JP5510361B2 - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP5510361B2
JP5510361B2 JP2011036207A JP2011036207A JP5510361B2 JP 5510361 B2 JP5510361 B2 JP 5510361B2 JP 2011036207 A JP2011036207 A JP 2011036207A JP 2011036207 A JP2011036207 A JP 2011036207A JP 5510361 B2 JP5510361 B2 JP 5510361B2
Authority
JP
Japan
Prior art keywords
mass
carbon material
slaked lime
nox
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011036207A
Other languages
Japanese (ja)
Other versions
JP2012172206A (en
Inventor
健至 佐藤
一昭 片山
伸 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2011036207A priority Critical patent/JP5510361B2/en
Publication of JP2012172206A publication Critical patent/JP2012172206A/en
Application granted granted Critical
Publication of JP5510361B2 publication Critical patent/JP5510361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、NOxの発生を抑制可能な焼結鉱の製造方法に関する。 The present invention relates to a method for producing sintered ore that can suppress generation of NOx.

焼結鉱の製造においては、燃料として使用する炭材の燃焼により、排ガス中に窒素酸化物(NOx)が発生する。このNOxの低減は、大気汚染の改善において重要な課題である。
NOxを低減する手段としては、例えば、特許文献1に、CaO含有量が5〜50質量%であるCaO−FexO系複合酸化物を主成分とする触媒によるNOxの除去技術が開示されている。
しかし、上記したCaO−FexO系複合酸化物は、石灰系原料と鉄鉱石を溶融成形して製造されるため、通常の焼結で副原料として使用される石灰系原料に比べて高価だった。
In the production of sintered ore, nitrogen oxides (NOx) are generated in the exhaust gas due to combustion of carbonaceous materials used as fuel. This reduction of NOx is an important issue in improving air pollution.
As a means for reducing NOx, for example, Patent Document 1 discloses a technique for removing NOx using a catalyst mainly composed of a CaO—FexO-based composite oxide having a CaO content of 5 to 50 mass%.
However, since the CaO-FexO-based composite oxide described above is manufactured by melt-molding a lime-based material and iron ore, it is more expensive than a lime-based material used as an auxiliary material in normal sintering.

そこで、上記のような高価な酸化物を用いることなく、通常の焼結副原料として用いられる石灰系原料を使用し、この石灰系原料とコークスを混合し造粒してコークスの表面を石灰系原料で覆い、炭材燃焼時のNOxを低減させることが検討されている。
ここで、石灰系原料とコークスを造粒する方法としては、例えば、特許文献2に記載の技術が開示されている。具体的には、粒径0.3mm以下の含有量が50質量%以上のコークスに、生石灰と消石灰の1種又は2種(以下、単に石灰という)を配合し、その後、造粒し養生する方法である。なお、配合する石灰の平均粒度は0.5〜3mmである。
Therefore, without using an expensive oxide as described above, a lime-based raw material used as a normal sintering auxiliary material is used, and the lime-based raw material and coke are mixed and granulated to form a lime-based surface of the coke. Covering with raw materials to reduce NOx during combustion of carbonaceous materials has been studied.
Here, as a method of granulating the lime-based raw material and coke, for example, a technique described in Patent Document 2 is disclosed. Specifically, one or two types of quick lime and slaked lime (hereinafter simply referred to as lime) are blended with coke having a particle size of 0.3 mm or less and 50% by mass or more, and then granulated and cured. Is the method. In addition, the average particle size of the lime to mix | blend is 0.5-3 mm.

特開平6−15174号公報JP-A-6-15174 特開2006−290925号公報JP 2006-290925 A

しかしながら、特許文献2に記載の技術は、コークスの粒径が石灰の粒径よりも小さいことから、これを造粒すると、石灰の周囲にコークスが付着することになる。このため、コークスが低温領域で燃焼してしまい、NOxが多量に発生してNOxの低減が図れない。 However, in the technique described in Patent Document 2, since the particle size of coke is smaller than the particle size of lime, when this is granulated, coke adheres around the lime. For this reason, coke burns in a low temperature region, a large amount of NOx is generated, and NOx cannot be reduced.

本発明はかかる事情に鑑みてなされたもので、低温領域でのNOxの発生を経済的に抑制可能な焼結鉱の製造方法を提供することを目的とする。 This invention is made | formed in view of this situation, and it aims at providing the manufacturing method of the sintered ore which can suppress generation | occurrence | production of NOx in a low-temperature area | region economically.

上記の課題を解決するためになされた本発明の要旨は、以下の通りである。
(1)炭材表面に消石灰を、該炭材に対する質量%で2質量%以上30質量%以下の割合で被覆した表面被覆炭材を用いる焼結鉱の製造方法であって、
前記表面被覆炭材の製品水分量が12.0質量%以上15.5質量%以下となるように、前記炭材及び前記消石灰に水分を添加して造粒し、該消石灰の被覆層厚が5μm以上500μm以下である前記表面被覆炭材を製造することを特徴とする焼結鉱の製造方法。
The gist of the present invention made to solve the above problems is as follows.
(1) A method for producing a sintered ore using a surface-covered carbon material in which slaked lime is coated on the carbon material surface at a ratio of 2% by mass to 30% by mass with respect to the carbon material,
The carbon material and the slaked lime are granulated by adding moisture so that the product moisture content of the surface-coated carbon material is 12.0% by mass or more and 15.5% by mass or less, and the coating layer thickness of the slaked lime is A method for producing a sintered ore, comprising producing the surface-coated carbon material having a size of 5 μm or more and 500 μm or less .

)前記炭材の粒度は、粒径0.25mm未満の累積質量が20質量%以下であり、粒径0.25mm以上3mm以下の累積質量が40質量%以上であることを特徴とする(1)記載の焼結鉱の製造方法。
( 2 ) As for the particle size of the carbonaceous material, the cumulative mass with a particle size of less than 0.25 mm is 20% by mass or less, and the cumulative mass with a particle size of 0.25 mm to 3 mm is 40% by mass or more. (1) Symbol placement method for producing sintered ore of.

本発明に係る焼結鉱の製造方法は、炭材の表面に消石灰を、炭材に対する質量%で2〜30質量%の割合で被覆した表面被覆炭材を用いるので、消石灰を使用でき経済的である。
この表面被覆炭材を、その製品水分量が12.0〜15.5質量%となるように、炭材及び消石灰に水分を添加し造粒して製造するので、消石灰の被覆層厚が適正厚みとなった表面被覆炭材の歩留を向上できる。
従って、低温領域でのNOxの発生を経済的に抑制可能である。
The method for producing a sintered ore according to the present invention uses a surface-covered carbon material in which the surface of the carbon material is coated with slaked lime at a ratio of 2 to 30% by mass with respect to the carbon material. It is.
Since this surface-coated carbon material is manufactured by adding moisture to the carbon material and slaked lime so that the product moisture content is 12.0 to 15.5% by mass, the coating layer thickness of slaked lime is appropriate. The yield of the surface-coated carbon material having a thickness can be improved.
Therefore, it is possible to economically suppress the generation of NOx in the low temperature region.

NOx転換率と燃焼温度との関係を示すグラフである。It is a graph which shows the relationship between a NOx conversion rate and combustion temperature. 製品水分量と消石灰の被覆層厚が適正厚みとなった表面被覆炭材の歩留との関係を示すグラフである。It is a graph which shows the relationship between the product moisture content and the yield of the surface covering carbonaceous material in which the coating layer thickness of slaked lime became an appropriate thickness.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、本発明の焼結鉱の製造方法に想到した経緯について説明する。
炭材が燃焼する際に生成(発生)するNOxは、炭材中の窒素が酸化したものであり、図1に示されるように、1150℃以下(O:21%、Ar:79%)の低温で多量に生成することが確認されている。この図1の縦軸のNOx転換率は、式(1)により算出したものである。
{NOx転換率(mol%)}
=100×{NOx発生量(mol)}/{燃料窒素入量(mol)} ・・・(1)
従って、NOx生成を抑制するためには、炭材を極力、高温燃焼させることが重要である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
First, the background of the sinter ore production method of the present invention will be described.
NOx generated (generated) when the carbonaceous material burns is obtained by oxidizing nitrogen in the carbonaceous material, and as shown in FIG. 1, 1150 ° C. or lower (O 2 : 21%, Ar: 79%) It has been confirmed that it is produced in large quantities at low temperatures. The NOx conversion rate on the vertical axis in FIG. 1 is calculated by the equation (1).
{NOx conversion rate (mol%)}
= 100 × {NOx generation amount (mol)} / {Fuel nitrogen input amount (mol)} (1)
Therefore, in order to suppress NOx production, it is important to burn the carbonaceous material as high as possible.

また、炭材中の微粉は、燃焼速度が速く低温で燃焼が完了するため、NOxを増大させると考えられる。即ち、炭材から、粒径が0.25mm未満の微粉を除去できれば、NOx発生量を低減できると考えられる。
しかし、炭材から、例え0.25mm未満の微粉を除去したとしても、NOx発生を抑制するためには、炭材の低温燃焼を避け、高温燃焼させる必要がある。
ここで、炭材を高温燃焼させるには、炭材表面を高温領域で溶融する被覆層で覆い、低温領域で周囲の大気中の酸素を遮断できればよい。これにより、NOx発生を抑制することができる。
Further, the fine powder in the carbonaceous material is considered to increase NOx because the combustion speed is high and combustion is completed at a low temperature. That is, if fine powder having a particle size of less than 0.25 mm can be removed from the carbonaceous material, it is considered that the amount of NOx generated can be reduced.
However, even if fine particles of less than 0.25 mm are removed from the carbon material, in order to suppress the generation of NOx, it is necessary to avoid the low temperature combustion of the carbon material and to perform high temperature combustion.
Here, in order to burn the carbonaceous material at a high temperature, it is only necessary to cover the surface of the carbonaceous material with a coating layer that melts in a high-temperature region and to block oxygen in the surrounding atmosphere in a low-temperature region. Thereby, NOx generation can be suppressed.

前記した特許文献1には、CaO含有量が5〜50質量%のCaO−FexO系複合酸化物を表面に被覆した炭材を用いて、CaO−FexO系複合酸化物の触媒作用により、炭材の燃焼時に生成するNOxを還元又は分解し除去することが開示されている。このCaO含有量を50質量%以下に制限したCaO−FexO系複合酸化物は融点が低く、1200℃以上の高温域で溶融するため、これを炭材の表面に被覆することで、ある程度のNOx低減効果は期待される。
しかしながら、CaO−FexO系複合酸化物は、石灰系原料と鉄鉱石を溶融成形して製造されるため、通常の焼結で副原料として使用される石灰系原料に比べて高価である。
In the above-mentioned Patent Document 1, a carbon material having a surface coated with a CaO-FexO-based composite oxide having a CaO content of 5 to 50% by mass is obtained by the catalytic action of the CaO-FexO-based composite oxide. NOx produced during combustion is reduced or decomposed and removed. Since the CaO-FexO-based composite oxide whose CaO content is limited to 50% by mass or less has a low melting point and melts in a high temperature range of 1200 ° C. or higher, a certain amount of NOx can be obtained by coating the surface of the carbon material. A reduction effect is expected.
However, the CaO-FexO-based composite oxide is manufactured by melt-molding a lime-based raw material and iron ore, and is therefore more expensive than a lime-based raw material used as an auxiliary material in normal sintering.

そこで、本発明者らは、上記した高価な酸化物を用いることなく、通常の焼結副原料として用いられる消石灰を炭材表面の被覆物(被覆層ともいう)として用いることにより、炭材燃焼時のNOx低減を可能とした。
図2に示すように、本発明の一実施の形態に係る焼結鉱の製造方法は、炭材の表面に消石灰を、炭材に対する質量%で2質量%以上30質量%以下(以下、単に2〜30質量%ともいう)の割合で被覆した表面被覆炭材を用いる焼結鉱の製造方法であり、表面被覆炭材の製品水分量が12.0質量%以上15.5質量%以下(以下、単に12.0〜15.5質量%ともいう)となるように、炭材及び消石灰に水分を添加して造粒し、表面被覆炭材を製造する方法である。以下、詳しく説明する。
Therefore, the present inventors have used the slaked lime used as a normal sintering auxiliary material as a coating on the carbon material surface (also referred to as a coating layer) without using the above-described expensive oxide, thereby burning the carbon material. NOx reduction at the time was made possible.
As shown in FIG. 2, the manufacturing method of the sintered ore which concerns on one embodiment of this invention is 2 mass% or more and 30 mass% or less (henceforth, simply hereafter) by the mass% with respect to a carbon material. 2-30% by mass) and a method for producing sintered ore using a surface-coated carbon material coated at a ratio of 12.0% by mass to 15.5% by mass Hereinafter, it is a method of producing a surface-coated carbon material by adding moisture to the carbon material and slaked lime so as to be simply 12.0 to 15.5% by mass. This will be described in detail below.

まず、表面被覆炭材の製造に用いられる原料を除いた焼結鉱の配合原料を、ドラムミキサーやその他の混合機を用いて混合し、更に造粒機により造粒する。ここで、配合原料とは、焼結機に装入される原料のうち、床敷鉱を除いたものをいう。
また、表面被覆炭材は、粒径0.25mm未満の微粉炭材を20質量%以下にした粗粒炭材を用いることが好ましく、これを核粒子とし、これに消石灰を混合し、水分を添加して造粒することで製造する。ここで、粗粒炭材と消石灰を混合し造粒するには、例えば、ドラムミキサーやパンペレタイザー等の転動造粒機、その他の混合造粒機等を使用できる。
First, the blended raw material of sintered ore excluding the raw material used for the production of the surface-coated carbon material is mixed using a drum mixer or other mixer, and further granulated by a granulator. Here, the blended raw material refers to a raw material charged in the sintering machine, excluding the bedding ore.
Further, as the surface covering carbon material, it is preferable to use a coarse carbon material in which a fine carbonaceous material having a particle size of less than 0.25 mm is 20% by mass or less, which is used as a core particle, mixed with slaked lime, It is manufactured by adding and granulating. Here, in order to mix and granulate the coarse carbonaceous material and slaked lime, for example, a rolling granulator such as a drum mixer or a pan pelletizer, other mixed granulators, or the like can be used.

これにより、粗粒炭材を核粒子として、消石灰が被覆された表面被覆炭材が形成される。
そして、前記した造粒途中又は造粒後の配合原料に、上記した表面被覆炭材を添加し混合する。これは、配合原料を混合し造粒する前に、表面被覆炭材を添加することで、配合原料の混合時や造粒時に、炭材表面の被覆層が崩壊し剥離してしまうことを避けるためである。
As a result, a surface-coated carbon material coated with slaked lime is formed using the coarse carbon material as core particles.
And the above-mentioned surface covering carbonaceous material is added and mixed with the compounding raw material in the above-mentioned granulation middle or after granulation. This is to prevent the coating layer on the surface of the carbonaceous material from collapsing and peeling during mixing or granulation of the blended raw material by adding the surface coating carbonaceous material before mixing and granulating the blended raw material. Because.

ここで、炭材には、例えば、コークス(粉コークス)、無煙炭、その他の焼結鉱製造に用いられる燃料を使用できる。
また、消石灰は、一般に、粒径0.15mm以下を70質量%以上(100質量%でもよい)含むものであり、その大部分(例えば、70質量%以上、好ましくは80質量%以上)が炭材よりも細かいものである。なお、消石灰には、水酸化カルシウムのみならず、例えば、石灰乳(消石灰の懸濁液)等も使用できる。この消石灰は、バインダーとなって、炭材表面に密着した被覆物を形成するため、例えば、配合原料との混合時や、焼結機への原料装入までの搬送過程において、炭材表面の被覆物の脱離を抑制できる。
Here, as the carbon material, for example, coke (powder coke), anthracite, and other fuels used for manufacturing sintered ore can be used.
In addition, slaked lime generally contains 70% by mass or more (or 100% by mass) of particles having a particle size of 0.15 mm or less, and the majority (for example, 70% by mass or more, preferably 80% by mass or more) is charcoal. It is finer than the material. For slaked lime, not only calcium hydroxide but also lime milk (slaked lime suspension) can be used. This slaked lime becomes a binder and forms a coating that adheres to the surface of the carbonaceous material.For example, during mixing with the blended raw material or in the conveying process until the raw material is charged into the sintering machine, Desorption of the coating can be suppressed.

また、炭材表面の消石灰は、炭材に対する質量%で2質量%以上30質量%以下の割合で被覆する必要がある。
消石灰の炭材に対する質量%が2質量%未満の場合は、炭材表面全体を包囲する十分な被覆層の形成が難しくなり、炭材表面の一部が露出したり、また被覆層厚が薄くなり過ぎて、低温域での大気中の酸素の遮断によるNOx低減効果が得られなくなる。一方、炭材表面の消石灰量が30質量%を超える場合、被覆層厚が厚くなり過ぎ、燃焼性が悪くなって焼結の生産性が損なわれる。
このため、炭材表面の消石灰を、炭材に対する質量%で2〜30質量%としたが、下限を5質量%とすることが望ましく、また上限を15質量%とすることが望ましい。
Moreover, it is necessary to coat | cover the slaked lime on the surface of a carbonaceous material in the ratio of 2 mass% or more and 30 mass% or less with respect to the carbonaceous material.
When the mass% of the slaked lime with respect to the carbon material is less than 2 mass%, it becomes difficult to form a sufficient coating layer surrounding the entire carbon material surface, and a part of the carbon material surface is exposed or the coating layer thickness is thin. Thus, the NOx reduction effect due to the blocking of oxygen in the atmosphere at low temperatures cannot be obtained. On the other hand, when the amount of slaked lime on the surface of the carbonaceous material exceeds 30% by mass, the coating layer thickness becomes too thick, the combustibility is deteriorated, and the productivity of sintering is impaired.
For this reason, although the slaked lime on the surface of the carbonaceous material is 2 to 30% by mass with respect to the carbonaceous material, the lower limit is preferably 5% by mass, and the upper limit is preferably 15% by mass.

前記したように、焼結工程のNOx発生量を低減するため、炭材に、粒径0.25mm未満の微粉炭材の累積質量を20質量%以下にした粗粒炭材を使用したが、更には11.0質量%以下が望ましい。一方、粒径0.25mm未満の炭材の下限値は、上記した理由から特に規定していないが、篩網による篩分け限界を考慮すれば5質量%である。
更に、粒径0.25mm以上3mm以下の炭材の累積質量は、40質量%以上であることが望ましく、70質量%以上であることが特に望ましい。粒径が3mmを超える炭材は、NOxの低減効果が3mmの炭材とほとんど同じであるが、燃焼速度が遅く、焼結の生産性が損なわれる。一方、粒径0.25mm以上3mm以下の炭材の累積質量の上限値は、上記した理由から特に規定していないが、100質量%であることが好ましい。
As described above, in order to reduce the amount of NOx generated in the sintering process, a coarse carbon material in which the cumulative mass of fine carbonaceous material having a particle size of less than 0.25 mm was 20% by mass or less was used as the carbonaceous material. Furthermore, 11.0 mass% or less is desirable. On the other hand, the lower limit value of the carbonaceous material having a particle size of less than 0.25 mm is not particularly defined for the above-described reason, but is 5% by mass in consideration of the sieving limit by the sieve mesh.
Furthermore, the cumulative mass of the carbonaceous material having a particle size of 0.25 mm or more and 3 mm or less is desirably 40 mass% or more, and particularly desirably 70 mass% or more. Carbonaceous material having a particle size exceeding 3 mm has almost the same NOx reduction effect as that of 3 mm, but the combustion rate is slow and the productivity of sintering is impaired. On the other hand, the upper limit value of the cumulative mass of the carbonaceous material having a particle size of 0.25 mm or more and 3 mm or less is not particularly defined for the reason described above, but is preferably 100% by mass.

上記した表面被覆炭材の製造にあっては、表面被覆炭材の製品水分量が12.0質量%以上15.5質量%以下となるように、炭材及び消石灰に水分を添加して造粒する。
ここで、製品水分量とは、最終的な製品(焼結機へ装入される前の造粒物である表面被覆炭材)の水分量であり、消石灰及び炭材の含有水分量と混合及び造粒時の添加水分量との合計量で現される。なお、製品水分量は、乾燥状態の表面被覆炭材(消石灰及び炭材)100に対する割合(質量%:外掛け)である。
In the production of the above surface-coated carbon material, water is added to the carbon material and slaked lime so that the product moisture content of the surface-coated carbon material is 12.0 mass% or more and 15.5 mass% or less. Grain.
Here, the product moisture content is the moisture content of the final product (surface-coated carbon material that is a granulated product before being charged into the sintering machine), and is mixed with the moisture content of slaked lime and carbonaceous material. And the total amount of water added during granulation. The product water content is a ratio (mass%: outer coating) to the surface-coated carbon material (slaked lime and carbon material) 100 in a dry state.

図2に示すように、表面被覆炭材の製品水分量を12.0質量%以上15.5質量%以下とした場合に、消石灰の被覆層厚が適正厚み、即ち5μm以上500μm以下(以下、単に5〜500μmともいう)となった表面被覆炭材の歩留を向上できた(60質量%以上)。
なお、表面被覆炭材は、消石灰とコークス(炭材)を、レディゲミキサー(混練機)に供給して混練した後、この混練物をパンペレタイザーに供給すると共に水分を添加して造粒し、コークス表面に消石灰を付着させて製造した。このレディゲミキサーは、内容積が8mであり、混練時の回転羽根の回転数を100rpm(回/分)とし、混練時間を3分とした。また、パンペレタイザーは、直径が5mであり、回転数を8rpmとし、傾斜角度を57度とした。
As shown in FIG. 2, when the product moisture content of the surface-coated carbon material is 12.0 mass% or more and 15.5 mass% or less, the coating layer thickness of slaked lime is an appropriate thickness, that is, 5 μm or more and 500 μm or less (hereinafter, It was possible to improve the yield of the surface-coated carbon material (also simply referred to as 5 to 500 μm) (60% by mass or more).
The surface-covered carbonaceous material is granulated by supplying slaked lime and coke (carbonaceous material) to a readyge mixer (kneading machine) and kneading, and then supplying the kneaded material to a pan pelletizer and adding moisture. It was manufactured by attaching slaked lime to the coke surface. This Redige mixer had an internal volume of 8 m 3 , the rotational speed of the rotating blades during kneading was 100 rpm (times / min), and the kneading time was 3 minutes. The pan pelletizer had a diameter of 5 m, a rotational speed of 8 rpm, and an inclination angle of 57 degrees.

そして、歩留の測定は、以下の方法で行った。
まず、JIS K2151のコークス類−試験方法に準じて、試料をサンプリングした。次に、このサンプリングした粒径別の試料を樹脂に埋込みカッティングし、顕微鏡にて、カッティングした面におけるコークス表面の付着消石灰の厚みを50箇所測定した。そして、この50箇所の測定値の平均値を計算して歩留りを求めた。
And the measurement of the yield was performed by the following method.
First, a sample was sampled according to JIS K2151 coke-test method. Next, the sample by particle size sampled was embedded in the resin and cut, and the thickness of the attached slaked lime on the coke surface on the cut surface was measured with a microscope at 50 locations. And the average value of these 50 measured values was calculated to determine the yield.

ここで、表面被覆炭材の製品水分量が12.0質量%未満の場合、製品水分量が少な過ぎて炭材表面に消石灰が付着し難くなり、部分的に付着しない箇所が発生したり、また被覆層厚が薄くなり、消石灰の被覆層厚が5〜500μmとなった表面被覆炭材の歩留が低く(60質量%未満)なる。このため、炭材表面の消石灰によるNOx抑制効果が減少する。
一方、水分量が15.5質量%を超える場合、水分量が多過ぎて消石灰がだんご状(塊状)になり、被覆層厚の非常に厚い部分(500μm超)や非常に薄い部分(5μm未満)が発生する。また、更に水分が多くなると、消石灰が炭材表面から過剰水分と共に流れ落ち易くなる。このため、消石灰の被覆層厚が5〜500μmとなった表面被覆炭材の歩留が低く(60質量%未満)なり、炭材表面の消石灰によるNOx抑制効果が小さくなる。
Here, when the product moisture content of the surface-coated carbon material is less than 12.0% by mass, the product moisture content is too small to make it difficult for slaked lime to adhere to the carbon material surface, Further, the coating layer thickness is reduced, and the yield of the surface-coated carbonaceous material in which the coating layer thickness of slaked lime is 5 to 500 μm is low (less than 60% by mass). For this reason, the NOx suppression effect by the slaked lime on the carbonaceous material surface decreases.
On the other hand, if the amount of water exceeds 15.5% by mass, the amount of water is too much and the slaked lime becomes dumped (lumped), and the coating layer is very thick (over 500 μm) or very thin (less than 5 μm). ) Occurs. Further, when the moisture further increases, slaked lime tends to flow off from the carbon material surface together with excess moisture. For this reason, the yield of the surface covering carbonaceous material in which the coating layer thickness of the slaked lime becomes 5 to 500 μm is low (less than 60% by mass), and the NOx suppressing effect by the slaked lime on the carbonaceous material surface becomes small.

以上のことから、表面被覆炭材の製品水分量を12.0〜15.5質量%とし、炭材表面の消石灰の被覆層厚を5〜500μmとした表面被覆炭材の歩留を向上させる(60質量%以上)。なお、更に、NOx抑制効果を高めるには、製品水分量の下限値を13.5質量%とし、また製品水分量の上限値を15.0質量%として、消石灰の被覆層厚が5〜500μmとなる表面被覆炭材の歩留を高める(85質量%以上)ことが好ましい。また、消石灰の被覆層厚の上限は、上記した理由から500μmとしたが、250μmを超えるとNOx抑制効果の上昇傾向が緩やかになるため、炭材に対する消石灰量を調整して(減少させて)、250μmとすることが好ましい。
以上の方法で製造した表面被覆炭材を、焼結機(図示しない)に装入して焼結鉱を製造する。
From the above, the product moisture content of the surface-coated carbon material is 12.0 to 15.5% by mass, and the yield of the surface-coated carbon material in which the coating layer thickness of the slaked lime on the carbon material surface is 5 to 500 μm is improved. (60 mass% or more). Furthermore, in order to further enhance the NOx suppression effect, the lower limit value of the product moisture content is set to 13.5 mass%, the upper limit value of the product moisture content is set to 15.0 mass%, and the coating layer thickness of slaked lime is 5 to 500 μm. It is preferable to increase the yield of the surface-coated carbon material (85% by mass or more). Moreover, although the upper limit of the coating layer thickness of slaked lime was set to 500 μm for the above-described reason, if it exceeds 250 μm, the increasing tendency of the NOx suppression effect becomes moderate. 250 μm is preferable.
The surface-coated carbon material produced by the above method is charged into a sintering machine (not shown) to produce a sintered ore.

焼結で生成するNOxは、前記したように、炭材の1150℃以下の低温燃焼で急激に生成される。従って、NOx生成を抑制するためには、炭材の低温燃焼を抑制し、極力高温燃焼させることが必要である。
上記した表面被覆炭材は、炭材の燃焼初期である低温領域で、炭材表面が被覆層で覆われているため、被覆層内の炭材の燃焼を抑えてNOxの発生を抑制する。
一方、1200℃以上の高温領域に到達すると、被覆層中の消石灰は、周囲の鉱石と反応し、カルシウムフェライトとなって溶融し、溶け落ちる。これにより、炭材表面は、消石灰が消失して裸の状態になるが、裸の状態であっても、表面被覆炭材は1200℃以上の高温領域で燃焼されるため、NOx発生は少なく、しかも活発な燃焼によって生産性を損うこともない。
従って、本発明の焼結鉱の製造方法を使用することで、低温領域でのNOxの発生を経済的に抑制できる。
As described above, NOx generated by sintering is rapidly generated by low temperature combustion of the carbonaceous material at 1150 ° C. or lower. Therefore, in order to suppress the generation of NOx, it is necessary to suppress the low temperature combustion of the carbonaceous material and to perform the high temperature combustion as much as possible.
Since the above-described surface covering carbon material has a carbon material surface covered with a coating layer in a low temperature region at the initial stage of combustion of the carbon material, combustion of the carbon material in the coating layer is suppressed and generation of NOx is suppressed.
On the other hand, when it reaches a high temperature region of 1200 ° C. or higher, the slaked lime in the coating layer reacts with the surrounding ore, melts as calcium ferrite, and melts down. Thereby, the slaked lime disappears and the surface of the carbonaceous material becomes naked, but even in the naked state, the surface-covered carbonaceous material is burned in a high temperature region of 1200 ° C. or higher, so NOx generation is small, Moreover, productivity is not impaired by vigorous combustion.
Therefore, generation of NOx in a low temperature region can be economically suppressed by using the method for producing a sintered ore of the present invention.

次に、本発明の作用効果を確認するために行った実施例について説明する。
準備した焼結鉱の配合原料は、鉱石、副原料(石灰石、生石灰、及びMgO源)、返鉱、及び粉コークスである。なお、鉱石は83.2質量%、石灰石は12.8質量%、生石灰は1質量%、MgO源は3質量%であり、この合計量(100)に対して、返鉱を20質量%、粉コークスを4.2質量%、それぞれ添加する構成にしている(外掛け)。
ここで、表面被覆炭材を製造にするに際し、上記した配合原料の粉コークス4.2質量%のうちの4質量%分を使用し、新たな消石灰を準備した。なお、消石灰を新たに添加するため、この消石灰のCa成分相当量分だけ、上記した石灰石量を減らした(0.6質量%)。
Next, examples carried out for confirming the effects of the present invention will be described.
The prepared raw materials of sintered ore are ore, auxiliary materials (limestone, quicklime, and MgO sources), return ore, and fine coke. The ore is 83.2% by mass, limestone is 12.8% by mass, quicklime is 1% by mass, and the MgO source is 3% by mass. It is set as the structure which adds 4.2 mass% of powder coke, respectively (outer hook).
Here, when producing the surface-coated carbonaceous material, a new slaked lime was prepared by using 4% by mass of 4.2% by mass of the powdered coke of the above-described blended raw material. In addition, in order to add slaked lime newly, the above-mentioned amount of limestone was reduced by an amount corresponding to the Ca component of this slaked lime (0.6% by mass).

まず、表面被覆炭材の製造条件を、以下に示す。
表面被覆炭材は、上記した消石灰と粉コークス(炭材)を、レディゲミキサー(混練機)に供給して混練した後、この混練物をパンペレタイザーに供給すると共に水分を添加して造粒し、粉コークス表面に消石灰を付着させて製造した。なお、レディゲミキサーは、内容積が8mであり、混練時の回転羽根の回転数を100rpm(回/分)とし、混練時間を3分とした。また、パンペレタイザーは、直径が5mであり、回転数を8rpmとし、傾斜角度を57度とした。
ここで、使用した2種類の粉コークスの粒度分布を表1、表2に、消石灰の粒度分布を表3に、それぞれ示す。
First, the manufacturing conditions of the surface-coated carbon material are shown below.
The surface-coated carbon material is prepared by supplying the above-mentioned slaked lime and powdered coke (carbon material) to a Redige mixer (kneading machine) and kneading, then supplying this kneaded material to a pan pelletizer and adding water to granulate And slaked lime was attached to the surface of the powder coke. The Redige mixer had an internal volume of 8 m 3 , the rotational speed of the rotating blades during kneading was 100 rpm (times / min), and the kneading time was 3 minutes. The pan pelletizer had a diameter of 5 m, a rotational speed of 8 rpm, and an inclination angle of 57 degrees.
Here, the particle size distributions of the two types of powder coke used are shown in Tables 1 and 2, and the particle size distribution of slaked lime is shown in Table 3, respectively.

Figure 0005510361
Figure 0005510361

Figure 0005510361
Figure 0005510361

Figure 0005510361
Figure 0005510361

また、上記した表面被覆炭材を除いた焼結鉱の配合原料は、ドラムミキサーを用いて混合し、更に造粒機により4分間造粒した。なお、造粒時の添加水分は、上記した配合原料量の6.3質量%である。
そして、この造粒後の配合原料に、上記した表面被覆炭材を添加し混合して、鍋試験の試料に使用した。なお、鍋試験においては、上記した混合原料の層厚を500mm、下方からの吸引風量を1.2Nm/分、焼結温度を1300℃とした。
この鍋試験に際し、NOxの測定は、(株)島津製作所の常圧式化学発光方式の測定器を用いて行った。
Moreover, the compounding raw material of the sintered ore except the above-mentioned surface covering carbon material was mixed using the drum mixer, and also granulated for 4 minutes with the granulator. In addition, the addition water | moisture content at the time of granulation is 6.3 mass% of an above-described mixing | blending raw material amount.
And the above-mentioned surface covering carbon material was added and mixed with the compounding raw material after this granulation, and it used for the sample of the pan test. In the pot test, the layer thickness of the mixed raw material was 500 mm, the suction air volume from below was 1.2 Nm 3 / min, and the sintering temperature was 1300 ° C.
During the pan test, NOx was measured using a normal pressure chemiluminescence measuring instrument manufactured by Shimadzu Corporation.

上記した試験条件と試験結果を、表4に示す。なお、表4中の粉コークスの粒度に記載のNo.1は表1の粉コークスに、No.2は表2の粉コークスに、それぞれ該当し、表4中の消石灰の粒度に記載のNo.3は表3の消石灰に該当する。また、表4中の消石灰の配合割合に記載した括弧「( )」内の数値は、粉コークス100に対する割合(質量%)を表している。そして、表4中の水分の欄に記載した持込み水分量、添加水分量、及び製品水分量は、それぞれ乾燥状態の表面被覆炭材(消石灰及び炭材)100に対する割合(質量%:外掛け)で示している((製品水分量)=(持込み水分量)+(添加水分量))。 Table 4 shows the test conditions and test results described above. In addition, No. described in the particle size of the powder coke in Table 4 No. 1 corresponds to No. 1 in the powder coke of Table 1. No. 2 corresponds to the powder coke in Table 2, and No. 2 described in the particle size of slaked lime in Table 4 respectively. 3 corresponds to the slaked lime in Table 3. Moreover, the numerical value in the parenthesis “()” described in the blending ratio of slaked lime in Table 4 represents the ratio (mass%) with respect to the powder coke 100. And the brought-in water amount, the added water amount, and the product water amount described in the column of moisture in Table 4 are ratios (mass%: outer coating) to the surface-coated carbon material (slaked lime and carbon material) 100 in the dry state, respectively. ((Product water content) = (carrying water content) + (added water content)).

Figure 0005510361
Figure 0005510361

表4に示す実施例1〜実施例5は、被覆させる消石灰量を、粉コークスに対し2〜30質量%の範囲内とし、かつ表面被覆炭材の製品水分量を12.0〜15.5質量%の範囲内とした結果である。これにより、消石灰の被覆層厚が5〜500μmとなる表面被覆炭材の歩留りを60質量%以上にすることができ、その結果、発生するNOx量を5濃度%以上低下させることができた。
ここで、実施例1〜実施例3のように、表面被覆炭材の製品水分量を、より好ましい13.5〜15.0質量%の範囲内とすることで、消石灰の被覆層厚が5〜500μmとなる表面被覆炭材の歩留りを90質量%以上にすることができ、発生するNOx量を10濃度%低下させることができた。
In Examples 1 to 5 shown in Table 4, the amount of slaked lime to be coated is in the range of 2 to 30% by mass with respect to the powdered coke, and the product moisture content of the surface-coated carbon material is 12.0 to 15.5. It is the result made into the range of the mass%. As a result, the yield of the surface-coated carbonaceous material having a slaked lime coating layer thickness of 5 to 500 μm can be increased to 60% by mass or more, and as a result, the amount of NOx generated can be reduced by 5% by concentration or more.
Here, like Example 1- Example 3, the coating layer thickness of slaked lime is 5 by making the product moisture content of a surface covering carbon material into the more preferable range of 13.5-15.0 mass%. The yield of the surface-coated carbonaceous material having a thickness of ˜500 μm could be 90% by mass or more, and the amount of NOx generated could be reduced by 10 concentration%.

一方、比較例1、2は、表面被覆炭材の製品水分量を、12.0〜15.5質量%の範囲外(比較例1:11.0質量%、比較例2:16.0質量%)とした結果であるが、水分量が不足し又は過剰となり、被覆層が適正厚みとなる表面被覆炭材の歩留が低く、炭材表面の消石灰によるNOx抑制効果がほとんど得られなかった。
また、比較例3は、被覆させる消石灰量を、粉コークスに対し2〜30質量%の範囲外である2質量%未満(1.5質量%)とした結果であるが、消石灰量が少な過ぎて粉コークス表面全体を包囲する十分な被覆層の形成が難しくなった。その結果、粉コークス表面の一部が露出し、低温域での大気中の酸素の遮断によるNOx低減効果が得られなかった。
更に、比較例4は、被覆させる消石灰量を、粉コークスに対し2〜30質量%の範囲外である30質量%超(35.0質量%)とした結果であるが、消石灰量が多過ぎて被覆層厚が厚くなり過ぎ、燃焼性が悪くなって焼結の生産性が損なわれた。
On the other hand, in Comparative Examples 1 and 2, the product moisture content of the surface-coated carbonaceous material is outside the range of 12.0 to 15.5% by mass (Comparative Example 1: 11.0% by mass, Comparative Example 2: 16.0% by mass). %), But the moisture content was insufficient or excessive, the yield of the surface-coated carbon material with the coating layer having an appropriate thickness was low, and the NOx suppression effect by slaked lime on the carbon material surface was hardly obtained. .
Moreover, although the comparative example 3 is a result which made the amount of slaked lime to coat | cover less than 2 mass% (1.5 mass%) which is outside the range of 2-30 mass% with respect to powder coke, there is too little amount of slaked lime. Therefore, it is difficult to form a sufficient coating layer surrounding the entire surface of the powder coke. As a result, part of the surface of the powder coke was exposed, and the NOx reduction effect due to the blocking of atmospheric oxygen in a low temperature range could not be obtained.
Furthermore, although the comparative example 4 is a result which made the amount of slaked lime to coat | cover exceed 30 mass% (35.0 mass%) which is outside the range of 2-30 mass% with respect to powder coke, there is too much amount of slaked lime. As a result, the coating layer thickness became too thick, the flammability deteriorated, and the productivity of sintering was impaired.

なお、実施例2は、消石灰量を粉コークスに対し2.5質量%まで低減させた結果であるが、表面被覆炭材の歩留りと発生するNOx量を、消石灰量を粉コークスに対し15.0質量%とした実施例3と、同程度にすることができた。これは、実施例2が、表1に記載の粒度を備える粉コークスNo.1、即ち粒径0.25mm未満の累積質量が20質量%以下であり、粒径0.25mm以上3mm以下の累積質量が40質量%以上の粉コークスを使用し、実施例3と比較して、微粉コークスの混入量を低減したことによる。
以上のことから、本発明の焼結鉱の製造方法を使用することで、低温領域でのNOxの発生を経済的に抑制できることを確認できた。
In addition, although Example 2 is a result of having reduced the amount of slaked lime to 2.5 mass% with respect to the powder coke, the yield of the surface-coated carbon material and the amount of NOx generated are 15. It was possible to achieve the same level as in Example 3 where the content was 0% by mass. This is because powder coke No. 2 in Example 2 having the particle sizes shown in Table 1 was obtained. 1, that is, the cumulative mass with a particle size of less than 0.25 mm is 20% by mass or less, and the coke with a particle size of 0.25 mm or more and 3 mm or less is 40% by mass or more, and compared with Example 3. This is because the amount of fine coke mixed is reduced.
From the above, it has been confirmed that the use of the sintered ore production method of the present invention can economically suppress the generation of NOx in a low temperature region.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の焼結鉱の製造方法を構成する場合も本発明の権利範囲に含まれる。 As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, the case where the sintered ore production method of the present invention is configured by combining a part or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.

Claims (2)

炭材表面に消石灰を、該炭材に対する質量%で2質量%以上30質量%以下の割合で被覆した表面被覆炭材を用いる焼結鉱の製造方法であって、
前記表面被覆炭材の製品水分量が12.0質量%以上15.5質量%以下となるように、前記炭材及び前記消石灰に水分を添加して造粒し、該消石灰の被覆層厚が5μm以上500μm以下である前記表面被覆炭材を製造することを特徴とする焼結鉱の製造方法。
A method for producing a sintered ore using a surface-coated carbon material in which slaked lime is coated on the carbon material surface at a ratio of 2% by mass to 30% by mass with respect to the carbon material,
The carbon material and the slaked lime are granulated by adding moisture so that the product moisture content of the surface-coated carbon material is 12.0% by mass or more and 15.5% by mass or less, and the coating layer thickness of the slaked lime is A method for producing a sintered ore, comprising producing the surface-coated carbon material having a size of 5 μm or more and 500 μm or less .
請求項記載の焼結鉱の製造方法において、前記炭材の粒度は、粒径0.25mm未満の累積質量が20質量%以下であり、粒径0.25mm以上3mm以下の累積質量が40質量%以上であることを特徴とする焼結鉱の製造方法。 In the manufacturing method of the sintered ore according to claim 1 , as for the particle size of the carbonaceous material, the cumulative mass having a particle size of less than 0.25 mm is 20% by mass or less, and the cumulative mass having a particle size of 0.25 mm to 3 mm is 40%. The manufacturing method of the sintered ore characterized by being more than the mass%.
JP2011036207A 2011-02-22 2011-02-22 Method for producing sintered ore Active JP5510361B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011036207A JP5510361B2 (en) 2011-02-22 2011-02-22 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011036207A JP5510361B2 (en) 2011-02-22 2011-02-22 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2012172206A JP2012172206A (en) 2012-09-10
JP5510361B2 true JP5510361B2 (en) 2014-06-04

Family

ID=46975401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011036207A Active JP5510361B2 (en) 2011-02-22 2011-02-22 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP5510361B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6331557B2 (en) * 2014-03-26 2018-05-30 新日鐵住金株式会社 Method for producing sintered ore
JP6880951B2 (en) * 2016-09-21 2021-06-02 日本製鉄株式会社 Manufacturing method of coal-containing agglomerate and coal-containing agglomerate
KR102177527B1 (en) * 2018-08-02 2020-11-11 주식회사 포스코 Method for pretreating binding material for sintering, apparatus for pretreating binding material for sintering and manufacturing method of sintered ore

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114302A (en) * 1975-04-02 1976-10-08 Nippon Steel Corp Method of pre-processing sintered material for louering nox
JPS5384801A (en) * 1976-12-30 1978-07-26 Nippon Steel Corp Operating method for sintering in which generation of nitrogen oxides is suppressed
JPS55107739A (en) * 1979-02-14 1980-08-19 Kawasaki Steel Corp Sintering method with decrease of nitrogen oxide
JPS5893794A (en) * 1981-12-01 1983-06-03 Nippon Steel Corp Preparation of powder coke for sintering iron ore
JPS6256533A (en) * 1985-09-06 1987-03-12 Nippon Kokan Kk <Nkk> Method for pelletizing mixed material for sintering

Also Published As

Publication number Publication date
JP2012172206A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
KR101311575B1 (en) Process for production of sintered mineral
CN102372496A (en) Material formula for preparing gasification furnace slag ceramisite and production method of ceramisite
JP2007113086A (en) Method for granulating raw material to be sintered
JP5454503B2 (en) Carbon material reforming equipment
JP5510361B2 (en) Method for producing sintered ore
JP5423611B2 (en) Method for producing sintered ore
JP5617766B2 (en) Carbon material reforming equipment
JP5817629B2 (en) Method for producing sintered ore using finely granulated carbon
JP5703913B2 (en) Method for producing sintered ore
JP4887730B2 (en) Binder for granulation of sintering raw material and granulation method
JP6459724B2 (en) Method for producing sintered ore
JP5747675B2 (en) Carbon material reforming equipment
JP5598439B2 (en) Method for producing sintered ore
JP5621653B2 (en) A modified coal for producing sintered ore and a method for producing a sintered ore using the modified coal.
JP2006290925A (en) Granular fuel for sintering and method for producing the same
JP4241285B2 (en) Method for producing semi-reduced sintered ore
JP6885164B2 (en) Sintered ore manufacturing method
JP2012092384A (en) Method of manufacturing sintered ore
JP2019143183A (en) Method for manufacturing molding and sintering raw material and method for manufacturing sintered ore
JP5454501B2 (en) Carbon material reforming equipment
JP5733075B2 (en) Method for producing sintered ore
JP7187971B2 (en) Method for producing sintered ore
JP3709001B2 (en) Non-fired agglomerated ore for iron making and method of using the same
JP7456560B1 (en) Method for producing carbonaceous material for sintering, sintered ore, and carbonaceous material for sintering
JP6167852B2 (en) Method for producing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140310

R151 Written notification of patent or utility model registration

Ref document number: 5510361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350