JP4340892B2 - Hydrocarbon cracking catalyst and method for producing the same, and method for producing hydrogen using the hydrocarbon cracking catalyst - Google Patents

Hydrocarbon cracking catalyst and method for producing the same, and method for producing hydrogen using the hydrocarbon cracking catalyst Download PDF

Info

Publication number
JP4340892B2
JP4340892B2 JP2004244197A JP2004244197A JP4340892B2 JP 4340892 B2 JP4340892 B2 JP 4340892B2 JP 2004244197 A JP2004244197 A JP 2004244197A JP 2004244197 A JP2004244197 A JP 2004244197A JP 4340892 B2 JP4340892 B2 JP 4340892B2
Authority
JP
Japan
Prior art keywords
nickel
ruthenium
catalyst
layered double
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004244197A
Other languages
Japanese (ja)
Other versions
JP2006061759A (en
Inventor
斉也 小林
真司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2004244197A priority Critical patent/JP4340892B2/en
Publication of JP2006061759A publication Critical patent/JP2006061759A/en
Application granted granted Critical
Publication of JP4340892B2 publication Critical patent/JP4340892B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、メタンを主体とする低級炭化水素ガスをスチーム改質によって水素を製造する炭化水素分解用触媒において、低スチーム下においても耐コーキング性(コーキング:炭素が析出する現象)に優れるとともに、優れた耐久性を有する炭化水素分解用触媒の提供を目的とする。   The present invention is a hydrocarbon cracking catalyst for producing hydrogen by steam reforming a lower hydrocarbon gas mainly composed of methane, and is excellent in coking resistance (coking: a phenomenon in which carbon is precipitated) even under low steam, An object of the present invention is to provide a hydrocarbon cracking catalyst having excellent durability.

さらに、本発明は、メタンを主成分とする低級炭化水素と水蒸気を混合して反応させるスチーム改質において、触媒活性成分である金属ニッケル微粒子及び金属ルテニウム微粒子が炭化水素分解用触媒を構成する粒子の表面近傍又は粒子を造粒して得られる触媒成形体の表面近傍のいずれかに高分散して担持させることにより低温における反応においても優れた触媒活性を有する炭化水素分解用触媒の提供を目的とする。   Furthermore, in the steam reforming in which the lower hydrocarbon mainly composed of methane and water vapor are mixed and reacted, the present invention provides particles in which the metal nickel fine particles and the metal ruthenium fine particles, which are catalytically active components, constitute a hydrocarbon decomposition catalyst. The object of the present invention is to provide a hydrocarbon cracking catalyst having excellent catalytic activity even in a reaction at low temperature by being highly dispersed and supported either near the surface of the catalyst or near the surface of the catalyst molded body obtained by granulating the particles And

近年、環境問題から新しいエネルギー技術が求められており、この技術の一つである水素を原燃料として用いる固定床燃料電池は電気エネルギーを効率的でかつクリーンに生産できる分散電源として家庭用、産業用、自動車用として検討が進められている。   In recent years, new energy technologies have been demanded due to environmental problems, and fixed-bed fuel cells that use hydrogen as a raw fuel, which is one of these technologies, can be used as a distributed power source that can produce electric energy efficiently and cleanly for household and industrial use. Are being studied for automobiles and automobiles.

メタンを主成分とする低級炭化水素などの原料ガスを改質して水素を主成分とする改質ガスを得る技術として、スチーム改質(SR)、部分酸化(POX)、スチーム改質(SR)と部分酸化(POX)との併用反応(オートサーマルリフォーミング)などの技術がある。このような改質技術の中、スチーム改質(SR)が最も高い効率で水素を得られる反応方法である。   Steam reforming (SR), partial oxidation (POX), steam reforming (SR) are techniques for obtaining reformed gas mainly composed of hydrogen by reforming raw gas such as lower hydrocarbons mainly composed of methane. ) And partial oxidation (POX) in combination (autothermal reforming). Among such reforming techniques, steam reforming (SR) is a reaction method that can obtain hydrogen with the highest efficiency.

スチーム改質(SR)は以下の反応式によって行われる。
CH+HO→3H+CO
一般に、この反応は600℃〜800℃付近で行われ、S/C(水蒸気/炭素比:Steam/Carbon比)が2.5〜3.5付近で行われる。この反応は吸熱反応であり、温度が高い程、反応を促進することができる。
Steam reforming (SR) is performed according to the following reaction formula.
CH 4 + H 2 O → 3H 2 + CO
In general, this reaction is carried out at around 600 ° C. to 800 ° C., and the S / C (water vapor / carbon ratio: Steam / Carbon ratio) is carried out at around 2.5 to 3.5. This reaction is an endothermic reaction, and the higher the temperature, the more the reaction can be promoted.

現在、炭化水素分解用触媒における活性金属元素として、卑金属系ではニッケル、鉄、コバルト等が用いられ、貴金属系では白金、ロジウム、ルテニウム、イリジウム又はパラジウム等が用いられている。このうち、触媒活性の高さから、ニッケル、ルテニウムの金属元素を担持した触媒が主に市販されている。卑金属系元素は比較的炭素析出を起こしやすいため、水蒸気を理論組成よりも過剰に添加した水蒸気/炭素比が高い条件下で使用する必要がある。また、貴金属系元素では、水蒸気/炭素比が低い条件下でも炭素析出を起こしにくいが、触媒が高価であることから、これを用いた燃料電池システムの値段は非常に高価になってしまい、燃料電池システムのより一層の普及を妨げる要因となりうる。   Currently, nickel, iron, cobalt, and the like are used as active metal elements in hydrocarbon decomposition catalysts, and platinum, rhodium, ruthenium, iridium, palladium, and the like are used in noble metal systems. Among these, the catalyst which carry | supported the metallic element of nickel and ruthenium is mainly marketed from the high catalyst activity. Since base metal elements are relatively easy to cause carbon deposition, it is necessary to use them under a condition where the water vapor / carbon ratio is higher than that of the theoretical composition. In addition, noble metal elements are less likely to cause carbon deposition even under a low water vapor / carbon ratio. However, since the catalyst is expensive, the price of the fuel cell system using the catalyst becomes very expensive. This may be a factor that hinders the further spread of battery systems.

一般に市販されている触媒として、アルミナなどを主成分とするビーズ形担体に、活性金属元素として廉価な卑金属元素であるニッケル又は高価な貴金属元素であるルテニウムを含有する溶液をスプレー噴霧などによって製造されているものがある。   As a commercially available catalyst, it is manufactured by spraying a solution containing nickel, which is an inexpensive base metal element, or ruthenium, which is an expensive noble metal element, on a bead-shaped carrier mainly composed of alumina or the like. There is something that is.

一般的に、水素製造時の触媒特性は担持されている活性金属が微粒子であるほど優れるものであり、前記製造法によって得られたニッケルを主成分とする触媒は、金属ニッケル粒子のサイズが数十nmと大きく、低温における触媒活性が低く、また耐コーキング性に乏しく、触媒特性の経時劣化が著しく使用できるようなものではない。また、前記製造法によって得られたルテニウムを主成分とする触媒は、活性金属元素がルテニウムであるため、ある程度耐コーキング性は高いが、担持されている金属ルテニウム粒子のサイズが十数nmと大きく、低温における触媒活性が低い上にシンタリングにより触媒特性の経時劣化が著しく、使用できるようなものではない。   In general, the catalytic properties during hydrogen production are more excellent as the supported active metal is finer, and the nickel-based catalyst obtained by the production method has several metal nickel particle sizes. It is as large as 10 nm, its catalytic activity at low temperature is low, its coking resistance is poor, and it is not possible to use the deterioration of catalyst characteristics with time. Further, the ruthenium-based catalyst obtained by the above-described production method has a high degree of coking resistance because the active metal element is ruthenium, but the size of the supported metal ruthenium particles is as large as several tens of nm. Further, the catalyst activity at low temperature is low and the deterioration of the catalyst characteristics with time due to sintering is remarkable, so that it cannot be used.

これらのことから、炭化水素分解用触媒として、より安価であり、機能面では、低温においても優れた触媒活性を示し、低水蒸気/炭素比でも炭素析出(コーキング)が抑制されると共に高活性であって、しかも、高い耐久性を有する触媒が強く要求されている。   From these facts, it is cheaper as a hydrocarbon cracking catalyst, and in terms of function, it exhibits excellent catalytic activity even at low temperatures, and carbon deposition (coking) is suppressed even at a low steam / carbon ratio, while being highly active. In addition, there is a strong demand for a highly durable catalyst.

従来、α−アルミナや酸化マグネシウム、酸化チタンなどの担体に、白金、パラジウム、ロジウム、ルテニウム、ニッケルなどを触媒活性金属として担持し、炭化水素分解用触媒として報告されている(特許文献1至5)。   Conventionally, platinum, palladium, rhodium, ruthenium, nickel and the like are supported as catalytically active metals on a carrier such as α-alumina, magnesium oxide, and titanium oxide, and are reported as hydrocarbon decomposition catalysts (Patent Documents 1 to 5). ).

特開昭50−4001号公報Japanese Patent Laid-Open No. 50-4001 特開2000−503624号公報JP 2000-503624 A 特開2003−225566号公報Japanese Patent Laid-Open No. 2003-225566 特開平11−276893号公報Japanese Patent Laid-Open No. 11-276893 特開2003−265963号公報JP 2003-265963 A

前記特許文献1乃至3には、マグネシウム、アルミニウム、及びニッケルを含有する触媒が記載されているが、触媒を構成する粒子全体にニッケルが均一に存在するために、多量のニッケルを含有するものである。   Patent Documents 1 to 3 describe a catalyst containing magnesium, aluminum, and nickel. However, since nickel is uniformly present in the entire particles constituting the catalyst, it contains a large amount of nickel. is there.

また、前記特許文献4記載の技術は、該触媒ニッケル担持量は特に0.1〜10wt%が好ましいとして提案されているが、特にニッケル担持量が少ない場合のメタン転化率は十分に高いとは言い難いものである。   Further, the technique described in Patent Document 4 has been proposed as the catalyst nickel loading is preferably 0.1 to 10 wt%, but the methane conversion rate is particularly high when the nickel loading is small. It's hard to say.

また、前記特許文献5の技術は、触媒活性金属としてニッケルとルテニウムの2成分を担持しているが、通常の含浸法やスプレー法、塗布法等にて担持されているため、ニッケル及びルテニウムの粒子径が大きくなってしまい、低温における触媒活性が低下してしまうと考えられる。   The technique of Patent Document 5 carries two components of nickel and ruthenium as catalytic active metals, but is carried by a normal impregnation method, spray method, coating method, etc. It is considered that the particle diameter becomes large and the catalytic activity at low temperature is lowered.

そこで、本発明は、触媒活性成分である金属ニッケル及び金属ルテニウムを微粒子で担持させることにより、低温における反応においても優れた触媒活性を有し、低スチーム下においても耐コーキング性に極めて優れた炭化水素分解用触媒を提供することを目的とする。   In view of this, the present invention has a catalytic activity that has excellent catalytic activity even in a reaction at a low temperature by supporting metallic nickel and metallic ruthenium, which are catalytic active components, in fine particles, and extremely excellent carbonization resistance even under low steam. It aims at providing the catalyst for hydrogenolysis.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、マグネシウム、アルミニウム、ニッケル及びルテニウムを構成元素とする炭化水素分解用触媒であって、金属ルテニウム微粒子の平均粒子径が1〜10nmであって、金属ルテニウムの含有量が炭化水素分解用触媒に対して0.025〜5.0wt%であり、かつ、金属ルテニウムの含有量がマグネシウム、アルミニウム、ニッケル及びルテニウムの合計モル数に対して、0.0001〜0.025であることを特徴とする炭化水素分解用触媒である(本発明1)。   That is, the present invention is a hydrocarbon decomposition catalyst containing magnesium, aluminum, nickel and ruthenium as constituent elements, wherein the metal ruthenium fine particles have an average particle diameter of 1 to 10 nm, and the metal ruthenium content is hydrocarbon. It is 0.025 to 5.0 wt% with respect to the catalyst for decomposition, and the content of metal ruthenium is 0.0001 to 0.025 with respect to the total number of moles of magnesium, aluminum, nickel and ruthenium. (Invention 1).

また、本発明は、金属ニッケル微粒子の平均粒子径が1〜10nmであって金属ニッケルの含有量が炭化水素分解用触媒に対して0.1〜40wt%であり、かつ、金属ニッケルの含有量がマグネシウム、アルミニウム、ルテニウム及びニッケルの合計モル数に対して、0.0007〜0.342であることを特徴とする前記炭化水素分解用触媒である(本発明2)。   Further, in the present invention, the average particle diameter of the metallic nickel fine particles is 1 to 10 nm, the content of metallic nickel is 0.1 to 40 wt% with respect to the hydrocarbon decomposition catalyst, and the content of metallic nickel Is a catalyst for cracking hydrocarbons according to the present invention, wherein the catalyst is 0.0007 to 0.342 with respect to the total number of moles of magnesium, aluminum, ruthenium and nickel (Invention 2).

また、本発明は、金属ニッケルに対する金属ルテニウムのモル数は0.0004〜30であることを特徴とする本発明1又は2の炭化水素分解用触媒である(本発明3)。   Further, the present invention is the hydrocarbon decomposition catalyst according to the first or second aspect of the present invention, wherein the number of moles of metal ruthenium with respect to the metallic nickel is 0.0004 to 30 (invention 3).

また、本発明は、マグネシウム及びアルミニウムからなる層状複水水酸化物芯粒子と、該層状複水水酸化物芯粒子の表面にマグネシウム、アルミニウム、ニッケル及びルテニウムからなる層状複水水酸化物層を形成した層状複水水酸化物型粒子粉末を加熱焼成して酸化物粒子粉末を得、次いで、該酸化物粒子粉末を加熱還元して酸化物粒子粉末中のニッケル及びルテニウムを金属ニッケル微粒子及び金属ルテニウム微粒子にして得られることを特徴とする炭化水素分解用触媒の製造法である(本発明4)。   The present invention also provides a layered double hydroxide core particle comprising magnesium and aluminum, and a layered double hydroxide layer comprising magnesium, aluminum, nickel and ruthenium on the surface of the layered double hydroxide core particle. The formed layered double hydroxide type particle powder is heated and fired to obtain oxide particle powder, and then the oxide particle powder is heated and reduced to convert nickel and ruthenium in the oxide particle powder into metal nickel fine particles and metal This is a method for producing a hydrocarbon cracking catalyst obtained by forming ruthenium fine particles (Invention 4).

また、本発明は、アニオンを含有したアルカリ性水溶液とマグネシウム原料とアルミニウム塩水溶液を混合し、pH値が7.0〜13.0の範囲の混合溶液とした後、該混合溶液を50℃〜300℃の温度範囲で熟成してマグネシウムとアルミニウムからなる層状複水水酸化物芯粒子を生成させ、次いで、該層状複水水酸化物芯粒子を含む水性懸濁液に、該芯粒子の生成時に添加した前記マグネシウム及び前記アルミニウムの合計モル数に対して、合計モル数が0.05〜0.5となる割合のマグネシウム、アルミニウム、ニッケル及びルテニウムを含有するマグネシウム原料、アルミニウム塩水溶液、ニッケル塩水溶液及びルテニウム塩水溶液を添加した後、pH値が9.0〜13.0の範囲、温度が40℃〜300℃の範囲で熟成して、前記芯粒子表面に層状複水水酸化物層を被覆形成させる成長反応を行った後、濾別、水洗し、得られた層状複水水酸化物粒子粉末を400℃〜1600℃の温度範囲で加熱焼成し酸化物粒子粉末を得、次いで、該酸化物粒子粉末を還元雰囲気下、700℃〜1100℃の温度範囲で加熱還元することを特徴とする炭化水素分解用触媒の製造法である(本発明5)。   Further, in the present invention, an alkaline aqueous solution containing an anion, a magnesium raw material, and an aluminum salt aqueous solution are mixed to obtain a mixed solution having a pH value in the range of 7.0 to 13.0. Aged in the temperature range of ° C. to produce layered double hydroxide core particles composed of magnesium and aluminum, and then into an aqueous suspension containing the layered double hydroxide core particles at the time of the production of the core particles Magnesium raw material, magnesium salt aqueous solution, nickel salt aqueous solution containing magnesium, aluminum, nickel and ruthenium at a ratio of 0.05 to 0.5 with respect to the total number of moles of magnesium and aluminum added And an aqueous ruthenium salt solution, and then ripened at a pH value of 9.0 to 13.0 and a temperature of 40 ° C to 300 ° C. After carrying out the growth reaction for forming a layered double hydroxide layer on the surface of the recording core particles, it is filtered and washed with water, and the resulting layered double hydroxide particle powder is heated in the temperature range of 400 ° C to 1600 ° C. It is a method for producing a catalyst for cracking hydrocarbons, characterized in that oxide particle powder is obtained by heating and firing, and then the oxide particle powder is heated and reduced in a reducing atmosphere in a temperature range of 700 ° C. to 1100 ° C. ( Invention 5).

また、本発明は、低級炭化水素を主体としたガスをスチーム改質により水素を製造する方法において、本発明1乃至3のいずれかに記載の炭化水素分解用触媒、低級炭化水素ガス及びスチームを接触させることを特徴とする水素の製造方法である(本発明6)。   The present invention also provides a method for producing hydrogen by steam reforming a gas mainly comprising lower hydrocarbons, the hydrocarbon cracking catalyst according to any one of the present inventions 1 to 3, the lower hydrocarbon gas and steam. It is the manufacturing method of hydrogen characterized by making it contact (this invention 6).

本発明に係る炭化水素分解用触媒は、金属ニッケルだけでなく、金属ルテニウムについても非常に微細な粒子の状態で炭化水素分解用触媒を構成する粒子の表面近傍又は粒子を造粒して得られる触媒成形体の表面近傍のいずれかに高分散して担持されているため、活性金属種である金属ニッケルと金属ルテニウムの低級炭化水素及び水蒸気に接触する面積が増大し、比較的低温においても優れた触媒活性を有する。   The hydrocarbon cracking catalyst according to the present invention is obtained by granulating the vicinity of the surface of particles constituting the hydrocarbon cracking catalyst or particles in the form of very fine particles not only for metallic nickel but also for metallic ruthenium. Since it is supported in a highly dispersed state near the surface of the catalyst molded body, the area in contact with the lower hydrocarbon and water vapor of metallic nickel and ruthenium, which are active metal species, is increased, and is excellent even at relatively low temperatures. Have high catalytic activity.

また、金属ニッケル及び金属ルテニウムが非常に微細な微粒子で炭化水素分解用触媒を構成する粒子の表面近傍又は粒子を造粒して得られる触媒成形体の表面近傍のいずれかに高分散して存在していることにより、低水蒸気条件下においてスチーム改質を行ってもコーキングしにくい。さらにマグネシウムを多量に多孔質担体が含んでいるため耐硫黄被毒性に極めて優れているので耐久性の面でも優れた触媒活性を有する。   Also, nickel metal and ruthenium metal are highly dispersed in either the vicinity of the surface of the particles constituting the hydrocarbon cracking catalyst with very fine particles or the vicinity of the surface of the molded catalyst obtained by granulating the particles. Therefore, even if steam reforming is performed under low steam conditions, coking is difficult. Furthermore, since the porous carrier contains a large amount of magnesium, it has excellent sulfur poisoning resistance, and therefore has excellent catalytic activity in terms of durability.

さらに、本発明にかかる炭化水素分解用触媒は、メタンなどの低級炭化水素ガスをオートサーマルリフォーミング(ATR)、部分酸化(POX)などの炭化水素分解用触媒、また二酸化炭素改質触媒として用いることもできる。   Furthermore, the hydrocarbon decomposition catalyst according to the present invention uses a lower hydrocarbon gas such as methane as a hydrocarbon decomposition catalyst such as autothermal reforming (ATR) or partial oxidation (POX), or a carbon dioxide reforming catalyst. You can also.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

先ず、本発明に係る炭化水素分解用触媒について述べる。   First, the hydrocarbon cracking catalyst according to the present invention will be described.

本発明に係る炭化水素分解用触媒の金属ルテニウム微粒子の平均粒子径は10nm以下であり水素製造に最適で低温において優れた触媒活性を有する。平均粒子径が10nmを超える金属ルテニウム微粒子を有する触媒では、メタンを主成分とする低級炭化水素ガスと水蒸気とを混合して水素を製造するスチーム改質において低温における低級炭化水素の転化率が低下してしまう。好ましくは9nm以下、より好ましくは8nm以下である。平均粒子径の下限値は0.5nm程度である。   The average particle diameter of the metal ruthenium fine particles of the hydrocarbon cracking catalyst according to the present invention is 10 nm or less, which is optimal for hydrogen production and has excellent catalytic activity at low temperatures. Catalysts with metal ruthenium fine particles with an average particle diameter exceeding 10 nm have a lower conversion rate of lower hydrocarbons at low temperatures in steam reforming in which hydrogen is produced by mixing lower hydrocarbon gas mainly composed of methane and water vapor. Resulting in. Preferably it is 9 nm or less, More preferably, it is 8 nm or less. The lower limit of the average particle diameter is about 0.5 nm.

本発明に係る炭化水素分解用触媒の金属ルテニウムの含有量は、該触媒に対して0.025〜5.0wt%である。金属ルテニウムの含有量が0.025wt%未満又は5.0wt%以上の場合には低温における低級炭化水素の転化率が低下する。好ましくは0.025〜4.8wt%である。   The content of metal ruthenium in the hydrocarbon cracking catalyst according to the present invention is 0.025 to 5.0 wt% with respect to the catalyst. When the content of metal ruthenium is less than 0.025 wt% or 5.0 wt% or more, the conversion rate of lower hydrocarbons at low temperatures decreases. Preferably it is 0.025 to 4.8 wt%.

本発明に係る炭化水素分解用触媒の金属ルテニウムの含有量は、該触媒に含まれるマグネシウム、アルミニウム、ニッケル及びルテニウムの合計モル数に対するモル比(Ru/(Mg+Al+Ni+Ru))で示した場合0.0001〜0.025が好ましい。前記モル比が0.025を越える場合には、金属ルテニウム微粒子の平均粒子径が10nmを超えるため、低温における低級炭化水素の転化率が低下する。好ましくは0.0001〜0.024である。   The content of ruthenium metal in the hydrocarbon cracking catalyst according to the present invention is 0.0001 when expressed as a molar ratio (Ru / (Mg + Al + Ni + Ru)) to the total number of moles of magnesium, aluminum, nickel and ruthenium contained in the catalyst. ~ 0.025 is preferred. When the molar ratio exceeds 0.025, the average particle diameter of the metal ruthenium fine particles exceeds 10 nm, so that the conversion rate of lower hydrocarbons at a low temperature decreases. Preferably it is 0.0001-0.024.

本発明に係る炭化水素分解用触媒の金属ニッケル微粒子の平均粒子径は10nm以下が好ましく、水素製造に最適で低温において優れた触媒活性を有する。平均粒子径が10nmを超える金属ニッケル微粒子を有する触媒では、メタンを主成分とする低級炭化水素ガスと水蒸気とを混合して水素を製造するスチーム改質において低級炭化水素の転化率が低下してしまう。さらに、10nmを超える金属ニッケル微粒子を有する触媒では触媒体の耐コーキング性が著しく低下する。好ましくは9nm以下、より好ましくは8nm以下である。平均粒子径の下限値は0.5nm程度である。   The average particle diameter of the metal nickel fine particles of the hydrocarbon cracking catalyst according to the present invention is preferably 10 nm or less, and is optimal for hydrogen production and has excellent catalytic activity at low temperatures. In a catalyst having metallic nickel fine particles having an average particle diameter exceeding 10 nm, the conversion rate of lower hydrocarbons is reduced in steam reforming in which hydrogen is produced by mixing lower hydrocarbon gas mainly composed of methane and water vapor. End up. Furthermore, in the case of a catalyst having metallic nickel fine particles exceeding 10 nm, the coking resistance of the catalyst body is significantly lowered. Preferably it is 9 nm or less, More preferably, it is 8 nm or less. The lower limit of the average particle diameter is about 0.5 nm.

本発明に係る炭化水素分解用触媒の金属ニッケルの含有量は、該触媒に対して0.10〜40wt%が好ましい。金属ニッケルの含有量が0.10wt%未満の場合には低級炭化水素の転化率が低下する。40wt%を超える場合には、金属ニッケル微粒子の粒子サイズが10nmを超え、耐コーキング性が低下してしまう。好ましくは0.18〜39.0wt%である。   The content of metallic nickel in the hydrocarbon cracking catalyst according to the present invention is preferably 0.10 to 40 wt% with respect to the catalyst. When the content of metallic nickel is less than 0.10 wt%, the conversion of lower hydrocarbons decreases. When it exceeds 40 wt%, the particle size of the metal nickel fine particles exceeds 10 nm, and the coking resistance is lowered. Preferably it is 0.18-39.0 wt%.

本発明に係る炭化水素分解用触媒の金属ニッケルの含有量は、該触媒に含まれるマグネシウム、アルミニウム、ルテニウム及びニッケルの合計モル数に対するモル比(Ni/(Mg+Al+Ru+Ni))で示した場合0.0007〜0.342が好ましい。前記モル比が0.342を越える場合には、金属ニッケル微粒子の平均粒子径が10nmを超えるため、低温における低級炭化水素の転化率が低下し、また耐コーキング性が低下する。より好ましくは0.001〜0.34、さらにより好ましくは0.0015〜0.34である。   The content of metallic nickel in the hydrocarbon cracking catalyst according to the present invention is 0.0007 when expressed as a molar ratio (Ni / (Mg + Al + Ru + Ni)) to the total number of moles of magnesium, aluminum, ruthenium and nickel contained in the catalyst. ~ 0.342 is preferred. When the molar ratio exceeds 0.342, the average particle diameter of the metallic nickel fine particles exceeds 10 nm, so that the conversion rate of lower hydrocarbons at low temperatures is lowered and the coking resistance is lowered. More preferably, it is 0.001-0.34, and still more preferably 0.0015-0.34.

本発明に係る炭化水素分解用触媒の金属ルテニウムのモル数は金属ニッケルのモル数に対して0.0004〜30であることが好ましい。   The number of moles of metal ruthenium in the hydrocarbon cracking catalyst according to the present invention is preferably 0.0004 to 30 relative to the number of moles of metal nickel.

本発明に係る炭化水素分解用触媒において、金属ニッケル及び金属ルテニウムは、炭化水素分解用触媒を構成する粒子の粒子表面近傍に存在することが好ましい。また、本発明に係る炭化水素分解用触媒は、造粒して成形体の状態で用いることが好ましく、金属ニッケル及び金属ルテニウムが前記成形体の表面近傍に存在させてもよい。   In the hydrocarbon cracking catalyst according to the present invention, the nickel metal and the ruthenium metal are preferably present in the vicinity of the particle surface of the particles constituting the hydrocarbon cracking catalyst. Moreover, the hydrocarbon cracking catalyst according to the present invention is preferably granulated and used in the form of a molded body, and metal nickel and metal ruthenium may be present in the vicinity of the surface of the molded body.

本発明に係る炭化水素分解用触媒のマグネシウムとアルミニウムとの比率は特に限定されないが、アルミニウムに対してマグネシウムが多い方が好ましく、マグネシウムとアルミニウムのモル比はMg:Al=4:1〜1.5:1が好ましい。マグネシウムが前記範囲を越える場合には十分な強度を有する成形体を容易に得ることが困難となり、前記範囲未満の場合には多孔質担体としての特性が得られ難くなる。   Although the ratio of magnesium and aluminum in the hydrocarbon cracking catalyst according to the present invention is not particularly limited, it is preferable that the amount of magnesium is larger than that of aluminum, and the molar ratio of magnesium to aluminum is Mg: Al = 4: 1 to 1. 5: 1 is preferred. When magnesium exceeds the above range, it is difficult to easily obtain a molded article having sufficient strength, and when it is less than the above range, it is difficult to obtain the characteristics as a porous carrier.

本発明に係る炭化水素分解用触媒の比表面積値は7〜320m/gが好ましい。7m/g未満では高い空間速度において転化率が低下してしまう。320m/gを超える場合は触媒前駆体である層状複水水酸化物粒子粉末の工業的な生産が困難となる。より好ましくは20〜280m/gである。 The specific surface area value of the hydrocarbon cracking catalyst according to the present invention is preferably 7 to 320 m 2 / g. If it is less than 7 m 2 / g, the conversion rate decreases at a high space velocity. When it exceeds 320 m 2 / g, industrial production of the layered double hydroxide particle powder as the catalyst precursor becomes difficult. More preferably, it is 20-280 m < 2 > / g.

次に、本発明に係る炭化水素分解用触媒の製造方法について述べる。   Next, a method for producing a hydrocarbon cracking catalyst according to the present invention will be described.

本発明に係る炭化水素分解用触媒は、前駆体である層状複水水酸化物粒子粉末を製造した後、400〜1600℃の温度範囲で加熱焼成して多孔質の酸化物粒子粉末とし、次いで、700〜1100℃の温度範囲で加熱還元して得ることができる。   The catalyst for cracking hydrocarbons according to the present invention, after producing a layered double hydroxide particle powder as a precursor, is heated and fired in a temperature range of 400 to 1600 ° C. to form a porous oxide particle powder, , And can be obtained by heat reduction in a temperature range of 700 to 1100 ° C.

本発明における層状複水水酸化物粒子粉末は、アニオンを含有したアルカリ性水溶液とマグネシウム原料とアルミニウム塩水溶液を混合し、pH値が7.0〜13.0の範囲の混合溶液とした後、該混合溶液を50〜300℃の温度範囲で熟成して層状複水水酸化物芯粒子を生成し、
次いで、該層状複水水酸化物芯粒子を含む水懸濁液に、前記層状複水水酸化物芯粒子の生成時に添加した前記マグネシウムと前記アルミニウムとの合計モル数に対して、合計モル数が0.05〜0.5となる割合のマグネシウム、アルミニウム、ニッケル及びルテニウムを含有するマグネシウム塩水溶液、アルミニウム塩水溶液、ニッケル塩水溶液及びルテニウム塩水溶液を添加した後、pH値が9.0〜13.0の範囲、温度が40〜300℃の範囲で熟成して、前記層状複水水酸化物芯粒子の粒子表面に新たに添加したマグネシウム、アルミニウム、ニッケル及びルテニウムをトポタクティックに被覆形成する成長反応を行うことで得られる。
The layered double hydroxide particle powder in the present invention is prepared by mixing an alkaline aqueous solution containing anions, a magnesium raw material, and an aluminum salt aqueous solution to obtain a mixed solution having a pH value in the range of 7.0 to 13.0. The mixed solution is aged in the temperature range of 50 to 300 ° C. to produce layered double hydroxide core particles,
Next, the total number of moles relative to the total number of moles of magnesium and aluminum added to the aqueous suspension containing the layered double hydroxide core particles when the layered double hydroxide core particles are formed. After adding magnesium salt aqueous solution, aluminum salt aqueous solution, nickel salt aqueous solution and ruthenium salt aqueous solution containing magnesium, aluminum, nickel and ruthenium in a ratio of 0.05 to 0.5, the pH value is 9.0 to 13 Aging in a range of 0.0 and a temperature of 40 to 300 ° C., topographically coats magnesium, aluminum, nickel and ruthenium newly added to the surface of the layered double hydroxide core particles. Obtained by performing a growth reaction.

マグネシウム、アルミニウム、ニッケル、鉄の塩としては硝酸塩など水溶性のものであれば特に限定しない。   The salt of magnesium, aluminum, nickel, and iron is not particularly limited as long as it is water-soluble such as nitrate.

マグネシウム原料としては、酸化マグネシウム、水酸化マグネシウム、シュウ酸マグネシウム、硫酸マグネシウム、亜硫酸マグネシウム、硝酸マグネシウム、塩化マグネシウム、クエン酸マグネシウム、塩基性炭酸マグネシウム、安息香酸マグネシウム等を用いることができる。   As a magnesium raw material, magnesium oxide, magnesium hydroxide, magnesium oxalate, magnesium sulfate, magnesium sulfite, magnesium nitrate, magnesium chloride, magnesium citrate, basic magnesium carbonate, magnesium benzoate and the like can be used.

アルミニウム原料としては、酸化アルミニウム、水酸化アルミニウム、酢酸アルミニウム、塩化アルミニウム、硝酸アルミニウム、シュウ酸アルミニウム、塩基性アンモニウムアルミニウム等を用いることができる。   As the aluminum raw material, aluminum oxide, aluminum hydroxide, aluminum acetate, aluminum chloride, aluminum nitrate, aluminum oxalate, basic ammonium aluminum, or the like can be used.

ニッケル塩原料としては、酸化ニッケル、水酸化ニッケル、硫酸ニッケル、炭酸ニッケル、硝酸ニッケル、塩化ニッケル、安息香酸ニッケル、塩基性炭酸ニッケル、ギ酸ニッケル、クエン酸ニッケル、硫酸ニッケル二アンモニウム等を用いることができる。   As the nickel salt raw material, nickel oxide, nickel hydroxide, nickel sulfate, nickel carbonate, nickel nitrate, nickel chloride, nickel benzoate, basic nickel carbonate, nickel formate, nickel citrate, nickel diammonium sulfate, etc. may be used. it can.

ルテニウム塩原料としては硝酸ルテニウム、塩化ルテニウム等を用いることができる。   As the ruthenium salt raw material, ruthenium nitrate, ruthenium chloride or the like can be used.

芯粒子に対する成長反応分のモル数が0.05未満の場合には、低級炭化水素の転化率が低くなり本発明の効果が得られない。0.5を超える場合には、金属ニッケル微粒子及び金属ルテニウム微粒子の平均粒子径が大きくなり低温における低級炭化水素の転化率が低下し、さらには耐コーキング性が低下する。好ましくは0.10〜0.45、より好ましくは0.12〜0.4である。   When the number of moles of the growth reaction with respect to the core particles is less than 0.05, the conversion rate of the lower hydrocarbon is lowered and the effect of the present invention cannot be obtained. When it exceeds 0.5, the average particle diameter of the metallic nickel fine particles and the metallic ruthenium fine particles becomes large, the conversion rate of lower hydrocarbons at low temperatures is lowered, and further the coking resistance is lowered. Preferably it is 0.10-0.45, More preferably, it is 0.12-0.4.

成長反応におけるpH値が9.0未満の場合には、成長反応時に添加したマグネシウム、アルミニウム、ニッケル及びルテニウムが被覆層を形成せず分離して混在するようになり、本発明の目的とする触媒が得られない。pH値が13.0を超える場合には、アルミニウムの溶出が多過ぎて目的とする組成物が得られ難くなる。好ましくは9.0〜12.5、より好ましくは9.5〜12.0である。   When the pH value in the growth reaction is less than 9.0, magnesium, aluminum, nickel, and ruthenium added at the time of the growth reaction are separated and mixed without forming a coating layer. Cannot be obtained. When the pH value exceeds 13.0, there is too much elution of aluminum, making it difficult to obtain the target composition. Preferably it is 9.0-12.5, More preferably, it is 9.5-12.0.

成長反応における反応温度が40℃未満の場合には、成長反応時に添加したマグネシウム、アルミニウム、ニッケル及びルテニウムが被覆層を形成せず分離して混在するようになり、本発明の目的とする触媒が得られない。300℃を超えた場合、層状複水水酸化物粒子以外に大きな水酸化アルミニウム粒子や水酸化酸化アルミニウム粒子が混在するようになり、触媒活性金属微粒子のシンタリングが促進され、所望の特性を持った触媒体が得られない。好ましくは60〜250℃である。   When the reaction temperature in the growth reaction is less than 40 ° C., the magnesium, aluminum, nickel, and ruthenium added during the growth reaction are separated and mixed without forming a coating layer, and the target catalyst of the present invention I can't get it. When the temperature exceeds 300 ° C., large aluminum hydroxide particles and aluminum hydroxide oxide particles are mixed in addition to the layered double hydroxide particles, and the sintering of the catalytically active metal fine particles is promoted to have desired characteristics. No catalyst body can be obtained. Preferably it is 60-250 degreeC.

成長反応における熟成時間は特に限定されるものではないが、1〜80時間、好ましくは、3〜24時間、より好ましくは、5〜18時間である。1時間未満では成長反応時に添加したマグネシウム、アルミニウム、ニッケル及びルテニウムが層状複水水酸化物芯粒子表面に十分な被覆層を形成しない。80時間を超える成長反応は工業的ではない。   The aging time in the growth reaction is not particularly limited, but is 1 to 80 hours, preferably 3 to 24 hours, and more preferably 5 to 18 hours. If it is less than 1 hour, magnesium, aluminum, nickel and ruthenium added during the growth reaction do not form a sufficient coating layer on the surface of the layered double hydroxide core particles. Growth reactions over 80 hours are not industrial.

なお、ニッケル原料に微量含まれる不純物としてのコバルトが本発明に係る触媒に含有されても何ら問題はない。   There is no problem even if cobalt as an impurity contained in a trace amount in the nickel raw material is contained in the catalyst according to the present invention.

本発明における炭化水素分解用触媒の前駆体である層状複水水酸化物粒子粉末の平均板面径は0.05〜0.4μmが好ましい。平均板面径が0.05μm未満の場合には、濾別・水洗が困難となり工業的な生産が困難であり、0.4μmを超える場合には、触媒成形体を作製することが困難である。   The average plate surface diameter of the layered double hydroxide particle powder that is a precursor of the hydrocarbon decomposition catalyst in the present invention is preferably 0.05 to 0.4 μm. When the average plate surface diameter is less than 0.05 μm, it is difficult to filter and wash and industrial production is difficult. When it exceeds 0.4 μm, it is difficult to produce a catalyst molded body. .

本発明における層状複水水酸化物粒子粉末の結晶子サイズD006は0.001〜0.08μmが好ましい。結晶子サイズD006が0.001μm未満の場合には、水性懸濁液の粘度が非常に高く工業的な生産が難しく、0.08μmを超える場合には、触媒成形体を作製するのが困難である。より好ましくは0.002〜0.07μmである。   The crystallite size D006 of the layered double hydroxide particle powder in the present invention is preferably 0.001 to 0.08 μm. When the crystallite size D006 is less than 0.001 μm, the viscosity of the aqueous suspension is very high and industrial production is difficult, and when it exceeds 0.08 μm, it is difficult to produce a catalyst compact. is there. More preferably, it is 0.002-0.07 micrometer.

本発明における層状複水水酸化物粒子粉末の比表面積値は3.0〜300m/gが好ましい。比表面積値が3.0m/g未満の場合には、触媒成形体を作製するのが困難であり、300m/gを超える場合には、水性懸濁液の粘度が非常に高く、また濾別・水洗が困難となり工業的に生産が困難である。より好ましくは5.0〜250m/gである。 The specific surface area value of the layered double hydroxide particle powder in the present invention is preferably 3.0 to 300 m 2 / g. When the specific surface area value is less than 3.0 m 2 / g, it is difficult to produce a catalyst molded body. When the specific surface area value exceeds 300 m 2 / g, the viscosity of the aqueous suspension is very high. It is difficult to filter and wash, making it difficult to produce industrially. More preferably, it is 5.0-250 m < 2 > / g.

本発明における層状複水水酸化物粒子粉末のニッケル含有量は、層状複水水酸化物粒子粉末全体に対して0.0057〜26.463wt%が好ましく、より好ましくは0.01〜20wt%である。また、層状複水水酸化物粒子粉末のニッケル含有量のモル数は層状複水水酸化物粒子粉末に含まれるマグネシウム、アルミニウム、ニッケル及びルテニウムの合計モル数に対する比Ni/(Mg+Al+Ni+Ru)が0.001〜0.32が好ましく、より好ましくは0.0015〜0.3である。   The nickel content of the layered double hydroxide particle powder in the present invention is preferably 0.0057 to 26.463 wt%, more preferably 0.01 to 20 wt% with respect to the entire layered double hydroxide particle powder. is there. The number of moles of nickel in the layered double hydroxide particle powder is such that the ratio Ni / (Mg + Al + Ni + Ru) to the total number of moles of magnesium, aluminum, nickel and ruthenium contained in the layered double hydroxide particle powder is 0. 001 to 0.32 is preferable, and 0.0015 to 0.3 is more preferable.

本発明における層状複水水酸化物粒子粉末のルテニウム含有量は、層状複水水酸化物粒子粉末全体に対して0.0013〜3.328wt%が好ましく、より好ましくは0.002〜2.00wt%である。また、層状複水水酸化物粒子粉末のルテニウム含有量のモル数は層状複水水酸化物粒子粉末に含まれるマグネシウム、アルミニウム、ニッケル及びルテニウムの合計モル数に対する比Ru/(Mg+Al+Ni+Ru)が0.0015〜0.022が好ましく、より好ましくは0.0002〜0.02である。   In the present invention, the ruthenium content of the layered double hydroxide particle powder is preferably 0.0013 to 3.328 wt%, more preferably 0.002 to 2.00 wt% with respect to the entire layered double hydroxide particle powder. %. The number of moles of ruthenium content of the layered double hydroxide particle powder is such that the ratio Ru / (Mg + Al + Ni + Ru) to the total number of moles of magnesium, aluminum, nickel and ruthenium contained in the layered double hydroxide particle powder is 0. 0015 to 0.022 are preferable, and 0.0002 to 0.02 are more preferable.

本発明における層状複水水酸化物粒子粉末のルテニウムのモル数はニッケルのモル数に対して0.0004〜30であることが好ましい。   The number of moles of ruthenium in the layered double hydroxide particle powder in the present invention is preferably 0.0004 to 30 with respect to the number of moles of nickel.

本発明における層状複水水酸化物粒子粉末のマグネシウムとアルミニウムとの比率は特に限定されないが、マグネシウムとアルミニウムのモル比はMg:Al=4:1〜1.5:1がより好ましい。   The ratio of magnesium to aluminum in the layered double hydroxide particle powder in the present invention is not particularly limited, but the molar ratio of magnesium to aluminum is more preferably Mg: Al = 4: 1 to 1.5: 1.

本発明における酸化物粒子粉末は、前記層状複水水酸化物粒子粉末を400℃〜1600℃で焼成することにより得られる。層状複水水酸化物粒子粉末の焼成温度が400℃未満の場合には、多孔質体酸化物粒子を得ることができない。1600℃を超える場合には、多孔質体担体としての特性が低下する。好ましくは450〜1500℃、より好ましくは500〜1400℃である。焼成雰囲気は酸素、空気、また窒素、アルゴンなどの不活性ガスでも良い。   The oxide particle powder in the present invention is obtained by firing the layered double hydroxide particle powder at 400 ° C to 1600 ° C. When the firing temperature of the layered double hydroxide particle powder is less than 400 ° C., porous oxide particles cannot be obtained. When the temperature exceeds 1600 ° C., the properties as a porous body carrier deteriorate. Preferably it is 450-1500 degreeC, More preferably, it is 500-1400 degreeC. The firing atmosphere may be oxygen, air, or an inert gas such as nitrogen or argon.

本発明における酸化物粒子粉末の焼成時間は特に限定しないが0.5〜24時間が望ましい。24時間を越えると工業的とは言い難い。好ましくは1〜10時間である。   The firing time of the oxide particle powder in the present invention is not particularly limited, but is preferably 0.5 to 24 hours. If it exceeds 24 hours, it is hard to say that it is industrial. Preferably it is 1 to 10 hours.

本発明における層状複水水酸化物粒子粉末を焼成後に得られる酸化物粒子粉末のルテニウム含有量は、酸化物粒子粉末全体に対して0.025〜5.0wt%が好ましく、より好ましくは0.05〜4.0wt%である。また、酸化物粒子粉末のルテニウム含有量のモル数及び全金属イオンに対する比率は、層状複水水酸化物粒子粉末のモル数及び比率とほぼ同程度である。   The ruthenium content of the oxide particle powder obtained after firing the layered double hydroxide particle powder in the present invention is preferably 0.025 to 5.0 wt%, more preferably 0.005%, based on the whole oxide particle powder. It is 05-4.0 wt%. Further, the number of moles of ruthenium content of the oxide particle powder and the ratio to the total metal ions are approximately the same as the number of moles and the ratio of the layered double hydroxide particle powder.

本発明における層状複水水酸化物粒子粉末を焼成後に得られる酸化物粒子粉末のニッケル含有量は、酸化物粒子粉末全体に対して0.10〜40wt%が好ましく、より好ましくは0.18〜35wt%である。また、酸化物粒子粉末のニッケル含有量のモル数及び全金属イオンに対する比率は、層状複水水酸化物粒子粉末のモル数及びモル比率とほぼ同程度である。   The nickel content of the oxide particle powder obtained after firing the layered double hydroxide particle powder in the present invention is preferably 0.10 to 40 wt%, more preferably 0.18 to the entire oxide particle powder. 35 wt%. Further, the number of moles of nickel content of the oxide particle powder and the ratio to the total metal ions are approximately the same as the number of moles and the mole ratio of the layered double hydroxide particle powder.

本発明における酸化物粒子粉末は多孔質体であり、平均板面径は0.05〜0.4μmが好ましく、比表面積値は7.0〜320m/gが好ましい。 The oxide particle powder in the present invention is a porous body, the average plate surface diameter is preferably 0.05 to 0.4 μm, and the specific surface area value is preferably 7.0 to 320 m 2 / g.

本発明に係る炭化水素分解用触媒は、前記酸化物粒子粉末を700℃〜1100℃の範囲で還元処理することにより得られる。酸化物粒子粉末の還元温度が700℃未満の場合には、ニッケルが金属化しないので本発明の目的とする触媒活性が得られない。1100℃を超える場合にはニッケル及びルテニウムのシンタリングが進み金属ニッケル微粒子及び金属ルテニウム微粒子の粒子サイズが大きくなるため低温における低級炭化水素の転化率が低下し、さらに耐コーキング性も低下する。好ましくは700〜950℃である。還元時の雰囲気は、水素を含んだガスなど還元雰囲気であれば特に限定されない。熱処理の時間は特に限定しないが0.5〜24時間が望ましい。24時間を越えると工業的にメリットが見出せない。好ましくは、1〜10時間である。   The hydrocarbon cracking catalyst according to the present invention can be obtained by reducing the oxide particle powder in the range of 700 ° C to 1100 ° C. When the reduction temperature of the oxide particle powder is lower than 700 ° C., nickel is not metallized, so that the target catalytic activity of the present invention cannot be obtained. When the temperature exceeds 1100 ° C., the sintering of nickel and ruthenium proceeds and the particle size of the metal nickel fine particles and metal ruthenium fine particles increases, so that the conversion rate of lower hydrocarbons at low temperatures is lowered, and further the coking resistance is lowered. Preferably it is 700-950 degreeC. The atmosphere during the reduction is not particularly limited as long as it is a reducing atmosphere such as a gas containing hydrogen. The heat treatment time is not particularly limited, but is preferably 0.5 to 24 hours. If it exceeds 24 hours, no industrial merit can be found. Preferably, it is 1 to 10 hours.

上記のようにして得られた粉末状の触媒は、使用する各用途に合わせて成形しても良い。形状やサイズは特に限定しないが、例えば球状や円柱状、管状、ハニカム体への塗布などの形状でも良い。通常、球状や円柱状、管状の形状を持つ触媒体の場合のサイズは0.1〜30mm程度が好適である。条件によっては有機物や無機物などの各種バインダーを添加することで成形体の強度や細孔分布密度を調整しても良い。なお、本発明においては熱処理前に造粒・成形してもよい。   The powdered catalyst obtained as described above may be molded according to each application to be used. The shape and size are not particularly limited, but may be, for example, a spherical shape, a cylindrical shape, a tubular shape, or a shape applied to a honeycomb body. In general, the size of a catalyst body having a spherical, cylindrical, or tubular shape is preferably about 0.1 to 30 mm. Depending on conditions, the strength and pore distribution density of the molded body may be adjusted by adding various binders such as organic substances and inorganic substances. In the present invention, granulation and molding may be performed before the heat treatment.

また、層状複水水酸化物粒子粉末を焼成して複合酸化物を得、次いで、該複合酸化物をアニオンを含有する水溶液によって水和して層状複水水酸化物粒子粉末を得る方法が知られており、本発明においては、下記製造方法によってニッケル及びルテニウムを担持しても良い。ニッケル及びルテニウムを担持した層状複水酸化物粒子粉末は、前記と同様にして、必要により加熱焼成を行った後、加熱還元すればよい。   Also known is a method of firing layered double hydroxide particle powder to obtain a composite oxide, and then hydrating the composite oxide with an aqueous solution containing anions to obtain layered double hydroxide particle powder. In the present invention, nickel and ruthenium may be supported by the following production method. The layered double hydroxide particle powder supporting nickel and ruthenium may be heat-reduced after being heated and fired as necessary in the same manner as described above.

即ち、マグネシウム及びアルミニウムのみからなる層状複水水酸化物粒子粉末を成形、焼成後に多孔質酸化物成形体とし、次いで、ニッケル及びルテニウムを含む溶液に含浸させることにより、多孔質酸化物粉末あるいは成形体の表面近傍にニッケル及びルテニウムを含む層状複水水酸化物粒子相を再生させる方法を用いて担持しても良い。   That is, a layered double hydroxide particle powder made only of magnesium and aluminum is formed, and after being fired, a porous oxide formed body is formed, and then impregnated with a solution containing nickel and ruthenium to form a porous oxide powder or formed You may carry | support using the method of reproducing | regenerating the layered double hydroxide particle phase containing nickel and ruthenium near the surface of the body.

また、前記製造法に従って粒子表面にニッケルが存在する層状複水水酸化物粒子粉末を得て、成形、焼成して多孔質酸化物成形体とし、ルテニウムを含む溶液に含浸させることにより、多孔質酸化物粉末あるいは成形体の表面近傍にニッケル、また成形体の表面近傍にルテニウムを含む層状複水水酸化物粒子相を再生させる方法を用いて担持しても良い。   In addition, a layered double hydroxide particle powder in which nickel is present on the particle surface is obtained in accordance with the above production method, molded and fired to form a porous oxide molded body, and impregnated with a solution containing ruthenium, The oxide powder or the powder may be supported by a method of regenerating a layered double hydroxide particle phase containing nickel near the surface of the compact and ruthenium near the surface of the compact.

また、前記製造法に従って粒子表面にルテニウムが存在する層状複水水酸化物粒子粉末を得て、成形、焼成して多孔質酸化物成形体とし、ニッケルを含む溶液に含浸させることにより、多孔質酸化物粉末あるいは成形体の表面近傍にルテニウム、また成形体の表面近傍にニッケルを含む層状複水水酸化物粒子相を再生させる方法を用いて担持しても良い。   Further, a layered double hydroxide particle powder in which ruthenium is present on the particle surface is obtained according to the above production method, molded and fired to form a porous oxide molded body, and impregnated with a solution containing nickel, It may be supported by a method of regenerating a layered double hydroxide particle phase containing ruthenium near the surface of the oxide powder or the molded body and nickel near the surface of the molded body.

また、前記製造法に従って粒子表面にニッケル及びルテニウムが存在する層状複水水酸化物粒子粉末を得て、成形、焼成して多孔質酸化物成形体とし、さらにニッケル及びルテニウムを含む溶液に含浸させることにより、多孔質酸化物粉末あるいは成形体の表面近傍にニッケル、ルテニウム、また成形体の表面近傍にニッケル、ルテニウムを含む層状複水水酸化物粒子相を再生させる方法を用いて担持しても良い。   Also, a layered double hydroxide particle powder in which nickel and ruthenium are present on the particle surface is obtained according to the above production method, molded and fired to form a porous oxide molded body, and further impregnated with a solution containing nickel and ruthenium. Thus, nickel or ruthenium can be supported in the vicinity of the surface of the porous oxide powder or molded body, and the layered double hydroxide particle phase containing nickel and ruthenium can be supported in the vicinity of the surface of the molded body. good.

次に、本発明に係る炭化水素分解用触媒を用いた水素製造方法について述べる。   Next, a hydrogen production method using the hydrocarbon cracking catalyst according to the present invention will be described.

本発明に係る炭化水素分解用触媒を用いた水素の製造方法は、反応温度が400〜900℃であり、水蒸気と低級炭化水素とのモル比(S/C)が1.2〜6.0であり、空間速度(GHSV)が500〜600,000h−1である条件下で、メタンを主成分とする低級炭化水素ガス及び水蒸気を本発明に係る炭化水素分解用触媒と接触させる。 In the method for producing hydrogen using the hydrocarbon decomposition catalyst according to the present invention, the reaction temperature is 400 to 900 ° C., and the molar ratio (S / C) of water vapor to lower hydrocarbon is 1.2 to 6.0. The lower hydrocarbon gas mainly composed of methane and water vapor are brought into contact with the hydrocarbon decomposition catalyst according to the present invention under the condition that the space velocity (GHSV) is 500 to 600,000 h −1 .

反応温度が400℃未満の場合には低級炭化水素の転化率が低く、長時間に渡り反応を行うとコーキングが起こりやすくなり終には触媒特性が失活することもある。900℃を超える場合にはメタンなどの低級炭化水素が分解してしまう。好ましくは450〜900℃、より好ましくは500〜850℃である。   When the reaction temperature is less than 400 ° C., the conversion rate of lower hydrocarbons is low, and when the reaction is carried out for a long time, coking is likely to occur, and the catalytic properties may be deactivated at the end. When it exceeds 900 ° C., lower hydrocarbons such as methane are decomposed. Preferably it is 450-900 degreeC, More preferably, it is 500-850 degreeC.

水蒸気と低級炭化水素のモル比S/Cが1.2未満の場合には耐コーキング性が低下する。またS/Cが6.0を超える場合には水素製造に多量の水蒸気を必要としコストがかさみ現実的ではない。好ましくは1.5〜6.0、より好ましくは1.8〜5.0である。   When the molar ratio S / C of water vapor to lower hydrocarbon is less than 1.2, the coking resistance is lowered. On the other hand, when S / C exceeds 6.0, a large amount of water vapor is required for hydrogen production, which is expensive and unrealistic. Preferably it is 1.5-6.0, More preferably, it is 1.8-5.0.

なお、空間速度(GHSV)は800〜300,000h−1が好ましく、より好ましくは1,000〜200,000h−1ある。 Incidentally, the space velocity (GHSV) is preferably 800~300,000H -1, more preferably 1,000~200,000h -1.

水素製造に用いる低級炭化水素ガスとしては、炭素数が1〜6、好ましくは1〜4である炭化水素が好ましい。このようなものには、例えば、メタンの他に、エタン、プロパン、ブタンなどが包含される。   The lower hydrocarbon gas used for hydrogen production is preferably a hydrocarbon having 1 to 6, preferably 1 to 4 carbon atoms. Such things include, for example, ethane, propane, butane in addition to methane.

本発明に係る炭化水素分解用触媒は、オートサーマルリフォーミング反応で起動した後にスチーム改質に切り替わった場合でも、さらには長時間スチーム改質を行った場合でも十分な触媒活性、耐久性、耐コーキング性、耐硫黄被毒性を発揮でき、DSS(Daily start−up shut−down)を導入した燃料電池システムにおいて最適な触媒である。   The hydrocarbon cracking catalyst according to the present invention has sufficient catalytic activity, durability and resistance even when it is switched to steam reforming after being started by autothermal reforming reaction, or even when steam reforming is performed for a long time. It is an optimum catalyst in a fuel cell system that can exhibit caulking properties and sulfur poisoning resistance and introduces DSS (Daily start-up shut-down).

<作用>
本発明に係る炭化水素分解用触媒が低温において優れた触媒活性を有する理由は未だ明らかではないが、本発明者は次のように推定している。
<Action>
The reason why the hydrocarbon decomposition catalyst according to the present invention has excellent catalytic activity at low temperatures is not yet clear, but the present inventor presumes as follows.

本発明に係る炭化水素分解用触媒は、前記製造法に由来して、金属ニッケル及び金属ルテニウムが従来にないほど微細な1〜10nmという粒子で触媒を構成する粒子の表面近傍又は造粒して得られる触媒成型体の表面近傍のいずれかに担持しているため、炭化水素分解反応において低級炭化水素ガスを効率良くニッケル及びルテニウムと接触させることができ優れた触媒活性を有し、さらに低温においても高い触媒活性を有するものである。   The hydrocarbon cracking catalyst according to the present invention is derived from the above production method, and is formed near the surface of the particles constituting the catalyst with particles as fine as 1 to 10 nm, which are finer than metal nickel and metal ruthenium, or granulated. Since it is supported on the surface of the resulting catalyst molded body, it has an excellent catalytic activity because it can efficiently contact the lower hydrocarbon gas with nickel and ruthenium in the hydrocarbon decomposition reaction. Have high catalytic activity.

また、前記のとおり、本発明にかかる炭化水素分解用触媒は、高い触媒活性を有するもので低スチーム下においても耐コーキング性に優れ高い触媒活性を示すことができる。   In addition, as described above, the hydrocarbon cracking catalyst according to the present invention has high catalytic activity and is excellent in coking resistance even under low steam and can exhibit high catalytic activity.

本発明の代表的な実施の形態は次の通りである。   A typical embodiment of the present invention is as follows.

層状複水水酸化物粒子粉末の板面径は、「電子顕微鏡写真TEM1200EX(日本電子株式会社製)」(加速電圧:100kV)を使用し、測定した数値の平均値で示したものである。   The plate surface diameter of the layered double hydroxide particle powder is the average value of the measured values using “electron micrograph TEM1200EX (manufactured by JEOL Ltd.)” (acceleration voltage: 100 kV).

層状複水水酸化物粒子粉末のD006(粒子の厚み)は、「X線回折装置RINT−2500(理学電機(株)製)」(管球:Cu、管電圧:40kV、管電流:300mA、ゴニオメーター:広角ゴニオメーター、サンプリング幅:0.020°、走査速度:2°/min、発散スリット:1°、散乱スリット:1°、受光スリット:0.50mm)を使用し、層状複水水酸化物粒子粉末のD006結晶面の回折ピーク曲線から、シェラーの式を用いて計算した値で示したものである。   D006 (particle thickness) of the layered double hydroxide particle powder is “X-ray diffractometer RINT-2500 (manufactured by Rigaku Corporation)” (tube: Cu, tube voltage: 40 kV, tube current: 300 mA, Layered double water using a goniometer: wide angle goniometer, sampling width: 0.020 °, scanning speed: 2 ° / min, diverging slit: 1 °, scattering slit: 1 °, light receiving slit: 0.50 mm) This is a value calculated using the Scherrer equation from the diffraction peak curve of the D006 crystal plane of the oxide particle powder.

層状複水水酸化物粒子粉末の同定はX線回折測定で行った。X線回折測定は、前記X線回折装置を使用し、回折角2θが3〜80°で測定した。   Identification of the layered double hydroxide particle powder was performed by X-ray diffraction measurement. X-ray diffraction measurement was performed using the X-ray diffractometer at a diffraction angle 2θ of 3 to 80 °.

金属ニッケルや金属ルテニウムの粒子の大きさは、電子顕微鏡写真から測定した数値の平均値で示したものである。また10nmを超える金属微粒子の大きさは、「X線回折装置RINT−2500(理学電機(株)製)」(管球:Cu、管電圧:40kV、管電流:300mA、ゴニオメーター:広角ゴニオメーター、サンプリング幅:0.020°、走査速度:2°/min、発散スリット:1°、散乱スリット:1°、受光スリット:0.50mm)を使用し、シェラーの式を用いて微粒子の大きさを計算で求めた。このX線回折装置より求めた金属ニッケルや金属ルテニウムの粒子サイズは、電子顕微鏡写真より求めたものと同じであった。   The size of the particles of metallic nickel and metallic ruthenium is indicated by the average value of the numerical values measured from the electron micrograph. The size of the metal fine particles exceeding 10 nm is “X-ray diffractometer RINT-2500 (manufactured by Rigaku Corporation)” (tube: Cu, tube voltage: 40 kV, tube current: 300 mA, goniometer: wide angle goniometer. , Sampling width: 0.020 °, scanning speed: 2 ° / min, diverging slit: 1 °, scattering slit: 1 °, light receiving slit: 0.50 mm), and the size of the fine particles using Scherrer's equation Was calculated. The particle sizes of metallic nickel and metallic ruthenium obtained from this X-ray diffractometer were the same as those obtained from the electron micrograph.

触媒を構成するマグネシウム、アルミニウム、ニッケル、ルテニウムの含有量は、該触媒を酸で溶解し、「プラズマ発光分光分析装置 SPS4000(セイコー電子工業(株))」で測定して求めた。   The contents of magnesium, aluminum, nickel, and ruthenium constituting the catalyst were determined by dissolving the catalyst with an acid and measuring it with a “plasma emission spectrometer SPS4000 (Seiko Electronics Co., Ltd.)”.

BET比表面積値は、窒素によるB.E.T.法により測定した。   The BET specific surface area value is the B.B. E. T.A. Measured by the method.

スチーム改質反応時に析出した炭素の量は、触媒反応前後の触媒体の炭素量をカーボン・サルファー測定装置で測定し求めた。   The amount of carbon deposited during the steam reforming reaction was determined by measuring the amount of carbon in the catalyst body before and after the catalytic reaction with a carbon sulfur measuring device.

本発明の代表的な実施の形態は次の通りである。   A typical embodiment of the present invention is as follows.

実施例1 <炭化水素用触媒の調製>
MgSO・7HO 110.9gとAl(SO・8HO 36.47gとを水で溶解させ1000mlとした。別にNaOH 220.2ml(14mol/L濃度)に、NaCO 12.54gを溶解させた1000ml溶液を加えて全量2000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩との混合溶液を加え、98℃で20時間熟成を行って層状複水水酸化物芯粒子を得た。このときの反応溶液のpH10.1であった。
次いで、このアルカリ性懸濁液に、MgSO・7HO 14.08gとNiSO・6HO 30.04gとAl(SO・8HO 4.630gとRuCl 1.976gとを溶かした500mlのマグネシウム塩とニッケル塩とアルミニウム塩とルテニウム塩との混合溶液を加え、反応溶液のpHを11.8にし、さらに254℃で8時間熟成し、前記層状複水水酸化物芯粒子表面にトポタクティックに成長させ、層状複水水酸化物粒子を得た。なお、成長反応時に添加したマグネシウム、アルミニウム、ニッケル、ルテニウムの合計モル数は、芯粒子の生成時に添加した前記マグネシウムと前記アルミニウムとの合計モル数に対して、0.250であった。ここに得た層状複水水酸化物粒子の平均板面径は0.251μmであり、結晶子サイズD006は0.051μmであり、BETは18.9m/gであった。
Example 1 <Preparation of hydrocarbon catalyst>
MgSO 4 · 7H 2 O 110.9 g and Al 2 (SO 4 ) 3 · 8H 2 O 36.47 g were dissolved in water to make 1000 ml. Separately, a 1000 ml solution in which 12.54 g of NaCO 3 was dissolved was added to 220.2 ml of NaOH (14 mol / L concentration) to prepare a total amount of 2000 ml of an alkali mixed solution. The mixed solution of the magnesium salt and the aluminum salt was added to the alkali mixed solution and aged at 98 ° C. for 20 hours to obtain layered double hydroxide core particles. The pH of the reaction solution at this time was 10.1.
Next, 14.08 g of MgSO 4 .7H 2 O, 30.04 g of NiSO 4 .6H 2 O, 4.630 g of Al 2 (SO 4 ) 3 .8H 2 O and 1.976 g of RuCl 3 were added to this alkaline suspension. 500 ml of a mixed solution of magnesium salt, nickel salt, aluminum salt, and ruthenium salt dissolved in water was added to adjust the pH of the reaction solution to 11.8, and further aged at 254 ° C. for 8 hours, to form the layered double hydroxide core. It was made topotactically grow on the particle surface to obtain layered double hydroxide particles. The total number of moles of magnesium, aluminum, nickel, and ruthenium added during the growth reaction was 0.250 with respect to the total number of moles of magnesium and aluminum added during the formation of the core particles. The average plate surface diameter of the layered double hydroxide particles obtained here was 0.251 μm, the crystallite size D006 was 0.051 μm, and the BET was 18.9 m 2 / g.

ここに得た層状複水水酸化物粒子粉末を成形して、直径3mmの球形体ビーズとした。810℃、22時間空気中にて焼成して酸化物粒子粉末とした後、820℃にて水素/アルゴン体積比が20/80のガス気流中において3時間還元処理を行い、炭化水素分解用触媒を得た。得られた触媒中のニッケルの含有量は18.26wt%(Ni/(Mg+Al+Ni+Ru)=0.143(モル比))であり、金属ニッケル微粒子の大きさは7nmであった。得られた触媒中のルテニウムの含有量は2.621wt%(Ru/(Mg+Al+Ni+Ru)=0.012(モル比))であり、金属ルテニウム微粒子の大きさは6nmであった。なお、金属ニッケル粒子及び金属ルテニウムは、粒子表面近傍にのみ存在するものと推定される。   The layered double hydroxide particle powder thus obtained was molded into spherical beads having a diameter of 3 mm. After calcination in air at 810 ° C. for 22 hours to obtain oxide particle powder, reduction treatment is carried out at 820 ° C. in a gas stream with a hydrogen / argon volume ratio of 20/80 for 3 hours, and a hydrocarbon decomposition catalyst Got. The content of nickel in the obtained catalyst was 18.26 wt% (Ni / (Mg + Al + Ni + Ru) = 0.143 (molar ratio)), and the size of the metal nickel fine particles was 7 nm. The ruthenium content in the obtained catalyst was 2.621 wt% (Ru / (Mg + Al + Ni + Ru) = 0.012 (molar ratio)), and the size of the metal ruthenium fine particles was 6 nm. The metal nickel particles and metal ruthenium are presumed to exist only near the particle surface.

<炭化水素用触媒を用いた水素製造反応>
炭化水素用触媒の評価は、触媒を直径20mmのステンレス製反応管に20〜50g充填して触媒管を作った。
この触媒管(反応器)に対して、原料ガスとして都市ガス13A、水蒸気を、反応圧力0.5MPa、反応温度400℃〜1000℃、空間速度を50000h−1として流通させた。このときの水蒸気/炭素比(S/C)は1.5又は3.0である。
<Hydrogen production reaction using hydrocarbon catalyst>
Evaluation of the catalyst for hydrocarbon was made by filling a catalyst tube with 20 to 50 g in a stainless steel reaction tube having a diameter of 20 mm.
Through this catalyst tube (reactor), city gas 13A and water vapor were circulated as a raw material gas at a reaction pressure of 0.5 MPa, a reaction temperature of 400 ° C. to 1000 ° C., and a space velocity of 50000 h −1 . The water vapor / carbon ratio (S / C) at this time is 1.5 or 3.0.

なお、表中に示したメタン転化率は、下記式より算出されたものである。
メタン転化率(%)=(1−出口メタン濃度/入口メタン濃度)×100
The methane conversion shown in the table is calculated from the following formula.
Methane conversion rate (%) = (1-outlet methane concentration / inlet methane concentration) × 100

前記反応結果を表1乃至3に示す。
表1はGHSVが50000h−1、水蒸気/炭素(S/C)が3.0で、24時間反応させた場合、反応温度(400℃〜1000℃)とメタン転化率の関係を示す。
表2はGHSVが50000h−1、反応温度が700℃、水蒸気/炭素(S/C)が1.5及び3.0の場合、反応時間とメタン転化率の関係を示す。
表3ではGHSVが50000h−1、反応温度が700℃、水蒸気/炭素(S/C)が1.5における反応時間と触媒活性測定前後の炭素析出量の関係を示す。
The reaction results are shown in Tables 1 to 3.
Table 1 shows the relationship between the reaction temperature (400 ° C. to 1000 ° C.) and the methane conversion rate when GHSV is 50000 h −1 , water vapor / carbon (S / C) is 3.0 and the reaction is performed for 24 hours.
Table 2 shows the relationship between the reaction time and the methane conversion rate when GHSV is 50000 h −1 , the reaction temperature is 700 ° C., and the water vapor / carbon (S / C) is 1.5 and 3.0.
Table 3 shows the relationship between the reaction time at GHSV of 50000 h −1 , the reaction temperature of 700 ° C., and the water vapor / carbon (S / C) of 1.5, and the amount of deposited carbon before and after the measurement of the catalytic activity.

<実施例2>
MgCl・6HO 92.94gとAlCl・6HO 22.07gとを水で溶解させ1000mlとした。別にNaOH 93.08ml(14mol/L濃度)に、NaCO 16.53gを溶解させた1000ml溶液を加えて全量2000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩との混合溶液を加え、60℃で3時間熟成を行って層状複水水酸化物芯粒子を得た。このときの反応溶液のpH7.5であった。
次いで、このアルカリ性懸濁液に、MgCl・6HO 20.25gとNiCl・6HO 4.636gとAlCl・6HO 4.811gとRuCl 0.124gとを溶かした500mlのマグネシウム塩とニッケル塩とアルミニウム塩とルテニウム塩との混合溶液を加え、反応溶液のpHを9.5にし、さらに55℃で14時間熟成し、前記層状複水水酸化物芯粒子表面にトポタクティックに成長させ、層状複水水酸化物粒子を得た。なお、成長反応時に添加したマグネシウム、アルミニウム、ニッケル、ルテニウムの合計モル数は、芯粒子の生成時に添加した前記マグネシウムと前記アルミニウムとの合計モル数に対して、0.200であった。ここに得た層状複水水酸化物粒子の平均板面径は0.062μmであり、結晶子サイズD006は0.005μmであり、BETは276.8m/gであった。
<Example 2>
92.94 g of MgCl 2 .6H 2 O and 22.07 g of AlCl 3 .6H 2 O were dissolved in water to make 1000 ml. Separately, a 1000 ml solution in which 16.53 g of NaCO 3 was dissolved was added to 93.08 ml of NaOH (14 mol / L concentration) to prepare an alkaline mixed solution of 2000 ml in total. The mixed solution of the magnesium salt and the aluminum salt was added to the alkali mixed solution and aged at 60 ° C. for 3 hours to obtain layered double hydroxide core particles. The pH of the reaction solution at this time was 7.5.
Next, 500 ml of MgCl 2 · 6H 2 O 20.25 g, NiCl 2 · 6H 2 O 4.636 g, AlCl 3 · 6H 2 O 4.811 g and RuCl 3 0.124 g were dissolved in this alkaline suspension. A mixed solution of magnesium salt, nickel salt, aluminum salt and ruthenium salt is added, the pH of the reaction solution is adjusted to 9.5, and further aged for 14 hours at 55 ° C., and the top surface of the layered double hydroxide core particles is topographed. Growing ticks, layered double hydroxide particles were obtained. The total number of moles of magnesium, aluminum, nickel, and ruthenium added during the growth reaction was 0.200 with respect to the total number of moles of the magnesium and aluminum added during the formation of the core particles. The layered double hydroxide particles obtained here had an average plate surface diameter of 0.062 μm, a crystallite size D006 of 0.005 μm, and a BET of 276.8 m 2 / g.

ここに得た層状複水水酸化物粒子粉末を成形して、直径3mmの球形体ビーズとした。1380℃、7時間空気中にて焼成して酸化物粒子粉末とした後、790℃にて水素/アルゴン体積比が20/80のガス気流中において9時間還元処理を行い、炭化水素分解用触媒を得た。得られた触媒中のニッケルの含有量は3.339wt%(Ni/(Mg+Al+Ni+Ru)=0.052(モル比))であり、金属ニッケル微粒子の大きさは2nmであった。得られた触媒中のルテニウムの含有量は0.172wt%(Ru/(Mg+Al+Ni+Ru)=0.0008(モル比))であり、金属ルテニウム微粒子の大きさは1nmであった。なお、金属ニッケル粒子及び金属ルテニウムは、粒子表面近傍にのみ存在するものと推定される。   The layered double hydroxide particle powder thus obtained was molded into spherical beads having a diameter of 3 mm. After calcining in air at 1380 ° C. for 7 hours to form oxide particles, reduction treatment is performed at 790 ° C. in a gas stream with a hydrogen / argon volume ratio of 20/80 for 9 hours, and a hydrocarbon decomposition catalyst Got. The content of nickel in the obtained catalyst was 3.339 wt% (Ni / (Mg + Al + Ni + Ru) = 0.052 (molar ratio)), and the size of the metal nickel fine particles was 2 nm. The ruthenium content in the obtained catalyst was 0.172 wt% (Ru / (Mg + Al + Ni + Ru) = 0.0008 (molar ratio)), and the size of the metal ruthenium fine particles was 1 nm. The metal nickel particles and metal ruthenium are presumed to exist only near the particle surface.

<実施例3>
MgCl・6HO 138.29gとAlCl・6HO 32.85gとを水で溶解させ1000mlとした。別にNaOH 237.6ml(14mol/L濃度)に、NaCO 23.99gを溶解させた1000ml溶液を加えて全量2000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩との混合溶液を加え、84℃で12時間熟成を行って層状複水水酸化物芯粒子を得た。このときの反応溶液のpH9.4であった。
次いで、このアルカリ性懸濁液に、MgCl・6HO 26.08gとNiCl・6HO 26.27gとAlCl・6HO 6.194gとRu(NO 1.476gとを溶かした500mlのマグネシウム塩とニッケル塩とアルミニウム塩とルテニウム塩との混合溶液を加え、反応溶液のpHを10.6にし、さらに142℃で11時間熟成し、前記層状複水水酸化物芯粒子表面にトポタクティックに成長させ、層状複水水酸化物粒子を得た。なお、成長反応時に添加したマグネシウム、アルミニウム、ニッケル、ルテニウムの合計モル数は、芯粒子の生成時に添加した前記マグネシウムと前記アルミニウムとの合計モル数に対して、0.238であった。ここに得た層状複水水酸化物粒子の平均板面径は0.278μmであり、結晶子サイズD006は0.034μmであり、BETは54.7m/gであった。
<Example 3>
138.29 g of MgCl 2 .6H 2 O and 32.85 g of AlCl 3 .6H 2 O were dissolved in water to make 1000 ml. Separately, a 1000 ml solution in which 23.99 g of NaCO 3 was dissolved was added to 237.6 ml of NaOH (14 mol / L concentration) to prepare a total amount of 2000 ml of an alkali mixed solution. A mixed solution of the magnesium salt and aluminum salt was added to the alkali mixed solution, and aging was performed at 84 ° C. for 12 hours to obtain layered double hydroxide core particles. The pH of the reaction solution at this time was 9.4.
Next, 26.08 g of MgCl 2 .6H 2 O, 26.27 g of NiCl 2 .6H 2 O, 6.194 g of AlCl 3 .6H 2 O and 1.476 g of Ru (NO 3 ) 3 were added to this alkaline suspension. 500 ml of a mixed solution of magnesium salt, nickel salt, aluminum salt and ruthenium salt is added to adjust the pH of the reaction solution to 10.6, and further aged at 142 ° C. for 11 hours. The layered double hydroxide core particles It was grown topotactically on the surface to obtain layered double hydroxide particles. The total number of moles of magnesium, aluminum, nickel, and ruthenium added during the growth reaction was 0.238 with respect to the total number of moles of magnesium and aluminum added during the formation of the core particles. The average plate surface diameter of the layered double hydroxide particles obtained here was 0.278 μm, the crystallite size D006 was 0.034 μm, and the BET was 54.7 m 2 / g.

ここに得た層状複水水酸化物粒子粉末を成形して、直径3mmの球形体ビーズとした。720℃、3時間空気中にて焼成して酸化物粒子粉末とした後、720℃にて水素/アルゴン体積比が20/80のガス気流中において12時間還元処理を行い、炭化水素分解用触媒を得た。得られた触媒中のニッケルの含有量は11.78wt%(Ni/(Mg+Al+Ni+Ru)=0.090(モル比))であり、金属ニッケル微粒子の大きさは3nmであった。得られた触媒中のルテニウムの含有量は0.922wt%(Ru/(Mg+Al+Ni+Ru)=0.004(モル比))であり、金属ルテニウム微粒子の大きさは2nmであった。なお、金属ニッケル粒子及び金属ルテニウムは、粒子表面近傍にのみ存在するものと推定される。   The layered double hydroxide particle powder thus obtained was molded into spherical beads having a diameter of 3 mm. After calcination in air at 720 ° C. for 3 hours to obtain oxide particle powder, reduction treatment is carried out at 720 ° C. in a gas stream having a hydrogen / argon volume ratio of 20/80 for 12 hours, and a hydrocarbon decomposition catalyst Got. The content of nickel in the obtained catalyst was 11.78 wt% (Ni / (Mg + Al + Ni + Ru) = 0.090 (molar ratio)), and the size of the metal nickel fine particles was 3 nm. The ruthenium content in the obtained catalyst was 0.922 wt% (Ru / (Mg + Al + Ni + Ru) = 0.004 (molar ratio)), and the size of the metal ruthenium fine particles was 2 nm. The metal nickel particles and metal ruthenium are presumed to exist only near the particle surface.

<実施例4>
MgSO・7HO 40.65gとAl(SO・8HO 14.86gとを水で溶解させ1000mlとした。別にNaOH 202.1ml(14mol/L濃度)に、NaCO 6.178gを溶解させた1000ml溶液を加えて全量2000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩との混合溶液を加え、85℃で7時間熟成を行って層状複水水酸化物芯粒子を得た。このときの反応溶液のpH8.9であった。
次いで、このアルカリ性懸濁液に、MgSO・7HO 14.74gとNiSO・6HO 23.29gとAl(SO・8HO 5.386gとRu(NO 0.956gとを溶かした500mlのマグネシウム塩とニッケル塩とアルミニウム塩とルテニウム塩との混合溶液を加え、反応溶液のpHを9.1にし、さらに91℃で18時間熟成し、前記層状複水水酸化物芯粒子表面にトポタクティックに成長させ、層状複水水酸化物粒子を得た。なお、成長反応時に添加したマグネシウム、アルミニウム、ニッケル、ルテニウムの合計モル数は、芯粒子の生成時に添加した前記マグネシウムと前記アルミニウムとの合計モル数に対して、0.435であった。ここに得た層状複水水酸化物粒子の平均板面径は0.182μmであり、結晶子サイズD006は0.014μmであり、BETは113.6m/gであった。
<Example 4>
40.65 g of MgSO 4 .7H 2 O and 14.86 g of Al 2 (SO 4 ) 3 .8H 2 O were dissolved in water to make 1000 ml. Separately, a 1000 ml solution in which 6.178 g of NaCO 3 was dissolved was added to 202.1 ml of NaOH (concentration of 14 mol / L) to prepare an alkaline mixed solution of 2000 ml in total. A mixed solution of the magnesium salt and aluminum salt was added to the alkali mixed solution, and the mixture was aged at 85 ° C. for 7 hours to obtain layered double hydroxide core particles. The pH of the reaction solution at this time was 8.9.
Next, 14.74 g of MgSO 4 .7H 2 O, 23.29 g of NiSO 4 .6H 2 O, 5.386 g of Al 2 (SO 4 ) 3 .8H 2 O and Ru (NO 3 ) 3 were added to this alkaline suspension. 500 ml of a mixed solution of magnesium salt, nickel salt, aluminum salt and ruthenium salt dissolved in 0.956 g was added to adjust the pH of the reaction solution to 9.1, and further aged at 91 ° C. for 18 hours, and the layered double water It was made topotactically grow on the surface of the hydroxide core particles to obtain layered double hydroxide particles. The total number of moles of magnesium, aluminum, nickel and ruthenium added during the growth reaction was 0.435 with respect to the total number of moles of magnesium and aluminum added during the formation of the core particles. The average plate surface diameter of the layered double hydroxide particles obtained here was 0.182 μm, the crystallite size D006 was 0.014 μm, and the BET was 113.6 m 2 / g.

ここに得た層状複水水酸化物粒子粉末を成形して、直径3mmの球形体ビーズとした。550℃、8時間空気中にて焼成して酸化物粒子粉末とした後、900℃にて水素/アルゴン体積比が20/80のガス気流中において5時間還元処理を行い、炭化水素分解用触媒を得た。得られた触媒中のニッケルの含有量は27.61wt%(Ni/(Mg+Al+Ni+Ru)=0.222(モル比))であり、金属ニッケル微粒子の大きさは6nmであった。得られた触媒中のルテニウムの含有量は1.783wt%(Ru/(Mg+Al+Ni+Ru)=0.008(モル比))であり、金属ルテニウム微粒子の大きさは4nmであった。なお、金属ニッケル粒子及び金属ルテニウムは、粒子表面近傍にのみ存在するものと推定される。   The layered double hydroxide particle powder thus obtained was molded into spherical beads having a diameter of 3 mm. After calcining in air at 550 ° C. for 8 hours to form oxide particles, reduction treatment is performed at 900 ° C. in a gas stream with a hydrogen / argon volume ratio of 20/80 for 5 hours to obtain a hydrocarbon cracking catalyst. Got. The content of nickel in the obtained catalyst was 27.61 wt% (Ni / (Mg + Al + Ni + Ru) = 0.222 (molar ratio)), and the size of the metal nickel fine particles was 6 nm. The ruthenium content in the obtained catalyst was 1.783 wt% (Ru / (Mg + Al + Ni + Ru) = 0.008 (molar ratio)), and the size of the metal ruthenium fine particles was 4 nm. The metal nickel particles and metal ruthenium are presumed to exist only near the particle surface.

<実施例5>
MgSO・7HO 109.4gとAl(SO・8HO 41.51gとを水で溶解させ1000mlとした。別にNaOH 221.7ml(14mol/L濃度)に、NaCO 17.55gを溶解させた1000ml溶液を加えて全量2000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩との混合溶液を加え、74℃で11時間熟成を行って層状複水水酸化物芯粒子を得た。このときの反応溶液のpH8.5であった。
次いで、このアルカリ性懸濁液に、MgSO・7HO 42.14gとNiSO・6HO 86.44gとAl(SO・8HO 15.99gとRuCl 4.093gとを溶かした500mlのマグネシウム塩とニッケル塩とアルミニウム塩とルテニウム塩との混合溶液を加え、反応溶液のpHを8.2にし、さらに81℃で12時間熟成し、前記層状複水水酸化物芯粒子表面にトポタクティックに成長させ、層状複水水酸化物粒子を得た。なお、成長反応時に添加したマグネシウム、アルミニウム、ニッケル、ルテニウムの合計モル数は、芯粒子の生成時に添加した前記マグネシウムと前記アルミニウムとの合計モル数に対して、0.488であった。ここに得た層状複水水酸化物粒子の平均板面径は0.115μmであり、結晶子サイズD006は0.009μmであり、BETは178.3m/gであった。
<Example 5>
109.4 g of MgSO 4 · 7H 2 O and 41.51 g of Al 2 (SO 4 ) 3 · 8H 2 O were dissolved in water to make 1000 ml. Separately, a 1000 ml solution in which 17.55 g of NaCO 3 was dissolved was added to 221.7 ml of NaOH (14 mol / L concentration) to prepare a total amount of 2000 ml of an alkali mixed solution. A mixed solution of the magnesium salt and aluminum salt was added to the alkali mixed solution, and aging was performed at 74 ° C. for 11 hours to obtain layered double hydroxide core particles. The pH of the reaction solution at this time was 8.5.
Next, 42.14 g of MgSO 4 · 7H 2 O, 86.44 g of NiSO 4 · 6H 2 O, 15.99 g of Al 2 (SO 4 ) 3 · 8H 2 O and 4.093 g of RuCl 3 were added to the alkaline suspension. 500 ml of a mixed solution of magnesium salt, nickel salt, aluminum salt and ruthenium salt dissolved in the solution is added to adjust the pH of the reaction solution to 8.2, followed by aging at 81 ° C. for 12 hours, and the layered double hydroxide core It was made topotactically grow on the particle surface to obtain layered double hydroxide particles. The total number of moles of magnesium, aluminum, nickel, and ruthenium added during the growth reaction was 0.488 with respect to the total number of moles of magnesium and aluminum added during the formation of the core particles. The average plate surface diameter of the layered double hydroxide particles obtained here was 0.115 μm, the crystallite size D006 was 0.009 μm, and the BET was 178.3 m 2 / g.

ここに得た層状複水水酸化物粒子粉末を成形して、直径3mmの球形体ビーズとした。480℃、12時間空気中にて焼成して酸化物粒子粉末とした後、840℃にて水素/アルゴン体積比が20/80のガス気流中において16時間還元処理を行い、炭化水素分解用触媒を得た。得られた触媒中のニッケルの含有量は33.19wt%(Ni/(Mg+Al+Ni+Ru)=0.274(モル比))であり、金属ニッケル微粒子の大きさは8nmであった。得られた触媒中のルテニウムの含有量は3.430wt%(Ru/(Mg+Al+Ni+Ru)=0.016(モル比))であり、金属ルテニウム微粒子の大きさは7nmであった。なお、金属ニッケル粒子及び金属ルテニウムは、粒子表面近傍にのみ存在するものと推定される。   The layered double hydroxide particle powder thus obtained was molded into spherical beads having a diameter of 3 mm. After calcining in air at 480 ° C. for 12 hours to obtain oxide particle powder, reduction treatment is carried out at 840 ° C. in a gas stream with a hydrogen / argon volume ratio of 20/80 for 16 hours to obtain a hydrocarbon cracking catalyst. Got. The content of nickel in the obtained catalyst was 33.19 wt% (Ni / (Mg + Al + Ni + Ru) = 0.274 (molar ratio)), and the size of the metal nickel fine particles was 8 nm. The ruthenium content in the obtained catalyst was 3.430 wt% (Ru / (Mg + Al + Ni + Ru) = 0.016 (molar ratio)), and the size of the metal ruthenium fine particles was 7 nm. The metal nickel particles and metal ruthenium are presumed to exist only near the particle surface.

<実施例6>
Mg(NO・6HO 251.9gとAl(NO・9HO 65.81gとを水で溶解させ1000mlとした。別にNaOH 329.9ml(14mol/L濃度)に、NaCO 28.51gを溶解させた1000ml溶液を加えて全量2000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩との混合溶液を加え、152℃で3時間熟成を行って層状複水水酸化物芯粒子を得た。このときの反応溶液のpH9.6であった。
次いで、このアルカリ性懸濁液に、Mg(NO・6HO 23.93gとNi(NO・6HO 31.99gとAl(NO・9HO 6.252gとRu(NO 8.631gとを溶かした500mlのマグネシウム塩とニッケル塩とアルミニウム塩とルテニウム塩との混合溶液を加え、反応溶液のpHを10.8にし、さらに168℃で14時間熟成し、前記層状複水水酸化物芯粒子表面にトポタクティックに成長させ、層状複水水酸化物粒子を得た。なお、成長反応時に添加したマグネシウム、アルミニウム、ニッケル、ルテニウムの合計モル数は、芯粒子の生成時に添加した前記マグネシウムと前記アルミニウムとの合計モル数に対して、0.167であった。ここに得た層状複水水酸化物粒子の平均板面径は0.324μmであり、結晶子サイズD006は0.006μmであり、BETは32.2m/gであった。
<Example 6>
251.9 g of Mg (NO 3 ) 2 · 6H 2 O and 65.81 g of Al (NO 3 ) 3 · 9H 2 O were dissolved in water to make 1000 ml. Separately, a 1000 ml solution in which 28.51 g of NaCO 3 was dissolved was added to 329.9 ml of NaOH (14 mol / L concentration) to prepare an alkaline mixed solution of 2000 ml in total. A mixed solution of the magnesium salt and aluminum salt was added to the alkali mixed solution, and aging was performed at 152 ° C. for 3 hours to obtain layered double hydroxide core particles. The pH of the reaction solution at this time was 9.6.
Next, 23.93 g of Mg (NO 3 ) 2 .6H 2 O, 31.99 g of Ni (NO 3 ) 2 .6H 2 O and 6.252 g of Al (NO 3 ) 3 .9H 2 O were added to this alkaline suspension. And 500 ml of a mixed solution of magnesium salt, nickel salt, aluminum salt and ruthenium salt in which 8.631 g of Ru (NO 3 ) 3 is dissolved, the pH of the reaction solution is adjusted to 10.8, and further at 168 ° C. for 14 hours. The layer was aged and grown topotropically on the surface of the layered double hydroxide core particles to obtain layered double hydroxide particles. The total number of moles of magnesium, aluminum, nickel, and ruthenium added during the growth reaction was 0.167 with respect to the total number of moles of magnesium and aluminum added during the formation of the core particles. The average plate surface diameter of the layered double hydroxide particles obtained here was 0.324 μm, the crystallite size D006 was 0.006 μm, and the BET was 32.2 m 2 / g.

ここに得た層状複水水酸化物粒子粉末を成形して、直径3mmの球形体ビーズとした。1420℃、8時間空気中にて焼成して酸化物粒子粉末とした後、1080℃にて水素/アルゴン体積比が20/80のガス気流中において2時間還元処理を行い、炭化水素分解用触媒を得た。得られた触媒中のニッケルの含有量は8.912wt%(Ni/(Mg+Al+Ni+Ru)=0.069(モル比))であり、金属ニッケル微粒子の大きさは3nmであった。得られた触媒中のルテニウムの含有量は4.186wt%(Ru/(Mg+Al+Ni+Ru)=0.019(モル比))であり、金属ルテニウム微粒子の大きさは2nmであった。なお、金属ニッケル粒子及び金属ルテニウムは、粒子表面近傍にのみ存在するものと推定される。   The layered double hydroxide particle powder thus obtained was molded into spherical beads having a diameter of 3 mm. After calcining in air at 1420 ° C. for 8 hours to obtain oxide particle powder, reduction treatment is carried out at 1080 ° C. in a gas stream having a hydrogen / argon volume ratio of 20/80 for 2 hours, and a hydrocarbon decomposition catalyst Got. The content of nickel in the obtained catalyst was 8.912 wt% (Ni / (Mg + Al + Ni + Ru) = 0.069 (molar ratio)), and the size of the metal nickel fine particles was 3 nm. The ruthenium content in the obtained catalyst was 4.186 wt% (Ru / (Mg + Al + Ni + Ru) = 0.199 (molar ratio)), and the size of the metal ruthenium fine particles was 2 nm. The metal nickel particles and metal ruthenium are presumed to exist only near the particle surface.

<実施例7>
Mg(NO・6HO 235.0gとAl(NO・9HO 78.15gとを水で溶解させ1000mlとした。別にNaOH 242.2ml(14mol/L濃度)に、NaCO 36.84gを溶解させた1000ml溶液を加えて全量2000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩との混合溶液を加え、113℃で14時間熟成を行って層状複水水酸化物芯粒子を得た。このときの反応溶液のpH9.2であった。
次いで、このアルカリ性懸濁液に、Mg(NO・6HO 45.04gとNi(NO・6HO 116.1gとAl(NO・9HO 14.98gとRuCl 2.484gとを溶かした500mlのマグネシウム塩とニッケル塩とアルミニウム塩とルテニウム塩との混合溶液を加え、反応溶液のpHを10.4にし、さらに121℃で9時間熟成し、前記層状複水水酸化物芯粒子表面にトポタクティックに成長させ、層状複水水酸化物粒子を得た。なお、成長反応時に添加したマグネシウム、アルミニウム、ニッケル、ルテニウムの合計モル数は、芯粒子の生成時に添加した前記マグネシウムと前記アルミニウムとの合計モル数に対して、0.333であった。ここに得た層状複水水酸化物粒子の平均板面径は0.212μmであり、結晶子サイズD006は0.021μmであり、BETは88.1m/gであった。
<Example 7>
Mg (NO 3 ) 2 · 6H 2 O 235.0 g and Al (NO 3 ) 3 · 9H 2 O 78.15 g were dissolved in water to make 1000 ml. Separately, a 1000 ml solution in which 36.84 g of NaCO 3 was dissolved was added to 242.2 ml of NaOH (14 mol / L concentration) to prepare an alkaline mixed solution of 2000 ml in total. A mixed solution of the magnesium salt and aluminum salt was added to the alkali mixed solution, and aging was carried out at 113 ° C. for 14 hours to obtain layered double hydroxide core particles. The pH of the reaction solution at this time was 9.2.
Then, this alkaline suspension, Mg (NO 3) 2 · 6H 2 O 45.04g and Ni (NO 3) 2 · 6H 2 O 116.1g and Al (NO 3) 3 · 9H 2 O 14.98g And 500 ml of a mixed solution of magnesium salt, nickel salt, aluminum salt and ruthenium salt in which 2.484 g of RuCl 3 are dissolved, the pH of the reaction solution is adjusted to 10.4, and further aged at 121 ° C. for 9 hours, The layered double hydroxide core particles were grown topographically on the surface to obtain layered double hydroxide particles. The total number of moles of magnesium, aluminum, nickel and ruthenium added during the growth reaction was 0.333 with respect to the total number of moles of magnesium and aluminum added during the formation of the core particles. The layered double hydroxide particles obtained here had an average plate surface diameter of 0.212 μm, a crystallite size D006 of 0.021 μm, and a BET of 88.1 m 2 / g.

ここに得た層状複水水酸化物粒子粉末を成形して、直径3mmの球形体ビーズとした。890℃、2時間空気中にて焼成して酸化物粒子粉末とした後、880℃にて水素/アルゴン体積比が20/80のガス気流中において4時間還元処理を行い、炭化水素分解用触媒を得た。得られた触媒中のニッケルの含有量は24.93wt%(Ni/(Mg+Al+Ni+Ru)=0.200(モル比))であり、金属ニッケル微粒子の大きさは4nmであった。得られた触媒中のルテニウムの含有量は1.288wt%(Ru/(Mg+Al+Ni+Ru)=0.006(モル比))であり、金属ルテニウム微粒子の大きさは3nmであった。なお、金属ニッケル粒子及び金属ルテニウムは、粒子表面近傍にのみ存在するものと推定される。   The layered double hydroxide particle powder thus obtained was molded into spherical beads having a diameter of 3 mm. After calcination in air at 890 ° C. for 2 hours to obtain oxide particle powder, reduction treatment is carried out at 880 ° C. in a gas stream having a hydrogen / argon volume ratio of 20/80 for 4 hours to obtain a hydrocarbon decomposition catalyst Got. The content of nickel in the obtained catalyst was 24.93 wt% (Ni / (Mg + Al + Ni + Ru) = 0.200 (molar ratio)), and the size of the metal nickel fine particles was 4 nm. The ruthenium content in the obtained catalyst was 1.288 wt% (Ru / (Mg + Al + Ni + Ru) = 0.006 (molar ratio)), and the size of the metal ruthenium fine particles was 3 nm. The metal nickel particles and metal ruthenium are presumed to exist only near the particle surface.

<実施例8>
MgSO・7HO 167.2gとAl(SO・8HO 43.41gとを水で溶解させ1000mlとした。別にNaOH 118.8ml(14mol/L濃度)に、NaCO 14.74gを溶解させた1000ml溶液を加えて全量2000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩との混合溶液を加え、65℃で4時間熟成を行って層状複水水酸化物芯粒子を得た。このときの反応溶液のpH8.1であった。
次いで、このアルカリ性懸濁液に、MgSO・7HO 18.84gとNiSO・6HO 10.58gとAl(SO・8HO 4.891gとRu(NO 1.737gとを溶かした500mlのマグネシウム塩とニッケル塩とアルミニウム塩とルテニウム塩との混合溶液を加え、反応溶液のpHを9.8にし、さらに81℃で8時間熟成し、前記層状複水水酸化物芯粒子表面にトポタクティックに成長させ、層状複水水酸化物粒子を得た。なお、成長反応時に添加したマグネシウム、アルミニウム、ニッケル、ルテニウムの合計モル数は、芯粒子の生成時に添加した前記マグネシウムと前記アルミニウムとの合計モル数に対して、0.143であった。ここに得た層状複水水酸化物粒子の平均板面径は0.082μmであり、結晶子サイズD006は0.008μmであり、BETは214.3m/gであった。
<Example 8>
167.2 g of MgSO 4 · 7H 2 O and 43.41 g of Al 2 (SO 4 ) 3 · 8H 2 O were dissolved in water to make 1000 ml. Separately, a 1000 ml solution in which 14.74 g of NaCO 3 was dissolved was added to 118.8 ml of NaOH (14 mol / L concentration) to prepare an alkaline mixed solution of 2000 ml in total. A mixed solution of the magnesium salt and aluminum salt was added to the alkali mixed solution, and aging was performed at 65 ° C. for 4 hours to obtain layered double hydroxide core particles. The pH of the reaction solution at this time was 8.1.
Next, 18.84 g of MgSO 4 .7H 2 O, 10.58 g of NiSO 4 .6H 2 O, 4.891 g of Al 2 (SO 4 ) 3 .8H 2 O and Ru (NO 3 ) 3 were added to this alkaline suspension. 500 ml of a mixed solution of magnesium salt, nickel salt, aluminum salt and ruthenium salt dissolved in 1.737 g was added, the pH of the reaction solution was adjusted to 9.8, and further aged at 81 ° C. for 8 hours, the layered double water It was made topotactically grow on the surface of the hydroxide core particles to obtain layered double hydroxide particles. The total number of moles of magnesium, aluminum, nickel and ruthenium added during the growth reaction was 0.143 with respect to the total number of moles of magnesium and aluminum added during the formation of the core particles. The average plate surface diameter of the layered double hydroxide particles obtained here was 0.082 μm, the crystallite size D006 was 0.008 μm, and the BET was 214.3 m 2 / g.

ここに得た層状複水水酸化物粒子粉末を成形して、直径3mmの球形体ビーズとした。940℃、5時間空気中にて焼成して酸化物粒子粉末とした後、960℃にて水素/アルゴン体積比が20/80のガス気流中において8時間還元処理を行い、炭化水素分解用触媒を得た。得られた触媒中のニッケルの含有量は5.425wt%(Ni/(Mg+Al+Ni+Ru)=0.040(モル比))であり、金属ニッケル微粒子の大きさは2nmであった。得られた触媒中のルテニウムの含有量は1.401wt%(Ru/(Mg+Al+Ni+Ru)=0.006(モル比))であり、金属ルテニウム微粒子の大きさは3nmであった。なお、金属ニッケル粒子及び金属ルテニウムは、粒子表面近傍にのみ存在するものと推定される。   The layered double hydroxide particle powder thus obtained was molded into spherical beads having a diameter of 3 mm. After calcination in air at 940 ° C. for 5 hours to obtain oxide particle powder, reduction treatment is carried out at 960 ° C. in a gas stream with a hydrogen / argon volume ratio of 20/80 for 8 hours to obtain a hydrocarbon cracking catalyst. Got. The content of nickel in the obtained catalyst was 5.425 wt% (Ni / (Mg + Al + Ni + Ru) = 0.040 (molar ratio)), and the size of the metal nickel fine particles was 2 nm. The ruthenium content in the obtained catalyst was 1.401 wt% (Ru / (Mg + Al + Ni + Ru) = 0.006 (molar ratio)), and the size of the metal ruthenium fine particles was 3 nm. The metal nickel particles and metal ruthenium are presumed to exist only near the particle surface.

<実施例9>
MgCl・6HO 98.95gとAlCl・6HO 20.26gとを水で溶解させ1000mlとした。別にNaOH 315.6ml(14mol/L濃度)に、NaCO 14.87gを溶解させた1000ml溶液を加えて全量2000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩との混合溶液を加え、95℃で18時間熟成を行って層状複水水酸化物芯粒子を得た。このときの反応溶液のpH12.5であった。
次いで、このアルカリ性懸濁液に、MgCl・6HO 19.19gとNiCl・6HO 90.93gとAlCl・6HO 3.931gとRuCl 5.742gとを溶かした500mlのマグネシウム塩とニッケル塩とアルミニウム塩とルテニウム塩との混合溶液を加え、反応溶液のpHを12.8にし、さらに284℃で12時間熟成し、前記層状複水水酸化物芯粒子表面にトポタクティックに成長させ、層状複水水酸化物粒子を得た。なお、成長反応時に添加したマグネシウム、アルミニウム、ニッケル、ルテニウムの合計モル数は、芯粒子の生成時に添加した前記マグネシウムと前記アルミニウムとの合計モル数に対して、0.454であった。ここに得た層状複水水酸化物粒子の平均板面径は0.398μmであり、結晶子サイズD006は0.078μmであり、BETは4.1m/gであった。
<Example 9>
98.95 g of MgCl 2 .6H 2 O and 20.26 g of AlCl 3 .6H 2 O were dissolved in water to make 1000 ml. Separately, a 1000 ml solution in which 14.87 g of NaCO 3 was dissolved was added to 315.6 ml of NaOH (14 mol / L concentration) to prepare an alkaline mixed solution of 2000 ml in total. A mixed solution of the magnesium salt and aluminum salt was added to the alkali mixed solution, and aging was performed at 95 ° C. for 18 hours to obtain layered double hydroxide core particles. The pH of the reaction solution at this time was 12.5.
Next, 500 ml of MgCl 2 .6H 2 O 19.19 g, NiCl 2 .6H 2 O 90.93 g, AlCl 3 · 6H 2 O 3.931 g and RuCl 3 5.742 g were dissolved in this alkaline suspension. A mixed solution of magnesium salt, nickel salt, aluminum salt and ruthenium salt is added to adjust the pH of the reaction solution to 12.8, and further aged for 12 hours at 284 ° C., and the top surface of the layered double hydroxide core particles is topographed. Growing ticks, layered double hydroxide particles were obtained. The total number of moles of magnesium, aluminum, nickel, and ruthenium added during the growth reaction was 0.454 with respect to the total number of moles of the magnesium and aluminum added during the formation of the core particles. The average plate surface diameter of the layered double hydroxide particles obtained here was 0.398 μm, the crystallite size D006 was 0.078 μm, and the BET was 4.1 m 2 / g.

ここに得た層状複水水酸化物粒子粉末を成形して、直径3mmの球形体ビーズとした。610℃、14時間空気中にて焼成して酸化物粒子粉末とした後、760℃にて水素/アルゴン体積比が20/80のガス気流中において7時間還元処理を行い、炭化水素分解用触媒を得た。得られた触媒中のニッケルの含有量は38.63wt%(Ni/(Mg+Al+Ni+Ru)=0.326(モル比))であり、金属ニッケル微粒子の大きさは9nmであった。得られた触媒中のルテニウムの含有量は4.712wt%(Ru/(Mg+Al+Ni+Ru)=0.023(モル比))であり、金属ルテニウム微粒子の大きさは10nmであった。なお、金属ニッケル粒子及び金属ルテニウムは、粒子表面近傍にのみ存在するものと推定される。   The layered double hydroxide particle powder thus obtained was molded into spherical beads having a diameter of 3 mm. After calcining in air at 610 ° C. for 14 hours to form oxide particles, reduction treatment is performed at 760 ° C. in a gas stream having a hydrogen / argon volume ratio of 20/80 for 7 hours, and a hydrocarbon decomposition catalyst Got. The content of nickel in the obtained catalyst was 38.63 wt% (Ni / (Mg + Al + Ni + Ru) = 0.326 (molar ratio)), and the size of the metal nickel fine particles was 9 nm. The ruthenium content in the obtained catalyst was 4.712 wt% (Ru / (Mg + Al + Ni + Ru) = 0.023 (molar ratio)), and the size of the metal ruthenium fine particles was 10 nm. The metal nickel particles and metal ruthenium are presumed to exist only near the particle surface.

<実施例10>
MgSO・7HO 202.6gとAl(SO・8HO 80.02gとを水で溶解させ1000mlとした。別にNaOH 228.9ml(14mol/L濃度)に、NaCO 25.39gを溶解させた1000ml溶液を加えて全量2000mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩との混合溶液を加え、53℃で12時間熟成を行って層状複水水酸化物芯粒子を得た。このときの反応溶液のpH7.1であった。
次いで、このアルカリ性懸濁液に、MgSO・7HO 8.079gとNiSO・6HO 0.517gとAl(SO・8HO 3.188gとRuCl 0.027gとを溶かした500mlのマグネシウム塩とニッケル塩とアルミニウム塩とルテニウム塩との混合溶液を加え、反応溶液のpHを9.2にし、さらに42℃で1時間熟成し、前記層状複水水酸化物芯粒子表面にトポタクティックに成長させ、層状複水水酸化物粒子を得た。なお、成長反応時に添加したマグネシウム、アルミニウム、ニッケル、ルテニウムの合計モル数は、芯粒子の生成時に添加した前記マグネシウムと前記アルミニウムとの合計モル数に対して、0.042であった。ここに得た層状複水水酸化物粒子の平均板面径は0.051μmであり、結晶子サイズD006は0.001μmであり、BETは298.2m/gであった。
<Example 10>
202.6 g of MgSO 4 · 7H 2 O and 80.02 g of Al 2 (SO 4 ) 3 · 8H 2 O were dissolved in water to make 1000 ml. Separately, a 1000 ml solution in which 25.39 g of NaCO 3 was dissolved was added to 228.9 ml of NaOH (14 mol / L concentration) to prepare an alkaline mixed solution of 2000 ml in total. A mixed solution of the magnesium salt and aluminum salt was added to the alkali mixed solution, and aging was carried out at 53 ° C. for 12 hours to obtain layered double hydroxide core particles. The pH of the reaction solution at this time was 7.1.
Next, 8.079 g of MgSO 4 .7H 2 O, 0.517 g of NiSO 4 .6H 2 O, 3.188 g of Al 2 (SO 4 ) 3 .8H 2 O and 0.027 g of RuCl 3 were added to this alkaline suspension. 500 ml of a mixed solution of magnesium salt, nickel salt, aluminum salt and ruthenium salt dissolved in the solution is added to adjust the pH of the reaction solution to 9.2, and further aged at 42 ° C. for 1 hour, to form the layered double hydroxide core. It was made topotactically grow on the particle surface to obtain layered double hydroxide particles. The total number of moles of magnesium, aluminum, nickel, and ruthenium added during the growth reaction was 0.042 with respect to the total number of moles of the magnesium and aluminum added during the formation of the core particles. The average plate surface diameter of the layered double hydroxide particles obtained here was 0.051 μm, the crystallite size D006 was 0.001 μm, and the BET was 298.2 m 2 / g.

ここに得た層状複水水酸化物粒子粉末を成形して、直径3mmの球形体ビーズとした。1100℃、13時間空気中にて焼成して酸化物粒子粉末とした後、1010℃にて水素/アルゴン体積比が20/80のガス気流中において4時間還元処理を行い、炭化水素分解用触媒を得た。得られた触媒中のニッケルの含有量は0.222wt%(Ni/(Mg+Al+Ni+Ru)=0.002(モル比))であり、金属ニッケル微粒子の大きさは1nmであった。得られた触媒中のルテニウムの含有量は0.026wt%(Ru/(Mg+Al+Ni+Ru)=0.0001(モル比))であり、金属ルテニウム微粒子の大きさは2nmであった。なお、金属ニッケル粒子及び金属ルテニウムは、粒子表面近傍にのみ存在するものと推定される。   The layered double hydroxide particle powder thus obtained was molded into spherical beads having a diameter of 3 mm. After calcining in air at 1100 ° C. for 13 hours to form oxide particle powder, reduction treatment is performed at 1010 ° C. in a gas stream with a hydrogen / argon volume ratio of 20/80 for 4 hours. Got. The content of nickel in the obtained catalyst was 0.222 wt% (Ni / (Mg + Al + Ni + Ru) = 0.002 (molar ratio)), and the size of the metal nickel fine particles was 1 nm. The ruthenium content in the obtained catalyst was 0.026 wt% (Ru / (Mg + Al + Ni + Ru) = 0.0001 (molar ratio)), and the size of the metal ruthenium fine particles was 2 nm. The metal nickel particles and metal ruthenium are presumed to exist only near the particle surface.

<参考例1>
MgSO・7HO 199.7gとAl(SO・8HO 78.84gとNiSO・6HO 170.5gとRuCl 3.364gとを水で溶解させ1000mlとした。別にNaOH 595.0ml(14mol/L濃度)に、NaCO 24.07gを溶解させた1000ml溶液を加えて全量1000mlのアルカリ混合溶液を用意した。
このアルカリ混合溶液に上記マグネシウム塩とアルミニウム塩との混合溶液を加え、132℃で24時間熟成を行い、触媒前駆体である層状複水水酸化物粒子粉末を得た。該層状複水水酸化物粒子粉末の板面径は0.298μmであり、結晶子サイズD006は0.041μmであり、BETは59.3m/gであった。
続いて、この粉末状触媒前駆体を直径3mmの球形体ビーズとした。850℃、24時間空気中にて焼成し、850℃にて水素/アルゴン体積比が20/80のガス気流中において5時間還元処理を行い、炭化水素分解用触媒を得た。得られた触媒中のニッケルの含有量は42.811wt%(Ni/(Mg+Al+Ni+Ru)=0.360(モル比))であり、金属ニッケル微粒子の大きさは35nmであった。得られた触媒中のルテニウムの含有量は1.843wt%(Ru/(Mg+Al+Ni+Ru)=0.009(モル比))であり、金属ルテニウム微粒子の大きさは18nmであった。なお、金属ニッケル粒子及び金属ルテニウムは、粒子全体に存在するものと推定される。
<Reference Example 1>
199.7 g of MgSO 4 · 7H 2 O, 78.84 g of Al 2 (SO 4 ) 3 · 8H 2 O, 170.5 g of NiSO 4 · 6H 2 O and 3.364 g of RuCl 3 were dissolved in water to make 1000 ml. Separately, a 1000 ml solution in which 24.07 g of NaCO 3 was dissolved was added to 595.0 ml of NaOH (14 mol / L concentration) to prepare an alkaline mixed solution of 1000 ml in total.
The mixed solution of the above magnesium salt and aluminum salt was added to this alkali mixed solution and aged at 132 ° C. for 24 hours to obtain layered double hydroxide particle powder as a catalyst precursor. The plate surface diameter of the layered double hydroxide particle powder was 0.298 μm, the crystallite size D006 was 0.041 μm, and the BET was 59.3 m 2 / g.
Subsequently, this powdery catalyst precursor was formed into spherical beads having a diameter of 3 mm. Calcination was performed in air at 850 ° C. for 24 hours, and reduction treatment was performed at 850 ° C. in a gas stream having a hydrogen / argon volume ratio of 20/80 for 5 hours to obtain a hydrocarbon decomposition catalyst. The content of nickel in the obtained catalyst was 42.811 wt% (Ni / (Mg + Al + Ni + Ru) = 0.360 (molar ratio)), and the size of the metal nickel fine particles was 35 nm. The ruthenium content in the obtained catalyst was 1.843 wt% (Ru / (Mg + Al + Ni + Ru) = 0.0009 (molar ratio)), and the size of the metal ruthenium fine particles was 18 nm. In addition, it is estimated that metal nickel particle and metal ruthenium exist in the whole particle | grain.

<参考例2>
MgCl・6HO 138.7gとAlCl・6HO 28.40gとNiCl・6HO 54.75gとRuCl 9.761gとを水で溶解させ1000mlとした。別にNaOH 157.0ml(14mol/L濃度)に、NaCO 17.46gを溶解させた1000ml溶液を加えて全量1000mlのアルカリ混合溶液を用意した。
このアルカリ混合溶液に上記マグネシウム塩とアルミニウム塩との混合溶液を加え、72℃で18時間熟成を行い、触媒前駆体である層状複水水酸化物粒子粉末を得た。該層状複水水酸化物粒子粉末の板面径は0.068μmであり、結晶子サイズD006は0.003μmであり、BETは284.5m/gであった。
続いて、この粉末状触媒前駆体を直径3mmの球形体ビーズとした。1250℃、20時間空気中にて焼成し、1000℃にて水素/アルゴン体積比が20/80のガス気流中において10時間還元処理を行い、炭化水素分解用触媒を得た。得られた触媒中のニッケルの含有量は23.783wt%(Ni/(Mg+Al+Ni+Ru)=0.196(モル比))であり、金属ニッケル微粒子の大きさは22nmであった。得られた触媒中のルテニウムの含有量は8.191wt%(Ru/(Mg+Al+Ni+Ru)=0.039(モル比))であり、金属ルテニウム微粒子の大きさは20nmであった。なお、金属ニッケル粒子及び金属ルテニウムは、粒子全体に存在するものと推定される。
<Reference Example 2>
138.7 g of MgCl 3 · 6H 2 O, 28.40 g of AlCl 3 · 6H 2 O, 54.75 g of NiCl 2 · 6H 2 O and 9.761 g of RuCl 3 were dissolved in water to make 1000 ml. Separately, a 1000 ml solution in which 17.46 g of NaCO 3 was dissolved was added to 157.0 ml of NaOH (concentration of 14 mol / L) to prepare an alkali mixed solution having a total volume of 1000 ml.
The mixed solution of the above magnesium salt and aluminum salt was added to this alkali mixed solution and aged at 72 ° C. for 18 hours to obtain layered double hydroxide particle powder as a catalyst precursor. The plate surface diameter of the layered double hydroxide particle powder was 0.068 μm, the crystallite size D006 was 0.003 μm, and the BET was 284.5 m 2 / g.
Subsequently, this powdery catalyst precursor was formed into spherical beads having a diameter of 3 mm. Firing was performed in air at 1250 ° C. for 20 hours, and reduction treatment was performed at 1000 ° C. in a gas stream having a hydrogen / argon volume ratio of 20/80 for 10 hours to obtain a hydrocarbon decomposition catalyst. The content of nickel in the obtained catalyst was 23.783 wt% (Ni / (Mg + Al + Ni + Ru) = 0.196 (molar ratio)), and the size of the metal nickel fine particles was 22 nm. The ruthenium content in the obtained catalyst was 8.191 wt% (Ru / (Mg + Al + Ni + Ru) = 0.039 (molar ratio)), and the size of the metal ruthenium fine particles was 20 nm. In addition, it is estimated that metal nickel particle and metal ruthenium exist in the whole particle | grain.

<比較例1>
α−アルミナ粉末を2.5mmの球形状ビーズとして、1150℃で10時間空気中にて焼成した。これにNi(NO・6HO 212.2gを純水に溶解させた1000mlの溶液をスプレーで塗布し、乾燥後、660℃で6時間空気中にて焼成した。さらに水素/アルゴン体積比が20/80のガス気流中において800℃で9時間還元処理を行った。得られた触媒中のニッケルの含有量は10.2wt%(Ni/(Al+Ni)=0.256)であり、金属ニッケル微粒子の大きさは48nmであった。
<Comparative Example 1>
The α-alumina powder was fired in air at 1150 ° C. for 10 hours as 2.5 mm spherical beads. To this, 1000 ml of a solution in which 212.2 g of Ni (NO 3 ) 2 · 6H 2 O was dissolved in pure water was applied by spraying, dried, and then fired in air at 660 ° C. for 6 hours. Further, reduction treatment was performed at 800 ° C. for 9 hours in a gas stream having a hydrogen / argon volume ratio of 20/80. The content of nickel in the obtained catalyst was 10.2 wt% (Ni / (Al + Ni) = 0.256), and the size of the metal nickel fine particles was 48 nm.

<比較例2>
α−アルミナ粉末を2.5mmの球形状ビーズとして、1200℃で5時間空気中にて焼成した。これにRuCl 212.2gを純水に溶解させた1000mlの溶液をスプレーで塗布し、乾燥後、580℃で5時間空気中にて焼成した。さらに水素/アルゴン体積比が20/80のガス気流中において540℃で3時間還元処理を行った。得られた触媒中のルテニウムの含有量は9.015wt%(Ru/α−Al+Ru=0.048)であり、金属ルテニウム微粒子の大きさは15nmであった。
<Comparative example 2>
The α-alumina powder was fired in air at 1200 ° C. for 5 hours as 2.5 mm spherical beads. To this, 1000 ml of a solution in which 212.2 g of RuCl 3 was dissolved in pure water was applied by spraying, dried and baked in air at 580 ° C. for 5 hours. Further, reduction treatment was performed at 540 ° C. for 3 hours in a gas stream having a hydrogen / argon volume ratio of 20/80. The ruthenium content in the obtained catalyst was 9.015 wt% (Ru / α-Al 2 O 3 + Ru = 0.048), and the size of the metal ruthenium fine particles was 15 nm.

Figure 0004340892
Figure 0004340892

Figure 0004340892
Figure 0004340892

Figure 0004340892
Figure 0004340892

表1から明らかなとおり、本発明に係る炭化水素分解用触媒を用いた場合、400℃〜1000℃の如何なる温度においてもメタン転化率はほぼ化学平衡付近である。   As is apparent from Table 1, when the hydrocarbon cracking catalyst according to the present invention is used, the methane conversion is almost in the vicinity of chemical equilibrium at any temperature of 400 ° C to 1000 ° C.

表2から明らかなとおり、本発明に係る炭化水素分解用触媒を用いた場合、S/Cが1.5及び3.0の場合であってもメタン転化率はほぼ化学平衡付近と高い転化率を有しているとともに、長時間の反応においても高いメタン添加率を維持している。   As is apparent from Table 2, when the hydrocarbon cracking catalyst according to the present invention is used, even when S / C is 1.5 and 3.0, the methane conversion is almost near the chemical equilibrium and high conversion. And maintains a high methane addition rate even in a long-time reaction.

表3から明らかなとおり、本発明に係る炭化水素分解用触媒を用いた場合、メタン転化率が84%以上と高く、しかも、炭素析出量が0.2%以下と炭素の析出を抑制でき耐コーキング性に優れるものである。   As is apparent from Table 3, when the hydrocarbon cracking catalyst according to the present invention is used, the methane conversion is as high as 84% or more, and the carbon deposition amount is 0.2% or less. It has excellent caulking properties.

本発明は、メタンを主成分とする低級炭化水素と水蒸気とを混合反応するスチーム改質において、触媒活性成分である金属ニッケル及び金属ルテニウムが従来にない微粒子の状態で炭化水素分解用触媒を構成する粒子の表面近傍又は粒子を造粒して得られる触媒成形体の表面近傍のいずれかに高分散して担持されていることにより、低温においても優れた触媒活性を有する。また、低スチーム下においても耐コーキング性に優れ、耐久性の面でも優れた触媒活性を有する。
The present invention constitutes a catalyst for cracking hydrocarbons in a state of fine particles that do not have metal nickel and metal ruthenium, which are catalytically active components, in steam reforming in which a lower hydrocarbon mainly composed of methane and steam are mixed and reacted. The catalyst has excellent catalytic activity even at low temperatures by being highly dispersed and supported either in the vicinity of the surface of the particles to be formed or in the vicinity of the surface of the catalyst compact obtained by granulating the particles. Moreover, it has excellent coking resistance even under low steam, and has excellent catalytic activity in terms of durability.

Claims (5)

マグネシウム、アルミニウム、ニッケル及びルテニウムを構成元素とする炭化水素分解用触媒であって、該触媒はマグネシウム及びアルミニウムからなる層状複水水酸化物芯粒子と、該層状複水水酸化物芯粒子の表面にマグネシウム、アルミニウム、ニッケル及びルテニウムからなる層状複水水酸化物層を形成した層状複水水酸化物型粒子粉末を加熱焼成して酸化物粒子粉末を得、次いで、該酸化物粒子粉末を加熱還元して酸化物粒子粉末中のニッケル及びルテニウムを金属ニッケル微粒子及び金属ルテニウム微粒子にして得られるものであり、金属ルテニウム微粒子の平均粒子径が1〜10nmであって、金属ルテニウムの含有量が炭化水素分解用触媒に対して0.025〜5.0wt%であり、かつ、金属ルテニウムの含有量がマグネシウム、アルミニウム、ニッケル及びルテニウムの合計モル数に対して、0.0001〜0.025であることを特徴とする炭化水素分解用触媒。 A catalyst for hydrocarbon decomposition comprising magnesium, aluminum, nickel and ruthenium as constituent elements, the catalyst comprising layered double hydroxide core particles comprising magnesium and aluminum , and the surface of the layered double hydroxide core particles A layered double hydroxide type particle powder formed with a layered double hydroxide layer made of magnesium, aluminum, nickel and ruthenium is heated and fired to obtain an oxide particle powder, and then the oxide particle powder is heated. It is obtained by reducing nickel and ruthenium in oxide particle powder into metal nickel fine particles and metal ruthenium fine particles, the metal ruthenium fine particles have an average particle diameter of 1 to 10 nm, and the metal ruthenium content is carbonized. 0.025 to 5.0 wt% with respect to the catalyst for hydrogenolysis, and the content of metal ruthenium is magnesi Beam, aluminum, relative to the total number of moles of nickel and ruthenium, hydrocarbon cracking catalyst which is a 0.0001 to 0.025. 金属ニッケル微粒子の平均粒子径が1〜10nmであって金属ニッケルの含有量が炭化水素分解用触媒に対して0.1〜40wt%であり、かつ、金属ニッケルの含有量がマグネシウム、アルミニウム、ルテニウム及びニッケルの合計モル数に対して、0.0007〜0.342であることを特徴とする請求項1記載の炭化水素分解用触媒。 The average particle diameter of the metal nickel fine particles is 1 to 10 nm, the metal nickel content is 0.1 to 40 wt% with respect to the hydrocarbon decomposition catalyst, and the metal nickel content is magnesium, aluminum, ruthenium. The catalyst for cracking hydrocarbons according to claim 1, which is 0.0007 to 0.342 with respect to the total number of moles of nickel and nickel. 金属ニッケルに対する金属ルテニウムのモル数は0.0004〜30であることを特徴とする請求項1又は2に記載の炭化水素分解用触媒。 The catalyst for cracking hydrocarbons according to claim 1 or 2, wherein the number of moles of metal ruthenium with respect to metal nickel is 0.0004 to 30. アニオンを含有したアルカリ性水溶液とマグネシウム原料とアルミニウム塩水溶液を混合し、pH値が7.0〜13.0の範囲の混合溶液とした後、該混合溶液を50℃〜300℃の温度範囲で熟成してマグネシウムとアルミニウムからなる層状複水水酸化物芯粒子を生成させ、次いで、該層状複水水酸化物芯粒子を含む水性懸濁液に、該芯粒子の生成時に添加した前記マグネシウム及び前記アルミニウムの合計モル数に対して、合計モル数が0.05〜0.5となる割合のマグネシウム、アルミニウム、ニッケル及びルテニウムを含有するマグネシウム原料、アルミニウム塩水溶液、ニッケル塩水溶液及びルテニウム塩水溶液を添加した後、pH値が9.0〜13.0の範囲、温度が40℃〜300℃の範囲で熟成して、前記芯粒子表面に層状複水水酸化物層を被覆形成させる成長反応を行った後、濾別、水洗し、得られた層状複水水酸化物粒子粉末を400℃〜1600℃の温度範囲で加熱焼成し酸化物粒子粉末を得、次いで、該酸化物粒子粉末を還元雰囲気下、700℃〜1100℃の温度範囲で加熱還元することを特徴とする炭化水素分解用触媒の製造法。 An alkaline aqueous solution containing an anion, a magnesium raw material, and an aluminum salt aqueous solution are mixed to obtain a mixed solution having a pH value in the range of 7.0 to 13.0, and then the mixed solution is aged at a temperature range of 50 ° C to 300 ° C. To produce layered double hydroxide core particles composed of magnesium and aluminum, and then to the aqueous suspension containing the layered double hydroxide core particles, the magnesium added at the time of forming the core particles and the above Addition of magnesium raw material containing magnesium, aluminum, nickel and ruthenium, aluminum salt aqueous solution, nickel salt aqueous solution and ruthenium salt aqueous solution with a ratio of 0.05 to 0.5 with respect to the total number of moles of aluminum After aging, the pH value is in the range of 9.0 to 13.0 and the temperature is in the range of 40 ° C to 300 ° C. The layered double hydroxide layer is subjected to a growth reaction to form a coating, filtered, washed with water, and the resulting layered double hydroxide particle powder is heated and fired in a temperature range of 400 ° C. to 1600 ° C. A method for producing a catalyst for cracking hydrocarbons, comprising obtaining particle powder and then heat-reducing the oxide particle powder in a reducing atmosphere at a temperature range of 700 ° C to 1100 ° C. 低級炭化水素を主体としたガスをスチーム改質により水素を製造する方法において、請求項1乃至3のいずれかに記載の炭化水素分解用触媒、低級炭化水素ガス及びスチームを接触させることを特徴とする水素の製造方法。 A method for producing hydrogen by steam reforming a gas mainly comprising a lower hydrocarbon, comprising contacting the hydrocarbon cracking catalyst according to any one of claims 1 to 3, the lower hydrocarbon gas, and steam. To produce hydrogen.
JP2004244197A 2004-08-24 2004-08-24 Hydrocarbon cracking catalyst and method for producing the same, and method for producing hydrogen using the hydrocarbon cracking catalyst Active JP4340892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004244197A JP4340892B2 (en) 2004-08-24 2004-08-24 Hydrocarbon cracking catalyst and method for producing the same, and method for producing hydrogen using the hydrocarbon cracking catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004244197A JP4340892B2 (en) 2004-08-24 2004-08-24 Hydrocarbon cracking catalyst and method for producing the same, and method for producing hydrogen using the hydrocarbon cracking catalyst

Publications (2)

Publication Number Publication Date
JP2006061759A JP2006061759A (en) 2006-03-09
JP4340892B2 true JP4340892B2 (en) 2009-10-07

Family

ID=36108682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004244197A Active JP4340892B2 (en) 2004-08-24 2004-08-24 Hydrocarbon cracking catalyst and method for producing the same, and method for producing hydrogen using the hydrocarbon cracking catalyst

Country Status (1)

Country Link
JP (1) JP4340892B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008080246A (en) * 2006-09-27 2008-04-10 Idemitsu Kosan Co Ltd Method for pretreating hydrogen production catalyst and method for producing hydrogen for fuel cell
JP2008094665A (en) 2006-10-12 2008-04-24 Idemitsu Kosan Co Ltd Method for producing hydrogen-containing gas
JP2008094681A (en) * 2006-10-13 2008-04-24 Idemitsu Kosan Co Ltd Method for producing hydrogen-containing gas
JP5439706B2 (en) * 2007-03-24 2014-03-12 戸田工業株式会社 Method for suppressing generation of metal carbonyl and fuel cell system
JP5812253B2 (en) 2011-04-27 2015-11-11 戸田工業株式会社 Catalyst for decomposing hydrocarbons and fuel cell system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550704B2 (en) * 1972-06-08 1980-12-19
JPH01219001A (en) * 1988-02-25 1989-09-01 Hidekazu Kikuchi Production of hydrogen
JPH0615172A (en) * 1992-06-30 1994-01-25 Tonen Corp Steam reforming catalyst and its production
NL9300833A (en) * 1993-05-13 1994-12-01 Gastec Nv Process for the production of hydrogen / carbon monoxide mixtures or hydrogen from methane.
EP0938446B1 (en) * 1997-07-21 2004-01-14 BP Corporation North America Inc. Method of hydrocarbon reforming and catalyst and catalyst precursor therefor
JP4211900B2 (en) * 1998-03-31 2009-01-21 三菱重工業株式会社 Metal fine particle supported hydrocarbon reforming catalyst and method for producing the same
JP2002126522A (en) * 2000-10-20 2002-05-08 Mitsubishi Heavy Ind Ltd Hydrocarbon reforming catalyst
JP4098508B2 (en) * 2001-08-20 2008-06-11 財団法人 ひろしま産業振興機構 Method for producing catalyst for reacting hydrocarbon and water vapor, and method for producing hydrogen from hydrocarbon using the catalyst
US6746597B2 (en) * 2002-01-31 2004-06-08 Hydrocarbon Technologies, Inc. Supported noble metal nanometer catalyst particles containing controlled (111) crystal face exposure
JP4119652B2 (en) * 2002-02-01 2008-07-16 財団法人 ひろしま産業振興機構 Hydrocarbon cracking catalyst and process for producing the same
JP4316181B2 (en) * 2002-03-14 2009-08-19 出光興産株式会社 Hydrocarbon reforming catalyst and method for producing the same, and hydrocarbon reforming method using the catalyst

Also Published As

Publication number Publication date
JP2006061759A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
KR101319137B1 (en) A Catalyst for Decomposing Hydrocarbons, a Method for Decomposing Hydrocarbons using the Same and a Method for Preparing Hydrogen, and an Electric Generating System
JP5110249B2 (en) Hydrocarbon decomposition catalyst, hydrocarbon decomposition method and hydrogen production method using the catalyst, and power generation system
JP4332733B2 (en) Hydrocarbon cracking catalyst and method for producing hydrogen using the hydrocarbon cracking catalyst
JP5354175B2 (en) Porous catalyst body for decomposing hydrocarbon and method for producing the same, method for producing mixed reformed gas containing hydrogen from hydrocarbon, and fuel cell system
JP5531615B2 (en) Catalyst for cracking hydrocarbons
JP4098508B2 (en) Method for producing catalyst for reacting hydrocarbon and water vapor, and method for producing hydrogen from hydrocarbon using the catalyst
JP4332724B2 (en) Autothermal reforming catalyst and method for producing the same, and method for producing hydrogen using the autothermal reforming catalyst
EP1449581B1 (en) Catalyst for steam reforming containing nickel, magnesium and aluminium, process for producing the catalyst, and process for producing hydrogen using the catalyst
KR101885247B1 (en) Co2 reforming catalyst, method preparing the same and method reforming co2
JP5477561B2 (en) Porous catalyst body for decomposing hydrocarbon and method for producing the same, method for producing mixed reformed gas containing hydrogen from hydrocarbon, and fuel cell system
JP4488178B2 (en) Methanation catalyst and method for producing the same, and method for methanation of carbon monoxide using the methanation catalyst
Liu et al. Rational design of ethanol steam reforming catalyst based on analysis of Ni/La 2 O 3 metal–support interactions
JP4119652B2 (en) Hydrocarbon cracking catalyst and process for producing the same
WO2015005819A1 (en) Catalyst for the oxidative conversion of hydrocarbon gases to produce carbon monoxide and hydrogen
JP4340892B2 (en) Hydrocarbon cracking catalyst and method for producing the same, and method for producing hydrogen using the hydrocarbon cracking catalyst
JP4715999B2 (en) Catalyst for water gas shift reaction and process for producing the same
JP6933144B2 (en) Heterogeneous catalyst structure and its manufacturing method
JP2020032331A (en) Methanation catalyst, manufacturing method therefor, and manufacturing method of methane
JP5619598B2 (en) Copper-zinc-aluminum catalyst, production method thereof, carbon monoxide conversion method, and hydrogen production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4340892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350