JP2002126522A - Hydrocarbon reforming catalyst - Google Patents

Hydrocarbon reforming catalyst

Info

Publication number
JP2002126522A
JP2002126522A JP2000320137A JP2000320137A JP2002126522A JP 2002126522 A JP2002126522 A JP 2002126522A JP 2000320137 A JP2000320137 A JP 2000320137A JP 2000320137 A JP2000320137 A JP 2000320137A JP 2002126522 A JP2002126522 A JP 2002126522A
Authority
JP
Japan
Prior art keywords
catalyst
component
reaction
hydrocarbon
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000320137A
Other languages
Japanese (ja)
Inventor
Satonobu Yasutake
聡信 安武
Shigeru Nojima
野島  繁
Masanao Yonemura
将直 米村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000320137A priority Critical patent/JP2002126522A/en
Publication of JP2002126522A publication Critical patent/JP2002126522A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a hydrocarbon reforming catalyst that can reform hydrocarbons having widely variable carbon atoms and has heat resistance and durability, and to provide a hydrocarbon reforming method that can dispense with an external heat source. SOLUTION: The catalyst being durable and capable of inhibiting carbon deposition is provided by adding a cocatalyst component to a catalytically active component and adding a component that neutralizes the acid site of a support component to the support component. The hydrocarbon reforming method is provided which comprises allowing a partial oxidation reaction to concur with a steam reforming reaction and utilizing the thermal energy generated from the partial oxidation reaction as an internal heat source to thermally balance the steam reforming reaction and the partial oxidation reaction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素を改質す
る触媒に関するものである。特には燃料電池に用いられ
る、炭化水素を改質し水素を得るための触媒に関するも
のである。
TECHNICAL FIELD The present invention relates to a catalyst for reforming hydrocarbons. In particular, the present invention relates to a catalyst for reforming hydrocarbons to obtain hydrogen, which is used in a fuel cell.

【0002】[0002]

【従来の技術】炭化水素を改質する方法においては、α
-アルミナ等を担体成分として、これにRu、Ni等の触媒
成分を含浸担持した触媒を用い、下記の(1)式に示す
ように水蒸気改質反応による方法が知られている Cnm + nH2O → nCO + (m/2+n)H2 (1)
2. Description of the Related Art In a method for reforming hydrocarbons, α
- alumina or the like as a carrier component, to which Ru, using a catalyst impregnated support a catalyst component such as Ni, C n H m in which the method according to the steam reforming reaction is known as shown in the following formula (1) + NH 2 O → nCO + (m / 2 + n) H 2 (1)

【0003】炭化水素を水蒸気により改質する場合は、
原料となる炭化水素の炭素数の多い方が改質は容易であ
るが、副反応としてメタンの副生成が避けられない。こ
のため、燃料電池用などの水素製造に用いられる改質温
度は、どの炭化水素の場合にも副生成物のメタンが殆ど
H2、CO、CO2になる温度である700℃以上となる。このよ
うに上記触媒においては、十分な改質効率を得るのにか
なりの高温を必要とした。
[0003] When reforming hydrocarbons with steam,
The higher the number of carbon atoms in the hydrocarbon used as the raw material, the easier the reforming is, but methane is inevitably produced as a side reaction. For this reason, the reforming temperature used for hydrogen production for fuel cells, etc. is almost always by-product methane in all hydrocarbons.
The temperature becomes 700 ° C. or more, which is the temperature to become H 2 , CO, and CO 2 . Thus, in the above-mentioned catalyst, a considerably high temperature was required to obtain a sufficient reforming efficiency.

【0004】また、高温で上記(1)式の反応を行うと
き、従来の触媒では耐熱性がなく、触媒成分の焼結が起
こり、触媒活性が低下するという難点があった。
Further, when the reaction of the above formula (1) is carried out at a high temperature, the conventional catalyst has no heat resistance, and sintering of the catalyst components occurs, resulting in a decrease in the catalytic activity.

【0005】さらに、炭素数の多い炭化水素を原料とす
る場合や水分量を少なくした反応条件の場合は、触媒上
または担体上の酸性点で炭素が析出しやすい。このた
め、触媒活性点が析出した炭素に覆われることによって
触媒活性が低下する。このように触媒の耐久性がないと
いう課題があった。
[0005] Further, when a hydrocarbon having a large number of carbons is used as a raw material or under a reaction condition in which the amount of water is reduced, carbon is easily precipitated at an acidic point on a catalyst or a carrier. For this reason, the catalytic activity decreases because the catalytically active sites are covered with the precipitated carbon. Thus, there is a problem that the catalyst has no durability.

【0006】また、上式に示す水蒸気改質反応は吸熱反
応であるため、水素を生成する方向に平衡を移動するに
は熱源が必須である。そのため、従来の水蒸気改質方法
ではガスバーナー等の外部熱源を使用し、熱を供給する
必要があった。
Further, since the steam reforming reaction represented by the above formula is an endothermic reaction, a heat source is essential to move the equilibrium in the direction of producing hydrogen. Therefore, in the conventional steam reforming method, it was necessary to use an external heat source such as a gas burner to supply heat.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記問題点
に鑑みてなされたものであり、改質温度を低温化し、炭
素析出を防止することができる耐熱性の触媒が必要とさ
れる。また、従来の水蒸気改質反応系に熱を供給するに
は、内部熱源となる反応を併発させることが効果的であ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and there is a need for a heat-resistant catalyst capable of lowering the reforming temperature and preventing carbon deposition. In addition, in order to supply heat to a conventional steam reforming reaction system, it is effective to cause a reaction serving as an internal heat source at the same time.

【0008】そこで、本発明者らは、ZrO2、MgOが耐熱
性酸化物として触媒活性成分の焼結を防止すると共に、
中性またはアルカリ性酸化物として炭素析出が起こりや
すい触媒活性成分の酸性点を中和することが可能である
こと、およびLa、アルカリ、アルカリ土類金属の酸化物
を担体に添加することによって炭素析出による触媒の劣
化を防止し、耐久性を高めることができることに着目し
た。
Accordingly, the present inventors have proposed that ZrO 2 and MgO prevent sintering of catalytically active components as heat-resistant oxides,
It is possible to neutralize the acidic point of the catalytically active component, which tends to cause carbon deposition as a neutral or alkaline oxide, and to add La, alkali, or alkaline earth metal oxide to the carrier to deposit carbon. It is noted that the catalyst can be prevented from deteriorating due to the catalyst and the durability can be improved.

【0009】さらに本発明者らは、水蒸気改質反応に、
以下の(2)式で表される発熱反応である炭化水素の酸
化反応を併発させることによって、内部熱源を供給する
ことができることと、この部分酸化反応によっても水素
が得られることとに着目し、本発明を完成するに至っ
た。 Cnm + 1/2O2 → nCO + m/2H2 (2)
Further, the present inventors have proposed that the steam reforming reaction
Attention was paid to the fact that an internal heat source can be supplied by causing the oxidation reaction of hydrocarbons, which is an exothermic reaction represented by the following formula (2), to occur simultaneously, and that hydrogen can also be obtained by this partial oxidation reaction. Thus, the present invention has been completed. C n H m + 1 / 2O 2 → nCO + m / 2H 2 (2)

【0010】[0010]

【課題を解決するための手段】即ち、本発明は以下のよ
うに構成する。本発明は、触媒活性成分および耐熱性酸
化物からなる助触媒成分を含む触媒と、触媒担体成分お
よび該触媒担体成分の酸性点を中和する成分とを含む担
体とを含むことを特徴とする炭化水素改質触媒を提供す
る。上記触媒活性成分がRu、Rh、Ir、Ni、またはこれら
の混合物からなる群から選択される少なくとも一種であ
り、上記耐熱性酸化物からなる助触媒成分が、ZrO2、Mg
Oまたはこれらの混合物からなる群から選択される少な
くとも一種であり、上記触媒担体成分の酸性点を中和す
る成分が、Laの酸化物、アルカリ金属の酸化物、アルカ
リ土類金属の酸化物、またはこれらの混合物からなる群
から選択される少なくとも一種であることが好ましい。
また、上記触媒活性成分を0.1重量%〜20重量%含み、上
記耐熱性酸化物からなる助触媒成分を1〜50重量%含むこ
とが好ましい。さらに、本発明は炭化水素を改質して水
素を含有するガスを得る炭化水素改質方法において、上
記の炭化水素改質触媒を用いて水蒸気改質反応を行うこ
とを特徴とする炭化水素改質方法を提供する。さらに
は、上記水蒸気改質反応に部分酸化反応を併発させ、部
分酸化反応によって生じる熱エネルギーを内部熱源とし
て用いて、水蒸気改質反応と部分酸化反応との熱バラン
スをとることを特徴とする炭化水素改質方法を提供す
る。つまり、ここでの部分酸化反応は通常発熱反応であ
り、発生したエネルギーを、通常吸熱反応である水蒸気
改質反応の反応熱として利用するものである。本発明の
炭化水素触媒および方法を用いることで、効率的に炭化
水素を改質することができる。なお本発明の炭化水素触
媒および改質方法は、リン酸型、固体高分子型などの燃
焼電池発電システム、或いは高純度水素製造装置などに
用いることを目的としている。
That is, the present invention is configured as follows. The present invention is characterized by comprising a catalyst containing a cocatalyst component comprising a catalytically active component and a heat-resistant oxide, and a carrier containing a catalyst carrier component and a component for neutralizing an acidic point of the catalyst carrier component. A hydrocarbon reforming catalyst is provided. The catalytically active component is at least one selected from the group consisting of Ru, Rh, Ir, Ni, or a mixture thereof, and the co-catalyst component composed of the heat-resistant oxide is ZrO 2 , Mg
O or at least one selected from the group consisting of a mixture thereof, wherein the component for neutralizing the acidic point of the catalyst support component is an oxide of La, an oxide of an alkali metal, an oxide of an alkaline earth metal, Alternatively, it is preferably at least one selected from the group consisting of mixtures thereof.
Further, it is preferable that the catalyst active component is contained in an amount of 0.1% by weight to 20% by weight, and the promoter component composed of the heat-resistant oxide is contained in an amount of 1% to 50% by weight. Further, the present invention provides a hydrocarbon reforming method for obtaining a gas containing hydrogen by reforming a hydrocarbon, wherein a steam reforming reaction is performed using the hydrocarbon reforming catalyst. Provides quality methods. Furthermore, the steam reforming reaction is accompanied by a partial oxidation reaction, and the heat energy generated by the partial oxidation reaction is used as an internal heat source to balance heat between the steam reforming reaction and the partial oxidation reaction. A hydrogen reforming method is provided. That is, the partial oxidation reaction here is usually an exothermic reaction, and the generated energy is used as reaction heat of the steam reforming reaction, which is usually an endothermic reaction. By using the hydrocarbon catalyst and method of the present invention, hydrocarbons can be efficiently reformed. The hydrocarbon catalyst and the reforming method of the present invention are intended to be used for a phosphoric acid type, a solid polymer type or the like combustion cell power generation system, a high-purity hydrogen production apparatus, and the like.

【0011】[0011]

【発明の実施の形態】以下に図面等を参照して本発明の
実施の形態を詳細に説明する。なお、これらは本発明を
例示するものであって、限定するものではない
Embodiments of the present invention will be described below in detail with reference to the drawings. In addition, these are illustrations of this invention, and do not limit.

【0012】本発明の触媒担体は、硝酸アルミニウム、
硝酸ジルコニウムなどの金属塩の水溶液にアルカリ水溶
液を加えることにより、水酸化金属塩を合成し、これを
乾燥、焼成して得る方法などによって得られる。担体成
分を含む金属水溶液は上記のものに限定されず、アルミ
ニウムおよびジルコニウムの硝酸塩、炭酸塩、塩化物を
用いることができるが、中でも硝酸塩が好ましい。ま
た、アルカリ水溶液としては、水酸化ナトリウム、アン
モニア水等を用いることができるが、これらに限定され
ない。
The catalyst carrier of the present invention comprises aluminum nitrate,
By adding an aqueous alkali solution to an aqueous solution of a metal salt such as zirconium nitrate, a metal hydroxide salt is synthesized, and is obtained by a method of drying and calcining the metal hydroxide salt. The aqueous metal solution containing the carrier component is not limited to the above, and nitrates, carbonates, and chlorides of aluminum and zirconium can be used. Among them, nitrates are preferable. In addition, as the alkaline aqueous solution, sodium hydroxide, ammonia water, or the like can be used, but is not limited thereto.

【0013】本発明の触媒担体はまた、アルミナ粉末を
ベースにし、これに酢酸ジルコニウム等のジルコニウム
塩を含浸し、乾燥、焼成する方法によっても得られる。
The catalyst carrier of the present invention can also be obtained by a method in which alumina powder is used as a base, which is impregnated with a zirconium salt such as zirconium acetate, dried and calcined.

【0014】本発明の触媒担体には、炭素の析出を防止
するために、担体上の酸性点を中和する金属酸化物を添
加する。これらの金属酸化物としては、La2O3、CaO、K2
O等が好ましいが、これらに限定されず、アルカリ性、
中性の金属酸化物であるLa、アルカリ金属、アルカリ土
類金属の酸化物を用いることができる。
The catalyst carrier of the present invention is added with a metal oxide that neutralizes acidic sites on the carrier in order to prevent carbon deposition. These metal oxides include La 2 O 3 , CaO, K 2
O and the like are preferable, but not limited thereto, and alkaline,
La, an alkali metal, or an alkaline earth metal oxide that is a neutral metal oxide can be used.

【0015】金属酸化物は、担体の重量に対し、1〜5
0%となるように添加する。好ましくは1〜20%であ
り、最も好ましくは1〜10%である。
The metal oxide is used in an amount of 1 to 5 with respect to the weight of the carrier.
Add to 0%. Preferably it is 1 to 20%, most preferably 1 to 10%.

【0016】これらの添加方法としては、担体成分、例
えばAl2O3とZrO2との複合酸化物を水に混合し、上記金
属塩を溶解し、撹拌混合しながら蒸発乾固させる方法を
用いることができる。その他には金属塩水溶液に担体成
分を撹拌混合し、さらにアルカリ、例えばアンモニア水
などを添加し金属元素の水酸化物を析出させるといった
方法で添加することもできる。金属塩は、硝酸塩、炭酸
塩、塩化物が用いられる。中でも、硝酸塩を用いること
が好ましい。このようにして本発明の触媒担体を製造す
ることができる。
As a method of adding these, a method of mixing a carrier component, for example, a composite oxide of Al 2 O 3 and ZrO 2 with water, dissolving the metal salt, and evaporating to dryness while stirring and mixing is used. be able to. Alternatively, the carrier component can be added to the aqueous metal salt solution by stirring and mixing, and then an alkali such as aqueous ammonia is added to precipitate a metal element hydroxide. As metal salts, nitrates, carbonates, and chlorides are used. Especially, it is preferable to use a nitrate. Thus, the catalyst carrier of the present invention can be produced.

【0017】次に、本発明の触媒の製造にあたっては、
触媒活性成分、助触媒成分、例えば、Ru、Rh、Ir、Niの
硝酸塩、炭酸塩、塩化物、酢酸塩などの金属塩を担体に
含浸し、乾燥、焼成させる方法や、これらの金属塩をア
ルカリによって沈澱させ、焼成する方法などによる。よ
り具体的には、Ni(NO3)2、RuCl3、IrCl4等が用いられ
る。
Next, in producing the catalyst of the present invention,
A catalytically active component, a co-catalyst component, for example, a method of impregnating a carrier with a metal salt such as Ru, Rh, Ir, Ni nitrate, carbonate, chloride, acetate and the like, drying and calcining, and a method of drying and calcining the metal salt. It depends on the method of precipitating with an alkali and firing. More specifically, Ni (NO 3 ) 2 , RuCl 3 , IrCl 4 and the like are used.

【0018】触媒活性成分としては、Ru、Rh、Ir、Niな
どの金属塩を用いることができる。金属塩は、硝酸塩、
炭酸塩、塩化物を用いることができるが、中でも硝酸塩
が好ましい。また、触媒活性成分の添加量は、担持後の
Ru等の触媒活性成分の重量が担体の重量に対して0.1
〜20重量%となるように添加するのが好ましい。0.
5〜10重量%がさらに好ましく、0.5〜5重量%が
最も好ましい。
As the catalytically active component, metal salts such as Ru, Rh, Ir, and Ni can be used. Metal salts are nitrates,
Carbonates and chlorides can be used, and among them, nitrates are preferred. In addition, the amount of the catalytically active component added is
The weight of the catalytically active component such as Ru is 0.1% with respect to the weight of the carrier.
It is preferable to add so that it may be -20% by weight. 0.
5 to 10% by weight is more preferable, and 0.5 to 5% by weight is most preferable.

【0019】触媒活性成分の焼結による劣化を防ぐため
の助触媒成分として、耐熱性酸化物であるZr2OまたはMg
Oを添加することが好ましい。これらの耐熱性酸化物
は、ZrまたはMgの塩を上記触媒成分と共に、水に混合し
た担体複合酸化物に加えた後、混合溶液を撹拌混練しな
がら加熱し、蒸発乾固させることで触媒に担持させるこ
とができる。
As a co-catalyst component for preventing deterioration of the catalytically active component due to sintering, a heat-resistant oxide such as Zr 2 O or Mg is used.
It is preferable to add O. These heat-resistant oxides are prepared by adding a salt of Zr or Mg together with the above-mentioned catalyst component to a carrier composite oxide mixed with water, heating the mixed solution while stirring and kneading, and evaporating to dryness to form a catalyst. It can be carried.

【0020】助触媒成分として添加するZrまたはMgの金
属塩は硝酸塩、炭酸塩、塩化物等を用いることができ
る。中でも硝酸塩を添加することが好ましい。また、Zr
またはMgの金属塩の添加量は、担持後のZr2OまたはMgO
が担体の重量に対して1〜50重量%となるように添加
するのが好ましい。1〜20重量%がさらに好ましく、
1〜10重量%最も好ましい。
As the metal salt of Zr or Mg added as a promoter component, nitrates, carbonates, chlorides and the like can be used. Especially, it is preferable to add a nitrate. Also, Zr
Alternatively, the addition amount of the metal salt of Mg is Zr 2 O or MgO
Is preferably 1 to 50% by weight based on the weight of the carrier. 1-20% by weight is more preferred,
Most preferred is 1 to 10% by weight.

【0021】以上のようにして、本発明の触媒担体に触
媒活性成分等を担持させることができる。このようにし
てできた固形分を焼成し本発明の炭化水素改質触媒を得
る。
As described above, the catalytically active component and the like can be supported on the catalyst carrier of the present invention. The solid thus obtained is calcined to obtain the hydrocarbon reforming catalyst of the present invention.

【0022】本発明の炭化水素改質触媒による水蒸気改
質の対象となるのは、天然ガス、LPG、ナフサ、ガソ
リン等の炭素数が1から12の炭化水素である。上記方
法で得た触媒を用いて、これらの炭化水素の水蒸気改質
反応を行うことにより、水素を効率的に生成することが
可能となる。より具体的には、メタン、イソオクタン等
が挙げられる。
The target of steam reforming by the hydrocarbon reforming catalyst of the present invention is a hydrocarbon having 1 to 12 carbon atoms, such as natural gas, LPG, naphtha and gasoline. By performing a steam reforming reaction of these hydrocarbons using the catalyst obtained by the above method, it becomes possible to efficiently generate hydrogen. More specifically, methane, isooctane and the like can be mentioned.

【0023】さらに本発明では、水蒸気改質反応に部分
的に酸化反応を併発させることによって、水蒸気改質反
応の熱源を供給する方法を提供する。酸化反応は、原料
である炭化水素Cnmに酸素を供給することで併発する
ことができる。このときの酸素は、水蒸気の供給量に対
して、5〜100%の割合で供給することが好ましく、
20〜50%の割合で供給することがさらに好ましい。
この酸化反応の触媒には上記水蒸気改質触媒を用いるこ
とができる。
Further, the present invention provides a method for supplying a heat source for a steam reforming reaction by partially causing an oxidation reaction to occur together with the steam reforming reaction. Oxidation reaction can be complications by supplying oxygen to the hydrocarbon C n H m which is a raw material. The oxygen at this time is preferably supplied at a rate of 5 to 100% with respect to the supply amount of steam,
It is more preferable to supply at a rate of 20 to 50%.
The steam reforming catalyst described above can be used as a catalyst for this oxidation reaction.

【0024】次に、本発明に係る炭化水素改質触媒を用
いたPEFC装置について、図面に基づいてその実施の
形態を説明する。図1は、本発明に係る炭化水素改質触
媒が好適に適用されるPEFC装置の一実施の形態に関
し、その概要を説明するブロック図である。このPEF
C装置1は、炭化水素改質装置2、PROx装置3、燃
料電池4、蒸発器5および排ガス燃焼器6を含む。これ
らの装置は、太い実線で示した定常時ガス流れに沿って
機能する。その機能を個々の装置の概要と共に説明す
る。
Next, an embodiment of a PEFC device using a hydrocarbon reforming catalyst according to the present invention will be described with reference to the drawings. FIG. 1 is a block diagram illustrating an outline of an embodiment of a PEFC device to which a hydrocarbon reforming catalyst according to the present invention is suitably applied. This PEF
The C device 1 includes a hydrocarbon reforming device 2, a PROx device 3, a fuel cell 4, an evaporator 5, and an exhaust gas combustor 6. These devices function according to the steady state gas flow shown by the bold solid line. The function will be described together with the outline of each device.

【0025】炭化水素改質装置2は、本発明に係る炭化
水素改質改質触媒によって、炭化水素改質を行うための
装置であり、炭化水素改質と水と酸素の供給を受け、以
下のような反応によって炭化水素から水素を得る。 Cnm + nH2O → nCO + (m/2+n)H2 − Q (1) Cnm + n/2O2 → nCO + m/2H2 + Q (2) CO + H2O → CO2 + H2 (3) 反応(1)は、炭化水素を改質して水素を得るための反
応である。この反応(1)は、吸熱反応(−Q)であ
る。そこで、発熱反応(+Q)である反応(2)によっ
て改質反応を維持するための熱を得ている。ただし、こ
の反応(1)(2)では、COを生じる。COは、燃料
電池4の働きを阻害する。そこで、反応(3)によって
COを除去するようにしている。
The hydrocarbon reforming apparatus 2 is an apparatus for performing hydrocarbon reforming using the hydrocarbon reforming and reforming catalyst according to the present invention, and receives hydrocarbon reforming and water and oxygen supply. Hydrogen is obtained from a hydrocarbon by a reaction such as C n H m + nH 2 O → nCO + (m / 2 + n) H 2 - Q (1) C n H m + n / 2O 2 → nCO + m / 2H 2 + Q (2) CO + H 2 O → CO 2 + H 2 (3) Reaction (1) is a reaction for reforming hydrocarbons to obtain hydrogen. This reaction (1) is an endothermic reaction (-Q). Therefore, heat for maintaining the reforming reaction is obtained by the reaction (2) which is an exothermic reaction (+ Q). However, in the reactions (1) and (2), CO is generated. CO hinders the operation of the fuel cell 4. Therefore, CO is removed by the reaction (3).

【0026】炭化水素改質装置2からの気体は、空気を
加え、PROx装置3に送られる。PROx装置3は、
CO選択酸化触媒によって、COを選択除去するための
装置であり、以下のような反応によってCOを除去す
る。 CO + 1/2O2 → CO2 (4) 前記反応(3)によって炭化水素改質装置2で発生する
COが除去される。ただし、炭化水素改質装置2では、
0.3〜0.4%まで除去している。このPROx装置
3では、さらに、20ppm以下までCOを除去する。
The gas from the hydrocarbon reformer 2 is added to air and sent to the PROx unit 3. The PROx device 3
This is a device for selectively removing CO by a CO selective oxidation catalyst, and removes CO by the following reaction. CO + 1 / 2O 2 → CO 2 (4) CO generated in the hydrocarbon reformer 2 is removed by the reaction (3). However, in the hydrocarbon reformer 2,
It has been removed to 0.3 to 0.4%. The PROx device 3 further removes CO to 20 ppm or less.

【0027】PROx装置3からの水素を含む気体は、
燃料電池4に送られる。燃料電池4は、アノード電極7
においてアノード電極触媒により、以下の反応を起こさ
せる。 H2 → 2H+ + 2e- (5) この反応(5)によって生じるH+が拡散する。一方、
カソード電極8においてカソード電極触媒により、以下
の反応を起こさせる。 2H+ + 2e― + 1/2O2 → H2O (6) これらの反応(5)と(6)を合わせて電池反応が構成
され、起電力を得ることができる。
The gas containing hydrogen from the PROx device 3 is:
It is sent to the fuel cell 4. The fuel cell 4 includes an anode electrode 7
In the above, the following reaction is caused by the anode electrode catalyst. H 2 → 2H + + 2e (5) H + generated by this reaction (5) diffuses. on the other hand,
The following reaction is caused in the cathode electrode 8 by the cathode electrode catalyst. 2H + + 2e − + 1 / 2O 2 → H 2 O (6) These reactions (5) and (6) constitute a battery reaction, and an electromotive force can be obtained.

【0028】燃料電池4からのオフガスは、蒸発器5に
送られる。蒸発器5は、付属する燃焼器により、このオ
フガス中に20%程度含まれる水素を燃焼触媒により燃
焼して、水、炭化水素をガス化する機能を果たしてい
る。ガス化した水、炭化水素は、前記したように、炭化
水素改質装置2に送られる。さらに、排ガス燃焼器6
は、残存する水素を燃焼触媒により完全に燃焼させる。
The off-gas from the fuel cell 4 is sent to the evaporator 5. The evaporator 5 has a function of gasifying water and hydrocarbons by using an attached combustor to burn about 20% of hydrogen contained in the off-gas with a combustion catalyst. The gasified water and hydrocarbons are sent to the hydrocarbon reformer 2 as described above. Furthermore, the exhaust gas combustor 6
Causes the remaining hydrogen to be completely burned by the combustion catalyst.

【0029】燃料電池4の入口、燃料電池4、排ガス燃
焼器6には、熱交換器9、10、11が設けられてお
り、冷却水源12から、循環ポンプ13によって冷却水
が循環される。冷却水は、循環ライン14(点線)中を
流れ、このライン14中の温度を図示しない温度センサ
ーで検知する。温度センサーからの温度情報は、制御シ
ステムに送られ、流量を適宜コントロールすることによ
り、PROx装置3、燃料電池4内の温度を適正に保
つ。
Heat exchangers 9, 10, 11 are provided at the inlet of the fuel cell 4, the fuel cell 4, and the exhaust gas combustor 6, and cooling water is circulated from a cooling water source 12 by a circulation pump 13. The cooling water flows in the circulation line 14 (dotted line), and the temperature in the line 14 is detected by a temperature sensor (not shown). The temperature information from the temperature sensor is sent to the control system, and the temperature in the PROx device 3 and the fuel cell 4 is appropriately maintained by appropriately controlling the flow rate.

【0030】上記PEFC装置で、本発明に係る炭化水
素改質触媒を使用した場合、触媒の劣化がなく、良好な
触媒特性を維持することができる。また、炭化水素の水
蒸気改質反応に部分酸化反応を併発させることで、反応
の熱バランスをとり、外部熱源が不要となる。以下に本
発明を実施例を挙げて説明する。なお、本実施例は本発
明の内容を制限するものではない。
When the hydrocarbon reforming catalyst according to the present invention is used in the above PEFC device, the catalyst does not deteriorate, and good catalytic properties can be maintained. Further, by causing the partial oxidation reaction to occur simultaneously with the steam reforming reaction of hydrocarbons, the heat balance of the reaction is obtained, and an external heat source becomes unnecessary. Hereinafter, the present invention will be described with reference to examples. The present embodiment does not limit the contents of the present invention.

【0031】[0031]

【実施例】[実施例1 触媒調製]γ-アルミナ90gおよ
びオキシ塩化ジルコニウム26.2gを1000gのイオン交換水
に混合、溶解させた後、攪拌しながら1Nのアンモニア水溶
液を系内のpHが9.0になるまで滴下した。この操作によ
り得られる沈殿物を蒸留水により洗浄し、乾燥させた後、
1000℃で24h焼成してZrO2-Al2O3複合酸化物を得た。
[Example 1] [Preparation of catalyst] 90 g of γ-alumina and 26.2 g of zirconium oxychloride were mixed and dissolved in 1000 g of ion-exchanged water, and then a 1N ammonia aqueous solution was adjusted to pH 9.0 with stirring while stirring. It was dripped until it became. After the precipitate obtained by this operation is washed with distilled water and dried,
It was calcined at 1000 ° C. for 24 hours to obtain a ZrO 2 —Al 2 O 3 composite oxide.

【0032】次に18gのZrO2-Al2O3複合酸化物を50gのイ
オン交換水に混合し、硝酸ランタン6水和物2.66gを加え
溶解後、撹拌混練しながら加熱し蒸発乾固させた。この固
形分を1000℃で24h焼成してLa2O3-ZrO2-Al2O3複合酸化
物を得た。
Next, 18 g of the ZrO 2 -Al 2 O 3 composite oxide was mixed with 50 g of ion-exchanged water, and 2.66 g of lanthanum nitrate hexahydrate was added and dissolved. The mixture was heated and evaporated to dryness while stirring and kneading. Was. The solid was calcined at 1000 ° C. for 24 hours to obtain a La 2 O 3 —ZrO 2 —Al 2 O 3 composite oxide.

【0033】得られたLa2O3-ZrO2-Al2O3複合酸化物担体
16gを50gのイオン交換水に混合し、硝酸ロジウムをLa2O3
-ZrO2-Al2O3担体に対しロジウム(Rh)換算で5重量%とな
るように加え、さらに硝酸マグネシウムを酸化マグネシ
ウム(MgO)換算で2重量%となるように加えてこれらの混
合溶液を撹拌混練しながら加熱し蒸発乾固させた。この
固形分を500℃で3時間焼成して下記組成を有する触媒を
得た。
The obtained La 2 O 3 -ZrO 2 -Al 2 O 3 composite oxide support
16 g was mixed with 50 g of ion-exchanged water, and rhodium nitrate was mixed with La 2 O 3
-ZrO 2 -Al 2 O 3 Added to the carrier to be 5% by weight in terms of rhodium (Rh), and further added magnesium nitrate to be 2% by weight in terms of magnesium oxide (MgO). Was heated and evaporated to dryness while stirring and kneading. The solid was calcined at 500 ° C. for 3 hours to obtain a catalyst having the following composition.

【0034】[ベスト性能を有する触媒] 5wt%Rh-2wt%MgO/La2O3-ZrO2-Al2O3(La2O3はZrO2-Al2O3
に対して5重量%、ZrO2はAl2O3に対して10重量%)
[Catalyst with Best Performance] 5 wt% Rh-2 wt% MgO / La 2 O 3 -ZrO 2 -Al 2 O 3 (La 2 O 3 is ZrO 2 -Al 2 O 3
5% by weight, ZrO 2 is 10% by weight with respect to Al 2 O 3 )

【0035】[実施例2 炭化水素改質性能評価]表1に
示す触媒を用いてメタン、ガソリンの水蒸気改質反応を
行い、これに部分酸化反応を併発させた。炭化水素改質
反応評価には固定床式マイクロリアクタを用いて反応を
行った。
Example 2 Evaluation of hydrocarbon reforming performance Using a catalyst shown in Table 1, a steam reforming reaction of methane and gasoline was performed, and a partial oxidation reaction was caused simultaneously. The hydrocarbon reforming reaction was evaluated using a fixed-bed microreactor.

【0036】[0036]

【表1】 [Table 1]

【0037】本発明の触媒を用いてメタンおよびガソリ
ンの水蒸気改質反応を行ったときの反応条件を表2に、
改質反応を連続200h行った結果を表3に示す。なお、表
2に示す炭素転化率(%)および炭素析出量(%)は以下に示
す式で表され、それぞれ触媒の炭化水素転化活性(高い
ほど改質活性に優れる)および触媒に堆積する炭素量を
相対的に示す指標(高いほどコーキング量が大きい)であ
る。
Table 2 shows the reaction conditions when a steam reforming reaction of methane and gasoline was carried out using the catalyst of the present invention.
Table 3 shows the results of performing the reforming reaction continuously for 200 hours. The carbon conversion rate (%) and the carbon deposition amount (%) shown in Table 2 are represented by the following formulas, and the hydrocarbon conversion activity of the catalyst (the higher the higher, the higher the reforming activity) and the carbon deposited on the catalyst. It is an index indicating the amount relatively (the higher the amount, the greater the coking amount).

【0038】[0038]

【数1】 (Equation 1)

【0039】[0039]

【数2】 (Equation 2)

【0040】[0040]

【表2】 [Table 2]

【0041】[0041]

【表3】 [Table 3]

【0042】本発明の触媒1から6を用いたメタン、ガ
ソリンの水蒸気改質反応においては、従来よりも低い70
0℃付近の温度で、200時間後にいずれも90%近
い、高い炭素転化率を示した。また、炭素析出量も従来
用いてきた比較触媒と比べて1/5近くまで低減され
た。
In the steam reforming reaction of methane and gasoline using the catalysts 1 to 6 of the present invention, 70
At a temperature around 0 ° C., after 200 hours, all showed a high carbon conversion of nearly 90%. In addition, the amount of carbon deposition was also reduced to nearly one-fifth as compared with the comparative catalyst used conventionally.

【0043】次に、メタンおよびガソリンの本発明の触
媒を用いた水蒸気改質に、本発明の方法に係る部分酸化
反応を併発させた反応を行った。この水蒸気改質反応条
件を表4に、改質反応を連続200h行った結果を表5に示
す。
Next, a reaction was carried out in which steam reforming of methane and gasoline using the catalyst of the present invention was accompanied by a partial oxidation reaction according to the method of the present invention. Table 4 shows the conditions of the steam reforming reaction, and Table 5 shows the results of continuously performing the reforming reaction for 200 hours.

【0044】[0044]

【表4】 [Table 4]

【0045】[0045]

【表5】 [Table 5]

【0046】以上の結果から、本発明の触媒1から6を
用いたメタンおよびガソリンの部分酸化反応を併発させ
た水蒸気改質反応においても、200時間後にいずれも
90%近い、高い炭素転化率を示した。また、特にメタ
ンの炭素転化率は部分酸化反応を伴わずに水蒸気改質反
応のみを行ったときに比べて上昇した。炭素析出量も、
従来用いていた比較触媒と比べて1/5近くまで低減さ
れた。
From the above results, even in the steam reforming reaction using the catalysts 1 to 6 of the present invention in which the partial oxidation reaction of methane and gasoline was simultaneously performed, a high carbon conversion of nearly 90% was obtained after 200 hours. Indicated. In particular, the carbon conversion of methane increased as compared with the case where only the steam reforming reaction was performed without the partial oxidation reaction. The amount of carbon deposition also
It was reduced to almost 1/5 compared to the comparative catalyst used conventionally.

【0047】[0047]

【発明の効果】本発明の炭化水素改質触媒を用いること
によって、これまでよりも低温で高い転化率を示す炭化
水素の改質反応が可能となった。また、触媒表面への炭
素析出を防止することで、劣化が少なく耐久性の高い触
媒が得られた。さらには、部分酸化反応を併発させた本
発明の炭化水素改質方法により、外部熱源を必要とせ
ず、上記のような効率的な反応方法を提供することがで
きた。
By using the hydrocarbon reforming catalyst of the present invention, a hydrocarbon reforming reaction having a higher conversion at a lower temperature than before can be realized. Further, by preventing carbon deposition on the catalyst surface, a catalyst with little deterioration and high durability was obtained. Further, the hydrocarbon reforming method of the present invention in which a partial oxidation reaction occurs simultaneously can provide an efficient reaction method as described above without requiring an external heat source.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の炭化水素改質触媒を用いる蒸
発器を含むPEFC装置を示す図である。
FIG. 1 is a diagram showing a PEFC device including an evaporator using a hydrocarbon reforming catalyst of the present invention.

【符号の説明】[Explanation of symbols]

1 PEFC装置 2 炭化水素改質装置 3 PROx装置 4 燃料電池 5 蒸発器 6 排ガス燃焼器 7 アノード電極 8 カソード電極 9 熱交換器 10 熱交換器 11 熱交換器 12 冷却水源 13 循環ポンプ 14 循環ライン 15 電気ヒータ 16 バーナ DESCRIPTION OF SYMBOLS 1 PEFC apparatus 2 Hydrocarbon reformer 3 PROx apparatus 4 Fuel cell 5 Evaporator 6 Exhaust gas combustor 7 Anode electrode 8 Cathode electrode 9 Heat exchanger 10 Heat exchanger 11 Heat exchanger 12 Cooling water source 13 Circulation pump 14 Circulation line 15 Electric heater 16 burner

───────────────────────────────────────────────────── フロントページの続き (72)発明者 米村 将直 広島県広島市西区観音新町四丁目6番22号 三菱重工業株式会社広島研究所内 Fターム(参考) 4G040 EA03 EA06 EC01 EC03 EC05 4G069 AA08 AA14 BA01B BA05A BA05B BB02A BB02B BB04A BB04B BB06B BC01A BC03B BC08A BC09B BC10A BC10B BC42A BC42B BC68A BC68B BC70A BC70B BC71A BC71B BC74A BC74B CC17 CC32 4G140 EA03 EA06 EC01 EC03 EC05 5H027 AA02 AA06 BA09 BA17  ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Masanao Yonemura 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima-shi, Hiroshima F-term in Hiroshima Research Laboratory, Mitsubishi Heavy Industries, Ltd. 4G040 EA03 EA06 EC01 EC03 EC05 4G069 AA08 AA14 BA01B BA05A BA05B BB02A BB02B BB04A BB04B BB06B BC01A BC03B BC08A BC09B BC10A BC10B BC42A BC42B BC68A BC68B BC70A BC70B BC71A BC71B BC74A BC74B CC17 CC32 4G140 EA03 EA06 EC01 EC09 EC05 5H0 A

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 触媒活性成分および耐熱性酸化物からな
る助触媒成分を含む触媒と、 触媒担体成分および該触媒担体成分の酸性点を中和する
成分を含む担体とを含むことを特徴とする炭化水素改質
触媒。
1. A catalyst comprising a catalyst comprising a catalytically active component and a co-catalyst component comprising a heat-resistant oxide; and a carrier comprising a catalyst carrier component and a component for neutralizing an acidic point of the catalyst carrier component. Hydrocarbon reforming catalyst.
【請求項2】 上記触媒活性成分がRu、Rh、Ir、Ni、ま
たはこれらの混合物からなる群から選択される少なくと
も一種であることを特徴とする、請求項1に記載の炭化
水素改質触媒。
2. The hydrocarbon reforming catalyst according to claim 1, wherein the catalytically active component is at least one selected from the group consisting of Ru, Rh, Ir, Ni, and a mixture thereof. .
【請求項3】 上記耐熱性酸化物からなる助触媒成分
が、ZrO2、MgOまたはこれらの混合物からなる群から選
択される少なくとも一種であることを特徴とする、請求
項1または2に記載の炭化水素改質触媒。
3. The method according to claim 1, wherein the co-catalyst component comprising the heat-resistant oxide is at least one selected from the group consisting of ZrO 2 , MgO and a mixture thereof. Hydrocarbon reforming catalyst.
【請求項4】 上記触媒担体成分の酸性点を中和する成
分が、Laの酸化物、アルカリ金属の酸化物、アルカリ土
類金属の酸化物、またはこれらの混合物からなる群から
選択される少なくとも一種であることを特徴とする、請
求項1〜3のいずれかに記載の炭化水素改質触媒。
4. The component for neutralizing the acidic point of the catalyst support component, wherein the component is at least one selected from the group consisting of an oxide of La, an oxide of an alkali metal, an oxide of an alkaline earth metal, and a mixture thereof. The hydrocarbon reforming catalyst according to any one of claims 1 to 3, wherein the catalyst is a kind.
【請求項5】 上記触媒活性成分を0.1重量%〜20重量%
含み、上記耐熱性酸化物からなる助触媒成分を1〜50重
量%含むことを特徴とする請求項1〜4のいずれかに記
載の炭化水素改質触媒。
5. The catalyst active ingredient is added in an amount of 0.1% by weight to 20% by weight.
The hydrocarbon reforming catalyst according to any one of claims 1 to 4, further comprising 1 to 50% by weight of a co-catalyst component comprising the heat-resistant oxide.
【請求項6】 炭化水素を改質して水素を含有するガス
を得る炭化水素改質方法において、請求項1〜5のいず
れかに記載の炭化水素改質触媒を用いて水蒸気改質反応
を行うことを特徴とする炭化水素改質方法。
6. A hydrocarbon reforming method for reforming a hydrocarbon to obtain a hydrogen-containing gas, wherein a steam reforming reaction is carried out using the hydrocarbon reforming catalyst according to claim 1. A hydrocarbon reforming method.
【請求項7】 上記水蒸気改質反応に部分酸化反応を併
発させ、部分酸化反応によって生じる熱エネルギーを内
部熱源として用いて、水蒸気改質反応と部分酸化反応と
の熱バランスをとることを特徴とする請求項6に記載の
炭化水素改質方法。
7. A partial oxidation reaction is performed simultaneously with the steam reforming reaction, and heat energy generated by the partial oxidation reaction is used as an internal heat source to balance heat between the steam reforming reaction and the partial oxidation reaction. The hydrocarbon reforming method according to claim 6.
JP2000320137A 2000-10-20 2000-10-20 Hydrocarbon reforming catalyst Pending JP2002126522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000320137A JP2002126522A (en) 2000-10-20 2000-10-20 Hydrocarbon reforming catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000320137A JP2002126522A (en) 2000-10-20 2000-10-20 Hydrocarbon reforming catalyst

Publications (1)

Publication Number Publication Date
JP2002126522A true JP2002126522A (en) 2002-05-08

Family

ID=18798468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000320137A Pending JP2002126522A (en) 2000-10-20 2000-10-20 Hydrocarbon reforming catalyst

Country Status (1)

Country Link
JP (1) JP2002126522A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004060557A1 (en) * 2002-12-27 2004-07-22 Nippon Steel Corporation Catalyst and method for reforming hydrocarbon
JP2005224722A (en) * 2004-02-13 2005-08-25 Toda Kogyo Corp Autothermal reforming catalyst, method for manufacturing the same and method for producing hydrogen by using the same
JP2006061759A (en) * 2004-08-24 2006-03-09 Toda Kogyo Corp Catalyst for cracking of hydrocarbon, method of manufacturing the catalyst and a method of manufacturing hydrogen using the catalyst
JP2006061760A (en) * 2004-08-24 2006-03-09 Toda Kogyo Corp Catalyst for cracking of hydrocarbon and method of manufacturing hydrogen using it
JP2007098385A (en) * 2005-09-08 2007-04-19 Cosmo Oil Co Ltd Catalyst for producing hydrogen from hydrocarbon, production method for the catalyst and production method for hydrogen using the catalyst
JP2011167595A (en) * 2010-02-16 2011-09-01 Jx Nippon Oil & Energy Corp Reforming catalyst for producing hydrogen, method for producing the same, and method for producing hydrogen using the catalyst
WO2015173880A1 (en) * 2014-05-13 2015-11-19 日産自動車株式会社 Hydrogen-generating catalyst, and exhaust gas purification catalyst
US9878308B2 (en) 2014-05-13 2018-01-30 Nissan Motor Co., Ltd. Exhaust gas purification catalyst

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160603A (en) * 1988-12-15 1990-06-20 Kawasaki Heavy Ind Ltd Reforming of fuel for fuel cell
JPH05220397A (en) * 1992-02-07 1993-08-31 Nissan Gaadoraa Shokubai Kk Steam reforming catalyst for hydrocarbon
JPH05261286A (en) * 1992-03-17 1993-10-12 Nissan Gaadoraa Shokubai Kk Catalyst for reforming hydrocarbon vapor and its production
JPH0631169A (en) * 1992-07-15 1994-02-08 Sekiyu Sangyo Kasseika Center Catalyst for steam reforming and production of hydrogen
JP2000084410A (en) * 1998-07-14 2000-03-28 Idemitsu Kosan Co Ltd Preparation of autothermal reforming catalyst and production of hydrogen or synthesis gas
JP2000185907A (en) * 1998-12-22 2000-07-04 Haldor Topsoe As Catalytic steam reformation of supplied hydrocarbon mater ial

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02160603A (en) * 1988-12-15 1990-06-20 Kawasaki Heavy Ind Ltd Reforming of fuel for fuel cell
JPH05220397A (en) * 1992-02-07 1993-08-31 Nissan Gaadoraa Shokubai Kk Steam reforming catalyst for hydrocarbon
JPH05261286A (en) * 1992-03-17 1993-10-12 Nissan Gaadoraa Shokubai Kk Catalyst for reforming hydrocarbon vapor and its production
JPH0631169A (en) * 1992-07-15 1994-02-08 Sekiyu Sangyo Kasseika Center Catalyst for steam reforming and production of hydrogen
JP2000084410A (en) * 1998-07-14 2000-03-28 Idemitsu Kosan Co Ltd Preparation of autothermal reforming catalyst and production of hydrogen or synthesis gas
JP2000185907A (en) * 1998-12-22 2000-07-04 Haldor Topsoe As Catalytic steam reformation of supplied hydrocarbon mater ial

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004060557A1 (en) * 2002-12-27 2004-07-22 Nippon Steel Corporation Catalyst and method for reforming hydrocarbon
JP2005224722A (en) * 2004-02-13 2005-08-25 Toda Kogyo Corp Autothermal reforming catalyst, method for manufacturing the same and method for producing hydrogen by using the same
JP2006061759A (en) * 2004-08-24 2006-03-09 Toda Kogyo Corp Catalyst for cracking of hydrocarbon, method of manufacturing the catalyst and a method of manufacturing hydrogen using the catalyst
JP2006061760A (en) * 2004-08-24 2006-03-09 Toda Kogyo Corp Catalyst for cracking of hydrocarbon and method of manufacturing hydrogen using it
JP2007098385A (en) * 2005-09-08 2007-04-19 Cosmo Oil Co Ltd Catalyst for producing hydrogen from hydrocarbon, production method for the catalyst and production method for hydrogen using the catalyst
JP4647564B2 (en) * 2005-09-08 2011-03-09 コスモ石油株式会社 Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst
JP2011167595A (en) * 2010-02-16 2011-09-01 Jx Nippon Oil & Energy Corp Reforming catalyst for producing hydrogen, method for producing the same, and method for producing hydrogen using the catalyst
WO2015173880A1 (en) * 2014-05-13 2015-11-19 日産自動車株式会社 Hydrogen-generating catalyst, and exhaust gas purification catalyst
US9878308B2 (en) 2014-05-13 2018-01-30 Nissan Motor Co., Ltd. Exhaust gas purification catalyst

Similar Documents

Publication Publication Date Title
JP5279227B2 (en) Catalyst for fuel reforming reaction and method for producing hydrogen using the same
TWI362290B (en)
WO2000030745A1 (en) Carbon monoxide oxidation catalyst, method for preparation of carbon monoxide oxidation catalyst and method for production of hydrogen-containing gas
WO2000048261A1 (en) Carbon monoxide converting apparatus for fuel cell and generating system of fuel cell
RU2450968C2 (en) PROCESS CONDITIONS FOR Pt-Re BIMETALLIC WATER GAS SHIFT CATALYSTS, CATALYSTS
JP2007000703A (en) Reforming catalyst, method of manufacturing reforming catalyst and fuel cell system
JP4460126B2 (en) Method for removing carbon monoxide from hydrogen-containing gas
JP2002126522A (en) Hydrocarbon reforming catalyst
JP3756565B2 (en) Method for removing CO in hydrogen gas
JP3756229B2 (en) Catalyst for removing CO in hydrogen-containing gas and method for removing CO in hydrogen-containing gas using the same
JP2005066516A (en) Catalyst for reforming dimethyl ether and synthesizing method therefor
JP2014030778A (en) Fuel reforming catalyst
JP4478281B2 (en) Method for producing CO removal catalyst in hydrogen-containing gas, catalyst produced by the production method, and method for removing CO in hydrogen-containing gas using the catalyst
JP3796745B2 (en) CO selective oxidation catalyst in hydrogen gas, method for producing the same, and method for removing CO in hydrogen gas
JP2014058434A (en) Mesoporous metal oxide, fuel reforming catalyst and fuel reforming system
JP3796744B2 (en) CO selective oxidation catalyst in hydrogen gas, method for producing the same, and method for removing CO in hydrogen gas
JP2000169107A (en) Production of hydrogen-containing gas reduced in carbon monoxide
JP3943606B2 (en) Method for selective removal of carbon monoxide
JP2005034682A (en) Co modification catalyst and its production method
JP4463914B2 (en) Method for producing hydrogen-containing gas for fuel cell
JPH10216521A (en) Catalyst for reforming hydrocarbon with steam
JP2001179097A (en) Method for manufacturing catalyst for removing co in hydrogen-containing gas, catalyst manufactured thereby and method for removing co in hydrogen gas
JP2002126535A (en) Catalyst for selective oxidation of carbon monoxide and production method of the same
JP2001213612A (en) Process of producing hydrogen containing gas for fuel cell
EP1391240A1 (en) Method for preparing a catalyst for preferential oxidation to remove carbon monoxide from a hydrogen-rich gas, a process for preferential oxidation to remove carbon monoxide from hydrogen-rich gas and a method for operating a fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100618