JP2005238131A - Methanization catalyst, production method thereof, and method for methanizing carbon monoxide with the catalyst - Google Patents

Methanization catalyst, production method thereof, and method for methanizing carbon monoxide with the catalyst Download PDF

Info

Publication number
JP2005238131A
JP2005238131A JP2004052503A JP2004052503A JP2005238131A JP 2005238131 A JP2005238131 A JP 2005238131A JP 2004052503 A JP2004052503 A JP 2004052503A JP 2004052503 A JP2004052503 A JP 2004052503A JP 2005238131 A JP2005238131 A JP 2005238131A
Authority
JP
Japan
Prior art keywords
nickel
catalyst
iron
carbon monoxide
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004052503A
Other languages
Japanese (ja)
Other versions
JP4488178B2 (en
Inventor
Nariya Kobayashi
斉也 小林
Shinji Takahashi
真司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2004052503A priority Critical patent/JP4488178B2/en
Publication of JP2005238131A publication Critical patent/JP2005238131A/en
Application granted granted Critical
Publication of JP4488178B2 publication Critical patent/JP4488178B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a methanization catalyst which carries a catalytic active component consisting of metallic nickel particulates and/or metallic iron particulates, hence exhibits an excellent catalytic activity over a wide temperature range in the methanization by mixing and reacting carbon monoxide with hydrogen, and can selectively methanize carbon monoxide contained in a gas mixture containing carbon dioxide in addition to carbon monoxide. <P>SOLUTION: The methanization catalyst, capable of methanizing carbon monoxide, contains metallic nickel particulates and/or metallic iron particulates in addition to magnesium and aluminum. The average particle size of metallic nickel particulates and/or metallic iron particulates is 1-20 nm, and the content of metallic nickel and/or metallic iron in the catalyst is 0.15-60 wt%. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、一酸化炭素と水素とを混合して反応させるメタン化反応において、触媒活性成分である金属ニッケル微粒子及び/又は金属鉄微粒子が、触媒粒子の全体又は触媒粒子の表面近傍若しくは触媒成形体の表面近傍のいずれかに担持されていることにより、幅広い温度域において優れた触媒活性を有すると共に、一酸化炭素の他に二酸化炭素を含んだ混合ガスにおいても一酸化炭素を選択的にメタン化することができるメタン化触媒の提供を目的とする。さらに、本発明は、一酸化炭素と水素とを触媒存在下で混合接触反応するメタン化触媒において優れた耐性を兼ね添えるメタン化触媒の提供を目的とする。   The present invention relates to a methanation reaction in which carbon monoxide and hydrogen are mixed and reacted, and the metal nickel fine particles and / or metal iron fine particles, which are catalytically active components, are the entire catalyst particles, the vicinity of the surface of the catalyst particles, or catalyst molding. It has excellent catalytic activity in a wide range of temperatures by being supported on the surface of the body, and carbon monoxide is selectively methane even in a mixed gas containing carbon monoxide in addition to carbon monoxide. An object of the present invention is to provide a methanation catalyst that can be converted to a methanation catalyst. Furthermore, an object of the present invention is to provide a methanation catalyst that combines excellent resistance in a methanation catalyst in which carbon monoxide and hydrogen are mixed and reacted in the presence of a catalyst.

一酸化炭素を含有する水素ガスを精製するためにメタン化を利用することはよく知られている。メタン化反応を促進させる触媒材料としては、触媒活性種として貴金属元素では、ルテニウム、ロジウム、パラジウム、卑金属元素では、鉄、コバルト、ニッケル、等が知られおり、貴金属元素は卑金属元素より触媒作用が極めて大きいことが知られている。   It is well known to use methanation to purify hydrogen gas containing carbon monoxide. As catalytic materials for promoting the methanation reaction, as the catalytic active species, ruthenium, rhodium, palladium, base metal elements such as iron, cobalt, nickel, etc. are known as noble metal elements. It is known to be extremely large.

原料ガスの組成にもよるが、卑金属元素を触媒活性種として用いた一酸化炭素のメタン化は300℃以上の温度が必要であることが一般的に知られている(CO+3H→CH+HO)。原料ガス中に二酸化炭素が含まれている場合、300℃でメタン化反応を行うと、二酸化炭素のメタン化も起こってしまう(CO+4H→CH+2HO)。 Although depending on the composition of the raw material gas, it is generally known that carbon monoxide methanation using a base metal element as a catalytically active species requires a temperature of 300 ° C. or higher (CO + 3H 2 → CH 4 + H). 2 O). When carbon dioxide is contained in the raw material gas, if methanation reaction is performed at 300 ° C., methanation of carbon dioxide also occurs (CO 2 + 4H 2 → CH 4 + 2H 2 O).

通常、二酸化炭素のメタン化は250℃から発熱を伴い起こることが一般的に知られている。二酸化炭素のメタン化が起こると、高価な水素が多量に使用されてしまうだけでなく、その発熱反応のため触媒層内の温度が自発的に上昇してしまい、さらに二酸化炭素のメタン化が進行してしまい、また水素を無駄に消費してしまうことになる。よって、一酸化炭素だけを選択的にメタン化するためには250℃以下の温度域で触媒反応を行わければならない。   It is generally known that methanation of carbon dioxide usually occurs with heat generation from 250 ° C. When methanation of carbon dioxide occurs, not only is a large amount of expensive hydrogen used, but the temperature inside the catalyst layer rises spontaneously due to the exothermic reaction, and further methanation of carbon dioxide proceeds. In addition, hydrogen is wasted. Therefore, in order to selectively methanate only carbon monoxide, the catalytic reaction must be performed in a temperature range of 250 ° C. or lower.

貴金属系元素を担持させた触媒では250℃で触媒反応することが可能であるが、工業用材料として採用するには触媒が高価になるばかりでなく、省資源の面からも望ましいものではない。   A catalyst carrying a noble metal element can perform a catalytic reaction at 250 ° C., but not only is the catalyst expensive to adopt as an industrial material, but it is not desirable from the viewpoint of saving resources.

また、ニッケル等の卑金属系元素を担持させた触媒では250℃程度では一酸化炭素のメタン転化率が非常に低いため使用することは困難である。また、ニッケル等の卑金属元素では、触媒反応に際し、触媒表面上に炭素が析出する現象(コーキング)が発生し、触媒活性を劣化しやすい問題がある。   In addition, it is difficult to use a catalyst carrying a base metal element such as nickel at about 250 ° C. because the carbon monoxide methane conversion is very low. In addition, in the case of a base metal element such as nickel, there is a problem that carbon is precipitated on the catalyst surface during the catalytic reaction (coking), and the catalytic activity is likely to deteriorate.

このようなことから、メタン化触媒として、安価な卑金属系であるニッケルや鉄などの触媒金属を用いた触媒を設計し、機能面では、幅広い温度域において一酸化炭素をメタン化できるとともに、二酸化炭素のメタン化を起こすことがなく、炭素析出(コーキング)が抑制された、高活性、高耐性を有する触媒が強く求められている。   For this reason, a catalyst using an inexpensive base metal catalyst metal such as nickel or iron is designed as a methanation catalyst. In terms of functionality, carbon monoxide can be methanated in a wide temperature range, and There is a strong demand for a catalyst having high activity and high resistance that does not cause carbon methanation and suppresses carbon deposition (coking).

従来、α−アルミナや酸化マグネシウム、酸化チタンなどの担体に、ルテニウム、ロジウム、パラジウム、ニッケル、コバルト、鉄等を担持したメタン化触媒が報告されている(特許文献1至5)。   Conventionally, a methanation catalyst in which ruthenium, rhodium, palladium, nickel, cobalt, iron or the like is supported on a carrier such as α-alumina, magnesium oxide, or titanium oxide has been reported (Patent Documents 1 to 5).

特許10−176177号公報Japanese Patent No. 10-176177 特開2000−256003号公報JP 2000-256003 A 特開2000−192057号公報JP 2000-192057 A 特開平7−291875号公報JP-A-7-291875 特開平5−184925号公報JP-A-5-184925 特開平3−93602JP-A-3-93602

特許文献1では触媒活性種としてニッケルを用いているため安価な触媒になってはいるが、空間速度が非常に緩やかな条件であるため、効率的とは言えない。   In Patent Document 1, although nickel is used as a catalytically active species, it is an inexpensive catalyst, but it is not efficient because the space velocity is very gentle.

特許文献2、3、5、6では、高いメタン化活性得ること、また炭素析出を抑制するためにα―アルミナ等の担体に触媒活性金属種としてルテニウムやパラジウム等を用いているため、非常に高価なものとなってしまう。   In Patent Documents 2, 3, 5, and 6, since high methanation activity is obtained and ruthenium, palladium, or the like is used as a catalytically active metal species for a carrier such as α-alumina in order to suppress carbon deposition, It will be expensive.

特許文献4では、触媒活性金属種としてニッケルを用いているため炭素析出が問題である。さらに320℃でメタン化反応をおこなっているため、二酸化炭素のメタン化が起こり好ましいものではない。   In Patent Document 4, since nickel is used as the catalytically active metal species, carbon deposition is a problem. Further, since the methanation reaction is performed at 320 ° C., methanation of carbon dioxide occurs and is not preferable.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、マグネシウム及びアルミニウムとともに金属ニッケル微粒子及び/又は金属鉄微粒子を含有するメタン化触媒であって、金属ニッケル微粒子及び/又は金属鉄微粒子の平均粒子径が1〜20nmであって金属ニッケル及び/又は金属鉄の含有量がメタン化触媒に対して0.15〜60wt%であり、かつ、ニッケル及び/又は鉄の含有量がマグネシウム、アルミニウム、ニッケル及び/又は鉄の合計モル数に対して、0.001〜0.52であることを特徴とする一酸化炭素をメタン化するメタン化触媒である。   That is, the present invention is a methanation catalyst containing metal nickel fine particles and / or metal iron fine particles together with magnesium and aluminum, wherein the metal nickel fine particles and / or metal iron fine particles have an average particle diameter of 1 to 20 nm, The content of nickel and / or metallic iron is 0.15 to 60 wt% with respect to the methanation catalyst, and the content of nickel and / or iron is the total number of moles of magnesium, aluminum, nickel and / or iron. On the other hand, it is a methanation catalyst for methanating carbon monoxide characterized by being 0.001 to 0.52.

また、本発明は、マグネシウムとアルミニウムとニッケル及び/又は鉄からなる層状複水水酸化物粒子を、加熱焼成して酸化物粒子粉末を得、次いで、該酸化物粒子粉末を加熱還元して酸化物粒子粉末中のニッケル及び/又は鉄を金属ニッケル微粒子及び/又は金属鉄微粒子にして得られることを特徴とする一酸化炭素をメタン化するメタン化触媒である。   In the present invention, layered double hydroxide particles composed of magnesium, aluminum, nickel and / or iron are heated and fired to obtain oxide particle powder, and then the oxide particle powder is heated and reduced to be oxidized. A methanation catalyst for methanating carbon monoxide, which is obtained by converting nickel and / or iron in a product particle powder into metal nickel fine particles and / or metal iron fine particles.

また、本発明は、マグネシウム及びアルミニウムからなる層状複水水酸化物芯粒子と、該層状複水水酸化物芯粒子の表面にマグネシウムとアルミニウムとニッケル及び/又は鉄からなる層状複水水酸化物層を形成した層状複水水酸化物型粒子粉末を、加熱焼成して酸化物粒子粉末を得、次いで、該酸化物粒子粉末を加熱還元して酸化物粒子粉末中のニッケル及び/又は鉄を金属のニッケル微粒子及び/又は金属の鉄微粒子にして得られることを特徴とする一酸化炭素をメタン化するメタン化触媒である。   The present invention also relates to a layered double hydroxide core particle composed of magnesium and aluminum, and a layered double hydroxide composed of magnesium, aluminum, nickel and / or iron on the surface of the layered double hydroxide core particle. The layered double hydroxide type particle powder in which the layer is formed is heated and fired to obtain an oxide particle powder, and then the oxide particle powder is heated to reduce nickel and / or iron in the oxide particle powder. A methanation catalyst for methanation of carbon monoxide, characterized in that it is obtained as metal nickel fine particles and / or metal iron fine particles.

また、本発明は、アニオンを含有したアルカリ性水溶液とマグネシウム原料とアルミニウム塩水溶液とニッケル塩水溶液及び/又は鉄塩水溶液とを混合し、pH値が7.0〜14.0の範囲の混合溶液とした後、該混合溶液を50℃〜300℃の温度範囲で熟成してマグネシウムとアルミニウムとニッケル及び/又は鉄とからなる層状複水水酸化物粒子を生成後、濾別、水洗後、得られた層状複水水酸化物粒子粉末を400℃〜1500℃の温度範囲で加熱焼成し酸化物粒子粉末を得、次いで、該酸化物粒子粉末を還元雰囲気下、650℃〜1100℃の温度範囲で加熱還元することを特徴とする前記一酸化炭素をメタン化するメタン化触媒の製造方法である。   The present invention also includes an alkaline aqueous solution containing anions, a magnesium raw material, an aluminum salt aqueous solution, a nickel salt aqueous solution and / or an iron salt aqueous solution, and a mixed solution having a pH value in the range of 7.0 to 14.0; Then, the mixed solution is aged in a temperature range of 50 ° C. to 300 ° C. to produce layered double hydroxide particles composed of magnesium, aluminum, nickel and / or iron, and is obtained after filtration and washing with water. The layered double hydroxide particle powder was heated and fired at a temperature range of 400 ° C. to 1500 ° C. to obtain an oxide particle powder, and then the oxide particle powder was reduced at a temperature range of 650 ° C. to 1100 ° C. in a reducing atmosphere. It is a method for producing a methanation catalyst for methanation of the carbon monoxide, characterized by performing heat reduction.

また、本発明は、アニオンを含有したアルカリ性水溶液とマグネシウム原料とアルミニウム塩水溶液とを混合し、pH値が7.0〜14.0の範囲の混合溶液とした後、該混合溶液を50℃〜300℃の温度範囲で熟成してマグネシウムとアルミニウムとからなる層状複水水酸化物芯粒子を生成させ、次いで、該芯粒子を含む水性懸濁液に、該芯粒子の生成時に添加した前記マグネシウムと前記アルミニウムとの合計モル数に対して、合計モル数が0.04〜0.5となる割合のマグネシウムとアルミニウムとニッケル及び/又は鉄を含有するマグネシウム原料とアルミニウム塩水溶液とニッケル塩水溶液及び/又は鉄塩水溶液を添加した後、pH値が9.0〜14.0の範囲、温度が40℃〜300℃の範囲で熟成して、前記芯粒子表面に層状複水水酸化物層を被覆形成させる成長反応を行った後、濾別、水洗後、得られた層状複水水酸化物粒子粉末を400℃〜1500℃の温度範囲で加熱焼成し酸化物粒子粉末を得、次いで、該酸化物粒子粉末を還元雰囲気下、650℃〜1100℃の温度範囲で加熱還元することを特徴とする前記一酸化炭素をメタン化するメタン化触媒の製造方法である。   Further, in the present invention, an alkaline aqueous solution containing an anion, a magnesium raw material, and an aluminum salt aqueous solution are mixed to obtain a mixed solution having a pH value in the range of 7.0 to 14.0. The magnesium added at the time of production of the core particles to the aqueous suspension containing the core particles by producing layered double hydroxide core particles composed of magnesium and aluminum by aging in the temperature range of 300 ° C. And magnesium, a magnesium raw material containing aluminum, nickel, iron and / or iron in a ratio of 0.04 to 0.5, and an aluminum salt aqueous solution, a nickel salt aqueous solution, After adding an aqueous iron salt solution, the mixture is aged in a pH range of 9.0 to 14.0 and a temperature range of 40 ° C. to 300 ° C. After carrying out the growth reaction to form a coating on the layered double hydroxide layer, after filtering and washing with water, the obtained layered double hydroxide particle powder is heated and fired in the temperature range of 400 ° C. to 1500 ° C. A method for producing a methanation catalyst for methanation of carbon monoxide, comprising obtaining a particle powder and then heat-reducing the oxide particle powder in a reducing atmosphere in a temperature range of 650 ° C. to 1100 ° C. .

また、本発明は、一酸化炭素と水素との混合ガスを触媒存在下において混合接触反応してメタンを製造するメタン化反応において、前記触媒として前記いずれかのメタン化触媒を用いることを特徴とする一酸化炭素をメタン化する方法である。   Further, the present invention is characterized in that any one of the above methanation catalysts is used as the catalyst in a methanation reaction in which methane is produced by a mixed contact reaction of a mixed gas of carbon monoxide and hydrogen in the presence of the catalyst. This is a method for methanating carbon monoxide.

また、本発明は、二酸化炭素及び水素の混合ガスを触媒存在下において混合接触反応して一酸化炭素をメタン化する反応において、前記触媒として前記いずれかのメタン化触媒を用いることを特徴とする一酸化炭素をメタン化する方法である。   In addition, the present invention is characterized in that any one of the above methanation catalysts is used as the catalyst in a reaction in which carbon monoxide is methanated by a mixed contact reaction of a mixed gas of carbon dioxide and hydrogen in the presence of the catalyst. This is a method for methanating carbon monoxide.

本発明に係るメタン化触媒は、Ni金属またはFe金属が従来に無いほど非常に細かな微粒子で触媒粒子の全体又は触媒粒子の表面近傍若しくは触媒成形体の表面近傍に高分散して存在していることにより、幅広い温度域で一酸化炭素をメタン化することができる。さらに従来の卑金属元素の活性温度が300℃に対し、250℃で触媒活性を有することから二酸化炭素のメタン化を抑制することができ、一酸化炭素中に二酸化炭素が含まれていても選択的に一酸化炭素をメタン化することが可能である。   The methanation catalyst according to the present invention is a fine particle that is so fine that there is no Ni metal or Fe metal in the past, and is present in a highly dispersed state in the entire catalyst particle, in the vicinity of the surface of the catalyst particle, or in the vicinity of the surface of the catalyst molded body. Therefore, carbon monoxide can be methanated in a wide temperature range. Furthermore, since the activation temperature of the conventional base metal element is 250 ° C. compared to 300 ° C., carbon dioxide methanation can be suppressed, and even if carbon monoxide is contained in carbon monoxide, it is selective. It is possible to methanate carbon monoxide.

また、Ni金属又はFe金属が非常に細かな微粒子で触媒粒子の全体又は触媒粒子の表面近傍若しくは触媒成形体の表面近傍に高分散して存在していることにより、メタン化反応を行っても炭素析出(コーキング)を起こししにくい。また、マグネシウムを多量に多孔質担体が含んでいるため耐硫黄被毒性に極めて優れているので耐久性の面でも優れた触媒活性を有する。さらに、本発明にかかるメタン化触媒は、メタンなどの低級炭化水素ガスを水蒸気改質(SR)、部分酸化(POX)などの炭化水素分解用触媒、また二酸化炭素改質触媒として用いることもできる。   In addition, even if the methanation reaction is performed because Ni metal or Fe metal is very fine fine particles and is highly dispersed in the entire catalyst particle or in the vicinity of the surface of the catalyst particle or the surface of the catalyst molded body. Hard to cause carbon deposition (coking). In addition, since the porous carrier contains a large amount of magnesium, it is extremely excellent in sulfur poisoning resistance and therefore has excellent catalytic activity in terms of durability. Furthermore, the methanation catalyst according to the present invention can also be used as a catalyst for cracking hydrocarbons such as steam reforming (SR) and partial oxidation (POX), or carbon dioxide reforming catalyst using lower hydrocarbon gas such as methane. .

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

先ず、本発明に係るメタン化触媒について述べる。   First, the methanation catalyst according to the present invention will be described.

本発明に係るメタン化触媒の金属ニッケル微粒子及び/又は金属鉄微粒子の平均粒子径は1〜20nmであり、幅広い温度域で一酸化炭素をメタン化することができる。さらに250℃以下で一酸化炭素をメタン化できるため、一酸化炭素の他に二酸化炭素を含んだ混合ガスにおいても選択的に一酸化炭素をメタン化できる。平均粒子径が20nmを超える金属ニッケル微粒子及び/又は金属鉄微粒子を有する触媒では、一酸化炭素をメタン化するため250℃以上の温度が必要となってしまう。さらに、20nmを超える金属ニッケル微粒子及び/又は金属鉄微粒子を有する触媒では触媒体の耐コーキング性が著しく低下する。好ましくは1〜18nm、より好ましくは3〜15nmである。   The average particle diameter of the metal nickel fine particles and / or metal iron fine particles of the methanation catalyst according to the present invention is 1 to 20 nm, and carbon monoxide can be methanated in a wide temperature range. Furthermore, since carbon monoxide can be methanated at 250 ° C. or lower, carbon monoxide can be selectively methanated even in a mixed gas containing carbon dioxide in addition to carbon monoxide. In a catalyst having metallic nickel fine particles and / or metallic iron fine particles having an average particle diameter exceeding 20 nm, a temperature of 250 ° C. or higher is required for methanation of carbon monoxide. Furthermore, in the case of a catalyst having metallic nickel fine particles and / or metallic iron fine particles exceeding 20 nm, the coking resistance of the catalyst body is significantly lowered. Preferably it is 1-18 nm, More preferably, it is 3-15 nm.

本発明に係るメタン化触媒の金属ニッケル微粒子及び/又は金属鉄微粒子の含有量は、該触媒体に対して0.15〜60wt%である。金属ニッケル微粒子及び/又は金属鉄微粒子の含有量が0.15wt%未満の場合には低級炭化水素の転化率が低下する。60wt%を超える場合には、金属ニッケル微粒子及び/又は金属鉄微粒子の粒子サイズが20nmを超え、一酸化炭素をメタン化するため250℃以上の温度が必要となるだけでなく、耐コーキング性が低下してしまう。好ましくは0.18〜40wt%である。   The content of metal nickel fine particles and / or metal iron fine particles in the methanation catalyst according to the present invention is 0.15 to 60 wt% with respect to the catalyst body. When the content of metallic nickel fine particles and / or metallic iron fine particles is less than 0.15 wt%, the conversion of lower hydrocarbons is lowered. When it exceeds 60 wt%, the particle size of the metal nickel fine particles and / or metal iron fine particles exceeds 20 nm, and not only a temperature of 250 ° C. or higher is required to methanate carbon monoxide, but also the coking resistance is high. It will decline. Preferably it is 0.18-40 wt%.

本発明に係るメタン化触媒のニッケル金属及び/又は鉄金属の含有量のモル数は、触媒に含まれるマグネシウム、アルミニウム、ニッケル及び/又は鉄の合計モル数に対する比率(Ni及び/又はFe)/(Mg+Al+Ni及び/又はFe)で示した場合、0.001〜0.52である。前記モル比が0.52を越える場合には、金属ニッケル微粒子及び/又は金属鉄微粒子の平均粒子径が20nmを超えるため、また耐コーキング性が低下する。好ましくは0.001〜0.50、より好ましくは0.0012〜0.45である。   The number of moles of the nickel metal and / or iron metal content of the methanation catalyst according to the present invention is the ratio (Ni and / or Fe) / the total mole number of magnesium, aluminum, nickel and / or iron contained in the catalyst / In the case of (Mg + Al + Ni and / or Fe), it is 0.001 to 0.52. When the molar ratio exceeds 0.52, the average particle diameter of the metal nickel fine particles and / or metal iron fine particles exceeds 20 nm, and the coking resistance is deteriorated. Preferably it is 0.001-0.50, More preferably, it is 0.0012-0.45.

本発明に係るメタン化触媒のマグネシウムとアルミニウムとの比率は特に限定されないが、アルミニウムに対してマグネシウムが多い方が好ましく、マグネシウムとアルミニウムのモル比はMg:Al=5:1〜1:1が好ましい。マグネシウムが前記範囲を越える場合には十分な強度を有する成形体を容易に得ることが困難となり、前記範囲未満の場合には多孔質担体としての特性が得られ難くなる。   Although the ratio of magnesium and aluminum in the methanation catalyst according to the present invention is not particularly limited, it is preferable that magnesium is more than aluminum, and the molar ratio of magnesium to aluminum is Mg: Al = 5: 1 to 1: 1. preferable. When magnesium exceeds the above range, it is difficult to easily obtain a molded article having sufficient strength, and when it is less than the above range, it is difficult to obtain the characteristics as a porous carrier.

本発明に係るメタン化触媒の比表面積値は7〜320m/gが好ましい。7m/g未満の場合には高い空間速度において転化率が低下してしまう。320m/gを超える場合には触媒前駆体である複合水酸化物粒子粉末の工業的な生産が困難となる。より好ましくは20〜280m/gである。 The specific surface area value of the methanation catalyst according to the present invention is preferably 7 to 320 m 2 / g. If it is less than 7 m 2 / g, the conversion rate decreases at a high space velocity. When it exceeds 320 m 2 / g, industrial production of composite hydroxide particle powder as a catalyst precursor becomes difficult. More preferably, it is 20-280 m < 2 > / g.

次に、本発明に係るメタン化触媒の製造方法について述べる。   Next, a method for producing a methanation catalyst according to the present invention will be described.

本発明に係るメタン化触媒は、前駆体である層状複水水酸化物粒子粉末を製造した後、400〜1500℃の温度範囲で加熱焼成して多孔質酸化物粒子粉末とし、必要により250℃〜650℃の温度範囲で加熱焼成し、次いで、650〜1100℃の温度範囲で加熱還元して得ることができる。   The methanation catalyst according to the present invention, after producing a layered double hydroxide particle powder as a precursor, is heated and fired in a temperature range of 400-1500 ° C. to form a porous oxide particle powder, and if necessary 250 ° C. It can be obtained by heating and baking in a temperature range of ˜650 ° C., and then heating and reducing in a temperature range of 650 to 1100 ° C.

本発明における層状複水水酸化物粒子粉末は、アニオンを含有したアルカリ性水溶液とマグネシウム原料、アルミニウム塩水溶液、ニッケル塩水溶液及び/又は鉄水溶液を混合し、pH値が7.0〜14.0の範囲の混合溶液とした後、該混合溶液を50〜300℃の温度範囲で熟成して層状複水水酸化物を行うことで得られる。   The layered double hydroxide particle powder in the present invention is prepared by mixing an alkaline aqueous solution containing anions with a magnesium raw material, an aluminum salt aqueous solution, a nickel salt aqueous solution and / or an iron aqueous solution, and having a pH value of 7.0 to 14.0. After preparing the mixed solution in the range, the mixed solution is aged in the temperature range of 50 to 300 ° C. to obtain a layered double hydroxide.

マグネシウム原料としては、酸化マグネシウム、水酸化マグネシウム、シュウ酸マグネシウム、硫酸マグネシウム、亜硫酸マグネシウム、硝酸マグネシウム、塩化マグネシウム、クエン酸マグネシウム、塩基性炭酸マグネシウム、安息香酸マグネシウム等を用いることができる。   As a magnesium raw material, magnesium oxide, magnesium hydroxide, magnesium oxalate, magnesium sulfate, magnesium sulfite, magnesium nitrate, magnesium chloride, magnesium citrate, basic magnesium carbonate, magnesium benzoate and the like can be used.

アルミニウム原料としては、酸化アルミニウム、水酸化アルミニウム、酢酸アルミニウム、塩化アルミニウム、硝酸アルミニウム、シュウ酸アルミニウム、塩基性アンモニウムアルミニウム等を用いることができる。   As the aluminum raw material, aluminum oxide, aluminum hydroxide, aluminum acetate, aluminum chloride, aluminum nitrate, aluminum oxalate, basic ammonium aluminum, or the like can be used.

ニッケル塩原料としては、酸化ニッケル、水酸化ニッケル、硫酸ニッケル、炭酸ニッケル、硝酸ニッケル、塩化ニッケル、安息香酸ニッケル、塩基性炭酸ニッケル、ギ酸ニッケル、クエン酸ニッケル、硫酸ニッケル二アンモニウム等を用いることができる。   As the nickel salt raw material, nickel oxide, nickel hydroxide, nickel sulfate, nickel carbonate, nickel nitrate, nickel chloride, nickel benzoate, basic nickel carbonate, nickel formate, nickel citrate, nickel diammonium sulfate, etc. may be used. it can.

鉄塩原料としては酸化鉄、水酸化鉄、硫酸鉄、硝酸鉄、塩化鉄、クエン酸鉄アンモニウム、シュウ酸鉄アンモニウム、塩基性酢酸鉄等を用いることができる。   As the iron salt raw material, iron oxide, iron hydroxide, iron sulfate, iron nitrate, iron chloride, ammonium iron citrate, iron ammonium oxalate, basic iron acetate and the like can be used.

pHが7.0未満では所望の層状複水水酸化物粒子が生成しない。好ましくはpH8.0〜14.0である。   If the pH is less than 7.0, desired layered double hydroxide particles are not produced. The pH is preferably 8.0 to 14.0.

熟成温度が50℃未満では層状複水水酸化物粒子が320m/gを超え、工業的な生産が困難となる。300℃を超えた場合、層状複水水酸化物粒子以外に大きな水酸化アルミニウム粒子や水酸化酸化アルミニウム粒子が混在するようになり、触媒活性金属微粒子のシンタリングが促進され、所望の特性を持った触媒体が得られない。好ましくは60〜250℃である。 When the aging temperature is less than 50 ° C., the layered double hydroxide particles exceed 320 m 2 / g, making industrial production difficult. When the temperature exceeds 300 ° C., large aluminum hydroxide particles and aluminum hydroxide oxide particles are mixed in addition to the layered double hydroxide particles, and the sintering of the catalytically active metal fine particles is promoted to have desired characteristics. No catalyst body can be obtained. Preferably it is 60-250 degreeC.

熟成時間は特に限定されるものではないが、層状複水水酸化物粒子として十分に粒成長する時間は必要である。具体的には1〜80時間、好ましくは、1〜24時間、より好ましくは、2〜18時間である。1時間未満では層状複水水酸化物粒子としての粒成長が不十分である。80時間を超えると工業的ではない。   The aging time is not particularly limited, but it requires time for sufficient grain growth as layered double hydroxide particles. Specifically, it is 1 to 80 hours, preferably 1 to 24 hours, and more preferably 2 to 18 hours. If it is less than 1 hour, the grain growth as layered double hydroxide particles is insufficient. If it exceeds 80 hours, it is not industrial.

また、本発明における層状複水水酸化物粒子粉末は、アニオンを含有したアルカリ性水溶液とマグネシウム原料とアルミニウム塩水溶液を混合し、pH値が7.0〜14.0の範囲の混合溶液とした後、該混合溶液を50〜300℃の温度範囲で熟成して層状複水水酸化物芯粒子を生成し、次いで、該層状複水水酸化物芯粒子を含む水懸濁液に、前記層状複水水酸化物芯粒子の生成時に添加した前記マグネシウムと前記アルミニウムとの合計モル数に対して、合計モル数が0.04〜0.5となる割合のマグネシウム、アルミニウム、ニッケル金属及び/又は鉄金属を含有するマグネシウム塩水溶液、アルミニウム塩水溶液及びニッケル塩水溶液あるいは鉄水溶液を添加した後、pH値が9.0〜14.0の範囲、温度が40〜300℃の範囲で熟成して、前記層状複水水酸化物芯粒子の粒子表面に新たに添加したマグネシウム、アルミニウム、ニッケル及び/又は鉄をトポタクティックに被覆形成する成長反応を行うことで得られる。   The layered double hydroxide particle powder in the present invention is prepared by mixing an alkaline aqueous solution containing anions, a magnesium raw material, and an aluminum salt aqueous solution to obtain a mixed solution having a pH value in the range of 7.0 to 14.0. The mixed solution is aged in a temperature range of 50 to 300 ° C. to produce layered double hydroxide core particles, and then the layered double hydroxide core particles are added to the aqueous suspension containing the layered double hydroxide core particles. Magnesium, aluminum, nickel metal and / or iron in a ratio that the total number of moles is 0.04 to 0.5 with respect to the total number of moles of the magnesium and the aluminum added when the hydroxide core particles are formed. After adding the magnesium salt aqueous solution, aluminum salt aqueous solution, nickel salt aqueous solution or iron aqueous solution containing metal, the pH value is in the range of 9.0 to 14.0 and the temperature is in the range of 40 to 300 ° C. In and aged, magnesium newly added to the particle surface of the layered Fukusui hydroxide core particles, aluminum, obtained by performing the growth reaction of the coat forming a nickel and / or iron topotactic.

前記製造法によって製造された層状複水水酸化物粒子粉末を用いてメタン化触媒を製造することによって、金属ニッケル微粒子及び/又は金属鉄微粒子をメタン化触媒を構成する粒子の表面近傍に存在させることができる。   By producing the methanation catalyst using the layered double hydroxide particle powder produced by the production method, the metal nickel fine particles and / or the metal iron fine particles are present in the vicinity of the surface of the particles constituting the methanation catalyst. be able to.

マグネシウム原料、アルミニウム塩原料、ニッケル塩原料、鉄塩原料としては前記各原料を用いることができる。   The respective raw materials can be used as the magnesium raw material, aluminum salt raw material, nickel salt raw material, and iron salt raw material.

芯粒子に対する成長反応分のモル数が0.04未満の場合には、低級炭化水素の転化率が低くなり本発明の効果が得られない。0.52を超える場合には、金属ニッケル微粒子及び/又は金属鉄微粒子の平均粒子径が20nmを超えてしまい本発明の目的とする効果を得ることができず、さらには耐コーキング性が低下する。好ましくは0.1〜0.45、より好ましくは0.12〜0.4である。   When the number of moles of the growth reaction with respect to the core particle is less than 0.04, the conversion rate of the lower hydrocarbon is lowered and the effect of the present invention cannot be obtained. When it exceeds 0.52, the average particle diameter of the metal nickel fine particles and / or metal iron fine particles exceeds 20 nm, the intended effect of the present invention cannot be obtained, and the coking resistance is further lowered. . Preferably it is 0.1-0.45, More preferably, it is 0.12-0.4.

成長反応におけるpH値が9.0未満の場合には、成長反応時に添加したマグネシウム、アルミニウム、ニッケル及び/又は鉄が被覆層を形成せず分離して混在するようになり、本発明の目的とする触媒が得られない。pH値が14.0を超える場合には、アルミニウムの溶出が多過ぎて目的とする組成物が得られ難くなる。好ましくは9.0〜12.5、より好ましくは9.5〜12.0である。   When the pH value in the growth reaction is less than 9.0, magnesium, aluminum, nickel and / or iron added during the growth reaction are separated and mixed without forming a coating layer. No catalyst is obtained. When the pH value exceeds 14.0, there is too much elution of aluminum, making it difficult to obtain the target composition. Preferably it is 9.0-12.5, More preferably, it is 9.5-12.0.

成長反応における反応温度が40℃未満の場合には、成長反応時に添加したマグネシウム、アルミニウム、ニッケル及び/又は鉄が被覆層を形成せず分離して混在するようになり、本発明の目的とする触媒が得られない。300℃を超えた場合、層状複水水酸化物粒子以外に大きな水酸化アルミニウム粒子や水酸化酸化アルミニウム粒子が混在するようになり、触媒活性金属微粒子のシンタリングが促進され、所望の特性を持った触媒体が得られない。好ましくは60〜250℃である。   When the reaction temperature in the growth reaction is lower than 40 ° C., the magnesium, aluminum, nickel and / or iron added during the growth reaction are separated and mixed without forming a coating layer, which is an object of the present invention. A catalyst cannot be obtained. When the temperature exceeds 300 ° C., large aluminum hydroxide particles and aluminum hydroxide oxide particles are mixed in addition to the layered double hydroxide particles, and the sintering of the catalytically active metal fine particles is promoted to have desired characteristics. No catalyst body can be obtained. Preferably it is 60-250 degreeC.

成長反応における熟成時間は特に限定されるものではないが、1〜80時間、好ましくは3〜24時間、より好ましくは5〜18時間である。1時間未満では成長反応時に添加したマグネシウム、アルミニウム、ニッケル及び/又は鉄が層状複水水酸化物芯粒子表面に十分な被覆層を形成しない。80時間を超える成長反応は工業的ではない。   The aging time in the growth reaction is not particularly limited, but is 1 to 80 hours, preferably 3 to 24 hours, and more preferably 5 to 18 hours. If it is less than 1 hour, magnesium, aluminum, nickel and / or iron added during the growth reaction will not form a sufficient coating layer on the surface of the layered double hydroxide core particles. Growth reactions over 80 hours are not industrial.

本発明におけるメタン化触媒の前駆体である層状複水水酸化物粒子粉末の平均板面径は0.05〜0.4μmが好ましい。平均板面径が0.05μm未満の場合には、濾別・水洗に困難となり工業的な生産が困難であり、0.4μmを超える場合には、触媒成形体を作製することが困難である。   The average plate surface diameter of the layered double hydroxide particle powder that is the precursor of the methanation catalyst in the present invention is preferably 0.05 to 0.4 μm. When the average plate surface diameter is less than 0.05 μm, it is difficult to filter and wash, and industrial production is difficult. When it exceeds 0.4 μm, it is difficult to produce a catalyst molded body. .

本発明におけるメタン化触媒の前駆体である層状複水水酸化物粒子粉末の結晶子サイズD006(粒子の厚み)は0.002〜0.07μmが好ましい。結晶子サイズD006が0.002μm未満の場合には、水性懸濁液の粘度が非常に高く工業的な生産が難しく、0.07μmを超える場合には、触媒成形体を作製するのが困難である。   The crystallite size D006 (particle thickness) of the layered double hydroxide particle powder that is the precursor of the methanation catalyst in the present invention is preferably 0.002 to 0.07 μm. When the crystallite size D006 is less than 0.002 μm, the viscosity of the aqueous suspension is very high and industrial production is difficult, and when it exceeds 0.07 μm, it is difficult to produce a catalyst compact. is there.

本発明におけるメタン化触媒の前駆体である層状複水水酸化物粒子粉末の比表面積値は5.0〜250m/gが好ましい。比表面積値が5.0m/g未満の場合には、触媒成形体を作製するのが困難であり、250m/gを超える場合には、水性懸濁液の粘度が非常に高く、また濾別水洗に難があり工業的に生産が困難である。 The specific surface area value of the layered double hydroxide particle powder that is the precursor of the methanation catalyst in the present invention is preferably 5.0 to 250 m 2 / g. When the specific surface area value is less than 5.0 m 2 / g, it is difficult to produce a catalyst molded body, and when it exceeds 250 m 2 / g, the viscosity of the aqueous suspension is very high, It is difficult to wash by filtration and industrial production is difficult.

本発明における層状複水水酸化物粒子粉末の金属ニッケル微粒子及び/又は金属鉄微粒子の含有量は、層状複水水酸化物粒子粉末全体に対して0.15〜30wt%が好ましく、より好ましくは0.15〜25wt%である。また、層状複水水酸化物粒子粉末のニッケル含有量及び/又は鉄含有量のモル数は、層状複水水酸化物粒子粉末に含まれるマグネシウム、アルミニウム、ニッケル及び/又は鉄の合計モル数に対する比(NiまたはFe)/(Mg+Al+NiまたはFe)で示した場合、0.001〜0.25が好ましく、より好ましくは0.0012〜0.15であり、更により好ましくは0.005〜0.08である。   The content of the metal nickel fine particles and / or metal iron fine particles in the layered double hydroxide particle powder in the present invention is preferably 0.15 to 30 wt%, more preferably based on the entire layered double hydroxide particle powder. 0.15 to 25 wt%. The number of moles of nickel content and / or iron content of the layered double hydroxide particle powder is based on the total number of moles of magnesium, aluminum, nickel and / or iron contained in the layered double hydroxide particle powder. When expressed by the ratio (Ni or Fe) / (Mg + Al + Ni or Fe), 0.001 to 0.25 is preferable, more preferably 0.0012 to 0.15, and still more preferably 0.005 to 0.00. 08.

本発明における層状複水水酸化物粒子粉末のマグネシウムとアルミニウムとの比率は特に限定されないが、マグネシウムとアルミニウムのモル比はMg:Al=5:1〜1:1がより好ましい。   The ratio of magnesium and aluminum in the layered double hydroxide particle powder in the present invention is not particularly limited, but the molar ratio of magnesium and aluminum is more preferably Mg: Al = 5: 1 to 1: 1.

なお、ニッケル原料に微量含まれる不純物としてのコバルトが本発明に係る触媒に含有されても何ら問題はない。   There is no problem even if cobalt as an impurity contained in a trace amount in the nickel raw material is contained in the catalyst according to the present invention.

また、本発明においては、層状複水水酸化物粒子を成形体とした後、ニッケル塩水溶液及び/又は鉄塩水溶液に浸漬した後、濾別、水洗、乾燥することによって、ニッケル及び/又は鉄を層状複水水酸化物粒子に担持させてもよい。   In the present invention, the layered double hydroxide particles are formed into a molded body, and then immersed in an aqueous nickel salt solution and / or an iron salt aqueous solution, followed by filtration, washing with water, and drying to thereby obtain nickel and / or iron. May be supported on layered double hydroxide particles.

本発明における多孔質酸化物粒子粉末は、前記層状複水水酸化物粒子を400℃〜1500℃で焼成することにより得られる。層状複水水酸化物粒子粉末の焼成温度が400℃未満の場合には、多孔質体酸化物粒子を得ることができない。1500℃を超える場合には、多孔質体担体としての特性が低下する。好ましくは450〜1500℃、より好ましくは500〜1500℃である。焼成雰囲気は酸素、空気、また窒素、アルゴンなどの不活性ガスでも良い。   The porous oxide particle powder in the present invention is obtained by firing the layered double hydroxide particles at 400 ° C to 1500 ° C. When the firing temperature of the layered double hydroxide particle powder is less than 400 ° C., porous oxide particles cannot be obtained. When it exceeds 1500 ° C., the characteristics as a porous body carrier deteriorate. Preferably it is 450-1500 degreeC, More preferably, it is 500-1500 degreeC. The firing atmosphere may be oxygen, air, or an inert gas such as nitrogen or argon.

本発明における多孔質酸化物粒子粉末の焼成時間は特に限定しないが0.5〜24時間が望ましい。24時間を越えると工業的にメリットが見出せない。好ましくは1〜10時間である。   The firing time of the porous oxide particle powder in the present invention is not particularly limited, but 0.5 to 24 hours is desirable. If it exceeds 24 hours, no industrial merit can be found. Preferably it is 1 to 10 hours.

本発明における層状複水水酸化物粒子粉末を焼成後に得られる多孔質酸化物粒子粉末のニッケル金属及び/又は鉄金属の含有量は、多孔質酸化物粒子粉末全体に対して0.15〜60wt%が好ましく、より好ましくは0.18〜40wt%である。また、多孔質酸化物粒子粉末のニッケル含有量のモル数及びマグネシウムとアルミニウムとの比率は、層状複水水酸化物粒子粉末のモル数及び比率とほぼ同程度である。   The content of nickel metal and / or iron metal in the porous oxide particle powder obtained after firing the layered double hydroxide particle powder in the present invention is 0.15 to 60 wt with respect to the whole porous oxide particle powder. % Is preferable, and more preferably 0.18 to 40 wt%. Further, the number of moles of nickel content of the porous oxide particle powder and the ratio of magnesium and aluminum are substantially the same as the number of moles and ratio of the layered double hydroxide particle powder.

本発明における多孔質酸化物粒子粉末の平均板面径は0.05〜0.4μmが好ましく、比表面積値は7.0〜320m/gが好ましい。 The average plate surface diameter of the porous oxide particle powder in the present invention is preferably 0.05 to 0.4 μm, and the specific surface area value is preferably 7.0 to 320 m 2 / g.

本発明におけるメタン化触媒は前記多孔質酸化物粒子粉末を650℃〜1100℃の範囲で還元処理することにより得られる。多孔質酸化物粒子粉末の還元温度が650℃未満の場合には、ニッケル及び/又は鉄が金属化しないので本発明の目的とする触媒活性が得られない。1100℃を超える場合にはニッケル及び/又は鉄のシンタリングが進み金属ニッケル微粒子及び/又は金属鉄微粒子の粒子サイズが大きくなるため、一酸化炭素をメタン化するため250℃以上の温度が必要となるだけでなく、耐コーキング性が低下してしまう。好ましくは700〜950℃である。   The methanation catalyst in the present invention can be obtained by reducing the porous oxide particle powder in the range of 650 ° C to 1100 ° C. When the reduction temperature of the porous oxide particle powder is less than 650 ° C., nickel and / or iron is not metallized, so that the target catalytic activity of the present invention cannot be obtained. When the temperature exceeds 1100 ° C., the sintering of nickel and / or iron proceeds and the particle size of the metal nickel fine particles and / or metal iron fine particles increases, so that a temperature of 250 ° C. or higher is required to methanate carbon monoxide. Not only will the coking resistance be reduced. Preferably it is 700-950 degreeC.

還元時の雰囲気は、水素を含んだガスなど還元雰囲気であれば特に限定されない。熱処理の時間は特に限定しないが0.5〜24時間が望ましい。24時間を越えると工業的にメリットが見出せない。好ましくは、1〜10時間である。   The atmosphere during the reduction is not particularly limited as long as it is a reducing atmosphere such as a gas containing hydrogen. The heat treatment time is not particularly limited, but is preferably 0.5 to 24 hours. If it exceeds 24 hours, no industrial merit can be found. Preferably, it is 1 to 10 hours.

上記のようにして得られた粉末状の触媒は、使用する各用途に合わせて成形しても良い。形状やサイズは特に限定しないが、例えば球状や円柱状、管状、ハニカム体への塗布などの形状でも良い。通常、球状や円柱状、管状の形状を持つ触媒体の場合のサイズは0.1〜30mm程度が適する。条件によっては有機物や無機物などの各種バインダーを添加することで成形体の強度や細孔分布密度を調整しても良い。なお、本発明においては熱処理前に造粒・成形してもよい。   The powdered catalyst obtained as described above may be molded according to each application to be used. The shape and size are not particularly limited, but may be, for example, a spherical shape, a cylindrical shape, a tubular shape, or a shape applied to a honeycomb body. Usually, a size of about 0.1 to 30 mm is suitable for a catalyst body having a spherical, cylindrical, or tubular shape. Depending on conditions, the strength and pore distribution density of the molded body may be adjusted by adding various binders such as organic substances and inorganic substances. In the present invention, granulation and molding may be performed before the heat treatment.

次に、本発明に係るメタン化触媒を用いた一酸化炭素のメタン化方法について述べる。   Next, the methanation method of carbon monoxide using the methanation catalyst according to the present invention will be described.

本発明に係るメタン化触媒を用いた一酸化炭素をメタン化する方法は、反応温度が200〜400℃であり、水素と一酸化炭素のモル比(H/CO)が1〜5であり、空間速度(GHSV)が200〜100,000h−1である条件下で、水素と一酸化炭素を本発明に係るメタン化触媒を接触させる。 In the method of methanating carbon monoxide using the methanation catalyst according to the present invention, the reaction temperature is 200 to 400 ° C., and the molar ratio of hydrogen to carbon monoxide (H 2 / CO) is 1 to 5. The methanation catalyst according to the present invention is brought into contact with hydrogen and carbon monoxide under the condition that the space velocity (GHSV) is 200 to 100,000 h −1 .

反応温度が200℃未満の場合には一酸化炭素の転化率が低く、長時間に渡り反応を行うとコーキングが起こりやすくなり終には触媒特性が失活することもある。400℃を越える場合では一酸化炭素を完全メタン化できているので高温にしてもあまり意味が無くエネルギーの無駄である。好ましくは160〜3800℃、より好ましくは1800〜350℃である。   When the reaction temperature is less than 200 ° C., the conversion rate of carbon monoxide is low, and when the reaction is carried out for a long time, coking is likely to occur, and the catalyst characteristics may be deactivated at the end. When the temperature exceeds 400 ° C., carbon monoxide can be completely methanated, so even if the temperature is high, there is no point in wasting energy. Preferably it is 160-3800 degreeC, More preferably, it is 1800-350 degreeC.

/COが1.0未満の場合には耐コーキング性が低下する。またH/COが5を超える場合には高価な水素を多量に使用するためしコストがかさみ現実的ではない。好ましくは1〜4、より好ましくは1.5〜3.5である。好ましいGHSVは300〜80,000h−1であり、より好ましくは500〜50,000h−1である。 When H 2 / CO is less than 1.0, the coking resistance decreases. Further, when H 2 / CO exceeds 5, a large amount of expensive hydrogen is used, which increases costs and is not practical. Preferably it is 1-4, More preferably, it is 1.5-3.5. Preferred GHSV is 300~80,000h -1, more preferably 500~50,000h -1.

<作用>
本発明に係るメタン化触媒がメタン化反応時に幅広い温度域で一酸化炭素をメタン化することができ、かつ一酸化炭素の他に二酸化炭素を含んだ混合ガスにおいても一酸化炭素を選択的にメタン化することができることについて、本発明者は次のように推定している。
<Action>
The methanation catalyst according to the present invention can methanate carbon monoxide in a wide temperature range during the methanation reaction, and selectively select carbon monoxide even in a mixed gas containing carbon dioxide in addition to carbon monoxide. The inventor estimates that it can be methanated as follows.

本発明のメタン化触媒の金属ニッケル微粒子及び/又は金属鉄微粒子が従来にないほど微細な、殊に、1〜20nmという微粒子で、触媒粒子の全体又は触媒粒子の表面近傍若しくは触媒成形体の表面近傍に存在しているため、一酸化炭素及び水素に接する金属ニッケル微粒子及び/又は金属鉄微粒子の表面積が大きくなり、幅広い温度域で優れた触媒活性を有するものと推定している。さらに、二酸化炭素のメタン化が起こる250℃以下で一酸化炭素をメタン化できるため、一酸化炭素の他に二酸化炭素を含んだ混合ガスにおいても一酸化炭素を選択的にメタン化できるのもと推定している。また、従来のメタン化触媒より低温で稼動させることが可能であるため、省電力にも繋がる。   The metal nickel fine particles and / or metal iron fine particles of the methanation catalyst of the present invention are finer than before, especially 1-20 nm fine particles, the entire catalyst particles or the surface of the catalyst particles or the surface of the catalyst molded body. Since it exists in the vicinity, the surface area of the metal nickel fine particles and / or metal iron fine particles in contact with carbon monoxide and hydrogen is increased, and it is estimated that the catalyst activity is excellent in a wide temperature range. Furthermore, since carbon monoxide can be methanated at 250 ° C. or lower, where carbon dioxide methanation occurs, carbon monoxide can be selectively methanated even in a mixed gas containing carbon dioxide in addition to carbon monoxide. Estimated. Moreover, since it can be operated at a lower temperature than the conventional methanation catalyst, it leads to power saving.

さらにマグネシウムを多量に多孔質担体が含んでいるため耐硫黄被毒性に極めて優れているので耐久性の面でも優れた触媒活性を有する。   Furthermore, since the porous carrier contains a large amount of magnesium, it has excellent sulfur poisoning resistance, and therefore has excellent catalytic activity in terms of durability.

本発明の代表的な実施の形態は次の通りである。     A typical embodiment of the present invention is as follows.

層状複水水酸化物粒子粉末の板面径は、「電子顕微鏡写真TEM1200EX(日本電子株式会社製)」(加速電圧:100kV)を使用し、測定した数値の平均値で示したものである。   The plate surface diameter of the layered double hydroxide particle powder is the average value of the measured values using “electron micrograph TEM1200EX (manufactured by JEOL Ltd.)” (acceleration voltage: 100 kV).

層状複水水酸化物粒子粉末の粒子の厚みは、「X線回折装置RINT−2500(理学電機(株)製)」(管球:Cu、管電圧:40kV、管電流:300mA、ゴニオメーター:広角ゴニオメーター、サンプリング幅:0.020°、走査速度:2°/min、発散スリット:1°、散乱スリット:1°、受光スリット:0.50mm)を使用し、層状複水水酸化物粒子のD006結晶面の回折ピーク曲線から、シェラーの式を用いて計算した値で示したものである。   The thickness of the layered double hydroxide particle powder is “X-ray diffractometer RINT-2500 (manufactured by Rigaku Corporation)” (tube: Cu, tube voltage: 40 kV, tube current: 300 mA, goniometer: Layered double hydroxide particles using a wide angle goniometer, sampling width: 0.020 °, scanning speed: 2 ° / min, diverging slit: 1 °, scattering slit: 1 °, light receiving slit: 0.50 mm) This is a value calculated from the diffraction peak curve of the D006 crystal plane using Scherrer's equation.

層状複水水酸化物粒子粉末の同定はX線回折測定で行った。X線回折測定は、前記X線回折装置を使用し、回折角2θが3〜80°で測定した。   Identification of the layered double hydroxide particle powder was performed by X-ray diffraction measurement. X-ray diffraction measurement was performed using the X-ray diffractometer at a diffraction angle 2θ of 3 to 80 °.

金属ニッケル微粒子や金属鉄微粒子の大きさは、電子顕微鏡写真から測定した数値の平均値で示したものである。また10nmを超える金属微粒子の大きさは、「X線回折装置RINT−2500(理学電機(株)製)」(管球:Cu、管電圧:40kV、管電流:300mA、ゴニオメーター:広角ゴニオメーター、サンプリング幅:0.020°、走査速度:2°/min、発散スリット:1°、散乱スリット:1°、受光スリット:0.50mm)を使用し、シェラーの式を用いて微粒子の大きさを計算で求めた。このX線回折装置より求めた金属ニッケル微粒子や金属鉄微粒子の粒子サイズは、電子顕微鏡写真より求めたものと同じであった。   The size of the metal nickel fine particles and the metal iron fine particles is indicated by an average value of numerical values measured from an electron micrograph. The size of the metal fine particles exceeding 10 nm is “X-ray diffractometer RINT-2500 (manufactured by Rigaku Corporation)” (tube: Cu, tube voltage: 40 kV, tube current: 300 mA, goniometer: wide angle goniometer. , Sampling width: 0.020 °, scanning speed: 2 ° / min, diverging slit: 1 °, scattering slit: 1 °, light receiving slit: 0.50 mm), and the size of the fine particles using Scherrer's equation Was calculated. The particle sizes of the metal nickel fine particles and metal iron fine particles obtained from this X-ray diffractometer were the same as those obtained from the electron micrograph.

触媒を構成するマグネシウム、アルミニウム、ニッケル、鉄の含有量は、該触媒を酸で溶解し、「プラズマ発光分光分析装置 SPS4000(セイコー電子工業(株))」で測定して求めた。   The contents of magnesium, aluminum, nickel, and iron constituting the catalyst were determined by dissolving the catalyst with an acid and measuring it with “Plasma Emission Spectrometer SPS4000 (Seiko Electronics Co., Ltd.)”.

BET比表面積値は、窒素によるB.E.T.法により測定した。   The BET specific surface area value is the B.B. E. T.A. Measured by the method.

メタン化反応時に析出した炭素の量は、触媒反応前後の触媒体の炭素量をカーボン・サルファー測定装置で測定し求めた。   The amount of carbon deposited during the methanation reaction was determined by measuring the amount of carbon in the catalyst body before and after the catalytic reaction with a carbon sulfur measuring device.

実施例1 <メタン化触媒の調整>
MgSO・7HO 261.99gとAl(SO・8HO 86.16gとを水で溶解させ1000mlとした。別にNaOH 235.4ml(14mol/L濃度)に、NaCO 100.49gを溶解させた1000ml溶液を加えて全量2000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩との混合溶液を加え、95℃で8時間熟成を行って層状複水水酸化物芯粒子を得た。このときの反応溶液のpH12.8であった。
次いで、このアルカリ性懸濁液に、MgSO・7HO 52.15gとNiSO・6HO 4.99gとAl(SO・8HO 20.98gとを溶かした500mlのマグネシウム塩とニッケル塩とアルミニウム塩との混合溶液を加え、反応溶液のpH11.4をにし、さらに120℃で4時間熟成し、前記層状複水水酸化物芯粒子表面にトポタクティックに成長させ、層状複水水酸化物粒子を得た。なお、成長反応時に添加したマグネシウム、アルミニウム及びニッケルの合計モル数は、芯粒子の生成時に添加した前記マグネシウムと前記アルミニウムとの合計モル数に対して、0.324であった。ここに得た層状複水水酸化物粒子の平均板面径は0.285μmであり、結晶子サイズD006は0.034μmであり、BETは35.4m/gであった。
Example 1 <Preparation of Methanation Catalyst>
261.99 g of MgSO 4 · 7H 2 O and 86.16 g of Al 2 (SO 4 ) 3 · 8H 2 O were dissolved in water to make 1000 ml. Separately, a 1000 ml solution in which 100.49 g of NaCO 3 was dissolved was added to 235.4 ml of NaOH (14 mol / L concentration) to prepare an alkaline mixed solution of 2000 ml in total. A mixed solution of the magnesium salt and aluminum salt was added to the alkali mixed solution, and aging was performed at 95 ° C. for 8 hours to obtain layered double hydroxide core particles. The pH of the reaction solution at this time was 12.8.
Next, 500 ml of magnesium in which 52.15 g of MgSO 4 .7H 2 O, 4.99 g of NiSO 4 .6H 2 O and 20.98 g of Al 2 (SO 4 ) 3 · 8H 2 O were dissolved in this alkaline suspension. Adding a mixed solution of a salt, a nickel salt and an aluminum salt to adjust the pH of the reaction solution to 11.4, further aging at 120 ° C. for 4 hours, and growing on the surface of the layered double hydroxide core particles, Layered double hydroxide particles were obtained. The total number of moles of magnesium, aluminum and nickel added during the growth reaction was 0.324 with respect to the total number of moles of magnesium and aluminum added during the formation of the core particles. The average plate surface diameter of the layered double hydroxide particles obtained here was 0.285 μm, the crystallite size D006 was 0.034 μm, and the BET was 35.4 m 2 / g.

ここに得た層状複水水酸化物粒子粉末を成形して、直径3mmの球形体ビーズとした。800℃、4時間空気中にて焼成し、800℃にて水素/アルゴン体積比が20/80のガス気流中において1時間還元処理を行い、メタン化触媒を得た。得られた触媒中のニッケルの含有量は10.12wt%(Ni/(Mg+Al+Ni)=0.083(モル比))であり、金属ニッケル微粒子の大きさは4nmであった。なお、金属ニッケル粒子は、粒子表面近傍にのみ存在するものと推定された。   The layered double hydroxide particle powder thus obtained was molded into spherical beads having a diameter of 3 mm. Firing was performed in air at 800 ° C. for 4 hours, and reduction treatment was performed at 800 ° C. in a gas stream having a hydrogen / argon volume ratio of 20/80 for 1 hour to obtain a methanation catalyst. The content of nickel in the obtained catalyst was 10.12 wt% (Ni / (Mg + Al + Ni) = 0.083 (molar ratio)), and the size of the metal nickel fine particles was 4 nm. In addition, it was estimated that the metal nickel particle exists only in the vicinity of the particle surface.

<メタン化触媒を用いた水素製造反応>
メタン化触媒の評価は、触媒を直径20mmのステンレス製反応管に20〜50g充填して触媒管を作った。
この触媒管(反応器)に対して、原料ガスとして都市ガス13A、空気、水蒸気を、反応圧力0.5MPa、反応温度200℃〜500℃、空間速度を10000h−1として流通させた。このときの水素/一酸化炭素(H/CO)を種々変化させた。
<Hydrogen production reaction using methanation catalyst>
For the evaluation of the methanation catalyst, a catalyst tube was prepared by filling 20 to 50 g of a catalyst into a stainless steel reaction tube having a diameter of 20 mm.
Through this catalyst tube (reactor), city gas 13A, air, and water vapor were circulated as raw material gases at a reaction pressure of 0.5 MPa, a reaction temperature of 200 ° C. to 500 ° C., and a space velocity of 10,000 h −1 . At this time, hydrogen / carbon monoxide (H 2 / CO) was variously changed.

なお、表中に示した一酸化炭素転化率は、下記式より算出されたものである。
一酸化炭素転化率(%)=(1−出口一酸化炭素濃度/入口一酸化炭素濃度)×100
In addition, the carbon monoxide conversion shown in the table is calculated from the following formula.
Carbon monoxide conversion (%) = (1-outlet carbon monoxide concentration / inlet carbon monoxide concentration) × 100

前記反応結果を表1乃至4に示す。   The reaction results are shown in Tables 1 to 4.

表1には、水素/一酸化炭素(H/CO)が1.5又は3.5における反応温度と一酸化炭素転化率の関係を示す。
表2は反応温度250℃、水素/一酸化炭素(H/CO)が1.5又は3.5における空間速度と一酸化炭素転化率の関係を示す。
表3はGHSVが10000h−1、反応温度が250℃であり、水素/一酸化炭素(H/CO)は3.5における反応時間と一酸化炭素転化率及び触媒活性測定前後の炭素析出量の関係を示す。
表4は混合ガス中の微量一酸化炭素における一酸化炭素転化率とメタン生成量の関係を示す。反応条件は反応温度が250℃、GHSVが10000h−1、混合ガス組成はCO(0.4%)、CO(16.6%)、HO(18.0%)、H(65.0%)である。
Table 1 shows the relationship between the reaction temperature and the carbon monoxide conversion rate when hydrogen / carbon monoxide (H 2 / CO) is 1.5 or 3.5.
Table 2 shows the relationship between the space velocity and the carbon monoxide conversion rate at a reaction temperature of 250 ° C. and hydrogen / carbon monoxide (H 2 / CO) of 1.5 or 3.5.
Table 3 shows that GHSV is 10000 h −1 , the reaction temperature is 250 ° C., and hydrogen / carbon monoxide (H 2 / CO) is the reaction time at 3.5, the carbon monoxide conversion rate, and the carbon deposition amount before and after the measurement of the catalytic activity. The relationship is shown.
Table 4 shows the relationship between the carbon monoxide conversion rate and the amount of methane produced in a small amount of carbon monoxide in the mixed gas. The reaction conditions are a reaction temperature of 250 ° C., a GHSV of 10,000 h −1 , and a mixed gas composition of CO (0.4%), CO 2 (16.6%), H 2 O (18.0%), H 2 (65 0.0%).

<実施例2>
MgSO・7HO 104.6gとAl(SO・8HO 41.29gとNiSO・6HO 169.6gを水で溶解させ1500mlとした。別にNaOH475.0ml(14mol/L濃度)に、NaCO 12.60gを溶解させた500ml溶液を加えて全量2000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩との混合溶液を加え、55℃で4時間熟成を行って層状複水水酸化物粒子を得た。このときの反応溶液のpH7.2であった。ここに得た層状複水水酸化物粒子の平均板面径は0.058μmであり、結晶子サイズD006は0.003μmであり、BETは248.2m/gであった。
<Example 2>
104.6 g of MgSO 4 · 7H 2 O, 41.29 g of Al 2 (SO 4 ) 3 · 8H 2 O and 169.6 g of NiSO 4 · 6H 2 O were dissolved in water to make 1500 ml. Separately, a 500 ml solution in which 12.60 g of NaCO 3 was dissolved was added to 475.0 ml of NaOH (14 mol / L concentration) to prepare an alkaline mixed solution of 2000 ml in total. A mixed solution of the magnesium salt and aluminum salt was added to the alkali mixed solution, and aging was performed at 55 ° C. for 4 hours to obtain layered double hydroxide particles. The pH of the reaction solution at this time was 7.2. The average plate surface diameter of the layered double hydroxide particles obtained here was 0.058 μm, the crystallite size D006 was 0.003 μm, and the BET was 248.2 m 2 / g.

ここに得た層状複水水酸化物粒子を成形して、直径3mmの球形体ビーズとした。900℃、8時間空気中にて焼成して多孔質酸化物粉末を得、次いで、660℃にて水素/アルゴン体積比が20/80のガス気流中において2時間還元処理を行い、メタン化触媒を得た。得られた触媒中のニッケルの含有量は58.91wt%(Ni/(Mg+Al+Ni)=0.518(モル比))であり、金属ニッケル微粒子の大きさは15nmであった。   The layered double hydroxide particles obtained here were molded into spherical beads having a diameter of 3 mm. A porous oxide powder is obtained by firing in air at 900 ° C. for 8 hours, and then reduced at 660 ° C. in a gas stream having a hydrogen / argon volume ratio of 20/80 for 2 hours to obtain a methanation catalyst. Got. The content of nickel in the obtained catalyst was 58.91 wt% (Ni / (Mg + Al + Ni) = 0.518 (molar ratio)), and the size of the metal nickel fine particles was 15 nm.

<実施例3>
Mg(NO・6HO 102.7gとAl(NO・8HO 37.46gとFe(SO・9HO 0.449gとを純水で溶解させ1500mlとした。別にNaOH 671.0ml(14mol/L濃度)に、NaCO 14.82gを溶解させた500ml溶液を加えて全量2000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩との混合溶液を加え、150℃で12時間熟成を行って層状複水水酸化物粒子を得た。このときの反応溶液のpH13.8であった。ここに得た層状複水水酸化物粒子粉末の平均板面径は0.382μmであり、結晶子サイズD006は0.068μmであり、BETは7.1m/gであった。
<Example 3>
1500 ml of Mg (NO 3 ) 2 · 6H 2 O 102.7 g, Al (NO 3 ) 3 · 8H 2 O 37.46 g and Fe 2 (SO 4 ) 3 · 9H 2 O 0.449 g are dissolved in pure water. It was. Separately, a 500 ml solution in which 14.82 g of NaCO 3 was dissolved was added to 671.0 ml of NaOH (14 mol / L concentration) to prepare a total amount of 2000 ml of an alkali mixed solution. A mixed solution of the magnesium salt and aluminum salt was added to the alkali mixed solution, and aging was performed at 150 ° C. for 12 hours to obtain layered double hydroxide particles. The pH of the reaction solution at this time was 13.8. The average plate surface diameter of the layered double hydroxide particle powder obtained here was 0.382 μm, the crystallite size D006 was 0.068 μm, and the BET was 7.1 m 2 / g.

ここで得た層状複水水酸化物粒子粉末を直径3mmの球形状ビーズとした。420℃、22時間空気中にて焼成して多孔質酸化物粉末を得、次いで、1080℃にて水素/アルゴン体積比が20/80のガス気流中において4.0時間還元処理を行い、メタン化触媒を得た。得られた触媒中の鉄の含有量は0.18wt%(Fe/(Mg+Al+Fe)=0.001(モル比))であり、金属鉄微粒子の大きさは1nmであった。   The layered double hydroxide particle powder obtained here was used as spherical beads having a diameter of 3 mm. A porous oxide powder is obtained by baking in air at 420 ° C. for 22 hours, and then subjected to reduction treatment at 1080 ° C. in a gas stream having a hydrogen / argon volume ratio of 20/80 for 4.0 hours. A catalyst was obtained. The iron content in the obtained catalyst was 0.18 wt% (Fe / (Mg + Al + Fe) = 0.001 (molar ratio)), and the size of the metal iron fine particles was 1 nm.

<実施例4>
Mg(NO・6HO 241.09gとAl(NO・8HO 59.47gとFe(SO・9HO 7.985gとNi(NO・6HO 3.349gを純水で溶解させ1500mlとした。別にNaOH 375.0ml(14mol/L濃度)に、NaCO 18.15gを溶解させた500ml溶液を加えて全量2000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩との混合溶液を加え、80℃で6時間熟成を行って層状複水水酸化物粒子を得た。このときの反応溶液のpH10.2であった。ここに得た層状複水水酸化物粒子粉末の平均板面径は0.154μmであり、結晶子サイズD006は0.015μmであり、BETは125.2m/gであった。
<Example 4>
241.09 g of Mg (NO 3 ) 2 .6H 2 O, 59.47 g of Al (NO 3 ) 3 .8H 2 O, 7.985 g of Fe 2 (SO 4 ) 3 .9H 2 O and Ni (NO 3 ) 2. 6.349 g of 6H 2 O was dissolved in pure water to make 1500 ml. Separately, 500 ml of a solution in which 18.15 g of NaCO 3 was dissolved in 375.0 ml (concentration of 14 mol / L) of NaOH was added to prepare an alkaline mixed solution of 2000 ml in total. A mixed solution of the magnesium salt and aluminum salt was added to the alkali mixed solution, and aging was performed at 80 ° C. for 6 hours to obtain layered double hydroxide particles. The pH of the reaction solution at this time was 10.2. The average plate surface diameter of the layered double hydroxide particle powder obtained here was 0.154 μm, the crystallite size D006 was 0.015 μm, and the BET was 125.2 m 2 / g.

ここで得た層状複水水酸化物粒子粉末を成型し直径3mmの球形状ビーズとした。1300℃、4時間空気中にて焼成して多孔質酸化物粉末とし、次いで、800℃にて水素/アルゴン体積比が20/80のガス気流中において10時間還元処理を行い、メタン化触媒を得た。得られた触媒中のニッケルの含有量は1.21wt%(Ni/(Mg+Al+Ni+Fe)=0.009(モル比))であり、触媒中の鉄の含有量は1.62wt%(Fe/(Mg+Al+Ni+Fe)=0.013(モル比))であった。金属ニッケル微粒子の大きさは2nmであり、金属鉄微粒子の大きさは3nmであった。   The layered double hydroxide particle powder obtained here was molded into spherical beads having a diameter of 3 mm. A porous oxide powder is calcined in air at 1300 ° C. for 4 hours, and then subjected to a reduction treatment in a gas stream having a hydrogen / argon volume ratio of 20/80 at 800 ° C. for 10 hours. Obtained. The content of nickel in the obtained catalyst was 1.21 wt% (Ni / (Mg + Al + Ni + Fe) = 0.0009 (molar ratio)), and the content of iron in the catalyst was 1.62 wt% (Fe / (Mg + Al + Ni + Fe). ) = 0.013 (molar ratio)). The size of the metal nickel fine particles was 2 nm, and the size of the metal iron fine particles was 3 nm.

<実施例5>
Mg(NO・6HO 172.3gとAl(NO・9HO 63.03gとを水で溶解させ1000mlとした。別にNaOH 282ml(14mol/L濃度)に、NaCO 99.14gを溶解させた1000ml溶液を加えて全量2000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩との混合溶液を加え、75℃で5時間熟成を行って層状複水水酸化物芯粒子を得た。このときの反応溶液のpH10.5であった。
次いで、このアルカリ性懸濁液に、Mg(NO・6HO 17.04gとNi(NO・6HO 51.48gとFe(SO・9HO 124.6gとAl(NO・9HO 4.986gとを溶かした500mlのマグネシウム塩とニッケル塩とアルミニウム塩との混合溶液を加え、反応溶液のpHを9.8にし、さらに110℃で2時間熟成し、前記層状複水水酸化物芯粒子表面にトポタクティックに成長させ、層状複水水酸化物粒子を得た。なお、成長反応時に添加したマグネシウム、アルミニウム、ニッケル及び鉄の合計モル数は、芯粒子の生成時に添加した前記マグネシウムと前記アルミニウムとの合計モル数に対して、0.0482であった。ここに得た層状複水水酸化物粒子の平均板面径は0.212μmであり、結晶子サイズD006は0.021μmであり、BETは88.8m/gであった。
<Example 5>
172.3 g of Mg (NO 3 ) 2 .6H 2 O and 63.03 g of Al (NO 3 ) 3 .9H 2 O were dissolved in water to make 1000 ml. Separately, a 1000 ml solution in which 99.14 g of NaCO 3 was dissolved was added to 282 ml of NaOH (concentration of 14 mol / L) to prepare an alkaline mixed solution of 2000 ml in total. A mixed solution of the magnesium salt and aluminum salt was added to the alkali mixed solution, and aging was performed at 75 ° C. for 5 hours to obtain layered double hydroxide core particles. The pH of the reaction solution at this time was 10.5.
Next, Mg (NO 3 ) 2 .6H 2 O 17.04 g, Ni (NO 3 ) 2 .6H 2 O 51.48 g and Fe 2 (SO 4 ) 3 · 9H 2 O 124. 6g and Al (NO 3) 3 · 9H 2 O 4.986g and a mixed solution of a magnesium salt and nickel salt and an aluminum salt 500ml dissolved was added, the pH of the reaction solution was 9.8, for a further 110 ° C. The layer was aged for 2 hours, and was grown topotropically on the surface of the layered double hydroxide core particles to obtain layered double hydroxide particles. The total number of moles of magnesium, aluminum, nickel and iron added during the growth reaction was 0.0482 with respect to the total number of moles of the magnesium and the aluminum added during the formation of the core particles. The average plate surface diameter of the layered double hydroxide particles obtained here was 0.212 μm, the crystallite size D006 was 0.021 μm, and the BET was 88.8 m 2 / g.

ここに得た層状複水水酸化物粒子を成形して、直径3mmの球形体ビーズとした。この成形体を1480℃、1時間空気中にて焼成し、750℃にて水素/アルゴン体積比が20/80のガス気流中において6.5時間還元処理を行い、メタン化触媒を得た。得られた触媒中のニッケルの含有量は14.21wt%(Ni/(Mg+Al+Ni+Fe)=0.118(モル比))であり、鉄の含有量は18.32wt%(Fe/(Mg+Al+Ni+Fe)=0.148(モル比))であり、金属ニッケル微粒子の大きさは6nmであり、金属鉄微粒子の大きさは8nmであった。   The layered double hydroxide particles obtained here were molded into spherical beads having a diameter of 3 mm. The molded body was fired in air at 1480 ° C. for 1 hour, and subjected to reduction treatment in a gas stream having a hydrogen / argon volume ratio of 20/80 at 750 ° C. for 6.5 hours to obtain a methanation catalyst. The content of nickel in the obtained catalyst was 14.21 wt% (Ni / (Mg + Al + Ni + Fe) = 0.118 (molar ratio)), and the content of iron was 18.32 wt% (Fe / (Mg + Al + Ni + Fe) = 0). .148 (molar ratio)), the size of the metal nickel fine particles was 6 nm, and the size of the metal iron fine particles was 8 nm.

<実施例6>
MgCl・6HO 143.3gとAlCl・6HO 30.39gとを水で溶解させ1000mlとした。別にNaOH 326ml(14mol/L濃度)に、NaCO 92.88gを溶解させた1000ml溶液を加えて全量2000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩との混合溶液を加え、60℃で10時間熟成を行って層状複水水酸化物芯粒子を得た。このときの反応溶液のpH9.2であった。
次いで、このアルカリ性懸濁液に、MgCl・6HO 6.071gとNiCl・6HO 0.813gとAlCl・6HO 1.442gとを溶かした500mlのマグネシウム塩とニッケル塩とアルミニウム塩とマンガン塩との混合溶液を加え、反応溶液のpHを8.1にし、さらに80℃で4時間熟成し、前記層状複水水酸化物芯粒子表面にトポタクティックに成長させ、層状複水水酸化物粒子を得た。なお、成長反応時に添加したマグネシウム、アルミニウム及びニッケルの合計モル数は、芯粒子の生成時に添加した前記マグネシウムと前記アルミニウムとの合計モル数に対して、0.042であった。ここに得た層状複水水酸化物粒子の平均板面径は0.085μmであり、結晶子サイズD006は0.012μmであり、BETは176.2m/gであった。
<Example 6>
143.3 g of MgCl 3 · 6H 2 O and 30.39 g of AlCl 3 · 6H 2 O were dissolved in water to make 1000 ml. Separately, a 1000 ml solution in which 92.88 g of NaCO 3 was dissolved was added to 326 ml of NaOH (14 mol / L concentration) to prepare an alkaline mixed solution of 2000 ml in total. A mixed solution of the magnesium salt and aluminum salt was added to the alkali mixed solution, and aging was performed at 60 ° C. for 10 hours to obtain layered double hydroxide core particles. The pH of the reaction solution at this time was 9.2.
Next, 500 ml of magnesium salt and nickel salt in which 6.071 g of MgCl 3 · 6H 2 O, 0.813 g of NiCl 2 · 6H 2 O and 1.442 g of AlCl 3 · 6H 2 O were dissolved in this alkaline suspension, A mixed solution of aluminum salt and manganese salt is added, the pH of the reaction solution is adjusted to 8.1, and further aged at 80 ° C. for 4 hours, and grown topologically on the surface of the layered double hydroxide core particles. Double hydroxide particles were obtained. The total number of moles of magnesium, aluminum and nickel added during the growth reaction was 0.042 with respect to the total number of moles of magnesium and aluminum added during the formation of the core particles. The average plate surface diameter of the layered double hydroxide particles obtained here was 0.085 μm, the crystallite size D006 was 0.012 μm, and the BET was 176.2 m 2 / g.

ここに得た層状複水水酸化物粒子を成形して、直径3mmの球形体ビーズとした。650℃、8時間空気中にて焼成し、680℃にて水素/アルゴン体積比が20/80のガス気流中において4時間還元処理を行い、メタン化触媒を得た。得られた触媒中のニッケルの含有量は0.211wt%(Ni/(Mg+Al+Ni)=0.002(モル比))であり、金属ニッケル微粒子の大きさは1nmであった。   The layered double hydroxide particles obtained here were molded into spherical beads having a diameter of 3 mm. Calcination was performed at 650 ° C. for 8 hours in air, and reduction treatment was performed at 680 ° C. in a gas stream having a hydrogen / argon volume ratio of 20/80 for 4 hours to obtain a methanation catalyst. The content of nickel in the obtained catalyst was 0.211 wt% (Ni / (Mg + Al + Ni) = 0.002 (molar ratio)), and the size of the metal nickel fine particles was 1 nm.

<実施例7>
MgCl・6HO 197.0gとAlCl・9HO 27.86gとを水で溶解させ1000mlとした。別にNaOH 759.0ml(14mol/L濃度)に、NaCO 91.33gを溶解させた1000ml溶液を加えて全量2000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩との混合溶液を加え、90℃で8時間熟成を行って層状複水水酸化物芯粒子を得た。このときの反応溶液のpH12.8であった。
次いで、このアルカリ性懸濁液に、MgCl・6HO 13.26gとFe(SO・9HO 117.2gとAlCl・9HO 3.149gとを溶かした500mlのマグネシウム塩と鉄塩とアルミニウム塩との混合溶液を加え、反応溶液のpHを11.2にし、さらに180℃で8時間熟成し、前記層状複水水酸化物芯粒子表面にトポタクティックに成長させ、層状複水水酸化物粒子を得た。なお、成長反応時に添加したマグネシウム、アルミニウム及び鉄の合計モル数は、芯粒子の生成時に添加した前記マグネシウムと前記アルミニウムとの合計モル数に対して、0.251であった。ここに得た層状複水水酸化物粒子の平均板面径は0.345μmであり、結晶子サイズD006は0.054μmであり、BETは11.5m/gであった。
<Example 7>
197.0 g of MgCl 2 · 6H 2 O and 27.86 g of AlCl 3 · 9H 2 O were dissolved in water to make 1000 ml. Separately, a 1000 ml solution in which 91.33 g of NaCO 3 was dissolved was added to 759.0 ml of NaOH (14 mol / L concentration) to prepare an alkaline mixed solution of 2000 ml in total. A mixed solution of the magnesium salt and aluminum salt was added to the alkali mixed solution, and aging was performed at 90 ° C. for 8 hours to obtain layered double hydroxide core particles. The pH of the reaction solution at this time was 12.8.
Next, 500 ml of magnesium in which 13.26 g of MgCl 2 · 6H 2 O, 117.2 g of Fe 2 (SO 4 ) 3 · 9H 2 O and 3.149 g of AlCl 3 · 9H 2 O were dissolved in this alkaline suspension. A mixed solution of a salt, an iron salt and an aluminum salt is added to adjust the pH of the reaction solution to 11.2, and further aged at 180 ° C. for 8 hours to grow topologically on the surface of the layered double hydroxide core particles. Thus, layered double hydroxide particles were obtained. The total number of moles of magnesium, aluminum and iron added during the growth reaction was 0.251 with respect to the total number of moles of magnesium and aluminum added during the formation of the core particles. The layered double hydroxide particles obtained here had an average plate surface diameter of 0.345 μm, a crystallite size D006 of 0.054 μm, and a BET of 11.5 m 2 / g.

ここに得た層状複水水酸化物粒子を成形して、直径3mmの球形体ビーズとした。540℃、8時間空気中にて焼成し、900℃にて水素/アルゴン体積比が20/80のガス気流中において1時間還元処理を行い、メタン化触媒を得た。得られた触媒中の鉄の含有量は18.92wt%(Fe/(Mg+Al+Fe)=0.139(モル比))であり、金属鉄微粒子の大きさは6nmであった。   The layered double hydroxide particles obtained here were molded into spherical beads having a diameter of 3 mm. Calcination was performed at 540 ° C. for 8 hours in air, and reduction treatment was performed at 900 ° C. in a gas stream having a hydrogen / argon volume ratio of 20/80 for 1 hour to obtain a methanation catalyst. The iron content in the obtained catalyst was 18.92 wt% (Fe / (Mg + Al + Fe) = 0.139 (molar ratio)), and the size of the metal iron fine particles was 6 nm.

<実施例8>
MgSO・7HO 197.1gとAl(SO・8HO 97.24gとを水で溶解させ1000mlとした。別にNaOH 343ml(14mol/L濃度)に、NaCO 103.9gを溶解させた1000ml溶液を加えて全量2000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩との混合溶液を加え、85℃で6時間熟成を行って層状複水水酸化物芯粒子を得た。このときの反応溶液のpH11.8であった。
次いで、このアルカリ性懸濁液に、MgSO・7HO 42.97gとNiSO・6HO 33.08gとAl(SO・8HO 14.62gとを溶かした500mlのマグネシウム塩とニッケル塩とアルミニウム塩との混合溶液を加え、反応溶液のpHを10.4にし、さらに150℃で4時間熟成し、前記層状複水水酸化物芯粒子表面にトポタクティックに成長させ、層状複水水酸化物粒子を得た。なお、成長反応時に添加したマグネシウム、アルミニウム及びニッケルの合計モル数は、芯粒子の生成時に添加した前記マグネシウムと前記アルミニウムとの合計モル数に対して、0.098であった。ここに得た層状複水水酸化物粒子の平均板面径は0.312μmであり、結晶子サイズD006は0.052μmであり、BETは24.5m/gであった。
<Example 8>
197.1 g of MgSO 4 · 7H 2 O and 97.24 g of Al 2 (SO 4 ) 3 · 8H 2 O were dissolved in water to make 1000 ml. Separately, a 1000 ml solution in which 103.9 g of NaCO 3 was dissolved was added to 343 ml of NaOH (14 mol / L concentration) to prepare an alkaline mixed solution of 2000 ml in total. A mixed solution of the magnesium salt and aluminum salt was added to the alkali mixed solution, and aging was performed at 85 ° C. for 6 hours to obtain layered double hydroxide core particles. The pH of the reaction solution at this time was 11.8.
Next, 500 ml of magnesium in which 42.97 g of MgSO 4 · 7H 2 O, 33.08 g of NiSO 4 · 6H 2 O and 14.62 g of Al 2 (SO 4 ) 3 · 8H 2 O were dissolved in this alkaline suspension. A mixed solution of a salt, a nickel salt and an aluminum salt is added to adjust the pH of the reaction solution to 10.4, and further aged at 150 ° C. for 4 hours to grow on the surface of the layered double hydroxide core particles. Thus, layered double hydroxide particles were obtained. The total number of moles of magnesium, aluminum, and nickel added during the growth reaction was 0.098 with respect to the total number of moles of magnesium and aluminum added during the formation of the core particles. The average plate surface diameter of the layered double hydroxide particles obtained here was 0.312 μm, the crystallite size D006 was 0.052 μm, and the BET was 24.5 m 2 / g.

ここに得た層状複水水酸化物粒子を成形して、直径3mmの球形体ビーズとした。720℃、4時間空気中にて焼成し、700℃にて水素/アルゴン体積比が20/80のガス気流中において5時間還元処理を行い、メタン化触媒を得た。得られた触媒中のニッケルの含有量は4.612wt%(Ni/(Mg+Al+Ni)=0.037(モル比))であり、金属ニッケル微粒子の大きさは3nmであった。   The layered double hydroxide particles obtained here were molded into spherical beads having a diameter of 3 mm. Calcination was performed in air at 720 ° C. for 4 hours, and reduction treatment was performed at 700 ° C. in a gas stream having a hydrogen / argon volume ratio of 20/80 for 5 hours to obtain a methanation catalyst. The content of nickel in the obtained catalyst was 4.612 wt% (Ni / (Mg + Al + Ni) = 0.037 (molar ratio)), and the size of the metal nickel fine particles was 3 nm.

<比較例1>
α−アルミナ粉末を2.5mmの球形状ビーズとして、880℃で10時間空気中にて焼成した。これにNi(NO・6HO 318.4gを純水に溶解させた1000mlの溶液をスプレーで塗布し、乾燥後、660℃で6時間空気中にて焼成した。さらに水素/アルゴン体積比が20/80のガス気流中において800℃で6時間還元処理を行った。得られた触媒中のニッケルの含有量は15.4wt%(Ni/α−Al+Ni=0.366)であり、金属ニッケル微粒子の大きさは64nmであった。
<Comparative Example 1>
The α-alumina powder was fired in air at 880 ° C. for 10 hours as 2.5 mm spherical beads. A 1000 ml solution in which 318.4 g of Ni (NO 3 ) 2 · 6H 2 O was dissolved in pure water was applied by spraying, dried, and then fired at 660 ° C. for 6 hours in air. Further, reduction treatment was performed at 800 ° C. for 6 hours in a gas stream having a hydrogen / argon volume ratio of 20/80. The content of nickel in the obtained catalyst was 15.4 wt% (Ni / α-Al 2 O 3 + Ni = 0.366), and the size of the metal nickel fine particles was 64 nm.

<比較例2>
α−アルミナ粉末を蒸発皿に入れ、純水に溶解したRuCl・nHOを滴下し、100℃のホットプレート上にて水分を蒸発させた。ここで得たルテニウムを担持したα−アルミナ粉末を直径3mmの球形状ビーズに成形後、320℃、7時間空気中にて焼成し、580℃にて水素/アルゴン体積比が20/80のガス気流中において0.5時間還元処理を行った。得られた触媒中のルテニウムの含有量は4.8wt%(Ru/(α−Al+Ru)=0.072(モル比))であり、金属ルテニウム微粒子の大きさは41nmであった。
<Comparative example 2>
The α-alumina powder was put in an evaporating dish, RuCl 3 · nH 2 O dissolved in pure water was dropped, and water was evaporated on a hot plate at 100 ° C. The α-alumina powder supporting ruthenium obtained here is molded into spherical beads having a diameter of 3 mm, then calcined in air at 320 ° C. for 7 hours, and a gas having a hydrogen / argon volume ratio of 20/80 at 580 ° C. Reduction treatment was performed for 0.5 hour in an air stream. The content of ruthenium in the obtained catalyst was 4.8 wt% (Ru / (α-Al 2 O 3 + Ru) = 0.072 (molar ratio)), and the size of the metal ruthenium fine particles was 41 nm. .

<比較例3>
α−アルミナ粉末を蒸発皿に入れ、純水に溶解したFe(SO・9HO滴下し、100℃のホットプレート上にて水分を蒸発させた。ここで得た鉄を担持したα−アルミナ粉末を直径3mmの球場ビーズに成形後、440℃、4時間空気中にて焼成し、680℃にて水素/アルゴン体積比が20/80のガス気流中において3.2時間還元処理を行った。得られた触媒中の鉄の含有量は31.2wt%(Fe/α−Al+Fe)=0.445(モル比)であり、金属鉄微粒子の大きさは91nmであった。
<Comparative Example 3>
α- alumina powder was placed in an evaporating dish, pure water Fe 2 dissolved in (SO 4) 3 · 9H 2 O was added dropwise to evaporate water at 100 ° C. on a hot plate. The α-alumina powder carrying iron obtained here was formed into 3 mm diameter ball field beads, then fired in air at 440 ° C. for 4 hours, and a gas stream with a hydrogen / argon volume ratio of 20/80 at 680 ° C. The inside was reduced for 3.2 hours. The content of iron in the obtained catalyst was 31.2 wt% (Fe / α-Al 2 O 3 + Fe) = 0.445 (molar ratio), and the size of the metal iron fine particles was 91 nm.

Figure 2005238131
Figure 2005238131

Figure 2005238131
Figure 2005238131

Figure 2005238131
Figure 2005238131

Figure 2005238131
Figure 2005238131

上記実施例から明らかな通り、本発明に係るメタン化触媒は、幅広い温度範囲で一酸化炭素をメタン化することができ、殊に、H/CO比が3.5の場合250℃であっても90%以上のCO転化率を有するものである。また、長時間の反応であっても高いCO転化率を維持し、しかも、炭素析出量が0.23wt%以下と抑制されたものである。さらに、二酸化炭素が存在する雰囲気であっても、高いCO転化率、殊に90%以上の転化率を有するものである。 As is clear from the above examples, the methanation catalyst according to the present invention can methanate carbon monoxide over a wide temperature range, particularly at 250 ° C. when the H 2 / CO ratio is 3.5. Even a CO conversion of 90% or more. Moreover, even if it is reaction for a long time, a high CO conversion rate is maintained, and the carbon deposition amount is suppressed to 0.23 wt% or less. Furthermore, even in an atmosphere where carbon dioxide is present, it has a high CO conversion rate, particularly a conversion rate of 90% or more.

本発明は、一酸化炭素と水素を混合反応させるメタン化反応において、触媒活性成分であるニッケル金属及び/又は鉄金属が従来にない微粒子でメタン化触媒の触媒粒子全体、あるいは、触媒粒子の表面近傍、あるいは、触媒成形体の表面近傍いずれかに担持されていることにより、一酸化炭素及び水素に接するニッケル金属及び/又は鉄金属の表面積が大きくなり幅広い温度域で優れた触媒活性を有する。   In the methanation reaction in which carbon monoxide and hydrogen are mixed and reacted, the present invention provides the entire catalyst particles of the methanation catalyst, or the surface of the catalyst particles, which are fine particles that do not have nickel metal and / or iron metal as catalytic active components. By being supported on either the vicinity or the vicinity of the surface of the catalyst molded body, the surface area of nickel metal and / or iron metal in contact with carbon monoxide and hydrogen is increased, and the catalyst activity is excellent in a wide temperature range.

さらに、二酸化炭素のメタン化が起こる250℃以下で一酸化炭素をメタン化できるため、一酸化炭素の他に二酸化炭素を含んだ混合ガスにおいても一酸化炭素を選択的にメタン化できる。また、従来のメタン化触媒より低温で稼動させることが可能であるため、省電力にも繋がる。
Furthermore, since carbon monoxide can be methanated at 250 ° C. or less at which carbon dioxide methanation occurs, carbon monoxide can be selectively methanated even in a mixed gas containing carbon dioxide in addition to carbon monoxide. Moreover, since it can be operated at a lower temperature than the conventional methanation catalyst, it leads to power saving.

Claims (7)

マグネシウム及びアルミニウムとともに金属ニッケル微粒子及び/又は金属鉄微粒子を含有するメタン化触媒であって、金属ニッケル微粒子及び/又は金属鉄微粒子の平均粒子径が1〜20nmであって金属ニッケル及び/又は金属鉄の含有量がメタン化触媒に対して0.15〜60wt%であり、かつ、ニッケル及び/又は鉄の含有量がマグネシウム、アルミニウム、ニッケル及び/又は鉄の合計モル数に対して、0.001〜0.52であることを特徴とする一酸化炭素をメタン化するメタン化触媒。   A methanation catalyst containing metal nickel fine particles and / or metal iron fine particles together with magnesium and aluminum, wherein the average particle diameter of the metal nickel fine particles and / or metal iron fine particles is 1 to 20 nm, and the metal nickel and / or metal iron Is 0.15 to 60 wt% with respect to the methanation catalyst, and the content of nickel and / or iron is 0.001 with respect to the total number of moles of magnesium, aluminum, nickel and / or iron. A methanation catalyst for methanating carbon monoxide, characterized by being -0.52. マグネシウムとアルミニウムとニッケル及び/又は鉄からなる層状複水水酸化物粒子を、加熱焼成して酸化物粒子粉末を得、次いで、該酸化物粒子粉末を加熱還元して酸化物粒子粉末中のニッケル及び/又は鉄を金属のニッケル微粒子及び/又は金属の鉄微粒子にして得られることを特徴とする一酸化炭素をメタン化するメタン化触媒。   Layered double hydroxide particles composed of magnesium, aluminum, nickel and / or iron are heated and fired to obtain oxide particle powder, and then the oxide particle powder is heated and reduced to form nickel in the oxide particle powder. And / or a methanation catalyst for methanating carbon monoxide, wherein the catalyst is obtained by converting iron into fine nickel metal particles and / or fine iron metal particles. マグネシウム及びアルミニウムからなる層状複水水酸化物芯粒子と、該層状複水水酸化物芯粒子の表面にマグネシウムとアルミニウムとニッケル及び/又は鉄からなる層状複水水酸化物層を形成した層状複水水酸化物型粒子粉末を、加熱焼成して酸化物粒子粉末を得、次いで、該酸化物粒子粉末を加熱還元して酸化物粒子粉末中のニッケル及び/又は鉄を金属のニッケル微粒子及び/又は金属の鉄微粒子にして得られることを特徴とする一酸化炭素をメタン化するメタン化触媒。   Layered double hydroxide core particles made of magnesium and aluminum, and a layered double hydroxide core layer having a layered double hydroxide layer made of magnesium, aluminum, nickel and / or iron formed on the surface of the layered double hydroxide core particles. The hydroxide type particle powder is heated and fired to obtain an oxide particle powder, and then the oxide particle powder is heated and reduced to convert nickel and / or iron in the oxide particle powder into metal nickel fine particles and / or Alternatively, a methanation catalyst for methanating carbon monoxide, which is obtained as metal iron fine particles. アニオンを含有したアルカリ性水溶液とマグネシウム原料とアルミニウム塩水溶液とニッケル塩水溶液及び/又は鉄塩水溶液とを混合し、pH値が7.0〜14.0の範囲の混合溶液とした後、該混合溶液を50℃〜300℃の温度範囲で熟成してマグネシウムとアルミニウムとニッケル及び/又は鉄とからなる層状複水水酸化物粒子を生成後、濾別、水洗後、得られた層状複水水酸化物粒子粉末を400℃〜1500℃の温度範囲で加熱焼成し酸化物粒子粉末を得、次いで、該酸化物粒子粉末を還元雰囲気下、650℃〜1100℃の温度範囲で加熱還元することを特徴とする請求項1又は2記載の一酸化炭素をメタン化するメタン化触媒の製造方法。   An alkaline aqueous solution containing an anion, a magnesium raw material, an aluminum salt aqueous solution, a nickel salt aqueous solution and / or an iron salt aqueous solution are mixed to obtain a mixed solution having a pH value in the range of 7.0 to 14.0, and then the mixed solution. Is layered in a temperature range of 50 ° C. to 300 ° C. to produce layered double hydroxide particles composed of magnesium, aluminum, nickel and / or iron, filtered, washed with water, and then obtained layered double water hydroxide The product particle powder is heated and fired in a temperature range of 400 ° C. to 1500 ° C. to obtain an oxide particle powder, and then the oxide particle powder is heated and reduced in a reducing atmosphere at a temperature range of 650 ° C. to 1100 ° C. A method for producing a methanation catalyst for methanating carbon monoxide according to claim 1 or 2. アニオンを含有したアルカリ性水溶液とマグネシウム原料とアルミニウム塩水溶液とを混合し、pH値が7.0〜14.0の範囲の混合溶液とした後、該混合溶液を50℃〜300℃の温度範囲で熟成してマグネシウムとアルミニウムとからなる層状複水水酸化物芯粒子を生成させ、次いで、該芯粒子を含む水性懸濁液に、該芯粒子の生成時に添加した前記マグネシウムと前記アルミニウムとの合計モル数に対して、合計モル数が0.04〜0.5となる割合のマグネシウムとアルミニウムとニッケル及び/又は鉄を含有するマグネシウム原料とアルミニウム塩水溶液とニッケル塩水溶液及び/又は鉄塩水溶液を添加した後、pH値が9.0〜14.0の範囲、温度が40℃〜300℃の範囲で熟成して、前記芯粒子表面に層状複水水酸化物層を被覆形成させる成長反応を行った後、濾別、水洗後、得られた層状複水水酸化物粒子粉末を400℃〜1500℃の温度範囲で加熱焼成し酸化物粒子粉末を得、次いで、該酸化物粒子粉末を還元雰囲気下、650℃〜1100℃の温度範囲で加熱還元することを特徴とする請求項3記載の一酸化炭素をメタン化するメタン化触媒の製造方法。   An alkaline aqueous solution containing an anion, a magnesium raw material, and an aluminum salt aqueous solution are mixed to obtain a mixed solution having a pH value in the range of 7.0 to 14.0, and then the mixed solution is heated in a temperature range of 50 ° C to 300 ° C. Aging to produce layered double hydroxide core particles composed of magnesium and aluminum, and then to the aqueous suspension containing the core particles, the total of the magnesium and the aluminum added during the production of the core particles A magnesium raw material, an aluminum salt aqueous solution, a nickel salt aqueous solution and / or an iron salt aqueous solution containing magnesium, aluminum, nickel, and / or iron in a ratio of 0.04 to 0.5 in terms of the total number of moles. After the addition, the layer is aged in the range of 9.0 to 14.0 and the temperature is in the range of 40 ° C to 300 ° C, and layered double hydroxide is formed on the surface of the core particles. After performing the growth reaction to form a coating, after filtering and washing with water, the obtained layered double hydroxide particle powder is heated and fired at a temperature range of 400 ° C. to 1500 ° C. to obtain an oxide particle powder, The method for producing a methanation catalyst for methanating carbon monoxide according to claim 3, wherein the oxide particle powder is heated and reduced in a reducing atmosphere in a temperature range of 650 ° C to 1100 ° C. 一酸化炭素と水素との混合ガスを触媒存在下において混合接触反応してメタンを製造するメタン化反応において、前記触媒として請求項1乃至3のいずれかに記載のメタン化触媒を用いることを特徴とする一酸化炭素をメタン化する方法。   The methanation catalyst according to any one of claims 1 to 3 is used as the catalyst in a methanation reaction in which a mixed gas of carbon monoxide and hydrogen is mixed and reacted in the presence of a catalyst to produce methane. A method of methanating carbon monoxide. 一酸化炭素、二酸化炭素及び水素の混合ガスを触媒存在下において混合接触反応して一酸化炭素をメタン化する反応において、前記触媒として請求項1乃至3のいずれかに記載のメタン化触媒を用いることを特徴とする一酸化炭素をメタン化する方法。
The methanation catalyst according to any one of claims 1 to 3 is used as the catalyst in a reaction in which carbon monoxide is methanated by a mixed contact reaction of a mixed gas of carbon monoxide, carbon dioxide and hydrogen in the presence of the catalyst. A method of methanating carbon monoxide characterized by the above.
JP2004052503A 2004-02-26 2004-02-26 Methanation catalyst and method for producing the same, and method for methanation of carbon monoxide using the methanation catalyst Expired - Lifetime JP4488178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004052503A JP4488178B2 (en) 2004-02-26 2004-02-26 Methanation catalyst and method for producing the same, and method for methanation of carbon monoxide using the methanation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004052503A JP4488178B2 (en) 2004-02-26 2004-02-26 Methanation catalyst and method for producing the same, and method for methanation of carbon monoxide using the methanation catalyst

Publications (2)

Publication Number Publication Date
JP2005238131A true JP2005238131A (en) 2005-09-08
JP4488178B2 JP4488178B2 (en) 2010-06-23

Family

ID=35020429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004052503A Expired - Lifetime JP4488178B2 (en) 2004-02-26 2004-02-26 Methanation catalyst and method for producing the same, and method for methanation of carbon monoxide using the methanation catalyst

Country Status (1)

Country Link
JP (1) JP4488178B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252988A (en) * 2006-03-20 2007-10-04 Catalysts & Chem Ind Co Ltd Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
JP2007252990A (en) * 2006-03-20 2007-10-04 Catalysts & Chem Ind Co Ltd Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
JP2010520807A (en) * 2007-03-13 2010-06-17 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Metal-doped nickel oxide as a catalyst for methanation of carbon monoxide
KR101275122B1 (en) * 2011-09-28 2013-06-17 주식회사 포스코건설 Reactor for synthesizing of methane and synthesis method thereof
WO2014038426A1 (en) * 2012-09-04 2014-03-13 国立大学法人山梨大学 Co-selective methanation catalyst
JP2014506183A (en) * 2010-12-15 2014-03-13 新地能源工程技術有限公司 Method for producing methane synthesis catalyst and catalyst precursor
JP2015502247A (en) * 2011-11-08 2015-01-22 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Process for producing methanation catalysts and process for syngas methanation
JP5691098B2 (en) * 2009-04-24 2015-04-01 国立大学法人山梨大学 Selective methanation catalyst for carbon monoxide, process for producing the same, and apparatus using the same
KR20150055908A (en) * 2013-11-14 2015-05-22 한국과학기술연구원 Manufacturing method of methane using methanation catalyst derived from hydrotalcite-type compound, methanation catalyst, and preparation mehtod of the same
JP2015167887A (en) * 2014-03-05 2015-09-28 国立大学法人山梨大学 Co selection methanation catalyst
CN106031873A (en) * 2016-07-19 2016-10-19 河南师范大学 Preparation method of high-specific-surface CuMn2O4 catalyst for CO low-temperature oxidation removal
JP2016185528A (en) * 2015-03-27 2016-10-27 戸田工業株式会社 Manufacturing method of paper-like catalyst structure for hydrogen production
JP2020505227A (en) * 2017-01-31 2020-02-20 クラリアント・プロドゥクテ・(ドイチュラント)・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Manganese doped nickel methanation catalyst
CN113499780A (en) * 2021-06-15 2021-10-15 中石化南京化工研究院有限公司 Low-nickel high-activity methanation catalyst and preparation method thereof

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007252990A (en) * 2006-03-20 2007-10-04 Catalysts & Chem Ind Co Ltd Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
JP2007252988A (en) * 2006-03-20 2007-10-04 Catalysts & Chem Ind Co Ltd Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
JP2010520807A (en) * 2007-03-13 2010-06-17 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Metal-doped nickel oxide as a catalyst for methanation of carbon monoxide
JP5691098B2 (en) * 2009-04-24 2015-04-01 国立大学法人山梨大学 Selective methanation catalyst for carbon monoxide, process for producing the same, and apparatus using the same
US9005552B2 (en) 2009-04-24 2015-04-14 University Of Yamanashi Selective CO methanation catalyst, method of producing the same, and apparatus using the same
JP2014506183A (en) * 2010-12-15 2014-03-13 新地能源工程技術有限公司 Method for producing methane synthesis catalyst and catalyst precursor
KR101275122B1 (en) * 2011-09-28 2013-06-17 주식회사 포스코건설 Reactor for synthesizing of methane and synthesis method thereof
JP2015502247A (en) * 2011-11-08 2015-01-22 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Process for producing methanation catalysts and process for syngas methanation
US9522391B2 (en) 2012-09-04 2016-12-20 University Of Yamanashi Co-selective methanation catalyst
WO2014038426A1 (en) * 2012-09-04 2014-03-13 国立大学法人山梨大学 Co-selective methanation catalyst
EP2893977A4 (en) * 2012-09-04 2016-02-17 Univ Yamanashi Co-selective methanation catalyst
JP5942233B2 (en) * 2012-09-04 2016-06-29 国立大学法人山梨大学 CO selective methanation catalyst
JP2017001016A (en) * 2012-09-04 2017-01-05 国立大学法人山梨大学 CO selective methanation catalyst
KR20150055908A (en) * 2013-11-14 2015-05-22 한국과학기술연구원 Manufacturing method of methane using methanation catalyst derived from hydrotalcite-type compound, methanation catalyst, and preparation mehtod of the same
KR101655092B1 (en) 2013-11-14 2016-09-07 한국과학기술연구원 Manufacturing method of methane using methanation catalyst derived from hydrotalcite-type compound, methanation catalyst, and preparation mehtod of the same
JP2015167887A (en) * 2014-03-05 2015-09-28 国立大学法人山梨大学 Co selection methanation catalyst
JP2016185528A (en) * 2015-03-27 2016-10-27 戸田工業株式会社 Manufacturing method of paper-like catalyst structure for hydrogen production
CN106031873A (en) * 2016-07-19 2016-10-19 河南师范大学 Preparation method of high-specific-surface CuMn2O4 catalyst for CO low-temperature oxidation removal
JP2020505227A (en) * 2017-01-31 2020-02-20 クラリアント・プロドゥクテ・(ドイチュラント)・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Manganese doped nickel methanation catalyst
US10888846B2 (en) 2017-01-31 2021-01-12 Clariant Produkte (Deutschland) Gmbh Manganese-doped nickel-methanation catalysts
CN113499780A (en) * 2021-06-15 2021-10-15 中石化南京化工研究院有限公司 Low-nickel high-activity methanation catalyst and preparation method thereof

Also Published As

Publication number Publication date
JP4488178B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
JP5110249B2 (en) Hydrocarbon decomposition catalyst, hydrocarbon decomposition method and hydrogen production method using the catalyst, and power generation system
KR101319137B1 (en) A Catalyst for Decomposing Hydrocarbons, a Method for Decomposing Hydrocarbons using the Same and a Method for Preparing Hydrogen, and an Electric Generating System
JP4098508B2 (en) Method for producing catalyst for reacting hydrocarbon and water vapor, and method for producing hydrogen from hydrocarbon using the catalyst
JP5354175B2 (en) Porous catalyst body for decomposing hydrocarbon and method for producing the same, method for producing mixed reformed gas containing hydrogen from hydrocarbon, and fuel cell system
JP4332733B2 (en) Hydrocarbon cracking catalyst and method for producing hydrogen using the hydrocarbon cracking catalyst
JP4488178B2 (en) Methanation catalyst and method for producing the same, and method for methanation of carbon monoxide using the methanation catalyst
JP4332724B2 (en) Autothermal reforming catalyst and method for producing the same, and method for producing hydrogen using the autothermal reforming catalyst
JP5531615B2 (en) Catalyst for cracking hydrocarbons
JP4870900B2 (en) Hydrocarbon cracking catalyst and production method thereof, and hydrogen production method using the hydrocarbon cracking catalyst
JP2016510687A (en) Nickel hexaaluminate-containing catalyst for reforming hydrocarbons in the presence of carbon dioxide
JP2004141860A (en) Catalyst for hydrocarbon reforming, and its manufacturing method
KR101885247B1 (en) Co2 reforming catalyst, method preparing the same and method reforming co2
JP4119652B2 (en) Hydrocarbon cracking catalyst and process for producing the same
JP5459322B2 (en) Redox material for thermochemical water splitting and hydrogen production method
KR100892033B1 (en) High surface area spinel structured nano crystalline sized ymgo (1-y) al2o3-supported nano-sized nickel reforming catalysts and their use for producing synthesis gas from combined steam and carbon dioxide reforming of natural gas
JP4715999B2 (en) Catalyst for water gas shift reaction and process for producing the same
JP4296430B2 (en) Catalyst for water gas shift reaction and process for producing the same
JP4340892B2 (en) Hydrocarbon cracking catalyst and method for producing the same, and method for producing hydrogen using the hydrocarbon cracking catalyst
JP6933144B2 (en) Heterogeneous catalyst structure and its manufacturing method
JP2009241036A (en) Carbon monoxide conversion catalyst comprising composition for carbon monoxide conversion catalyst, and method of removing carbon monoxide using the same
Bai et al. Synthesis and characterization of mesostructured tungsten nitride by using tungstic acid as the precursor
JP4776403B2 (en) Hydrocarbon reforming catalyst
JP2007054685A (en) Catalyst for water gas shift reaction
JP2020032331A (en) Methanation catalyst, manufacturing method therefor, and manufacturing method of methane
JP5619598B2 (en) Copper-zinc-aluminum catalyst, production method thereof, carbon monoxide conversion method, and hydrogen production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4488178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250