JP2012170938A - Nickel chromium alloy catalyst and manufacturing method thereof - Google Patents

Nickel chromium alloy catalyst and manufacturing method thereof Download PDF

Info

Publication number
JP2012170938A
JP2012170938A JP2011038133A JP2011038133A JP2012170938A JP 2012170938 A JP2012170938 A JP 2012170938A JP 2011038133 A JP2011038133 A JP 2011038133A JP 2011038133 A JP2011038133 A JP 2011038133A JP 2012170938 A JP2012170938 A JP 2012170938A
Authority
JP
Japan
Prior art keywords
nickel
catalyst
chromium alloy
alloy catalyst
nickel chromium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011038133A
Other languages
Japanese (ja)
Other versions
JP5773514B2 (en
Inventor
Makoto Hasegawa
誠 長谷川
Seiji Kawaguchi
誠司 河口
Masanari Yoshida
正就 吉田
Masahiko Demura
雅彦 出村
Tsugi Kyo
亜 許
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
National Institute for Materials Science
Original Assignee
Nachi Fujikoshi Corp
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp, National Institute for Materials Science filed Critical Nachi Fujikoshi Corp
Priority to JP2011038133A priority Critical patent/JP5773514B2/en
Publication of JP2012170938A publication Critical patent/JP2012170938A/en
Application granted granted Critical
Publication of JP5773514B2 publication Critical patent/JP5773514B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a nickel chromium alloy catalyst which is capable of maintaining a catalyst function for a long period of time at low cost, and to provide a manufacturing method thereof.SOLUTION: In the nickel chromium alloy catalyst, fine particles containing nickel and chromium are dispersed in a structure. The nickel chromium alloy catalyst can also contain a nickel chromium oxide (NiCrO) in the structure. Further, in the nickel chromium alloy catalyst, the fine particle can also contain nickel of 70 to 95 mass%. Regarding the manufacturing method of the nickel chromium alloy catalyst, the manufacturing method includes heat-treating the nickel chromium alloy catalyst to an activation temperature under the atmosphere of water vapor and hydrocarbon-based gas. Moreover, before heating treatment, oxidization treatment and reduction treatment can also be performed.

Description

本発明は、メタンガス等の炭化水素系ガスより水素を取り出すニッケルクロム合金触媒およびその製造方法に関する。   The present invention relates to a nickel chromium alloy catalyst for extracting hydrogen from a hydrocarbon-based gas such as methane gas and a method for producing the same.

近年、二酸化炭素の排出量削減を目的として化石燃料に替わる多種多様なクリーンエネルギーが開発されている。中でも、水素を燃料源とする燃料電池は天然ガスから水素を取り出して(発生させて)水のみを排出するという点で注目を集めている。燃料電池の主な用途は自動車用や家庭用であり、特に家庭用燃料電池の普及は年々少しずつ広がっている。   In recent years, a variety of clean energy alternatives to fossil fuels have been developed to reduce carbon dioxide emissions. Among them, fuel cells using hydrogen as a fuel source are attracting attention because they extract hydrogen from natural gas (generate it) and discharge only water. The main uses of fuel cells are for automobiles and households, and the spread of household fuel cells is gradually expanding year by year.

しかし、燃料電池に内蔵されており、炭化水素系ガスから水素を取り出す役割を果たす触媒には白金またはルテニウムが主に使用されていることから、比較的高価な金属材料を使用するので燃料電池価格の高騰にむすびついているという問題があった。そのため、従来からの白金やルテニウムと同等以上の転化率(炭化水素系ガスから水素が生成される割合)を有して、かつ比較的安価な触媒材料が求められてきた。   However, since platinum or ruthenium is mainly used as the catalyst that is built in the fuel cell and serves to extract hydrogen from hydrocarbon gas, the price of the fuel cell is relatively high. There was a problem of being tied to the soaring. Therefore, there has been a demand for a catalyst material having a conversion rate (ratio of hydrogen generated from hydrocarbon gas) equal to or higher than that of conventional platinum or ruthenium and relatively inexpensive.

そこで、特許文献1では安価な触媒材料としてニッケル基合金の一種であるニッケルアルミニウム(NiAl)合金触媒が開示されている。このニッケルアルミニウム合金触媒は、金属間化合物であるNiAlの組織中にニッケル(Ni)微粒子を分散させることが提案されている。この触媒は、メタノールまたは炭化水素系ガスと水蒸気との反応により水素を生成する触媒である。 Therefore, Patent Document 1 discloses a nickel aluminum (NiAl) alloy catalyst which is a kind of nickel-based alloy as an inexpensive catalyst material. This nickel aluminum alloy catalyst has been proposed to disperse nickel (Ni) fine particles in the structure of Ni 3 Al, which is an intermetallic compound. This catalyst is a catalyst which produces | generates hydrogen by reaction of methanol or hydrocarbon type gas, and water vapor | steam.

また、特許文献2では他のニッケル基合金として、燃料電池の触媒担持用炭素材料等の用途で使用されるニッケルクロム(NiCr)合金触媒が開示されている。このニッケルクロム合金触媒は、表面上に優れた電気的特性および化学的特性を有するカーボンナノチューブを生成させることを特徴とするものである。この表面組織(金属酸化物層)にはニッケル酸化物(NiO)とクロム酸化物(Cr)とが形成されており、触媒作用を有するニッケル(Ni)微粒子を分散することが提案されている。 In addition, Patent Document 2 discloses a nickel chromium (NiCr) alloy catalyst used for other applications such as a catalyst-supporting carbon material for a fuel cell as another nickel-based alloy. This nickel chromium alloy catalyst is characterized in that it produces carbon nanotubes having excellent electrical and chemical properties on the surface. In this surface structure (metal oxide layer), nickel oxide (NiO) and chromium oxide (Cr 2 O 3 ) are formed, and it is proposed to disperse nickel (Ni) fine particles having catalytic action. ing.

さらに、これらの触媒の製造方法については、特許文献1では触媒となるニッケルアルミニウム合金を酸化処理および還元処理する方法が開示されている。この酸化処理によりニッケルアルミニウム合金表面において触媒前駆体であるNiAlをニッケル酸化物およびアルミニウム酸化物とする。また、酸化処理に引続いて行う還元処理により、ニッケル酸化物をニッケル微粒子とする。このニッケル微粒子が主に触媒機能を果たす。 Furthermore, regarding the production methods of these catalysts, Patent Document 1 discloses a method of oxidizing and reducing nickel aluminum alloy as a catalyst. By this oxidation treatment, Ni 3 Al which is a catalyst precursor on the surface of the nickel aluminum alloy is converted into nickel oxide and aluminum oxide. Further, the nickel oxide is converted into nickel fine particles by a reduction process performed subsequent to the oxidation process. These nickel fine particles mainly perform a catalytic function.

特開2007−75799号JP 2007-75799 A 特開2007−262509号JP 2007-262509 A

しかし、特許文献1に開示されたニッケルアルミニウム合金触媒は組織中に金属間化合物であるNiAlを析出させておく必要がある。そのため、ニッケルアルミニウム合金触媒は製造時において前加工や熱処理などの特殊処理を必要とするので、製造の際にはコスト増および製造工数増になるという問題があった。 However, the nickel aluminum alloy catalyst disclosed in Patent Document 1 needs to deposit Ni 3 Al, which is an intermetallic compound, in the structure. For this reason, the nickel-aluminum alloy catalyst requires special treatment such as pre-processing and heat treatment at the time of production, and thus there is a problem that the cost and the number of production steps are increased at the time of production.

また、特許文献2に記載のニッケルクロム合金では表面上に形成するカーボンナノチューブは組織中のニッケル(Ni)微粒子を起点として成長する。そのため、触媒機能を主に担うニッケル微粒子と組織との密着性が弱い場合には、ニッケル微粒子が組織から容易に離脱して、時間と共に触媒機能が低下するという問題があった。 Further, in the nickel chromium alloy described in Patent Document 2, the carbon nanotubes formed on the surface grow from nickel (Ni) fine particles in the tissue as the starting point. Therefore, when the adhesion between the nickel fine particles mainly responsible for the catalytic function and the structure is weak, there is a problem that the nickel fine particles are easily detached from the structure and the catalytic function is lowered with time.

さらに、これらの触媒の製造方法については特許文献1に開示された方法、すなわち触媒の製造工程において酸化処理および還元処理で製造する場合には、前述した微粒子が組織中に現れる割合が少ない、若しくは微粒子が局所に偏在しているので長時間にわたって触媒機能が持続しないという問題があった。 Further, regarding the production method of these catalysts, when the production method is disclosed in Patent Document 1, that is, in the production process of the catalyst by oxidation treatment and reduction treatment, the above-mentioned fine particles appear in the structure in a small amount, or There is a problem that the catalyst function does not continue for a long time because the fine particles are unevenly distributed locally.

そこで、本発明においては前述した問題点に鑑みて、低コストで長時間にわたり触媒機能を持続できる水素生成用ニッケルクロム合金触媒およびその製造方法を提供することを課題とする。   In view of the above-described problems, an object of the present invention is to provide a nickel-chromium alloy catalyst for hydrogen generation that can maintain a catalytic function for a long time at a low cost and a method for producing the same.

本発明者は、かかる課題を解決するために従来の触媒材料であったニッケルアルミニウム合金やニッケルクロム合金などに代表されるニッケル基合金について鋭意研究した結果、ニッケルクロム合金において、その組織中にニッケルおよびクロムを含有する微粒子が分散していることが触媒材料として有効であることを知得した。   As a result of earnest research on nickel-base alloys such as nickel aluminum alloy and nickel chromium alloy which have been conventional catalyst materials in order to solve such problems, the present inventor has found that nickel in the structure of nickel chromium alloy. It was also found that the dispersion of fine particles containing chromium and chromium is effective as a catalyst material.

この知得により、本発明においては組織中にニッケルおよびクロムを含有する微粒子が分散しているニッケルクロム合金触媒とした。これによって本発明に係るニッケルクロム合金触媒は、その微粒子と組織との親和性が高くなり、ニッケルおよびクロムを含有する微粒子は組織中で化学的に安定する構造となる。その結果、特許文献2に記載されているカーボンナノチューブ等の炭素(C)の析出を抑制できる。   Based on this knowledge, in the present invention, a nickel chromium alloy catalyst in which fine particles containing nickel and chromium are dispersed in the structure is obtained. Thus, the nickel-chromium alloy catalyst according to the present invention has a high affinity between the fine particles and the structure, and the fine particles containing nickel and chromium have a structure that is chemically stable in the structure. As a result, the precipitation of carbon (C) such as carbon nanotubes described in Patent Document 2 can be suppressed.

また、請求項2に係る発明は、組織はニッケルクロム酸化物(NiCr)を有する組織であるニッケルクロム合金触媒とした。さらに、請求項3に係る発明は、ニッケルクロム合金触媒の組織中に分散している微粒子は70mass%以上95mass%以下のニッケルを含有する微粒子であるニッケルクロム合金触媒とした。 The invention according to claim 2 is a nickel chromium alloy catalyst whose structure is a structure having nickel chromium oxide (NiCr 2 O 4 ). Furthermore, the invention according to claim 3 is a nickel chromium alloy catalyst in which the fine particles dispersed in the structure of the nickel chromium alloy catalyst are fine particles containing 70 mass% or more and 95 mass% or less of nickel.

本発明に係るニッケルクロム合金触媒の製造方法については、請求項4に係る発明を水蒸気および炭化水素系ガスの雰囲気下において、ニッケルクロム合金触媒を活性化処理温度まで加熱処理するニッケルクロム合金触媒の製造方法とした。これにより、ニッケルクロム合金触媒の組織中に前述した微粒子が現れる割合が増加する。また、請求項5に係る発明を加熱処理前に酸化処理および還元処理を行うニッケルクロム合金触媒の製造方法とした。   Regarding the method for producing a nickel-chromium alloy catalyst according to the present invention, the nickel-chromium alloy catalyst according to the fourth aspect is a nickel-chromium alloy catalyst in which the nickel-chromium alloy catalyst is heat-treated up to an activation treatment temperature in an atmosphere of water vapor and hydrocarbon gas. It was set as the manufacturing method. This increases the proportion of the fine particles described above appearing in the structure of the nickel chromium alloy catalyst. The invention according to claim 5 is a method for producing a nickel chromium alloy catalyst in which oxidation treatment and reduction treatment are performed before heat treatment.

以上述べたように、本発明においては、組織中に、ニッケルおよびクロムを含有する微粒子が分散しているニッケルクロム合金触媒とした。これにより微粒子と組織との親和性が高くなり、ニッケルおよびクロムを含有する微粒子は組織中で化学的に安定する構造となる。その結果、微粒子が組織から抜け落ちにくく(離脱しにくく)、長時間にわたり触媒機能を十分に発揮できるという効果を奏する。 As described above, in the present invention, a nickel chromium alloy catalyst in which fine particles containing nickel and chromium are dispersed in the structure is used. This increases the affinity between the fine particles and the structure, and the fine particles containing nickel and chromium have a structure that is chemically stable in the structure. As a result, there is an effect that the fine particles are not easily removed from the tissue (not easily detached), and the catalyst function can be sufficiently exerted for a long time.

また、本発明に係るニッケルクロム合金触媒の製造方法については、蒸気および炭化水素系ガスの雰囲気下において、ニッケルクロム合金触媒を活性化処理温度まで加熱処理するニッケルクロム合金触媒の製造方法とする。これにより、組織中に前述の微粒子が現れる割合が増加するので、触媒機能が向上するという効果を奏する。その上、前述した特許文献1に記載されているニッケルアルミニウム合金触媒のように、前加工や特殊な熱処理も不要であるため低コストにて製造できるという効果も有する。 The method for producing a nickel chromium alloy catalyst according to the present invention is a method for producing a nickel chromium alloy catalyst in which a nickel chromium alloy catalyst is heated to an activation treatment temperature in an atmosphere of steam and hydrocarbon gas. As a result, the proportion of the above-mentioned fine particles appearing in the tissue is increased, so that the catalytic function is improved. In addition, unlike the nickel-aluminum alloy catalyst described in Patent Document 1 described above, pre-processing and special heat treatment are not required, so that it can be manufactured at low cost.

さらに、本発明に係るニッケルクロム合金触媒は、NiAl、NiAl、NiAlなどの金属間化合物を含有するニッケルアルミニウム合金触媒に比べて延性や展性に優れているので、箔状への圧延加工の他に、線材への加工も容易に行うことができる。したがって、加工した線材を編みこむことで織物状の触媒として生産できる他に、線材と線材間との目開きを自在に調節することで様々なメッシュサイズの網目状の触媒も生産できるという効果を奏する。 Furthermore, the nickel-chromium alloy catalyst according to the present invention is superior in ductility and malleability compared to nickel-aluminum alloy catalysts containing intermetallic compounds such as NiAl, Ni 3 Al, and Ni 5 Al 3, so that the foil shape is reduced. In addition to the rolling process, it is possible to easily process the wire. Therefore, in addition to being able to produce a woven catalyst by weaving the processed wire, it is also possible to produce mesh catalysts of various mesh sizes by freely adjusting the opening between the wire and the wire. Play.

本発明の実施例で用いた触媒処理システムの概略図である。It is the schematic of the catalyst processing system used in the Example of this invention. 実施例1における触媒反応試験終了後の触媒Aの表面組織(倍率:10000倍)である。It is the surface structure (magnification: 10000 times) of the catalyst A after completion of the catalytic reaction test in Example 1. 実施例1における触媒反応試験終了後の触媒Bの表面組織(倍率:10000倍)である。It is the surface structure (magnification: 10000 times) of the catalyst B after completion | finish of the catalytic reaction test in Example 1. FIG.

本発明の実施の形態について、以下に詳細に説明する。本発明に係るニッケルクロム合金触媒は、組織(表面組織)中にニッケルおよびクロムを含有する微粒子が分散しているニッケルクロム合金触媒とした。本発明者は、ニッケルおよびクロムを含有する微粒子が組織中で化学的に安定する理由として以下のように考える。 Embodiments of the present invention will be described in detail below. The nickel chromium alloy catalyst according to the present invention is a nickel chromium alloy catalyst in which fine particles containing nickel and chromium are dispersed in the structure (surface structure). The present inventor considers that the reason why the fine particles containing nickel and chromium are chemically stable in the tissue is as follows.

すなわち、組織中にニッケルのみから成る微粒子が分散している場合には、微粒子と組織とでは異種金属同士であることから、その境界部分は化学的また電気的に不安定である。そのため、触媒として使用する際の高温雰囲気やメタンガス等の炭化水素ガス雰囲気に晒されると、微粒子が組織から容易に脱落し、触媒機能を果たせなくなる。 That is, when fine particles made only of nickel are dispersed in the structure, the boundary part is chemically and electrically unstable because the fine particles and the structure are dissimilar metals. For this reason, when exposed to a high-temperature atmosphere when used as a catalyst or a hydrocarbon gas atmosphere such as methane gas, the fine particles easily fall out of the structure and cannot perform the catalytic function.

ところが、本発明に係るニッケルクロム合金触媒は、分散している微粒子にはニッケルおよびクロムを含有しているため、微粒子は主に外周部において組織中のクロム酸化物(Cr)と親和性を高めると同時に、組織中のニッケル酸化物(NiO)とも親和性を高めている。そのため、微粒子中のクロムおよびニッケルが周囲の組織との関係で接着効果を発揮するので、組織全体として化学的に安定した構造となっている。 However, since the nickel-chromium alloy catalyst according to the present invention contains nickel and chromium in the dispersed fine particles, the fine particles have an affinity for chromium oxide (Cr 2 O 3 ) in the structure mainly at the outer periphery. At the same time, the affinity with nickel oxide (NiO) in the structure is enhanced. Therefore, since chromium and nickel in the fine particles exert an adhesive effect in relation to the surrounding tissue, the entire structure has a chemically stable structure.

したがって、本発明に係るニッケルクロム合金触媒は、高温雰囲気や炭化水素系ガス雰囲気であっても微粒子が組織と強固に結びついており、触媒機能を長時間にわたり充分に発揮できると考える。 Therefore, the nickel-chromium alloy catalyst according to the present invention is considered that fine particles are firmly associated with the structure even in a high-temperature atmosphere or a hydrocarbon-based gas atmosphere, and the catalyst function can be sufficiently exhibited for a long time.

また、本発明に係るニッケルクロム合金触媒の製造方法については、水蒸気および炭化水素系ガスの雰囲気下において、ニッケルクロム合金触媒を活性化処理温度まで加熱処理するニッケルクロム合金触媒の製造方法とした。特に、加熱処理を水蒸気およびメタンやエタンなどの炭化水素系ガスの雰囲気下にて行うことで、前処理にて酸化処理や還元処理が行われていない場合であっても、加熱処理中に酸化反応および還元反応が同時に進行すると考えられる。 Moreover, about the manufacturing method of the nickel chromium alloy catalyst which concerns on this invention, it was set as the manufacturing method of the nickel chromium alloy catalyst which heat-processes a nickel chromium alloy catalyst to the activation process temperature in the atmosphere of water vapor | steam and hydrocarbon gas. In particular, by performing the heat treatment in an atmosphere of water vapor and a hydrocarbon gas such as methane or ethane, oxidation is performed during the heat treatment even when the oxidation treatment or reduction treatment is not performed in the pretreatment. It is considered that the reaction and the reduction reaction proceed simultaneously.

ここで、本願における活性化処理温度とは、メタンやエタンなどの活性化ガスによりニッケルクロム合金触媒を活性化処理する際の温度をいう。加熱処理については以下に説明する。 Here, the activation treatment temperature in the present application refers to a temperature at which the nickel chromium alloy catalyst is activated by an activation gas such as methane or ethane. The heat treatment will be described below.

加熱処理は、ニッケルクロム合金触媒を封入した大気雰囲気下または減圧雰囲気下の容器または炉内を常温から加熱することで行う。前処理として還元処理を行っている場合には、還元処理が一旦終了してからニッケルクロム合金触媒を封入した容器や炉内を再加熱することで行うこともできる。また、還元処理にてニッケルクロム合金触媒を封入した容器や炉内を加熱している状態であれば、昇温(加熱)または降温(冷却)することで還元処理から連続して行うこともできる。 The heat treatment is performed by heating a container or furnace in an air atmosphere or a reduced pressure atmosphere in which a nickel chromium alloy catalyst is sealed from room temperature. In the case where the reduction treatment is performed as the pretreatment, it can be performed by reheating the vessel or the furnace in which the nickel chromium alloy catalyst is sealed after the reduction treatment is once completed. Moreover, as long as the container and the furnace which enclosed the nickel chromium alloy catalyst by the reduction process are heated, it can also carry out continuously from a reduction process by temperature rising (heating) or temperature falling (cooling). .

活性化処理温度は、ニッケルクロム合金触媒の反応温度よりも高い温度で行うことが好ましい。反応温度とは触媒反応が進行する温度をいう。特に、本願においては水蒸気とメタンガスとの反応によって水素を発生させるためにニッケルクロム合金触媒が触媒として機能を発揮する特定の温度をいう。例えば、本発明に係るニッケルクロム合金触媒の反応温度、すなわち触媒反応を進行させる温度が700℃の場合には720℃や760℃など700℃を超える温度で予め加熱処理を行う。また、反応温度が900℃の場合には910℃や950℃など900℃を超える温度で予め加熱処理を行う。 The activation treatment temperature is preferably higher than the reaction temperature of the nickel chromium alloy catalyst. The reaction temperature refers to the temperature at which the catalytic reaction proceeds. In particular, in the present application, it refers to a specific temperature at which the nickel chromium alloy catalyst functions as a catalyst in order to generate hydrogen by the reaction between water vapor and methane gas. For example, when the reaction temperature of the nickel chromium alloy catalyst according to the present invention, that is, the temperature at which the catalytic reaction proceeds is 700 ° C., the heat treatment is performed in advance at a temperature exceeding 700 ° C. such as 720 ° C. or 760 ° C. When the reaction temperature is 900 ° C., heat treatment is performed in advance at a temperature exceeding 900 ° C. such as 910 ° C. or 950 ° C.

すなわち、本発明における活性化処理温度はニッケルクロム合金触媒による触媒反応を進行させる温度(反応温度)によって定まる温度である。加熱時間は、本発明に係るニッケルクロム合金触媒全体が加熱温度に充分に到達する時間であることが好ましい。 That is, the activation treatment temperature in the present invention is a temperature determined by the temperature (reaction temperature) at which the catalytic reaction by the nickel chromium alloy catalyst proceeds. The heating time is preferably a time for the entire nickel chromium alloy catalyst according to the present invention to sufficiently reach the heating temperature.

なお、本発明に係るニッケルクロム合金触媒について組織にはニッケルクロム酸化物(NiCr)の他に、クロム酸化物(Cr)、ニッケル酸化物(NiO)や製造工程において微量の不可避的な不純物なども含まれるものとする。また、本発明に係るニッケルクロム合金触媒を改質器内に設置して使用する場合には、上述した反応温度を作動温度、運転温度および使用温度等と呼ぶこともできる。 In addition to the nickel chromium oxide (NiCr 2 O 4 ), the structure of the nickel chromium alloy catalyst according to the present invention includes chromium oxide (Cr 2 O 3 ), nickel oxide (NiO), and a trace amount in the production process. Inevitable impurities are also included. In addition, when the nickel chromium alloy catalyst according to the present invention is installed in a reformer and used, the above reaction temperature can be referred to as an operating temperature, an operating temperature, an operating temperature, or the like.

ニッケルクロム合金触媒のミクロ組織によるメタン転化率への影響を確認するために触媒反応試験を行った。その結果について表1および図1を用いて説明する。表1は触媒反応試験におけるニッケル基合金(ニッケルクロム合金およびニッケルクロム鉄合金)のメタン転化率(単位:%)の経時変化を示す。また、図1は本実施例で用いた触媒処理システムの概略図を示す。 In order to confirm the influence of the microstructure of the nickel chromium alloy catalyst on the methane conversion rate, a catalytic reaction test was conducted. The results will be described with reference to Table 1 and FIG. Table 1 shows the change over time of the methane conversion rate (unit:%) of nickel-base alloys (nickel-chromium alloy and nickel-chromium iron alloy) in the catalytic reaction test. FIG. 1 is a schematic view of the catalyst processing system used in this example.

ここで、メタン転化率とは触媒反応中に供給したメタン量に対する水素発生に寄与したメタン量の割合をいう。具体的には、図1に示すガスクロマトグラフ4およびフローメータ8により測定されたCO量(mL/min)、CO量(mL/min)およびCH量(mL/min)を用いて、
メタン転化率(%)=(CO量+CO量)/(CO量+CO量+CH量)×
100
の式に基づいて算出した。
Here, the methane conversion rate refers to the ratio of the amount of methane that contributed to hydrogen generation to the amount of methane supplied during the catalytic reaction. Specifically, using the CO amount (mL / min), CO 2 amount (mL / min), and CH 4 amount (mL / min) measured by the gas chromatograph 4 and the flow meter 8 shown in FIG.
Methane conversion rate (%) = (CO amount + CO 2 amount) / (CO amount + CO 2 amount + CH 4 amount) ×
100
Based on the formula of

また、本試験に用いた試料は本発明に係るニッケルクロム合金(組成は重量%で、ニッケル80%、クロム20%)および比較材としてのニッケルクロム鉄合金(インコネル(登録商標)600、組成は重量%でニッケル76%、クロム16%、鉄8%)とした。ニッケルクロム合金およびニッケルクロム鉄合金は共に塊状のニッケルクロム合金およびニッケルクロム鉄合金を幅5mm、長さ200mm、厚さ0.03mmの箔状に圧延加工した後、渦巻き形状にしたものを触媒(試料)として使用した。 In addition, the samples used in this test are the nickel chromium alloy according to the present invention (composition is 80% by weight, nickel 80%, chromium 20%) and a nickel chromium iron alloy (Inconel (registered trademark) 600, composition) (% By weight nickel 76%, chromium 16%, iron 8%). Both the nickel chromium alloy and the nickel chromium iron alloy are formed by rolling a massive nickel chromium alloy and nickel chromium iron alloy into a foil shape having a width of 5 mm, a length of 200 mm, and a thickness of 0.03 mm, and then forming a spiral shape as a catalyst ( Sample).

本試験に用いた本発明に係るニッケルクロム合金を触媒Aとし、比較材であるニッケルクロム鉄合金(インコネル(登録商標)600)を触媒Bとする。また、本試験は酸化処理および還元処理による前処理を行った後、ガス量の測定を行った。本試験における各処理の手順について以下に説明する。   The nickel chrome alloy according to the present invention used in this test is referred to as catalyst A, and the nickel chrome iron alloy (Inconel (registered trademark) 600) as a comparative material is referred to as catalyst B. In this test, the amount of gas was measured after pretreatment by oxidation treatment and reduction treatment. The procedure of each process in this test will be described below.

最初に酸化処理の手順から説明する。図1に示すように試料1の上下方向に厚さ約10mmの石英ウール10を内径8mmの石英管2内に装填する。その後、毎分30mLの割合で図示しない窒素ボンベより蒸発器9を通して窒素ガスを石英管2内へ供給しながら、石英管2の外周面をアルミニウムブロック炉3に内蔵した電熱ヒータにより毎分15℃の昇温速度で600℃になるまで加熱した。石英管2内に水素が残留していないことをガスクロマトグラフ4により確認した後、毎分20μLの純水を純水収容部5よりポンプ6を経由して蒸発器9にて気化した水蒸気を石英管2内へ60分間追加供給した。その後に水蒸気の供給を止めた。 First, the oxidation treatment procedure will be described. As shown in FIG. 1, a quartz wool 10 having a thickness of about 10 mm is loaded into a quartz tube 2 having an inner diameter of 8 mm in the vertical direction of the sample 1. Thereafter, while supplying nitrogen gas into the quartz tube 2 through the evaporator 9 from a nitrogen cylinder (not shown) at a rate of 30 mL / minute, the outer peripheral surface of the quartz tube 2 is 15 ° C./minute by an electric heater built in the aluminum block furnace 3. It heated until it reached 600 degreeC with the temperature increase rate. After confirming that no hydrogen remains in the quartz tube 2 by the gas chromatograph 4, 20 μL / min of pure water is vaporized in the evaporator 9 from the pure water storage unit 5 via the pump 6. An additional 60 minutes was fed into tube 2. Thereafter, the supply of water vapor was stopped.

次に、還元処理の手順を説明する。上述の酸化処理にて水蒸気の供給を止めた後、窒素ガスの供給を毎分5mLの割合まで減らした状態で、図示しない水素ガスボンベより蒸発器9を通して新たに水素ガスを毎分30mLの割合で石英管2内へ60分間供給し続けた。その後、水素ガスの供給を止めて石英管2内に残留した水素がないことをガスクロマトグラフ4により確認した。本処理中の石英管2の温度は終始600℃で保持した。   Next, the procedure of the reduction process will be described. After stopping the supply of water vapor in the above-described oxidation treatment, with the supply of nitrogen gas reduced to a rate of 5 mL / min, hydrogen gas is newly supplied at a rate of 30 mL / min from the hydrogen gas cylinder (not shown) through the evaporator 9. The supply into the quartz tube 2 was continued for 60 minutes. Thereafter, the supply of hydrogen gas was stopped, and it was confirmed by gas chromatograph 4 that there was no hydrogen remaining in the quartz tube 2. The temperature of the quartz tube 2 during this treatment was kept at 600 ° C. throughout.

触媒反応により発生する種々のガスの測定方法は、還元処理にて石英管2の温度が600℃になっているので、石英管2の温度を800℃まで昇温しながら窒素ガスを毎分30mL、メタンガスを毎分25mL、水蒸気を毎分25mL(純水量として20μL)の各割合で石英管2内へ供給し続ける。石英管2の温度が800℃に達して、30分間保持した後に石英管2から排出されるCO(一酸化炭素)、CO(二酸化炭素)、CH(メタン)などの全てのガス量の測定をコールドトラップ7に通した後にフローメータ8を用いて測定を開始した。 In the method for measuring various gases generated by the catalytic reaction, the temperature of the quartz tube 2 is reduced to 600 ° C. in the reduction process, so that the temperature of the quartz tube 2 is raised to 800 ° C. and nitrogen gas is supplied at 30 mL / min. Then, methane gas is continuously supplied into the quartz tube 2 at a rate of 25 mL / min and water vapor at a rate of 25 mL / min (20 μL as the amount of pure water). After the temperature of the quartz tube 2 reaches 800 ° C. and held for 30 minutes, all the gas amounts such as CO (carbon monoxide), CO 2 (carbon dioxide), CH 4 (methane), etc. discharged from the quartz tube 2 After passing the measurement through the cold trap 7, the measurement was started using the flow meter 8.

Figure 2012170938
Figure 2012170938

表1は上述したように触媒AおよびBにおいて全てのガス量の測定開始から20分〜1200分(20時間)経過時までのメタン転化率(%)の変化を示すものである。本発明に係る触媒Aの場合は、表1に示すように測定開始から20分経過後はメタン転化率が23.4%であり、その後120分(2時間)経過後では15.0%であり、20分経過時の場合のメタン転化率の3分の2まで低下した。しかし、測定開始から1200分(20時間)経過後でもメタン転化率は12.4%であり、120分経過時以降のメタン転化率の低下はわずか2.6%に留まった。   Table 1 shows the change in methane conversion rate (%) from the start of measurement of all gas amounts in Catalysts A and B, as described above, from the lapse of 20 minutes to 1200 minutes (20 hours). In the case of the catalyst A according to the present invention, as shown in Table 1, the methane conversion is 23.4% after 20 minutes from the start of the measurement, and 15.0% after 120 minutes (2 hours). Yes, it decreased to 2/3 of the methane conversion when 20 minutes had passed. However, the methane conversion rate was 12.4% even after 1200 minutes (20 hours) had elapsed from the start of the measurement, and the decrease in the methane conversion rate after only 120 minutes elapsed was only 2.6%.

これに対して、比較材である触媒Bは表1に示すように20分経過時のメタン転化率は6.5%であり、すでに触媒Aのメタン転化率に比べて4分の1の値であった。その後、測定開始から120分経過時は4.2%であり、840分経過時には触媒BからCOおよびCOが発生しなくなった。したがって最終的にはメタン転化率は0になった。それ以降、メタン転化率が変化することはなかった。 On the other hand, as shown in Table 1, the comparative material catalyst B has a methane conversion rate of 6.5% after 20 minutes, which is already a quarter of the methane conversion rate of catalyst A. Met. Thereafter, it was 4.2% when 120 minutes had elapsed from the start of measurement, and CO and CO 2 were not generated from catalyst B when 840 minutes had elapsed. Therefore, the methane conversion finally became zero. Since then, the methane conversion has not changed.

ここで、触媒AおよびBのミクロ組織と触媒機能との関連性について考察する。本試験を終了した触媒AおよびBを常温まで冷却された石英管から取り出して、これらの表面組織を電子顕微鏡により観察した(倍率:10000倍)。その結果を図2および図3に示す。本発明に係る触媒Aの表面組織は、図2に示すように主にクロム酸化物(Cr)から成る組織中に最大粒径が1μm未満の微粒子が多数分散している組織であった。また、この微粒子はEPMA(電子線マイクロアナライザ)により分析した結果、ニッケルおよびクロムを含有している構造であった。さらに、微粒子を構成する元素をいくつか詳細に分析した結果、ニッケルが70mass%以上95mass%以下、クロムが5mass%以上12mass%以下の範囲にあることが判明した。 Here, the relationship between the microstructure of the catalysts A and B and the catalyst function will be considered. Catalysts A and B for which this test was completed were taken out from the quartz tube cooled to room temperature, and their surface texture was observed with an electron microscope (magnification: 10,000 times). The results are shown in FIG. 2 and FIG. As shown in FIG. 2, the surface structure of the catalyst A according to the present invention is a structure in which many fine particles having a maximum particle size of less than 1 μm are dispersed in a structure mainly composed of chromium oxide (Cr 2 O 3 ). It was. The fine particles were analyzed by EPMA (electron beam microanalyzer), and as a result, they had a structure containing nickel and chromium. Furthermore, as a result of detailed analysis of some elements constituting the fine particles, it has been found that nickel is in the range of 70 mass% to 95 mass% and chromium is in the range of 5 mass% to 12 mass%.

これに対して、比較材である触媒Bの表面組織は、図3に示すように主にクロム酸化物(Cr)から成る組織中に最大粒径が2μm未満の微粒子および鉄を固溶したニッケルのみから成る粒径10μm以上の凝集物が存在していた。触媒Bにおける凝集物が時間と共に粒成長するかもしくは消滅すると、触媒Aのような組織中に微粒子が多数分散している場合に比べて、触媒B表面全体に占める凝集物の表面積の割合が減少するので、結果として触媒機能が時間と共に低下したと考えられる。 On the other hand, the surface structure of catalyst B, which is a comparative material, is composed of fine particles having a maximum particle size of less than 2 μm and iron in a structure mainly composed of chromium oxide (Cr 2 O 3 ) as shown in FIG. Aggregates having a particle size of 10 μm or more, which consisted only of dissolved nickel, were present. When the aggregate in the catalyst B grows or disappears with time, the ratio of the surface area of the aggregate to the entire surface of the catalyst B is reduced as compared with the case where many fine particles are dispersed in the structure like the catalyst A. Therefore, as a result, it is considered that the catalyst function has decreased with time.

以上の結果より、組織中にニッケルおよびクロムを含有する微粒子が分散しているニッケルクロム合金は、組織中に鉄を固溶したニッケルのみから成る凝集物が存在(または偏在)するニッケルクロム鉄合金に比べて、長時間にわたる触媒機能を発揮した。 From the above results, the nickel-chromium alloy in which fine particles containing nickel and chromium are dispersed in the structure is a nickel-chromium-iron alloy in which aggregates composed only of nickel in which the solid solution of iron is present (or unevenly distributed). Compared to, it demonstrated a long-term catalytic function.

次に、ニッケルクロム合金触媒の前処理によるメタン転化率への影響を確認するために触媒反応試験を行った。その結果について表2および図1を用いて説明する。表2は、触媒反応試験におけるニッケルクロム合金触媒のメタン転化率(単位:%)の経時変化を示す。   Next, a catalytic reaction test was conducted in order to confirm the influence of the pretreatment of the nickel chromium alloy catalyst on the methane conversion rate. The results will be described with reference to Table 2 and FIG. Table 2 shows the change over time of the methane conversion rate (unit:%) of the nickel chromium alloy catalyst in the catalytic reaction test.

メタン転化率は実施例1と同一式に基づいて算出した。また、本試験に用いたニッケルクロム合金触媒は、実施例1と同様に塊状のニッケルクロム合金(組成は重量%で、ニッケル80%、クロム20%)を幅5mm、長さ200mm、厚さ0.03mmの箔状に圧延加工した後、渦巻き形状にしたものを触媒(試料)として使用した。 The methane conversion was calculated based on the same formula as in Example 1. The nickel-chromium alloy catalyst used in this test was a lump-shaped nickel-chromium alloy (composition: wt.%, Nickel 80%, chromium 20%) as in Example 1, with a width of 5 mm, a length of 200 mm, and a thickness of 0. After rolling into a 0.03 mm foil, a spiral shape was used as a catalyst (sample).

本試験は、本発明の製造方法に係る水蒸気および炭化水素系ガスの雰囲気下で活性化処理温度まで加熱処理したニッケルクロム合金触媒(以下、触媒Cとする)と、従来からの製造方法である酸化処理および還元処理のみを行ったニッケルクロム合金触媒(以下、触媒Dとする)の2種類のニッケルクロム合金触媒を用いた。酸化処理および還元処理の手順や条件、そして触媒反応に伴い排出されるガス量の測定方法については実施例1と同様である。加熱処理の手順について以下に説明する。   This test is a nickel chrome alloy catalyst (hereinafter referred to as catalyst C) that has been heat-treated to an activation treatment temperature in an atmosphere of water vapor and hydrocarbon gas according to the production method of the present invention, and a conventional production method. Two types of nickel-chromium alloy catalysts (hereinafter referred to as catalyst D) subjected to only oxidation treatment and reduction treatment were used. The procedure and conditions of the oxidation treatment and the reduction treatment, and the method for measuring the amount of gas discharged with the catalytic reaction are the same as in the first embodiment. The procedure for the heat treatment will be described below.

加熱処理の手順は、図1に示す石英管2内へ窒素ガスを毎分30mLの割合で供給しながら、石英管2の温度が600℃になるまで毎分2.5℃の昇温速度で加熱した。石英管2の温度が600℃以降900℃までの間は、石英管2内へメタンガスを毎分25mLの割合で、水蒸気を毎分25mL(純水量として20μL)の割合で追加供給した。その後、石英管2内の温度が900℃に達して30分間保持したところで本試験の測定を開始した。 The heating process is performed at a rate of 2.5 ° C. per minute until the temperature of the quartz tube 2 reaches 600 ° C. while supplying nitrogen gas into the quartz tube 2 shown in FIG. 1 at a rate of 30 mL per minute. Heated. When the temperature of the quartz tube 2 was 600 ° C. to 900 ° C., methane gas was additionally supplied into the quartz tube 2 at a rate of 25 mL / min and water vapor was supplied at a rate of 25 mL / min (20 μL as the amount of pure water). Thereafter, when the temperature in the quartz tube 2 reached 900 ° C. and held for 30 minutes, the measurement of this test was started.

Figure 2012170938
Figure 2012170938

表2は上述したように触媒反応試験における測定開始から20分〜1200分(20時間)経過時までの触媒CおよびDのメタン転化率(%)の変化を示すものである。水蒸気およびメタンガスの雰囲気下で活性化処理温度まで加熱処理したニッケルクロム合金触媒(触媒C)は、表2に示すように測定開始から20分経過後はメタン転化率が49.2%であり、その後徐々にメタン転化率が上昇して120分(2時間)経過後には51.0%の最高値を示した。その後、メタン転化率は徐々に低下して900分(15時間)経過時には48.2%になり、1200分(20時間)経過後には46.7%になった。最終的には120分経過時の最高値(51.0%)よりも低下したが、わずか4.3%の低下幅であった。   Table 2 shows changes in the methane conversion rate (%) of the catalysts C and D from the start of measurement in the catalytic reaction test to the lapse of 20 minutes to 1200 minutes (20 hours) as described above. The nickel chromium alloy catalyst (catalyst C) heat-treated to the activation treatment temperature in an atmosphere of water vapor and methane gas has a methane conversion rate of 49.2% after 20 minutes from the start of measurement as shown in Table 2. Thereafter, the methane conversion rate gradually increased, and showed a maximum value of 51.0% after 120 minutes (2 hours). Thereafter, the methane conversion rate gradually decreased to 48.2% when 900 minutes (15 hours) elapsed, and to 46.7% after 1200 minutes (20 hours). Eventually, it was lower than the maximum value (51.0%) at the lapse of 120 minutes, but it was only 4.3%.

これに対して、酸化処理および還元処理のみ行ったニッケルクロム合金触媒(触媒D)は、表2に示すように20分経過時のメタン転化率は48.7%であり、触媒Cと同程度のメタン転化率であった。その後、メタン転化率は徐々に上昇して240分(4時間)経過時には52.6%の最高値を示した。この最高値も触媒Cの最高値51.0%と同程度であった。240分経過後はメタン転化率が徐々に低下して、最終的には1200分(20時間)経過時のメタン転化率は48.2%となった。これは、240分(4時間)経過時の最高値52.6%に比べて、わずか4.4%低下したに過ぎない。つまり、触媒Cの場合の低下幅である4.3%と同程度であった。 On the other hand, the nickel chromium alloy catalyst (catalyst D) subjected to only oxidation treatment and reduction treatment has a methane conversion rate of 48.7% after 20 minutes as shown in Table 2, which is about the same as the catalyst C. Methane conversion. Thereafter, the methane conversion rate gradually increased, and showed a maximum value of 52.6% after 240 minutes (4 hours). This maximum value was also about the same as the maximum value of catalyst C of 51.0%. After 240 minutes, the methane conversion gradually decreased, and finally the methane conversion after 1200 minutes (20 hours) was 48.2%. This is only 4.4% lower than the maximum value of 52.6% after 240 minutes (4 hours). That is, it was about the same as the reduction rate of 4.3% in the case of the catalyst C.

以上の結果より、水蒸気および炭化水素系ガスの雰囲気下で活性化処理温度まで加熱処理したニッケルクロム合金触媒は、酸化処理および還元処理のみを行ったニッケルクロム合金触媒と同等のメタン転化率を示した。すなわち、ニッケルクロム合金触媒を水蒸気および炭化水素系ガスの雰囲気下で活性化処理温度まで加熱処理したことにより従来の前処理であった酸化処理および還元処理を行わなくとも同等の触媒機能を発揮できる。したがって、本発明に係るニッケルクロム合金触媒の製造方法は、ニッケルクロム合金触媒の製造工数の削減および製造コストの低減という効果を有する。 From the above results, the nickel chrome alloy catalyst heat-treated to the activation temperature in the atmosphere of water vapor and hydrocarbon gas showed the same methane conversion rate as the nickel chrome alloy catalyst subjected only to oxidation treatment and reduction treatment. It was. That is, the nickel chrome alloy catalyst can be heated to the activation treatment temperature in an atmosphere of water vapor and hydrocarbon gas, and the same catalytic function can be exhibited without performing the oxidation treatment and reduction treatment, which are conventional pretreatments. . Therefore, the method for producing a nickel chromium alloy catalyst according to the present invention has the effect of reducing the number of manufacturing steps and the production cost of the nickel chromium alloy catalyst.

なお、本実施例では石英管2内の温度が900℃に達した後に本試験の測定を開始したが、900℃での加熱処理後に常温まで冷却して、その後に再び900℃へ加熱して測定を開始した場合でも本実施例と同様の結果が得られることは言うまでもない。また、本実施例では毎分2.5℃の昇温速度で加熱したが、昇温速度の如何に関わらず本実施例と同様の結果が得られることは言うまでもない。さらに、本実施例では炭化水素系ガスとしてメタンガスを用いたが、他にエタンガスやブタンガス等のガスを用いることもできる。 In this example, the measurement of this test was started after the temperature in the quartz tube 2 reached 900 ° C., but after the heat treatment at 900 ° C., it was cooled to room temperature and then heated again to 900 ° C. Needless to say, the same result as in this example can be obtained even when the measurement is started. Further, in this example, heating was performed at a temperature rising rate of 2.5 ° C. per minute, but it goes without saying that the same result as in this example can be obtained regardless of the temperature rising rate. Further, in this embodiment, methane gas is used as the hydrocarbon-based gas, but other gases such as ethane gas and butane gas can also be used.

次に、ニッケルクロム合金触媒に対する酸化処理および還元処理後の加熱処理による水素生成量およびメタン転化率の影響を確認するために水素生成量測定試験を行った。その結果について表3、表4および図1を用いて説明する。表3は本試験におけるニッケルクロム合金触媒のメタン転化率の経時変化を示し、表4は本試験におけるニッケルクロム合金触媒の水素生成量の経時変化を示す。 Next, in order to confirm the influence of the hydrogen generation amount and the methane conversion rate by the heat treatment after the oxidation treatment and reduction treatment on the nickel chromium alloy catalyst, a hydrogen production amount measurement test was conducted. The results will be described with reference to Tables 3 and 4 and FIG. Table 3 shows the change over time in the methane conversion rate of the nickel chromium alloy catalyst in this test, and Table 4 shows the change over time in the amount of hydrogen produced by the nickel chromium alloy catalyst in this test.

メタン転化率は実施例1に示す同一式に基づいて算出した。水素生成量については、図1に示すガスクロマトグラフ4およびフローメータ8により測定されたH量(水素量)から算出した。また、本試験に用いたニッケルクロム合金触媒は、実施例1の場合と同様に塊状のニッケルクロム合金(組成は重量%で、ニッケル80%、クロム20%)を幅5mm、長さ200mm、厚さ0.03mmの箔状に圧延加工した後、渦巻き形状にしたものを触媒(試料)として使用した。 The methane conversion was calculated based on the same formula shown in Example 1. The hydrogen production amount was calculated from the amount of H 2 (hydrogen amount) measured by the gas chromatograph 4 and the flow meter 8 shown in FIG. The nickel-chromium alloy catalyst used in this test was a bulky nickel-chromium alloy (composition: wt%, nickel 80%, chromium 20%), 5 mm wide, 200 mm long, thick, as in Example 1. After being rolled into a 0.03 mm foil, a spiral shape was used as a catalyst (sample).

本試験は、本発明の製造方法に係る酸化処理および還元処理の後に加熱処理を行ったニッケルクロム合金触媒(以下、触媒Eとする)と、従来からの製造方法による酸化処理および還元処理のみ行ったニッケルクロム合金触媒(以下、触媒Fとする)の2種類のニッケルクロム合金触媒を用いた。酸化処理および還元処理の手順や条件については実施例1と同様である。還元処理後の加熱処理の手順について以下に説明する。   In this test, only the nickel chromium alloy catalyst (hereinafter referred to as catalyst E) subjected to heat treatment after the oxidation treatment and reduction treatment according to the production method of the present invention, and only the oxidation treatment and reduction treatment by the conventional production method are performed. Two types of nickel chrome alloy catalysts (hereinafter referred to as catalyst F) were used. The procedure and conditions for the oxidation treatment and the reduction treatment are the same as those in the first embodiment. The procedure of the heat treatment after the reduction treatment will be described below.

加熱処理の手順は、還元処理にて図1に示す石英管2内に水素が残留していないことがガスクロマトグラフ4により確認した後、石英管2の温度が活性化処理温度(900℃)になるまで毎分2.5℃の昇温速度で加熱すると同時に、石英管2内への窒素ガスの供給を再び毎分30mLの割合まで増やした。また、純水収容部5からポンプ6を経由して蒸発器9により気化した水蒸気を毎分25mL(純水量として20μL)の割合で、蒸発器9を通してメタンガスを毎分25mLの割合で新たに供給した。石英管2の温度が900℃に達して30分間保持した後、触媒Eを800℃まで冷却して、水素生成量の測定を行うと同時にメタン転化率を算出した。また、本測定では触媒の反応温度を800℃として行った。 The heat treatment procedure is as follows. After the gas chromatograph 4 confirms that no hydrogen remains in the quartz tube 2 shown in FIG. 1 in the reduction treatment, the temperature of the quartz tube 2 becomes the activation treatment temperature (900 ° C.). At the same time, the temperature was increased at a rate of 2.5 ° C./min. At the same time, the supply of nitrogen gas into the quartz tube 2 was again increased to a rate of 30 mL / min. Further, water vapor evaporated by the evaporator 9 from the pure water storage section 5 via the pump 6 is newly supplied at a rate of 25 mL / min (20 μL as the amount of pure water), and methane gas is newly supplied at a rate of 25 mL / min through the evaporator 9. did. After the temperature of the quartz tube 2 reached 900 ° C. and held for 30 minutes, the catalyst E was cooled to 800 ° C., the amount of hydrogen produced was measured, and simultaneously the methane conversion was calculated. In this measurement, the reaction temperature of the catalyst was 800 ° C.

水素生成量の測定方法は、触媒Eについては、加熱処理にて石英管2の温度が900℃になっているので、石英管2の温度を800℃まで冷却した後に、加熱処理と同様の条件で窒素ガスを毎分30mLの割合で、メタンガスを毎分25mLの割合で、水蒸気を毎分25mL(純水量として20μL)の割合で石英管2内へ供給し続ける。同時に石英管2内で発生する水素ガスの割合をガスクロマトグラフ4により測定した。また、石英管2から排出されるCO(一酸化炭素)、CO(二酸化炭素)、CH(メタン)などの全てのガス量の測定は、排出されるガスをコールドトラップ7に通した後にフローメータ8を用いて測定した。触媒Fについては酸化処理および還元処理を行った後、石英管2を加熱して、その温度が800℃に到達すると、それ以降は触媒Eと同様の方法で測定した。 As for the method for measuring the hydrogen production amount, the temperature of the quartz tube 2 is 900 ° C. in the heat treatment for the catalyst E. Therefore, after the temperature of the quartz tube 2 is cooled to 800 ° C., the same conditions as in the heat treatment Then, nitrogen gas is continuously supplied into the quartz tube 2 at a rate of 30 mL / min, methane gas at a rate of 25 mL / min, and water vapor at a rate of 25 mL / min (20 μL as the amount of pure water). At the same time, the ratio of hydrogen gas generated in the quartz tube 2 was measured by a gas chromatograph 4. In addition, measurement of all gas amounts such as CO (carbon monoxide), CO 2 (carbon dioxide), and CH 4 (methane) discharged from the quartz tube 2 is performed after passing the discharged gas through the cold trap 7. Measurement was performed using a flow meter 8. The catalyst F was subjected to oxidation treatment and reduction treatment, and then the quartz tube 2 was heated. When the temperature reached 800 ° C., the measurement was performed in the same manner as the catalyst E thereafter.

Figure 2012170938
Figure 2012170938

表3は上述したように触媒EおよびFにおいて水素生成量の測定開始から20分〜1200分(20時間)経過時までのメタン転化率(%)の変化を示すものである。酸化処理および還元処理の後に水蒸気およびメタンガスの雰囲気下にて活性化処理温度(900℃)まで加熱処理を行ったニッケルクロム合金触媒である触媒Eの場合は、表3に示すように測定開始から20分経過後はメタン転化率が26.4%であった。その後、240分(4時間)経過後でも25.1%であり、20分経過時の場合に比べて1.3%程度の低下が見られた。そして、測定開始から1200分(20時間)経過後でもメタン転化率は24.6%であり、20分経過時の場合(26.4%)よりもメタン転化率がわずか1.8%程度低下しただけであった。   Table 3 shows the change in the methane conversion rate (%) from the start of measurement of the hydrogen production amount to 20 minutes to 1200 minutes (20 hours) in the catalysts E and F as described above. In the case of catalyst E, which is a nickel chromium alloy catalyst that has been subjected to heat treatment up to an activation treatment temperature (900 ° C.) in an atmosphere of water vapor and methane gas after oxidation treatment and reduction treatment, from the start of measurement as shown in Table 3. After 20 minutes, the methane conversion was 26.4%. After that, even after 240 minutes (4 hours), it was 25.1%, which was about 1.3% lower than when 20 minutes passed. And even after 1200 minutes (20 hours) from the start of measurement, the methane conversion rate is 24.6%, and the methane conversion rate is only about 1.8% lower than when 20 minutes have passed (26.4%). I just did it.

これに対して、酸化処理および還元処理のみ行ったニッケルクロム合金触媒である触媒Fは表3に示すように20分経過時のメタン転化率は23.4%であり、触媒Eと同程度のメタン転化率であった。しかし、測定開始から40分経過時は21.1%であり、240分経過時には12.6%まで低下して、20分経過時の約半分にまで低下した。その後、1200分経過時までメタン転化率は12.6%から12.4%までわずかに低下して、最終的には触媒Eのメタン転化率の半分程度にまで低下した。 On the other hand, as shown in Table 3, the catalyst F, which is a nickel chromium alloy catalyst subjected only to oxidation treatment and reduction treatment, has a methane conversion rate of 23.4% after 20 minutes, which is similar to that of the catalyst E. Methane conversion rate. However, it was 21.1% when 40 minutes had elapsed from the start of the measurement, decreased to 12.6% when 240 minutes elapsed, and decreased to about half that after 20 minutes. Thereafter, until 1200 minutes, the methane conversion rate decreased slightly from 12.6% to 12.4%, and finally decreased to about half of the methane conversion rate of catalyst E.

Figure 2012170938
Figure 2012170938

次に、表4は上述したように触媒EおよびFにおいて水素生成量の測定開始から20分〜1200分(20時間)経過時までの水素生成量(mL/min)の変化を示すものである。触媒Eは表4に示すように、測定開始から20分経過後は水素生成量が20.2mL/minであり、その後120分(2時間)経過後でも19.3mL/minであり、20分経過時の水素生成量に対して5%程度の低下が見られた。そして、測定開始から1200分(20時間)経過後も水素生成量は18.7mL/minであり、20分経過時の水素生成量に対して8%程度の低下であった。   Next, Table 4 shows the change in the hydrogen production amount (mL / min) from the start of measurement of the hydrogen production amount to 20 minutes to 1200 minutes (20 hours) in the catalysts E and F as described above. . As shown in Table 4, the catalyst E has a hydrogen production amount of 20.2 mL / min after 20 minutes from the start of measurement, and 19.3 mL / min even after 120 minutes (2 hours). A decrease of about 5% was observed with respect to the amount of hydrogen produced at the time. And even after 1200 minutes (20 hours) elapsed from the start of measurement, the hydrogen production amount was 18.7 mL / min, which was about 8% lower than the hydrogen production amount after 20 minutes.

これに対して、触媒Fは表4に示すように20分経過時の水素生成量は16.9mL/minであり、触媒Eの水素生成量に対してすでに約17%も下回る結果であった。また、40分経過時は14.6mL/minであり、240分経過時には7.4mL/minまで低下して、20分経過時の半分以下にまで低下した。その後、1200分経過時までメタン転化率は7.4mL/minから7.3mL/minまでわずかに低下した。最終的には、触媒Aの水素生成量の約40%に相当する量となった。 On the other hand, as shown in Table 4, the amount of hydrogen produced after 20 minutes was 16.9 mL / min as shown in Table 4, and the result was already about 17% lower than the amount of hydrogen produced by catalyst E. . Moreover, it was 14.6 mL / min at the time of 40-minute progress, fell to 7.4 mL / min at the time of 240-minute progress, and fell to half or less at the time of 20-minute progress. Thereafter, the methane conversion rate slightly decreased from 7.4 mL / min to 7.3 mL / min until 1200 minutes passed. Eventually, the amount was equivalent to about 40% of the amount of hydrogen produced by catalyst A.

ここで、触媒EおよびFのミクロ組織と水素生成量およびメタン転化率との関連性について考察する。実施例1の場合と同様に本試験を終了した触媒EおよびFを常温まで冷却した石英管から取り出して、これらの表面組織を電子顕微鏡、EPMA(電子線マイクロアナライザ)、XRD(X線回折機器)により観察、分析した。その結果、触媒Eの表面組織は、クロム酸化物(Cr)およびニッケルクロム酸化物(NiCr)を有する組織中に最大粒径が5μm未満の微粒子が多数分散している組織であった。また、この微粒子はEPMAにより分析した結果、実施例1の場合と同様にニッケルおよびクロムを含有している構造であった。 Here, the relationship between the microstructures of catalysts E and F, the amount of hydrogen produced, and the methane conversion rate will be considered. In the same manner as in Example 1, the catalysts E and F for which this test was completed were taken out from the quartz tube cooled to room temperature, and their surface textures were analyzed with an electron microscope, EPMA (electron beam microanalyzer), XRD (X-ray diffraction instrument). ) Was observed and analyzed. As a result, the surface structure of the catalyst E is a structure in which a large number of fine particles having a maximum particle size of less than 5 μm are dispersed in a structure having chromium oxide (Cr 2 O 3 ) and nickel chromium oxide (NiCr 2 O 4 ). Met. Further, as a result of analysis by EPMA, the fine particles had a structure containing nickel and chromium as in Example 1.

これに対して、触媒Fの表面組織は実施例1の触媒Aと同様に主にクロム酸化物(Cr)から成る組織中に最大粒径が5μm未満の微粒子が分散している組織であった。また、これらの微粒子はニッケルおよびクロムを含有していた。 On the other hand, the surface structure of the catalyst F is a structure in which fine particles having a maximum particle size of less than 5 μm are dispersed in a structure mainly composed of chromium oxide (Cr 2 O 3 ) as in the case of the catalyst A of Example 1. Met. These fine particles contained nickel and chromium.

以上の結果より、酸化処理および還元処理の後に水蒸気および炭化水素系ガスの雰囲気下にて活性化処理温度まで加熱処理を行ったニッケルクロム合金触媒、すなわちニッケルクロム酸化物(NiCr)を有する組織(表面組織)中にニッケルおよびクロムを含有する微粒子が分散しているニッケルクロム合金触媒は、酸化処理および還元処理のみを行ったニッケルクロム合金触媒に比べて、メタン転化率および水素生成量共に倍以上の触媒機能を発揮した。 From the above results, the nickel chrome alloy catalyst, that is, the nickel chrome oxide (NiCr 2 O 4 ) subjected to the heat treatment up to the activation treatment temperature in the atmosphere of water vapor and hydrocarbon gas after the oxidation treatment and the reduction treatment is obtained. Nickel-chromium alloy catalyst in which fine particles containing nickel and chromium are dispersed in the structure (surface structure) has a methane conversion rate and a hydrogen production amount compared to nickel-chromium alloy catalyst that has undergone only oxidation treatment and reduction treatment. Both exhibited more than double the catalytic function.

なお、本実施例では反応温度が800℃である場合に活性化処理温度を900℃として加熱処理を行い、水素生成量およびメタン転化率測定を行ったが、加熱処理の温度については800℃超の温度であれば、例えば820℃、850℃、880℃などの温度で加熱処理を行っても同様の効果が得られることは言うまでもない。
In this example, when the reaction temperature was 800 ° C., the heat treatment was performed at an activation treatment temperature of 900 ° C., and the amount of hydrogen generated and the methane conversion were measured. Needless to say, the same effect can be obtained even if the heat treatment is performed at a temperature of 820 ° C., 850 ° C., 880 ° C., or the like.

Claims (5)

組織中に、ニッケルおよびクロムを含有する微粒子が分散していることを特徴とするニッケルクロム合金触媒。   A nickel-chromium alloy catalyst characterized in that fine particles containing nickel and chromium are dispersed in the structure. 前記組織は、ニッケルクロム酸化物(NiCr)を有する組織であることを特徴とする請求項1に記載のニッケルクロム合金触媒。 The nickel-chromium alloy catalyst according to claim 1, wherein the structure is a structure having nickel chromium oxide (NiCr 2 O 4 ). 前記微粒子は、70mass%以上95mass%以下のニッケルを含有する微粒子であることを特徴とする請求項1または請求項2のいずれか1項に記載のニッケルクロム合金触媒。   The nickel-chromium alloy catalyst according to any one of claims 1 and 2, wherein the fine particles are fine particles containing 70 mass% or more and 95 mass% or less of nickel. 水蒸気および炭化水素系ガスの雰囲気下において、ニッケルクロム合金触媒を活性化処理温度まで加熱処理することを特徴とする請求項1ないし請求項3のいずれか1項に記載のニッケルクロム合金触媒の製造方法。   The nickel-chromium alloy catalyst according to any one of claims 1 to 3, wherein the nickel-chromium alloy catalyst is heat-treated up to an activation treatment temperature in an atmosphere of water vapor and hydrocarbon gas. Method. 前記加熱処理の前に酸化処理および還元処理を行うことを特徴とする請求項4に記載のニッケルクロム合金触媒の製造方法。   The method for producing a nickel chromium alloy catalyst according to claim 4, wherein an oxidation treatment and a reduction treatment are performed before the heat treatment.
JP2011038133A 2011-02-24 2011-02-24 Nickel-chromium alloy catalyst for hydrogen generation and method for producing the same Expired - Fee Related JP5773514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011038133A JP5773514B2 (en) 2011-02-24 2011-02-24 Nickel-chromium alloy catalyst for hydrogen generation and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011038133A JP5773514B2 (en) 2011-02-24 2011-02-24 Nickel-chromium alloy catalyst for hydrogen generation and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012170938A true JP2012170938A (en) 2012-09-10
JP5773514B2 JP5773514B2 (en) 2015-09-02

Family

ID=46974344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011038133A Expired - Fee Related JP5773514B2 (en) 2011-02-24 2011-02-24 Nickel-chromium alloy catalyst for hydrogen generation and method for producing the same

Country Status (1)

Country Link
JP (1) JP5773514B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192098A (en) * 2013-03-28 2014-10-06 Hitachi Zosen Corp Anode electrode catalyst for alkaline fuel cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433889A (en) * 1977-08-23 1979-03-12 Mitsubishi Heavy Ind Ltd Metal catalyst for use in exhaust gas denitration
JPS565302A (en) * 1979-06-27 1981-01-20 Ici Ltd Production of gas containing hydrogen
JP2002510546A (en) * 1998-04-07 2002-04-09 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Catalytically active structure
JP2004000900A (en) * 2002-03-25 2004-01-08 Nippon Steel Corp Catalyst for reforming hydrocarbon and method for reforming hydrocarbon
JP2005103468A (en) * 2003-09-30 2005-04-21 Toshiba Corp Metal particle-carrying composite oxide, its preparing method and hydrocarbon based fuel reformer using the oxide
JP2007262509A (en) * 2006-03-29 2007-10-11 National Institute For Materials Science Alloy substrate for producing carbon nanotube, manufacturing method therefor, alloy substrate having carbon nanotube formed thereon by using the same, production method therefor, and application thereof
JP2010022983A (en) * 2008-07-23 2010-02-04 Japan Petroleum Exploration Co Ltd Catalyst for hydrocarbon reforming, its production method, and method for producing synthetic gas using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5433889A (en) * 1977-08-23 1979-03-12 Mitsubishi Heavy Ind Ltd Metal catalyst for use in exhaust gas denitration
JPS565302A (en) * 1979-06-27 1981-01-20 Ici Ltd Production of gas containing hydrogen
JP2002510546A (en) * 1998-04-07 2002-04-09 エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング Catalytically active structure
JP2004000900A (en) * 2002-03-25 2004-01-08 Nippon Steel Corp Catalyst for reforming hydrocarbon and method for reforming hydrocarbon
JP2005103468A (en) * 2003-09-30 2005-04-21 Toshiba Corp Metal particle-carrying composite oxide, its preparing method and hydrocarbon based fuel reformer using the oxide
JP2007262509A (en) * 2006-03-29 2007-10-11 National Institute For Materials Science Alloy substrate for producing carbon nanotube, manufacturing method therefor, alloy substrate having carbon nanotube formed thereon by using the same, production method therefor, and application thereof
JP2010022983A (en) * 2008-07-23 2010-02-04 Japan Petroleum Exploration Co Ltd Catalyst for hydrocarbon reforming, its production method, and method for producing synthetic gas using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014192098A (en) * 2013-03-28 2014-10-06 Hitachi Zosen Corp Anode electrode catalyst for alkaline fuel cell

Also Published As

Publication number Publication date
JP5773514B2 (en) 2015-09-02

Similar Documents

Publication Publication Date Title
Wei et al. LaMnO3-based perovskite with in-situ exsolved Ni nanoparticles: a highly active, performance stable and coking resistant catalyst for CO2 dry reforming of CH4
Ma et al. Hydrogen storage and hydrogen generation properties of CaMg2-based alloys
MX2014012551A (en) Methods for using metal catalysts in carbon oxide catalytic converters.
WO2011029144A1 (en) A process for producing hydrogen from hydrocarbons
WO2013158156A1 (en) Methods and structures for reducing carbon oxides with non-ferrous catalysts
JP5105822B2 (en) Heat transfer material for heat collection and manufacturing method thereof
Kim et al. Surface modification of austenitic stainless steel for corrosion resistance in high temperature supercritical-carbon dioxide environment
Xie et al. Engineering the atomic arrangement of bimetallic catalysts for electrochemical CO 2 reduction
El Naggar et al. Novel intensified nano-structured zero-valente nickel alloy based catalyst for hydrogen production via methane catalytic decomposition
EP2800179A1 (en) Method of preparing alloy catalyst for fuel cells and alloy catalyst for fuel cells prepared by the same
Yan et al. Design of hydrogen separatinwg Nb-Ti-Fe membranes with high permeability and low cost
Gao et al. Enhanced hydrogen storage performance of magnesium hydride with incompletely etched Ti3C2Tx: The nonnegligible role of Al
CN113981328B (en) Aluminum-containing austenitic stainless steel with surface spontaneously and continuously generating aluminum oxide film and preparation method thereof
Reddy et al. Evaluating candidate materials for balance of plant components in SOFC: Oxidation and Cr evaporation properties
Muto et al. Methane pyrolysis characteristics for the practical application of hydrogen production system using permalloy plate catalyst
CN102079519A (en) Preparation method and production equipment for controllably growing carbon nanotubes
JP5773514B2 (en) Nickel-chromium alloy catalyst for hydrogen generation and method for producing the same
WO2002000546A1 (en) Fuel reforming reactor and method for manufacture thereof
JP4701455B2 (en) Catalyst for hydrogen production, method for producing the same, and method for producing hydrogen
CN112626405A (en) High-entropy alloy for hydrogen evolution catalysis and preparation method thereof
Iwaoka et al. Mechanical property and hydrogen permeability of ultrafine-grained Pd–Ag alloy processed by high-pressure torsion
JP6015238B2 (en) Catalyst for producing hydrogen, method for producing the same, and method for producing hydrogen
JP2006274297A (en) Dual phase alloy for hydrogen separation and refining
JPWO2005072865A1 (en) Intermetallic compound Ni3Al catalyst for methanol reforming and methanol reforming method using the same
Zhang et al. Effect of intermetallic diffusion between Pd and Ti–Al alloy on the performance of Pd/Ti–Al alloy composite membranes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150627

R150 Certificate of patent or registration of utility model

Ref document number: 5773514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees