JP2005103468A - Metal particle-carrying composite oxide, its preparing method and hydrocarbon based fuel reformer using the oxide - Google Patents

Metal particle-carrying composite oxide, its preparing method and hydrocarbon based fuel reformer using the oxide Download PDF

Info

Publication number
JP2005103468A
JP2005103468A JP2003342172A JP2003342172A JP2005103468A JP 2005103468 A JP2005103468 A JP 2005103468A JP 2003342172 A JP2003342172 A JP 2003342172A JP 2003342172 A JP2003342172 A JP 2003342172A JP 2005103468 A JP2005103468 A JP 2005103468A
Authority
JP
Japan
Prior art keywords
oxide
metal
composite oxide
mol
reducible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003342172A
Other languages
Japanese (ja)
Other versions
JP3950099B2 (en
Inventor
Takayuki Fukazawa
孝幸 深澤
Seiichi Suenaga
誠一 末永
Koichi Harada
耕一 原田
Tomohiro Suetsuna
倫浩 末綱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003342172A priority Critical patent/JP3950099B2/en
Priority to US10/786,286 priority patent/US7435274B2/en
Publication of JP2005103468A publication Critical patent/JP2005103468A/en
Application granted granted Critical
Publication of JP3950099B2 publication Critical patent/JP3950099B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Fuel Cell (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal particle-carrying composite oxide in which metal particles are uniformly deposited on the surface of a composite oxide, as a base material, with high number density. <P>SOLUTION: The metal particle-carrying composite oxide is provided with the base material comprising a composite oxide of a hardly reducible metal oxide and an easily reducible metal oxide, and active metal particles deposited on the surface of the metal particle carrying composite oxide. The above composite oxide contains at least one kind of an additive metal selected from the group consisting of Sc, Cr, B, Fe, Ga, In, Lu, Nb and Si with the amount of 0.01 mol% or more and 0.25 mol% or less in terms of an element. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、金属粒子担持複合酸化物、その製造方法、およびそれを用いた炭化水素系燃料改質器に関する。   The present invention relates to a metal particle-supported composite oxide, a method for producing the same, and a hydrocarbon fuel reformer using the same.

燃料電池においては、酸化物セラミックス上に金属触媒微粒子を担持させてなる粒子状の改質触媒が用いられてきた。こうした触媒は、触媒利用率が低く、長時間の使用で活性が低下することから改善が求められている。燃料改質器に適用する際には、一般に触媒粒子は多孔質なペレット状セラミックの上に担持され、これを反応容器内に充填して用いる。ペレットの充填により圧力損失が増加するため、場合によっては燃料ガスを加圧して供給しなければならない。   In fuel cells, particulate reforming catalysts in which metal catalyst fine particles are supported on oxide ceramics have been used. Such a catalyst is required to be improved because the catalyst utilization rate is low, and the activity decreases with long-term use. When applied to a fuel reformer, the catalyst particles are generally supported on a porous pellet-shaped ceramic and used by being filled in a reaction vessel. Since pressure loss increases due to the filling of the pellets, in some cases, the fuel gas must be pressurized and supplied.

最近では、複合酸化物焼結体を還元して一部の金属粒子を析出させ、機械特性に優れた金属/セラミックス複合材料を作製する方法が提案されている(例えば、非特許文献1参照)。析出された金属粒子は、微細で分散性がよく、基材としての複合酸化物との密着性も優れている。しかしながら、金属粒子は、粒界を主とする基材内部にも多く析出しており、触媒として用いるには効率が悪く、また、長時間使用した際には内部粒界からの劣化が危惧される。   Recently, there has been proposed a method for producing a metal / ceramic composite material having excellent mechanical properties by reducing a composite oxide sintered body to precipitate some metal particles (see, for example, Non-Patent Document 1). . The deposited metal particles are fine and have good dispersibility, and also have excellent adhesion with the composite oxide as a substrate. However, many metal particles are precipitated inside the base material mainly composed of grain boundaries, which is inefficient for use as a catalyst, and there is a risk of deterioration from internal grain boundaries when used for a long time. .

触媒としては、金属粒子が複合酸化物のごく表面部に限られて存在していることが好ましく、触媒活性の点では、金属粒子の数密度(単位面積当たりの触媒粒子の数)が高く、触媒反応に有利な金属比表面積の大きいものが好ましい。上述したような還元析出法を採用することによって、触媒/担体を一体化されたものとして作製することが可能であり、例えば多孔質の担体を用いれば、触媒をハンドリングし易くコンパクトな触媒が得られる。しかしながら、現状の材料では、反応に寄与する表面部の触媒量は十分とはいえず、適正な触媒量を確保するために体積が必要とされる。このため、燃料改質器として使用するには小型・コンパクト化を十分果たせるというものではなかった。
J. Am. Ceram. Soc., vol. 80, No.5, 1139(1997)
As the catalyst, it is preferable that the metal particles are present only on the very surface portion of the composite oxide, and in terms of catalytic activity, the number density of metal particles (the number of catalyst particles per unit area) is high, Those having a large specific metal surface area advantageous for catalytic reaction are preferred. By adopting the reduction precipitation method as described above, it is possible to produce the catalyst / support as an integrated one. For example, if a porous support is used, a catalyst that is easy to handle and a compact catalyst can be obtained. It is done. However, with the current materials, the amount of catalyst on the surface part that contributes to the reaction is not sufficient, and a volume is required to ensure an appropriate amount of catalyst. For this reason, it has not been possible to sufficiently reduce the size and size of the fuel reformer.
J. Am. Ceram. Soc., Vol. 80, No. 5, 1139 (1997)

本発明は、金属粒子が、基材としての複合酸化物の表面に高い数密度で均一に析出した金属粒子担持複合酸化物、およびその製造方法を提供することを目的とする。   An object of the present invention is to provide a metal particle-supporting composite oxide in which metal particles are uniformly deposited at a high number density on the surface of the composite oxide as a substrate, and a method for producing the same.

また本発明は、小型・コンパクトな炭化水素系燃料改質器を提供することを目的とする。   Another object of the present invention is to provide a small and compact hydrocarbon fuel reformer.

本発明の一実施形態にかかる金属粒子担持複合酸化物は、難還元性金属酸化物と易還元性金属酸化物との複合酸化物からなる基材と、前記複合酸化物基材の表面に析出した活性金属粒子とを具備し、前記複合酸化物は、Sc、Cr、B、Fe、Ga、In、Lu、NbおよびSiからなる群から選択される少なくとも一種の添加金属を、元素量で0.01モル%以上0.25モル%以下の量で含有することを特徴とする。   A metal particle-supported composite oxide according to an embodiment of the present invention includes a base material composed of a composite oxide of a hardly reducible metal oxide and a readily reducible metal oxide, and deposited on the surface of the composite oxide base material. The composite oxide comprises at least one additive metal selected from the group consisting of Sc, Cr, B, Fe, Ga, In, Lu, Nb and Si in an element amount of 0. It is contained in the amount of 0.01 mol% or more and 0.25 mol% or less.

本発明の一実施形態にかかる金属粒子担持複合酸化物の製造方法は、難還元性金属の酸化物粉末と、易還元性金属の酸化物粉末と、Sc、Cr、B、Fe、Ga、In、Lu、NbおよびSiからなる群から選択される少なくとも1種の添加金属を含む粉末とを混合して、混合粉末を得る工程、
前記混合粉末を成形して成形体を得る工程、
前記成形体を焼結して、前記難還元性金属酸化物と易還元性金属酸化物との複合酸化物からなる焼結体を得る工程、および
前記焼結体を還元して、前記易還元性金属の粒子を前記複合酸化物の表面に析出させる工程を具備し、
前記混合粉末は、前記添加金属を0.01モル%以上0.25モル%以下の量で含有することを特徴とする。
A method for producing a metal particle-supported composite oxide according to an embodiment of the present invention includes a nonreducible metal oxide powder, an easily reducible metal oxide powder, and Sc, Cr, B, Fe, Ga, In Mixing a powder containing at least one additive metal selected from the group consisting of Lu, Nb and Si to obtain a mixed powder;
Molding the mixed powder to obtain a molded body,
Sintering the molded body to obtain a sintered body made of a composite oxide of the hardly-reducible metal oxide and the easily-reducible metal oxide; and reducing the sintered body to make the easily-reduced Comprising a step of precipitating conductive metal particles on the surface of the composite oxide,
The mixed powder contains the additive metal in an amount of 0.01 mol% or more and 0.25 mol% or less.

本発明の一実施形態にかかる炭化水素系燃料改質器は、炭化水素系燃料を収容する燃料タンク、
前記炭化水素燃料を改質する改質剤を収容する改質剤タンク、
前記炭化水素系燃料および前記改質剤をそれぞれ気化する予備加熱装置、
気化した炭化水素系燃料と改質剤とを混合する混合器、
前記混合器により混合されたガスを反応させ、水素を主成分とする燃料に改質するリフォーミング触媒が収容された触媒層を有する改質器、および
前記改質器を加熱する加熱装置を具備し、
前記リフォーミング触媒に、本発明の実施形態にかかる金属粒子担持複合酸化物を用いることを特徴とする。
A hydrocarbon fuel reformer according to an embodiment of the present invention includes a fuel tank that contains a hydrocarbon fuel,
A modifier tank containing a modifier for reforming the hydrocarbon fuel;
A preheating device for vaporizing the hydrocarbon fuel and the modifier,
A mixer for mixing the vaporized hydrocarbon fuel and the reformer,
A reformer having a catalyst layer containing a reforming catalyst for reacting a gas mixed by the mixer and reforming it into a fuel containing hydrogen as a main component; and a heating device for heating the reformer. And
A metal particle-supporting composite oxide according to an embodiment of the present invention is used for the reforming catalyst.

本発明の一態様によれば、金属粒子が、基材としての複合酸化物の表面に高い数密度で均一に析出した金属粒子担持複合酸化物、およびその製造方法が提供される。本発明の他の態様によれば、小型・コンパクトな炭化水素系燃料改質器が提供される。   According to one aspect of the present invention, a metal particle-supporting composite oxide in which metal particles are uniformly deposited at a high number density on the surface of the composite oxide as a substrate, and a method for producing the same are provided. According to another aspect of the present invention, a small and compact hydrocarbon fuel reformer is provided.

以下、本発明の実施形態を説明する。   Embodiments of the present invention will be described below.

本発明の実施形態にかかる金属粒子担持複合酸化物は、易還元性金属酸化物と難還元性金属酸化物との複合酸化物からなる基材を含有する。   The metal particle carrying | support complex oxide concerning embodiment of this invention contains the base material which consists of complex oxide of an easily reducible metal oxide and a hardly reducible metal oxide.

易還元性酸化物とは、室温〜1500℃の水素雰囲気中もしくはプラズマ条件下、あるいはカーボン製治具を用いての不活性雰囲気下などで、金属へ還元され得る金属酸化物をさす。具体的には、Cu、Co、Fe、Ni、Zn、Sn、Cd、Pd、Hg、およびAgなどの酸化物が挙げられる。ガス改質やガス合成等のための触媒として用いる場合には、触媒効率が高いことから、ニッケル酸化物、コバルト酸化物、および鉄酸化物が好ましく、ニッケル酸化物が最も好ましい。こうした易還元性酸化物は、単独で用いても2種以上を併用して用いてもよい。   An easily reducible oxide refers to a metal oxide that can be reduced to a metal in a hydrogen atmosphere at room temperature to 1500 ° C. or under plasma conditions, or in an inert atmosphere using a carbon jig. Specific examples include oxides such as Cu, Co, Fe, Ni, Zn, Sn, Cd, Pd, Hg, and Ag. When used as a catalyst for gas reforming or gas synthesis, nickel oxide, cobalt oxide, and iron oxide are preferable, and nickel oxide is most preferable because of high catalyst efficiency. Such easily reducible oxides may be used alone or in combination of two or more.

一方、難還元性酸化物とは、室温〜1500℃の水素などの還元性雰囲気下で、金属へ還元されない酸化物をさす。具体的には、Al、Mg、Si、Zr、Ti、Hf、およびCe等の酸化物が挙げられる。難還元性金属酸化物は、単独で用いても2種以上を併用してもよい。こうした難還元性金属酸化物のなかでも、マグネシウム酸化物、ジルコニウム酸化物、およびセリウム酸化物が安定な固溶体を形成する点で好ましく、マグネシウム酸化物が最も好ましい。   On the other hand, a non-reducible oxide refers to an oxide that is not reduced to a metal in a reducing atmosphere such as hydrogen at room temperature to 1500 ° C. Specific examples include oxides such as Al, Mg, Si, Zr, Ti, Hf, and Ce. The hardly reducible metal oxides may be used alone or in combination of two or more. Among these hardly-reducible metal oxides, magnesium oxide, zirconium oxide, and cerium oxide are preferable from the viewpoint of forming a stable solid solution, and magnesium oxide is most preferable.

上述したような還元性金属酸化物と難還元性金属酸化物との固溶体から、本発明の実施形態における複合酸化物が構成される。固溶体としては、例えば、NiO−MgO、CoO−MgO、FeO−MgO、およびNiO−CoO−MgO等の酸化物同士の全率固溶体が好ましい。あるいは、ZrO2−NiOやMgO−CuO、MgO−CuO−ZnOのように、難還元性金属酸化物に対する易還元性金属酸化物の固溶限が、水素還元温度において1原子%以上である系であってもよい。 The composite oxide in the embodiment of the present invention is composed of the solid solution of the reducible metal oxide and the hardly reducible metal oxide as described above. As the solid solution, for example, a complete solid solution of oxides such as NiO—MgO, CoO—MgO, FeO—MgO, and NiO—CoO—MgO is preferable. Alternatively, a system in which the solid solubility limit of the easily reducible metal oxide to the hardly reducible metal oxide is 1 atomic% or more at the hydrogen reduction temperature, such as ZrO 2 —NiO, MgO—CuO, MgO—CuO—ZnO. It may be.

本発明者らは、これら全率固溶系の複合酸化物について、還元による析出金属の特徴と改質性能との関係を鋭意検討した結果、特定の金属元素を所定量含有していると、還元時に顕著な金属粒子の析出が引き起こされることを見出した。こうした作用を有する金属元素としては、Sc、Cr、B、Fe、Ga、In、Lu、Nb、およびSiが挙げられ、特に、CrおよびScが好ましい。容易に入手でき、混合して焼成するだけといった単純な方法で添加することができることから、こうした金属は酸化物の形で添加されることが好ましいが、それに限定されず、水酸化物や炭酸化合物などのいかなる様態で添加されても構わない。   As a result of intensive studies on the relationship between the characteristics of the precipitated metal by reduction and the reforming performance, the present inventors have found that when a predetermined amount of a specific metal element is contained, It has been found that sometimes significant metal particle precipitation occurs. Examples of the metal element having such an action include Sc, Cr, B, Fe, Ga, In, Lu, Nb, and Si, and Cr and Sc are particularly preferable. These metals are preferably added in the form of oxides because they are readily available and can be added by simple methods such as mixing and firing. It may be added in any manner.

本発明の実施形態にかかる金属粒子担持複合酸化物は、混合粉末を調製し、固溶・焼成し、還元処理を施すことによって製造することができる。   The metal particle-supporting composite oxide according to the embodiment of the present invention can be produced by preparing a mixed powder, solid solution / firing, and subjecting it to a reduction treatment.

混合粉末の調製に当たっては、まず、難還元性酸化物と、易還元性酸化物と、Sc、Cr、B、Fe、Ga、In、Lu、NbおよびSiから選択される少なくとも1種の添加金属を含む化合物とを、ボールミル等により均一に混合する。この際、混入が起こらないように、ボールやポットの材質はナイロン製のものなどを用いることが望まれる。湿式および乾式のいずれの方法で混合してもよいが、より均一な混合を行なうには湿式混合が好ましく、PVA(ポリビニルアルコール)等のバインダーを加えてもよい。   In preparing the mixed powder, first, at least one additive metal selected from a non-reducing oxide, a non-reducing oxide, and Sc, Cr, B, Fe, Ga, In, Lu, Nb and Si. Are uniformly mixed with a ball mill or the like. At this time, it is desirable to use a material made of nylon or the like for the balls and pots so that no mixing occurs. Although it may mix by any method of a wet type and a dry type, wet mixing is preferable in order to perform more uniform mixing, and binders, such as PVA (polyvinyl alcohol), may be added.

例えば、難還元性酸化物であるMgO粉末と、易還元性酸化物であるNiO粉末もしくはCoO粉末とをモル比で2:1となるように混合することが好ましい。2:1の比で難還元性酸化物と易還元性酸化物とを混合することにより、水素還元による析出金属量を適量に抑えられ、金属粒子同士の合体や粒成長を抑制することができる。このような複合酸化物の応用としては、NiO−MgO−CuO系などのように三元系のものも考えられる。この系の複合酸化物焼結体を還元するとNiとCuとが析出して、酸化物表面にNi−Cu合金の粒子を形成することができる。   For example, it is preferable to mix MgO powder, which is a nonreducible oxide, and NiO powder or CoO powder, which is an easily reducible oxide, in a molar ratio of 2: 1. By mixing the hardly-reducible oxide and the easily-reducible oxide at a ratio of 2: 1, the amount of deposited metal by hydrogen reduction can be suppressed to an appropriate amount, and coalescence and particle growth between metal particles can be suppressed. . As an application of such a complex oxide, a ternary system such as a NiO-MgO-CuO system may be considered. When this composite oxide sintered body is reduced, Ni and Cu are precipitated, and Ni—Cu alloy particles can be formed on the oxide surface.

一方、前述の金属元素は、例えば、Sc23のように酸化物の形で添加することが好ましい。Sc等の金属元素成分量は、混合粉末全体に対して、0.01モル%以上0.25モル%以下に規定される。添加金属量が0.01モル%未満の場合には、十分な量の易還元性金属粒子を複合酸化物表面に析出させることができない。一方、0.25モル%を越えると、添加した化合物自体が固溶体の粒界に残留して、複合酸化物の焼結性を阻害し、強度の低下を招く。さらに、還元による析出が過剰となって、金属粒子同士が凝集・合体して触媒性能が低下してしまう。 On the other hand, the aforementioned metal element is preferably added in the form of an oxide such as Sc 2 O 3 . The amount of the metal element component such as Sc is defined as 0.01 mol% or more and 0.25 mol% or less with respect to the entire mixed powder. When the amount of added metal is less than 0.01 mol%, a sufficient amount of easily reducible metal particles cannot be deposited on the surface of the composite oxide. On the other hand, if it exceeds 0.25 mol%, the added compound itself remains at the grain boundary of the solid solution, impairing the sinterability of the composite oxide, and causing a decrease in strength. Further, precipitation due to reduction becomes excessive, and metal particles aggregate and coalesce, resulting in a decrease in catalyst performance.

添加する最適量は、析出させる金属粒子や還元の条件などによって異なるが、還元温度が高過ぎたり、還元時間が長過ぎたりする場合には析出粒子が大きく粒成長してしまう。この場合には触媒活性が低下するので、適切な温度や時間で還元処理を行なうことが望まれる。   The optimum amount to be added varies depending on the metal particles to be precipitated, the reduction conditions, and the like, but if the reduction temperature is too high or the reduction time is too long, the precipitated particles grow large. In this case, since the catalytic activity is lowered, it is desirable to perform the reduction treatment at an appropriate temperature and time.

得られた混合粉末を所定の形状に成形して、成形体を得る。例えば、ハニカム形状、フォーム形状、あるいは流体の流路となる溝を付けたシート形状などに成形することができる。この成形体を1000℃〜1400℃の範囲で焼結して固溶体化することによって、複合酸化物(固溶焼結体)が作製される。例えば、ハニカム状に成形し、後述するように還元処理を施してNi粒子を表面に析出させた金属粒子担持複合酸化物は、炭化水素系燃料の改質触媒として好適に用いることができる。   The obtained mixed powder is molded into a predetermined shape to obtain a molded body. For example, it can be formed into a honeycomb shape, a foam shape, or a sheet shape with a groove serving as a fluid flow path. A composite oxide (solid solution sintered body) is produced by sintering this molded body to a solid solution by sintering in the range of 1000 ° C. to 1400 ° C. For example, a metal particle-supported composite oxide formed into a honeycomb shape and subjected to a reduction treatment as will be described later to deposit Ni particles on the surface can be suitably used as a reforming catalyst for hydrocarbon fuel.

得られた固溶焼結体を水素ガス等の雰囲気下で還元処理を行なうことにより、金属粒子を複合酸化物表面および粒界界面に析出させる。例えば、NiO−MgOの場合には、固溶体の一部、易還元性であるNi粒子が還元され、複合酸化物表面に析出する。このNi粒子は分散性に優れ、しかも、基材である複合酸化物の内部から析出により生成しているために基材との密着性が高い。   The obtained solid solution sintered body is subjected to a reduction treatment in an atmosphere of hydrogen gas or the like, thereby depositing metal particles on the surface of the composite oxide and the grain boundary interface. For example, in the case of NiO—MgO, a part of the solid solution, Ni particles that are easily reduced, are reduced and deposited on the surface of the composite oxide. The Ni particles are excellent in dispersibility, and have high adhesion to the base material because they are formed by precipitation from the inside of the complex oxide as the base material.

還元処理の温度や時間は、使用する材料に応じて適宜選択することができる。例えば、NiO−MgO系の場合、500〜1000℃の温度で、10分程度の還元処理を施すことが好ましい。還元温度が高すぎる場合には、金属粒子の成長が必要以上に進行して凝集や粒界部での破壊を引き起こしたり、触媒性能が低下するおそれがある。一方、温度が低すぎる場合には熱処理に長時間を要するため、工業的に好ましくない。   The temperature and time of the reduction treatment can be appropriately selected according to the material used. For example, in the case of a NiO—MgO system, it is preferable to perform a reduction treatment for about 10 minutes at a temperature of 500 to 1000 ° C. If the reduction temperature is too high, the growth of metal particles may proceed more than necessary, causing aggregation and destruction at the grain boundary, or reducing the catalyst performance. On the other hand, if the temperature is too low, it takes a long time for the heat treatment, which is not industrially preferable.

以上の工程により、本発明の実施形態にかかる金属粒子担持複合酸化物が得られる。   The metal particle carrying | support composite oxide concerning embodiment of this invention is obtained by the above process.

このようにして作製される金属粒子担持複合酸化物は、炭化水素系燃料の改質触媒として好適に用いることができる。本発明の一実施形態にかかる炭化水素系燃料改質器の構成を、図1に模式的に示す。   The metal particle-supported composite oxide thus produced can be suitably used as a hydrocarbon-based fuel reforming catalyst. The configuration of a hydrocarbon fuel reformer according to an embodiment of the present invention is schematically shown in FIG.

図示する炭化水素系燃料の改質器においては、炭化水素系燃料保管用のタンク10に、CH4などの気体燃料やCH3OHやC25OHなどの液体燃料が収容され、こうした燃料を改質するための水あるいは炭酸ガス等は、改質剤タンク20に収容される。燃料および改質剤は、それぞれ予備加熱装置30,40において気化され、混合器50に導入される。混合されたガスは、リフォーミング触媒層80内で反応して水素を主成分とする燃料に改質される。 In the illustrated hydrocarbon fuel reformer, a hydrocarbon fuel storage tank 10 contains gaseous fuel such as CH 4 or liquid fuel such as CH 3 OH or C 2 H 5 OH. Water or carbon dioxide gas for reforming is stored in the modifier tank 20. The fuel and the reformer are vaporized in the preheating devices 30 and 40, respectively, and introduced into the mixer 50. The mixed gas reacts in the reforming catalyst layer 80 to be reformed into a fuel mainly composed of hydrogen.

得られた改質ガスを燃料電池用の燃料として用いる際には、一酸化炭素変成器(図示せず)に供給して改質ガス中のCO濃度を減少させた後、固体高分子膜型燃料電池等(図示せず)の燃料極に供給すればよい。   When the obtained reformed gas is used as a fuel for a fuel cell, it is supplied to a carbon monoxide converter (not shown) to reduce the CO concentration in the reformed gas, and then the solid polymer membrane type What is necessary is just to supply to the fuel electrode of fuel cells etc. (not shown).

図示する例では、リフォーミング触媒層80内を均一に加熱するためにバーナー70が使用されるが、触媒による燃焼加熱を採用してもよい。   In the illustrated example, the burner 70 is used to uniformly heat the reforming catalyst layer 80, but combustion heating by a catalyst may be employed.

リフォーミング触媒層80には、例えば図2に示すようなハニカム状に作製した金属粒子担持複合酸化物110を装填することができる。本発明の実施形態においては、複合酸化物100から金属粒子90を還元により析出させるので、図3に模式的に示すように、ガス等の流路となるハニカム内壁面に金属粒子90を形成することができる。また、このようなハニカム状の触媒とすることによってハンドリングが容易となり、燃料や改質ガスの流れに対する圧力損失を格段に低減することが可能である。   The reforming catalyst layer 80 can be loaded with, for example, a metal particle-supporting composite oxide 110 produced in a honeycomb shape as shown in FIG. In the embodiment of the present invention, the metal particles 90 are precipitated from the composite oxide 100 by reduction. Therefore, as schematically shown in FIG. 3, the metal particles 90 are formed on the inner wall surface of the honeycomb serving as a gas flow path. be able to. Further, by using such a honeycomb-shaped catalyst, handling becomes easy and pressure loss with respect to the flow of fuel or reformed gas can be remarkably reduced.

以下に具体例を示して本発明の実施形態をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   Embodiments of the present invention will be described in more detail with specific examples below, but the present invention is not limited to these.

(実施例1〜2、比較例1〜3)
易還元性金属酸化物としてのNiO粉末(平均粒径約1μm)と、難還元性金属酸化物としてのMgO粉末(平均粒径約1μm)とを、モル比でNiO:MgO=1:2となるように秤量した。添加化合物としては高純度Sc23を用意し、Sc元素換算で、0.015モル%および0.2モル%になるように添加した。これを、ナイロン製ボールを用い湿式で20時間均一に混合して、混合粉末を得た。
(Examples 1-2, Comparative Examples 1-3)
NiO powder (average particle size of about 1 μm) as an easily reducible metal oxide and MgO powder (average particle size of about 1 μm) as a hardly reducible metal oxide are in a molar ratio of NiO: MgO = 1: 2. Weighed so that As the additive compound, high-purity Sc 2 O 3 was prepared and added so as to be 0.015 mol% and 0.2 mol% in terms of Sc element. This was uniformly mixed in a wet manner using a nylon ball for 20 hours to obtain a mixed powder.

混合粉末を金型プレスにて1ton/cm2の圧力で加圧成形した後、成形体を大気中、1300℃で5時間焼結して複合酸化物焼結体を作製した。次に、純度99.9%の水素ガスを500cc/分で流しながら15℃/分の速度で昇温し、1000℃で10分間還元処理を施してNi粒子を析出させ、その間の熱重量分析を行なった。重量減少測定に用いた試料は、焼結体を乳鉢により数μm程度のサイズになるまで粉砕して準備した。また、微構造組織を走査型電子顕微鏡(SEM)により観察し、化学吸着測定装置により水素吸着による活性金属比表面積を測定した。 The mixed powder was pressure-molded with a die press at a pressure of 1 ton / cm 2 , and then the compact was sintered in air at 1300 ° C. for 5 hours to prepare a composite oxide sintered body. Next, while flowing hydrogen gas with a purity of 99.9% at a flow rate of 500 cc / min, the temperature was raised at a rate of 15 ° C./min, and a reduction treatment was performed at 1000 ° C. for 10 minutes to precipitate Ni particles. Was done. The sample used for the weight loss measurement was prepared by pulverizing the sintered body with a mortar until the size became about several μm. Further, the microstructure was observed with a scanning electron microscope (SEM), and the active metal specific surface area by hydrogen adsorption was measured with a chemical adsorption measuring device.

密度、還元減量、および活性金属比表面積を、複合酸化物組成、添加酸化物および金属添加量とともに下記表1にまとめる。   The density, reduction in weight loss, and active metal specific surface area are summarized in Table 1 below together with the composite oxide composition, added oxide and added metal amount.

さらに、Sc元素換算で0モル%、0.008モル%および0.3モル%となるようにSc23の添加量を変更した以外は前述と同様にして、3種類の混合粉末を準備した。こうして得られた混合粉末を用いた以外は前述と同様にして、比較例1〜3の金属粒子複合酸化物を作製した。得られた金属粒子複合酸化物の特性を前述と同様に評価して、その結果を下記表1にまとめた。 Further, three kinds of mixed powders were prepared in the same manner as described above except that the addition amount of Sc 2 O 3 was changed to 0 mol%, 0.008 mol% and 0.3 mol% in terms of Sc element. did. Metal particle composite oxides of Comparative Examples 1 to 3 were prepared in the same manner as described above except that the mixed powder thus obtained was used. The properties of the obtained metal particle composite oxide were evaluated in the same manner as described above, and the results are summarized in Table 1 below.

(実施例3〜10)
添加化合物を、Cr23、In23、Lu23、Ga23、B23、Fe23、Nb23、およびSiO2に変更し、それぞれを金属元素量で約0.15モル%添加した以外は、前述と同様にして8種類の混合粉末を得た。
(Examples 3 to 10)
The additive compound was changed to Cr 2 O 3 , In 2 O 3 , Lu 2 O 3 , Ga 2 O 3 , B 2 O 3 , Fe 2 O 3 , Nb 2 O 3 , and SiO 2 , each of which was a metal element Eight kinds of mixed powders were obtained in the same manner as described above except that about 0.15 mol% was added in an amount.

こうした混合粉末を用いた以外は前述と同様にして、実施例3〜10の金属粒子複合酸化物を作製した。得られた金属粒子複合酸化物の特性を前述と同様に評価して、その結果を下記表1にまとめた。   Except for using such a mixed powder, metal particle composite oxides of Examples 3 to 10 were produced in the same manner as described above. The properties of the obtained metal particle composite oxide were evaluated in the same manner as described above, and the results are summarized in Table 1 below.

(実施例11、比較例4)
易還元性金属酸化物としてCuO粉末(平均粒径1μm)をさらに原料粉末として用いて、混合組成がMgO:NiO:CuO=2:1:0.1(mol比)となるように秤量した。添加化合物としては高純度Sc23を用意し、Sc元素換算で0.15モル%になるように添加して混合粉末を得た。
(Example 11, Comparative Example 4)
CuO powder (average particle diameter 1 μm) was further used as a raw material powder as an easily reducible metal oxide, and weighed so that the mixed composition was MgO: NiO: CuO = 2: 1: 0.1 (mol ratio). As an additive compound, high-purity Sc 2 O 3 was prepared and added so as to be 0.15 mol% in terms of Sc element to obtain a mixed powder.

こうした混合粉末を用いた以外は前述と同様にして、実施例11の金属粒子複合酸化物を作製した。得られた金属粒子複合酸化物においては、Ni−Cu合金粒子が表面に析出していた。さらに、添加化合物を配合しない以外は同様にして、比較例4の金属粒子複合酸化物を作製した。   A metal particle composite oxide of Example 11 was produced in the same manner as described above except that such a mixed powder was used. In the obtained metal particle composite oxide, Ni—Cu alloy particles were precipitated on the surface. Further, a metal particle composite oxide of Comparative Example 4 was produced in the same manner except that no additive compound was blended.

得られた金属粒子複合酸化物の特性を前述と同様に評価して、その結果を下記表1にまとめた。   The properties of the obtained metal particle composite oxide were evaluated in the same manner as described above, and the results are summarized in Table 1 below.

(実施例12、比較例5)
易還元性金属酸化物をCoO粉末(平均粒径1μm)に変更し、Sc元素量で0.15モル%となるように添加化合物としてのSc23粉末を加えた以外は、前述と同様にして、実施例12の金属粒子複合酸化物を作製した。さらに、添加化合物を配合しない以外は同様にして、比較例5の金属粒子複合酸化物を作製した。
(Example 12, Comparative Example 5)
The same as described above, except that the easily reducible metal oxide was changed to CoO powder (average particle size 1 μm), and Sc 2 O 3 powder as an additive compound was added so that the amount of Sc element was 0.15 mol%. Thus, a metal particle composite oxide of Example 12 was produced. Further, a metal particle composite oxide of Comparative Example 5 was produced in the same manner except that no additive compound was blended.

得られた金属粒子複合酸化物の特性を前述と同様に評価して、その結果を下記表1にまとめた。

Figure 2005103468
The properties of the obtained metal particle composite oxide were evaluated in the same manner as described above, and the results are summarized in Table 1 below.
Figure 2005103468

実施例1と比較例1との比較から、0.015モル%の添加金属を含有することによって、還元減量および活性金属比表面積が増加することがわかる。金属添加量が0.20モル%の場合には、還元減量は10.1%まで高められ、活性金属比表面積は無添加の場合の10倍にも増加することが実施例2の結果に示されている。   From the comparison between Example 1 and Comparative Example 1, it can be seen that the reduction in weight loss and the active metal specific surface area are increased by containing 0.015 mol% of the added metal. The result of Example 2 shows that when the metal addition amount is 0.20 mol%, the reduction loss is increased to 10.1%, and the active metal specific surface area is increased 10 times as much as the case of no addition. Has been.

一方、比較例2に示されるように、金属添加量が0.01モル%未満の場合には、無添加のもの(比較例1)とほぼ同等の特性であり、その効果はほとんど見られない。また、金属添加量が0.25モル%を超えるもの(比較例3)では、組織の観察から析出粒子の粗大化、凝集が顕著になり、触媒としてあまり好ましくないことが確認された。この傾向は、他の金属元素を含有する化合物を用いた場合も同様であった。   On the other hand, as shown in Comparative Example 2, when the metal addition amount is less than 0.01 mol%, the characteristics are almost the same as those of the additive-free material (Comparative Example 1), and the effect is hardly seen. . In addition, when the amount of metal added exceeds 0.25 mol% (Comparative Example 3), it was confirmed from observation of the structure that the coarsening and aggregation of the precipitated particles became remarkable, and it was not preferable as a catalyst. This tendency was the same when a compound containing another metal element was used.

また、実施例3〜10の結果に示されるように、Cr23、In23、Lu23、Ga23、B23、Fe23、Nb23、およびSiO2のいずれの化合物を添加した場合も、還元時の重量減少が大きくなり、これに伴なって活性金属比表面積も増大している。 Further, as shown in the results of Examples 3 to 10, Cr 2 O 3 , In 2 O 3 , Lu 2 O 3 , Ga 2 O 3 , B 2 O 3 , Fe 2 O 3 , Nb 2 O 3 , When either of the compounds of SiO 2 and SiO 2 is added, the weight loss during reduction increases, and the active metal specific surface area increases accordingly.

さらに、複合酸化物の組成が、MgO−NiO−CuO系の場合(実施例11)およびMgO−CoO系の場合(実施例12)には、より優れた特性が得られる。   Furthermore, more excellent characteristics can be obtained when the composition of the composite oxide is MgO—NiO—CuO (Example 11) and MgO—CoO (Example 12).

このように、微量の元素の添加によって、複合酸化物表面への金属Ni粒子(またはNi−Cu粒子、Co粒子)の析出が促進されることが明らかになった。添加金属を含まない比較例の材料と比較すると、本発明の実施形態にかかる金属粒子担持複合酸化物は、いずれの場合も高い数密度(単位面積あたりの析出金属粒子数)の金属粒子が、凝集・合体することなく、表面に均一に形成された組織を有していた。なお、密度は添加する金属元素に依存して変化した。一般的には、金属元素の添加量が増えるにしたがって密度が低下する傾向が見られるが、これは添加した酸化物の多くが粒界に残留して焼結性を阻害するためと考えられる。機械的特性の低下を避けるために、金属元素の添加量は最大でも0.25モル%にとどめる必要がある。   Thus, it has been clarified that the addition of a trace amount of elements promotes the precipitation of metallic Ni particles (or Ni—Cu particles, Co particles) on the surface of the composite oxide. Compared with the material of the comparative example that does not contain the additive metal, the metal particle-supporting composite oxide according to the embodiment of the present invention has high number density (number of precipitated metal particles per unit area) in any case, It had a structure formed uniformly on the surface without agglomeration and coalescence. The density varied depending on the metal element to be added. In general, the density tends to decrease as the amount of the metal element added increases. This is probably because most of the added oxide remains in the grain boundary and inhibits the sinterability. In order to avoid deterioration of the mechanical properties, it is necessary to keep the addition amount of the metal element at a maximum of 0.25 mol%.

(実施例13、比較例6)
易還元性金属酸化物としてのNiO粉末(平均粒径約1μm)と、難還元性金属酸化物としてのMgO(平均粒径約1μm)とを、モル比でNiO:MgO=1:2となるように秤量した。添加化合物としては高純度Sc23を用意し、Sc元素換算で、0.05モル%となるように添加した。これを、ナイロン製ボールを使った湿式で20時間均一に混合して、混合粉末を得た。
(Example 13, Comparative Example 6)
NiO powder (average particle size of about 1 μm) as an easily reducible metal oxide and MgO (average particle size of about 1 μm) as a hardly reducible metal oxide have a molar ratio of NiO: MgO = 1: 2. Weighed as follows. As the additive compound, high-purity Sc 2 O 3 was prepared and added so as to be 0.05 mol% in terms of Sc element. This was uniformly mixed by wet using a nylon ball for 20 hours to obtain a mixed powder.

混合後は、有機溶剤系のバインダーを加えて混練し、この混練物を押出し成形して、ハニカム成形体を作製した。得られた成形体を脱脂炉に導入し、500℃まで8時間かけて昇温して、500℃で5時間脱脂した。脱脂後は、1300℃で5時間焼結して、セル数300セル/in2、壁厚0.5mm、φ20mm×15mmからなるハニカム多孔体を得た。 After mixing, an organic solvent-based binder was added and kneaded, and the kneaded product was extruded to form a honeycomb formed body. The obtained molded body was introduced into a degreasing furnace, heated to 500 ° C. over 8 hours, and degreased at 500 ° C. for 5 hours. After degreasing, sintering was performed at 1300 ° C. for 5 hours to obtain a porous honeycomb body having a cell number of 300 cells / in 2 , a wall thickness of 0.5 mm, and φ20 mm × 15 mm.

この焼結体を、500cc/分の水素気流中、900℃で10分間還元してNi粒子を析出させ、触媒と担持体である多孔体とが一体化してなる実施例13のNi粒子担持ハニカム型触媒を作製した。得られたハニカム型触媒においては、図3に示したように、MgO−NiO系の複合酸化物基材100表面に、金属粒子90としてのNi粒子が均一に分散していた。   This sintered body was reduced in a hydrogen stream of 500 cc / min at 900 ° C. for 10 minutes to precipitate Ni particles, and the Ni particle-supporting honeycomb of Example 13 in which the catalyst and the porous body as the support were integrated. A mold catalyst was prepared. In the obtained honeycomb type catalyst, as shown in FIG. 3, Ni particles as the metal particles 90 were uniformly dispersed on the surface of the MgO—NiO-based composite oxide substrate 100.

さらに、添加化合物としてのSc23を加えない以外は同様にして、比較例6のハニカム型触媒を作製した。 Further, a honeycomb type catalyst of Comparative Example 6 was produced in the same manner except that Sc 2 O 3 as an additive compound was not added.

このようにして作製したハニカム型触媒を、図1に示した改質器内の触媒充填層にそれぞれ充填し、転化率を評価した。   The honeycomb-type catalyst produced in this way was filled in the catalyst packed bed in the reformer shown in FIG. 1, and the conversion rate was evaluated.

CH4ガスおよびCO2ガスを、燃料タンク10および改質剤タンク20にそれぞれ収容し、50cc/minの流量で、予備加熱装置30および40を介して改質器60に導入した。改質器60は800℃まで加熱して、水素ガスを生成した。ハニカム型触媒を通過して改質されたガスを、ガス分析装置にて定量分析した。 CH 4 gas and CO 2 gas were accommodated in the fuel tank 10 and the reformer tank 20, respectively, and introduced into the reformer 60 through the preheating devices 30 and 40 at a flow rate of 50 cc / min. The reformer 60 was heated to 800 ° C. to generate hydrogen gas. The gas reformed through the honeycomb catalyst was quantitatively analyzed with a gas analyzer.

その結果、比較例6のハニカム型触媒を用いた場合には、800℃においてCH4のH2およびCOへの転化率が70%と低かったのに対して、実施例13のハニカム型触媒を用いた場合には95%を超える転化率を示した。また、1モルのCH4に対して約1.8モルの水素の生成が認められた。 As a result, when the honeycomb type catalyst of Comparative Example 6 was used, the conversion rate of CH 4 to H 2 and CO was as low as 70% at 800 ° C., whereas the honeycomb type catalyst of Example 13 was used. When used, the conversion was over 95%. In addition, production of about 1.8 moles of hydrogen per 1 mole of CH 4 was observed.

(実施例14、比較例7)
易還元性金属酸化物としてCuO粉末(平均粒径1μm)をさらに原料粉末として用いて、混合組成がMgO:NiO:CuO=2:1:0.1(mol比)となるように秤量した。添加化合物としては高純度Sc23を用意し、Sc元素換算で、0.1モル%になるように添加して混合粉末を得た。これを、ナイロン製ボールミルにより湿式で20時間均一に混合して、混合粉末を得た。
(Example 14, comparative example 7)
CuO powder (average particle diameter 1 μm) was further used as a raw material powder as an easily reducible metal oxide, and weighed so that the mixed composition was MgO: NiO: CuO = 2: 1: 0.1 (mol ratio). As the additive compound, high-purity Sc 2 O 3 was prepared and added so as to be 0.1 mol% in terms of Sc element to obtain a mixed powder. This was wet mixed uniformly for 20 hours by a nylon ball mill to obtain a mixed powder.

混合後は、有機溶剤系のバインダーを加えて混練し、この混練物を押出し成形して、ハニカム成形体を作製した。得られた成形体を脱脂炉に導入し、500℃まで8時間かけて昇温して、500℃で5時間脱脂した。脱脂後は、1300℃で5時間焼結して、セル数300セル/in2、壁厚0.5mm、φ20mm×15mmからなるハニカム多孔体を得た。 After mixing, an organic solvent-based binder was added and kneaded, and the kneaded product was extruded to form a honeycomb formed body. The obtained molded body was introduced into a degreasing furnace, heated to 500 ° C. over 8 hours, and degreased at 500 ° C. for 5 hours. After degreasing, sintering was performed at 1300 ° C. for 5 hours to obtain a porous honeycomb body having a cell number of 300 cells / in 2 , a wall thickness of 0.5 mm, and φ20 mm × 15 mm.

この焼結体を500cc/分の水素気流中、900℃で10分還元してNiおよびCu粒子を析出させて、実施例14の金属粒子担持ハニカム型触媒を作製した。得られたハニカム型触媒においては、図3に示したように、MgO−NiO−CuO系の複合酸化物基材100表面に、金属粒子90としてのNi−Cu粒子が均一に分散していた。   This sintered body was reduced in a hydrogen stream of 500 cc / min at 900 ° C. for 10 minutes to precipitate Ni and Cu particles, whereby a metal particle-supporting honeycomb type catalyst of Example 14 was produced. In the obtained honeycomb type catalyst, as shown in FIG. 3, Ni—Cu particles as metal particles 90 were uniformly dispersed on the surface of the MgO—NiO—CuO-based composite oxide substrate 100.

さらに、添加化合物としてのSc23を加えない以外は同様にして、比較例7のハニカム型触媒を作製した。 Further, a honeycomb type catalyst of Comparative Example 7 was produced in the same manner except that Sc 2 O 3 as an additive compound was not added.

このようにして作製したハニカム型触媒を、図1に示した改質器内の触媒充填層にそれぞれ充填し、転化率を評価した。   The honeycomb-type catalyst produced in this way was filled in the catalyst packed bed in the reformer shown in FIG. 1, and the conversion rate was evaluated.

燃料ガスとしては、CH3OHおよびH2Oを予備加熱装置30および40により気化して導入した。CH3OHおよびH2Oの混合比は、モル比で1:4とし、メタノール気体流量を30cc/min、水蒸気流量を120cc/minとした。ハニカム型触媒を通過した改質ガスは、ガス分析装置により定量分析した。 As the fuel gas, CH 3 OH and H 2 O were vaporized by the preheating devices 30 and 40 and introduced. The mixing ratio of CH 3 OH and H 2 O was 1: 4 in terms of molar ratio, the methanol gas flow rate was 30 cc / min, and the water vapor flow rate was 120 cc / min. The reformed gas that passed through the honeycomb catalyst was quantitatively analyzed by a gas analyzer.

比較例7のハニカム型触媒を用いた場合には、900℃×10分の水素還元で0.4%程度しか重量減少しなかった。これは、CuOの存在により焼結時の緻密化が進行して、全体としての表面積が減少したためであると考えられる。その結果、CH3OHの他のガスへの転化率は400℃で90%は超えたものの、水素生成量はCH3OH1モルに対して1.7モルであった。 When the honeycomb type catalyst of Comparative Example 7 was used, the weight reduction was only about 0.4% by hydrogen reduction at 900 ° C. × 10 minutes. This is presumably because the densification during sintering progressed due to the presence of CuO, and the overall surface area decreased. As a result, although the conversion rate of CH 3 OH to other gases exceeded 90% at 400 ° C., the amount of hydrogen produced was 1.7 mol with respect to 1 mol of CH 3 OH.

これに対して、実施例14のハニカム型触媒では3%程度の重量減少があり、CH3OH転化率は350℃で95%、400℃で100%であった。CH3OH1モルに対して約2.4モルの水素を生成することができた。 In contrast, the honeycomb type catalyst of Example 14 had a weight loss of about 3%, and the CH 3 OH conversion was 95% at 350 ° C. and 100% at 400 ° C. Approximately 2.4 moles of hydrogen could be produced per mole of CH 3 OH.

本発明は、炭化水素系燃料の改質やガス合成、燃料電池用電極など触媒/触媒担体として、あるいはカーボンナノチューブ繊維合成の触媒材料などとして好適に用いることができる。   The present invention can be suitably used as a catalyst / catalyst support for hydrocarbon fuel reforming, gas synthesis, fuel cell electrodes, or as a catalyst material for carbon nanotube fiber synthesis.

本発明の一実施形態にかかる炭化水素系燃料改質器を表わす概略図。1 is a schematic diagram showing a hydrocarbon fuel reformer according to an embodiment of the present invention. ハニカム状の金属粒子担持複合酸化物を表わす斜視図。The perspective view showing a honeycomb-shaped metal particle carrying | support complex oxide. ハニカム状金属粒子担持複合酸化物の断面構造を表わす概略図。Schematic showing the cross-sectional structure of a honeycomb-shaped metal particle carrying | support complex oxide.

符号の説明Explanation of symbols

10…炭化水素系燃料タンク;20…改質剤タンク;30…予備加熱装置
40…予備加熱装置;50…混合器;60…改質器;70…バーナー
80…リフォーミング触媒層;90…析出させた金属触媒粒子
100…複合酸化物基材;110…金属粒子担持複合酸化物。
DESCRIPTION OF SYMBOLS 10 ... Hydrocarbon fuel tank; 20 ... Reformer tank; 30 ... Preheating apparatus 40 ... Preheating apparatus; 50 ... Mixer; 60 ... Reformer; 70 ... Burner 80 ... Reforming catalyst layer; Metal catalyst particles 100 ... Composite oxide substrate; 110 ... Metal particle-supported composite oxide.

Claims (3)

難還元性金属酸化物と易還元性金属酸化物との複合酸化物からなる基材と、前記複合酸化物基材の表面に析出した活性金属粒子とを具備し、前記複合酸化物は、Sc、Cr、B、Fe、Ga、In、Lu、NbおよびSiからなる群から選択される少なくとも一種の添加金属を、元素量で0.01モル%以上0.25モル%以下の量で含有することを特徴とする金属粒子担持複合酸化物。   A substrate comprising a complex oxide of a hardly-reducible metal oxide and an easily-reducible metal oxide; and active metal particles deposited on the surface of the complex oxide substrate, wherein the complex oxide is Sc And at least one additive metal selected from the group consisting of Cr, B, Fe, Ga, In, Lu, Nb, and Si in an amount of 0.01 mol% to 0.25 mol% in terms of element amount A metal oxide-supported composite oxide. 難還元性金属の酸化物粉末と、易還元性金属の酸化物粉末と、Sc、Cr、B、Fe、Ga、In、Lu、NbおよびSiからなる群から選択される少なくとも1種の添加金属を含む粉末とを混合して、混合粉末を得る工程、
前記混合粉末を成形して成形体を得る工程、
前記成形体を焼結して、前記難還元性金属酸化物と易還元性金属酸化物との複合酸化物からなる焼結体を得る工程、および
前記焼結体を還元して、前記易還元性金属の粒子を前記複合酸化物の表面に析出させる工程を具備し、
前記混合粉末は、前記添加金属を0.01モル%以上0.25モル%以下の量で含有することを特徴とする金属粒子担持複合酸化物の製造方法。
At least one additional metal selected from the group consisting of oxide powders of non-reducible metals, oxide powders of easily reducible metals, and Sc, Cr, B, Fe, Ga, In, Lu, Nb, and Si A step of mixing a powder containing
Molding the mixed powder to obtain a molded body,
Sintering the molded body to obtain a sintered body made of a composite oxide of the hardly-reducible metal oxide and the easily-reducible metal oxide, and reducing the sintered body to make the easily-reduced Comprising a step of precipitating conductive metal particles on the surface of the composite oxide,
The mixed powder contains the additive metal in an amount of 0.01 mol% or more and 0.25 mol% or less.
炭化水素系燃料を収容する燃料タンク、
前記炭化水素燃料を改質する改質剤を収容する改質剤タンク、
前記炭化水素系燃料および前記改質剤をそれぞれ気化する予備加熱装置、
気化した炭化水素系燃料と改質剤とを混合する混合器、
前記混合器により混合されたガスを反応させ、水素を主成分とする燃料に改質するリフォーミング触媒が収容された触媒層を有する改質器、および
前記改質器を加熱する加熱装置を具備し、
前記リフォーミング触媒に、請求項1に記載の金属粒子担持複合酸化物を用いることを特徴とする炭化水素系燃料改質器。
A fuel tank for containing hydrocarbon fuel,
A modifier tank containing a modifier for reforming the hydrocarbon fuel;
A preheating device for vaporizing the hydrocarbon fuel and the modifier,
A mixer for mixing the vaporized hydrocarbon fuel and the reformer,
A reformer having a catalyst layer containing a reforming catalyst for reacting a gas mixed by the mixer and reforming it into a fuel containing hydrogen as a main component; and a heating device for heating the reformer. And
A hydrocarbon-based fuel reformer using the metal particle-supported composite oxide according to claim 1 as the reforming catalyst.
JP2003342172A 2003-02-27 2003-09-30 Metal particle-supported composite oxide, method for producing the same, and fuel reformer using the same Expired - Lifetime JP3950099B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003342172A JP3950099B2 (en) 2003-09-30 2003-09-30 Metal particle-supported composite oxide, method for producing the same, and fuel reformer using the same
US10/786,286 US7435274B2 (en) 2003-02-27 2004-02-26 Metal particle-dispersed composite oxides, metal particle-dispersed composite oxide-sintered bodies, method of manufacturing metal particle-dispersed composite oxides, and hydrocarbon-based fuel reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003342172A JP3950099B2 (en) 2003-09-30 2003-09-30 Metal particle-supported composite oxide, method for producing the same, and fuel reformer using the same

Publications (2)

Publication Number Publication Date
JP2005103468A true JP2005103468A (en) 2005-04-21
JP3950099B2 JP3950099B2 (en) 2007-07-25

Family

ID=34536548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003342172A Expired - Lifetime JP3950099B2 (en) 2003-02-27 2003-09-30 Metal particle-supported composite oxide, method for producing the same, and fuel reformer using the same

Country Status (1)

Country Link
JP (1) JP3950099B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010010857A1 (en) 2008-07-23 2010-01-28 石油資源開発株式会社 Complex oxide for hydrocarbon reforming catalyst, method for producing the same, and method for producing synthetic gas using the same
JP4496346B2 (en) * 2007-10-11 2010-07-07 石油資源開発株式会社 Hydrocarbon reforming catalyst and method for producing synthesis gas using the same
JP2012170938A (en) * 2011-02-24 2012-09-10 Nachi Fujikoshi Corp Nickel chromium alloy catalyst and manufacturing method thereof
JP2012196662A (en) * 2011-03-08 2012-10-18 Denso Corp Steam-reforming catalyst and reforming catalytic body
JP2013518030A (en) * 2010-02-01 2013-05-20 シー ― ソルコエス エネルギア イ メイオアンビエンテ リミターダ Method and system for producing hydrogen from carbon-containing feedstock

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4772561B2 (en) * 2006-03-31 2011-09-14 株式会社東芝 Methanol reforming catalyst, shift catalyst, method for producing methanol reforming catalyst, and method for producing shift catalyst

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4496346B2 (en) * 2007-10-11 2010-07-07 石油資源開発株式会社 Hydrocarbon reforming catalyst and method for producing synthesis gas using the same
JPWO2009048083A1 (en) * 2007-10-11 2011-02-24 石油資源開発株式会社 Hydrocarbon reforming catalyst and method for producing synthesis gas using the same
US8178003B2 (en) 2007-10-11 2012-05-15 Japan Petroleum Exploration Co., Ltd. Hydrocarbon-reforming catalyst and process for producing synthesis gas using the same
WO2010010857A1 (en) 2008-07-23 2010-01-28 石油資源開発株式会社 Complex oxide for hydrocarbon reforming catalyst, method for producing the same, and method for producing synthetic gas using the same
US8475684B2 (en) 2008-07-23 2013-07-02 Japan Petroleum Exploration Co., Ltd. Composite oxide for hydrocarbon reforming catalyst, process for producing the same, and process for producing syngas using the same
JP2013518030A (en) * 2010-02-01 2013-05-20 シー ― ソルコエス エネルギア イ メイオアンビエンテ リミターダ Method and system for producing hydrogen from carbon-containing feedstock
JP2012170938A (en) * 2011-02-24 2012-09-10 Nachi Fujikoshi Corp Nickel chromium alloy catalyst and manufacturing method thereof
JP2012196662A (en) * 2011-03-08 2012-10-18 Denso Corp Steam-reforming catalyst and reforming catalytic body

Also Published As

Publication number Publication date
JP3950099B2 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
JP4639247B2 (en) Hydrocarbon reforming catalyst, process for producing the same, and process for producing synthesis gas using the same
US10065179B2 (en) Ceria-zirconia-based composite oxide and method for producing same, and exhaust gas purification catalyst including ceria-zirconia-based composite oxide
JP5110249B2 (en) Hydrocarbon decomposition catalyst, hydrocarbon decomposition method and hydrogen production method using the catalyst, and power generation system
CN106660020A (en) Use of olivine catalysts for carbon dioxide reforming of methane
JP4316323B2 (en) Hydrocarbon reforming catalyst and method for producing the same
US7435274B2 (en) Metal particle-dispersed composite oxides, metal particle-dispersed composite oxide-sintered bodies, method of manufacturing metal particle-dispersed composite oxides, and hydrocarbon-based fuel reformer
WO2010001690A1 (en) Carbon dioxide reforming process
JPWO2008084785A1 (en) Carbon dioxide reforming catalyst and method for producing the same
US9776172B2 (en) Porous silicon carbide nanocomposite structure comprising nanowires and method of preparing the same
JP4607715B2 (en) Catalyst and method for producing catalyst
JP2010099638A (en) Catalyst, catalyst for purifying exhaust gas, and method for manufacturing the catalyst
JP2003164761A (en) Metal oxide sintered structure and method for manufacturing the same
JP4332724B2 (en) Autothermal reforming catalyst and method for producing the same, and method for producing hydrogen using the autothermal reforming catalyst
JPWO2010143676A1 (en) Hydrocarbon gas reforming catalyst, method for producing the same, and method for producing synthesis gas
JP3950099B2 (en) Metal particle-supported composite oxide, method for producing the same, and fuel reformer using the same
JP2005238131A (en) Methanization catalyst, production method thereof, and method for methanizing carbon monoxide with the catalyst
JP2001278656A (en) Method for manufacturing sintered metal oxide
JP2008207070A (en) Method for producing catalyst for producing hydrogen
JP4296430B2 (en) Catalyst for water gas shift reaction and process for producing the same
JP4665044B2 (en) Fuel reforming catalyst, reformer, and fuel cell system
JP4430291B2 (en) Syngas production method
JP4772561B2 (en) Methanol reforming catalyst, shift catalyst, method for producing methanol reforming catalyst, and method for producing shift catalyst
JP4715999B2 (en) Catalyst for water gas shift reaction and process for producing the same
JP6933144B2 (en) Heterogeneous catalyst structure and its manufacturing method
JP3776839B2 (en) Metal particle-supported composite oxide sintered structure and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070419

R151 Written notification of patent or utility model registration

Ref document number: 3950099

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

EXPY Cancellation because of completion of term