufacturing sintered ore | |
WO2024116777A1 (en) | Method for manufacturing sintered ore |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140225 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140421 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140826 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140908 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5621653 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |