JPH05220397A - Steam reforming catalyst for hydrocarbon - Google Patents

Steam reforming catalyst for hydrocarbon

Info

Publication number
JPH05220397A
JPH05220397A JP4056737A JP5673792A JPH05220397A JP H05220397 A JPH05220397 A JP H05220397A JP 4056737 A JP4056737 A JP 4056737A JP 5673792 A JP5673792 A JP 5673792A JP H05220397 A JPH05220397 A JP H05220397A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
steam reforming
zirconia
alkaline earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4056737A
Other languages
Japanese (ja)
Other versions
JP3307976B2 (en
Inventor
Atsushi Furuya
敦 古谷
Tadakuni Kitamura
忠邦 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sued Chemie Catalysts Japan Inc
Original Assignee
Nissan Girdler Catalysts Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Girdler Catalysts Co Ltd filed Critical Nissan Girdler Catalysts Co Ltd
Priority to JP05673792A priority Critical patent/JP3307976B2/en
Publication of JPH05220397A publication Critical patent/JPH05220397A/en
Application granted granted Critical
Publication of JP3307976B2 publication Critical patent/JP3307976B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain a catalyst having high activity and, at the same time, withstanding for use in a steam reforming reaction of a higher hydrocarbon by adding a zirconia sol to a Ru.Al2O3 series catalyst. CONSTITUTION:The catalyst is prepared by carrying a zirconia sol as a precursor of zirconia on an Al2O3 carrier, calcining, attaching ruthenium chloride and calcining, and as necessary an alkaline earth metal oxide may be added to the catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は炭化水素類を水蒸気改質
することによって合成ガス、或いは水素を製造する触媒
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for producing synthesis gas or hydrogen by steam reforming hydrocarbons.

【0002】[0002]

【従来の技術】炭化水素を水蒸気によって改質する反応
は、合成ガス或いは水素を製造する為の反応として工業
的に大規模に実施されている。この反応にはニッケル系
触媒が一般的に使用されているが、高級炭化水素を水蒸
気によって改質する場合炭素析出を起こし易いこと、或
いは省エネルギ−のためにスチ−ム/カ−ボン比を低減
するとやはり炭素析出が障害となる為、その改良が試み
られてきている。
2. Description of the Related Art A reaction for reforming a hydrocarbon with steam is industrially carried out on a large scale as a reaction for producing synthesis gas or hydrogen. Nickel-based catalysts are generally used in this reaction, but when reforming higher hydrocarbons with steam, carbon precipitation is likely to occur, or the steam / carbon ratio is set to save energy. If the amount is reduced, carbon precipitation also becomes an obstacle, so improvements have been attempted.

【0003】一方、貴金属系触媒は炭素析出を起こしに
くいとされており、ニッケル触媒を代替するものとして
開発が試みられており、ロジウム或いはルテニウムを主
成分とした触媒が主として検討され、特に有効なものと
してルテニウム系触媒が種々提案されている。
On the other hand, noble metal catalysts are said to be less likely to cause carbon deposition, and attempts have been made to develop them as alternatives to nickel catalysts, and catalysts containing rhodium or ruthenium as the main component have been mainly studied and are particularly effective. Various ruthenium-based catalysts have been proposed.

【0004】ルテニウムは高価な金属であること、或い
はその有効利用の為には表面積を大きくする必要がある
こと等の理由で金属を担体上に担持させて使用される
が、担体としてはアルミナ、ジルコニア等が用いられて
いる。アルミナは多くの触媒担体として使用されてお
り、炭化水素水蒸気改質用ニッケル触媒担体としても工
業的に古くから利用されてきた実績を有しており、ルテ
ニウム系触媒においても担体に用いた多くの研究がなさ
れているが、その性能はニッケル系触媒と同水準であ
り、又高級炭化水素の水蒸気改質に利用する為には炭素
析出防止対策が必要であり、各種助触媒成分の添加が検
討されている。
Ruthenium is used by supporting a metal on a carrier for the reason that it is an expensive metal, or it is necessary to increase the surface area for its effective use. Alumina is used as the carrier. Zirconia or the like is used. Alumina is used as many catalyst carriers, and has a long history of industrial use as a nickel catalyst carrier for steam reforming of hydrocarbons. Although research has been conducted, its performance is the same level as nickel-based catalysts, and carbon precipitation prevention measures are required for use in steam reforming of higher hydrocarbons, and the addition of various promoter components is being considered. Has been done.

【0005】例えば、高級炭化水素水蒸気改質に耐える
触媒となす為の助触媒成分として、特開昭56−081
392号公報には酸化セリウムの添加が、特開昭62−
038239号公報には酸化バリウムの添加が開示され
ており、又炭素析出を抑制した触媒とする為の助触媒成
分として、英国特許GB1301836にはアルカリ土
類金属酸化物の添加が、特開昭57−004232号公
報にはアルカリ、アルカリ土類金属酸化物及びシリカの
添加が、特開昭60−147242号公報には酸化ラン
タン及び酸化銀の添加が、夫々提案されているが、活性
及び耐久性においてジルコニア担体触媒よりも劣る。
For example, as a co-catalyst component for forming a catalyst resistant to steam reforming of higher hydrocarbons, JP-A-56-081 has been used.
No. 392 discloses the addition of cerium oxide.
JP-A-038239 discloses the addition of barium oxide, and British Patent GB1301836 discloses the addition of an alkaline earth metal oxide as a co-catalyst component for producing a catalyst in which carbon precipitation is suppressed. -004232 proposes addition of alkali, alkaline earth metal oxides and silica, and JP-A-60-147242 proposes addition of lanthanum oxide and silver oxide, respectively. Inferior to the zirconia-supported catalyst.

【0006】一方ジルコニアは触媒担体としての工業的
実績は見られないが、H2Oを活性化する作用を有して
いるとされており、特に炭化水素を水蒸気改質すること
による燃料電池用水素製造触媒として、ルテニウム触媒
担体への利用が種々検討され、その中で高活性触媒、高
級炭化水素水蒸気改質に耐える触媒、或いは炭素析出を
抑制した触媒となす為の各種助触媒成分添加が開示され
ており、例えば欧州特許EP−406896にはコバル
ト、或いはマンガンの添加が、EP−414573には
酸化イットリウムの添加が、特開平2−2879号公報
にはニッケル、ランタン及びその他の金属の添加が、特
開平2−43950号公報には酸化イットリウム、酸化
マグネシウム及び酸化セリウムの添加が夫々提案されて
いが、ジルコニアは高価であること、成型性に劣るこ
と、機械的強度が低いこと等の問題がある。
On the other hand, zirconia has not been industrially used as a catalyst carrier, but it is said to have an action of activating H 2 O, especially for fuel cells by steam reforming hydrocarbons. As a hydrogen production catalyst, various uses for a ruthenium catalyst carrier have been studied, and among them, various promoter components have been added to form a highly active catalyst, a catalyst that can withstand higher hydrocarbon steam reforming, or a catalyst that suppresses carbon deposition. For example, in European Patent EP-406896, addition of cobalt or manganese is added, in EP-414573, addition of yttrium oxide, and in JP-A-2-2879, addition of nickel, lanthanum and other metals. However, JP-A-2-43950 proposes the addition of yttrium oxide, magnesium oxide and cerium oxide, respectively. It is expensive, poor in moldability, there is a problem such that mechanical strength is low.

【0007】[0007]

【発明が解決しようとする課題】アルミナは安価、高耐
熱性、機械的強度に優れていること等炭化水素水蒸気改
質触媒担体に適した性質を有しており、改質用ルテニウ
ム触媒担体としての利用が検討されて来ているが、その
改質活性はニッケル系触媒と同水準でり、実用化の為に
はその価格に引き合う高活性を有する触媒となすことが
必要であり、又ルテニウムの特性を生かして実際の使用
に耐える高級炭化水素水蒸気改質触媒となす為には、よ
り炭素析出が起こり難い触媒となすことが要求される。
Alumina has properties suitable for a hydrocarbon steam reforming catalyst carrier, such as low cost, high heat resistance, and excellent mechanical strength, and thus it can be used as a ruthenium catalyst carrier for reforming. However, its reforming activity is about the same level as nickel-based catalysts, and for practical use it is necessary to make it a catalyst with high activity that is suitable for its price. In order to make use of these characteristics to make a higher hydrocarbon steam reforming catalyst that can withstand actual use, it is necessary to make the catalyst more resistant to carbon precipitation.

【0008】[0008]

【発明が解決しようとする課題】本願発明者は以前より
炭化水素水蒸気改質触媒の研究を行って来ているが、そ
の一環として貴金属系触媒が炭素析出を起こし難い傾向
を有していることに着目してその実用化を図って来た
が、その中でアルミナを担体に選び、各種助触媒の添加
を試みて来た。
The inventor of the present application has been researching hydrocarbon steam reforming catalysts for some time, and as a part of this research, noble metal catalysts tend to cause carbon precipitation. While paying attention to the above, we have tried to put it into practical use, and tried to add various cocatalysts by selecting alumina as the carrier.

【0009】一方、ジルコニアはH2Oを活性化する性
質を有すると言われており、ジルコニアを助触媒として
添加することを検討した。
On the other hand, zirconia is said to have a property of activating H 2 O, and it was studied to add zirconia as a promoter.

【0010】ジルコニアの原料としては硝酸ジルコニル
が一般的であり、先ずそのアルミナ担体への添加を検討
したが、高活性触媒は得られなかったが、ジルコニアゾ
ルのアルミアへの添加を試みたところ予想以上の高活性
を示す触媒が得られた。即ち、通常のジルコニア原料と
しての硝酸ジルコニルをアルミナに担持し、焼成した
後、ルテニウムを担持することによって得た触媒は、炭
化水素水蒸気改質反応に対して低活性であるだけでな
く、反応温度を上げるとかえって活性が低下する傾向を
示し、負の触媒作用を呈したが、驚くべきことにジルコ
ニアゾルを添加し焼成した後ルテニウムを加えることに
よって得た触媒は高活性を示し、ジルコニアそのものを
担体として使用することによって得た触媒と同等の活性
を有しているばかりではなく、高温度においても安定し
た活性を示し、又高級炭化水素水蒸気改質反応にも優れ
た性能であり、炭素析出を起こし難い触媒であることを
確認し、本発明を完成した。
Zirconyl nitrate is generally used as a raw material for zirconia. First, its addition to an alumina carrier was examined, but a highly active catalyst was not obtained. However, it was expected that an attempt was made to add zirconia sol to alumina. A catalyst exhibiting the above high activity was obtained. That is, a catalyst obtained by supporting zirconyl nitrate as a usual zirconia raw material on alumina, firing and then supporting ruthenium is not only low in activity for a hydrocarbon steam reforming reaction, but also at a reaction temperature. However, the catalyst obtained by adding ruthenium after adding zirconia sol and calcining shows high activity, and the activity of zirconia itself was increased. Not only does it have the same activity as the catalyst obtained by using it as a carrier, it also shows stable activity at high temperatures, and it has excellent performance in steam reforming of higher hydrocarbons. The present invention has been completed by confirming that the catalyst does not easily cause

【0011】ジルコニアゾルの添加量は全担体重量に対
するジルコニアとして表示した場合、0.2〜20.0
wt%、好ましくは0.5〜10.0wt%であること
が必要で、その添加量が0.2wt%以下ではジルコニ
アの助触媒としての効果が不充分であり、20.0wt
%以上ではその添加量に見合った助触媒効果が望めない
ばかりでなく担体が高価になり、又担持されたジルコニ
アの剥離発生が無視できなくなる。
The amount of zirconia sol added is 0.2 to 20.0 when expressed as zirconia based on the total weight of the carrier.
wt%, preferably 0.5 to 10.0 wt% is necessary. If the added amount is 0.2 wt% or less, the effect of the zirconia as a co-catalyst is insufficient, and 20.0 wt%.
If the content is more than 0.1%, not only the effect of the cocatalyst corresponding to the added amount cannot be expected, but also the carrier becomes expensive, and the exfoliation of the supported zirconia cannot be ignored.

【0012】ジルコニアゾルは助触媒として添加される
ので、触媒表面に存在していることが好ましく、又表面
に選択的に付けることによって高価なジルコニアゾルを
有効に利用することが出来るので、アルミナ担体をジル
コニアゾルに浸漬することによって添加することが好ま
しく、別の添加方法としてアルミナ或いはアルミナ前駆
体粉末をジルコニアゾルと混練し、次いで成型すること
によってもジルコニアゾル添加は可能であるが、実用的
な好ましい担体とすることはできない。
Since the zirconia sol is added as a co-catalyst, it is preferable that the zirconia sol is present on the surface of the catalyst. Also, by selectively attaching the zirconia sol to the surface, the expensive zirconia sol can be effectively utilized, and therefore, the alumina carrier is used. Is preferably added by immersing in a zirconia sol, and as another addition method, zirconia sol addition is also possible by kneading alumina or alumina precursor powder with zirconia sol, and then molding, but practical It cannot be a preferred carrier.

【0013】ジルコニアゾルにはその粒子形状が球形の
もの、或いは球が直線上に連結した形状のもの等があ
り、いずれの形状のゾルも使用可能であるが、後者の形
状のゾルであることが好ましく、その粒子の大きさは5
0〜2,000オングストローム、好ましくは100〜
1,000オングストロームであり、又ジルコニアゾル
が安定化されているPH領域は酸性側、中性或いはアル
カリ性側いずれでも良い。
The zirconia sol has a spherical particle shape, a shape in which spheres are connected in a straight line, or the like. Any shape sol can be used, but the latter sol is required. Is preferred, and the particle size is 5
0-2,000 Angstroms, preferably 100-
The PH region is 1,000 angstroms and the zirconia sol is stabilized. The PH region may be on the acidic side, neutral side or alkaline side.

【0014】ジルコニアゾルの担体への添加は、単に担
体をジルコニアゾル中に浸漬するだけでよく、通常30
wt%ゾル水溶液をそのまま使用することが出来るが、
ジルコニア添加量調節の為に必要であればゾルへの担体
浸漬を、中間に乾燥操作を加えて繰り返してもよく、又
少量添加でよい場合はジルコニアゾルを純水で希釈した
後使用することが出来、所定量のジルコニアゾル添着終
了後乾燥し、次いで400〜900℃で数時間焼成す
る。
The zirconia sol may be added to the carrier simply by immersing the carrier in the zirconia sol.
The wt% sol aqueous solution can be used as it is,
If necessary to adjust the amount of zirconia added, immersing the carrier in the sol may be repeated by adding a drying operation in the middle.If a small amount may be added, the zirconia sol should be diluted with pure water before use. After completion of the addition of a predetermined amount of zirconia sol, it is dried and then calcined at 400 to 900 ° C. for several hours.

【0015】担体としてはアルミナ以外の通常の無機耐
熱性酸化物を使用することが出来るが、価格或いは炭化
水素水蒸気改質反応触媒担体としての工業的実績等を考
慮してアルミナ担体が好ましく、一般的に使用されてい
るアルミナ担体であればどのような結晶構造のアルミナ
も利用することが出来るが、高温度でも構造変化するこ
とが無く、しかも不活性であるα・アルミナであること
が好ましく、担体は打錠、押し出し或いは球状の成型物
として使用される。
As the carrier, a usual inorganic heat-resistant oxide other than alumina can be used, but an alumina carrier is preferred in consideration of price, industrial performance as a hydrocarbon steam reforming reaction catalyst carrier, etc. Although it is possible to use alumina having any crystal structure as long as it is a conventionally used alumina carrier, the structure does not change even at a high temperature, and α / alumina which is inactive is preferable, The carrier is used as a tablet, an extrudate or a spherical molded product.

【0016】第2の助触媒成分としてのアルカリ土類金
属酸化物は、マグネシウム、カルシウム、バリウム等の
酸化物、好ましくはカルシウム又はバリウム酸化物であ
り、その添加量は2.0〜50.0wt%、好ましくは
5.0〜30.0wt%であることを要し、2.0wt
%以下ではその効果が不充分であり、又50.0wt%
以上では担体として充分な機械的強度を有するものが得
られず、又アルカリ土類金属酸化物の添加は、アルミナ
担体成型前にその前駆体である水酸化アルミニウムに、
アルカリ土類金属化合物を添加混合する方法、或いは担
体へのジルコニアゾル添加前に、アルカリ土類金属化合
物水溶液に担体を浸漬する方法、或いはジルコニアゾル
添加の際ゾル水溶液にアルカリ土類金属化合物を溶解し
ておき、同時にアルミナ担体に添着する方法によること
が出来、添着操作終了後乾燥し、次いで700〜135
0℃で数時間焼成する。
The alkaline earth metal oxide as the second promoter component is an oxide of magnesium, calcium, barium or the like, preferably calcium or barium oxide, and the addition amount thereof is 2.0 to 50.0 wt. %, Preferably 5.0 to 30.0 wt%, 2.0 wt
%, The effect is insufficient, and 50.0 wt%
With the above, it is not possible to obtain a carrier having sufficient mechanical strength, and addition of an alkaline earth metal oxide to aluminum hydroxide which is a precursor thereof before forming an alumina carrier,
A method of adding and mixing an alkaline earth metal compound, or a method of immersing the carrier in an aqueous solution of alkaline earth metal compound before adding the zirconia sol to the carrier, or dissolving the alkaline earth metal compound in the sol aqueous solution when adding the zirconia sol. However, it is possible to use a method of simultaneously attaching to the alumina carrier, drying after completion of the attaching operation, and then 700 to 135
Bake for several hours at 0 ° C.

【0017】アルカリ土類金属酸化物とアルミナとは化
合物を形成させることが好ましく、700℃以下の温度
では化合物形成に不充分で良好な担体とはなし得ず、又
1350℃以上ではアルミナの焼結が進む為表面積が小
さくなり過ぎて、適した担体を得ることは出来ない。
It is preferable to form a compound with the alkaline earth metal oxide and alumina, and at a temperature of 700 ° C. or lower, it cannot be a good carrier because of insufficient compound formation, and at a temperature of 1350 ° C. or higher, alumina is sintered. Therefore, the surface area becomes too small to obtain a suitable carrier.

【0018】ジルコニア及びアルカリ土類金属化合物を
添加したアルミナ担体に、次いでルテニウムを添着する
が、触媒活性成分としてのルテニウムは担体表面に集中
的に添着することがその有効利用の為に肝要であり、そ
の方法としては含浸法、浸漬法或いはスプレー法等ルテ
ニウムの表面担持を可能にするものであればどのような
方法でも行うことが出来、又ルテニウム原料はルテニウ
ムのハロゲン化合物類、ルテニウム酸塩類等水溶性化合
物であり、焼成した後触媒毒となる様なものを触媒中に
残さないものであればいかなる化合物でも使用可能であ
り、ルテニウム化合物は添加後、乾燥し次いで400〜
700℃で2〜4時間焼成され、添加するルテニウム量
は0.02〜5.0wt%好ましくは0.05〜2.0
wt%であることが必要で、その量が0.02wt%以
下では活性が不充分であり、又5.0wt%以上では活
性の向上に引き合う以上に高価な触媒となり経済的では
ない。
Ruthenium is then impregnated onto the alumina carrier to which zirconia and an alkaline earth metal compound have been added. It is essential for effective utilization that ruthenium as the catalytically active component is concentrated on the carrier surface. As the method, any method capable of supporting ruthenium on the surface such as an impregnation method, an immersion method or a spray method can be used, and the ruthenium raw material is a ruthenium halogen compound, ruthenium acid salt, etc. Any compound can be used as long as it is a water-soluble compound and does not leave a catalyst poison that does not remain in the catalyst after calcination.
It is baked at 700 ° C. for 2 to 4 hours, and the amount of ruthenium added is 0.02 to 5.0 wt%, preferably 0.05 to 2.0.
The content is required to be wt%, and if the amount is 0.02 wt% or less, the activity is insufficient, and if it is 5.0 wt% or more, it is an expensive catalyst which is more expensive than it is required to improve the activity, which is not economical.

【0019】触媒は反応に供する前に還元する必要があ
るが、液相或いは気相いずれでの還元でもよく、液相還
元の場合は蟻酸カリウム、ホルマリン、ヒドラジン、ナ
トリウムボロンハイドライド等の水溶液を使用し40〜
80℃の加温下にて還元することが出来、又気相還元の
場合は触媒を100〜600℃に保持し、水素ガスを流
通しつつ還元することが出来る。
The catalyst needs to be reduced before being used in the reaction, but it may be reduced in either liquid phase or gas phase. In the case of liquid phase reduction, an aqueous solution of potassium formate, formalin, hydrazine, sodium boron hydride, etc. is used. 40 ~
It can be reduced under heating at 80 ° C, and in the case of gas phase reduction, the catalyst can be kept at 100 to 600 ° C and hydrogen gas can be reduced while flowing.

【0020】得られた触媒を常圧流通式反応装置に充填
し、メタン水蒸気改質反応によってその性能評価を行っ
たところ非常に高活性を示し、アルミナそのものを担体
とした触媒よりも著しく優れた活性であり、又第2成分
としてのアルカリ土類金属化合物を含有した触媒は一層
高い活性を示したが、更に反応物を高級炭化水素に変え
て評価したところ、高活性であると共に安定した性能を
示し、反応途中での圧力損失増加は全く見られなかった
のに対し、アルミナそのものを担体とした触媒は、活性
がかなり低い上に反応途中での圧力損失増加が若干みら
れ、安定した性能を有していなかった。
The catalyst thus obtained was packed in an atmospheric pressure type reactor, and its performance was evaluated by a methane steam reforming reaction. As a result, it showed a very high activity, and was significantly superior to a catalyst using alumina itself as a carrier. The catalyst which was active and which contained the alkaline earth metal compound as the second component showed a higher activity, but when the reaction product was evaluated by changing it to a higher hydrocarbon, it was highly active and showed stable performance. While the increase in pressure loss during the reaction was not observed at all, the catalyst using alumina itself as a carrier had a considerably low activity and a slight increase in pressure loss during the reaction was observed, showing stable performance. Did not have.

【0021】[0021]

【発明の効果】Ru・Al23 触媒に特定のジルコニ
ア前駆体としてのジルコニアゾルを添加することによっ
て、その活性を著しく向上させることが出来、又第2助
触媒成分としてのアルカリ土類金属酸化物を添加すると
更に性能を高めることが出来る上に、高級炭化水素水蒸
気改質反応においても高活性を有し、反応途中で圧力損
失増加を示さない安定した性能の触媒が得られる。
By adding a zirconia sol as a specific zirconia precursor to a Ru.Al 2 O 3 catalyst, its activity can be remarkably improved, and an alkaline earth metal as a second promoter component can be obtained. By adding an oxide, the performance can be further enhanced, and in addition, a catalyst having high activity even in the steam reforming reaction of higher hydrocarbons and having stable performance without showing an increase in pressure loss during the reaction can be obtained.

【0022】[0022]

【実施例】次に本発明の内容を実施例によって具体的に
説明するが、その中で記載されている性能評価は、下記
の条件によって実施された。
EXAMPLES Next, the contents of the present invention will be specifically described by way of examples, but the performance evaluation described therein was carried out under the following conditions.

【0023】メタン水蒸気改質反応性能評価条件 触媒使用量 25cc 触媒サイズ 3/16in×3/16in(打錠
品) CH4 空間速度 1,200hr-1 スチーム/CH4 3.0(モル比) 圧力 常圧 反応温度 550〜750℃ 反応時間 各測定温度で2時間保持 触媒の性能を示すCH4 転化率(%)は下式によって計
算した。
Methane steam reforming reaction performance evaluation conditions Catalyst usage amount 25 cc Catalyst size 3/16 in × 3/16 in (tabletting product) CH 4 space velocity 1,200 hr -1 steam / CH 4 3.0 (molar ratio) Pressure Normal pressure Reaction temperature 550 to 750 ° C. Reaction time 2 hours at each measurement temperature CH 4 conversion (%) showing the performance of the catalyst was calculated by the following formula.

【0024】 n−ヘキサン水蒸気改質反応性能評価条件 触媒使用量 25cc 触媒サイズ 3/16in×3/16in(打錠
品) 出口全ガス空間速度 5,000hr-1 スチーム/カーボン 2.5(モル比) 圧力 常圧 反応温度 750℃ 反応時間 7日間 触媒の性能を示すCH4 転化率(%)は下式によって計
算した。
[0024] n-Hexane steam reforming reaction performance evaluation conditions Catalyst usage 25 cc Catalyst size 3/16 in x 3/16 in (tablet) Outlet total gas space velocity 5,000 hr -1 steam / carbon 2.5 (molar ratio) Pressure Normal Pressure Reaction temperature 750 ° C. Reaction time 7 days CH 4 conversion (%) showing the performance of the catalyst was calculated by the following formula.

【0025】 ここで COout ,触媒層出口側におけるCO濃度
(%) C02 out ,触媒層出口側におけるC02 濃度(%) ヘキサンout ,触媒層出口側におけるヘキサン濃度
(%) CH4 out ,触媒層出口側におけるCH4 濃度(%) 又、n−ヘキサン水蒸気改質反応性能評価においてはメ
タン、ヘキサン以外にも炭化水素化合物が検出された
が、生成量が微量なので無視した。
[0025] Here, CO out , CO concentration (%) C0 2 out at the catalyst layer outlet side, C0 2 concentration (%) hexane out at the catalyst layer outlet side, hexane concentration (%) CH 4 out at the catalyst layer outlet side, catalyst layer outlet CH 4 concentration on the side (%) Further, in the n-hexane steam reforming reaction performance evaluation, hydrocarbon compounds were detected in addition to methane and hexane, but they were ignored because they were minute amounts.

【0026】尚、反応開始前に触媒はH2 を空間速度、
500hr-1で流通しつつ、500℃×2hrs還元し
た。一方、触媒の機械的強度は木屋式硬度計によって測
定した。
Before the reaction is started, the catalyst supplies H 2 with space velocity,
While circulating at 500 hr -1 , it was reduced at 500 ° C for 2 hrs. On the other hand, the mechanical strength of the catalyst was measured by a Kiya type hardness meter.

【0027】実施例 1 水酸化アルミニウム500gに適当量の純水を加え、ニ
ーダー中にて混練した後乾燥し、次いで10メッシュパ
スの破砕物となしたものにグラファイト15gを加え、
混合した後3/16in×3/16inサイズに打錠した。
この打錠物を電気炉中で、1,100℃×4hrs.焼
成することによって触媒担体を調製した(担体Aとす
る)。
Example 1 A suitable amount of pure water was added to 500 g of aluminum hydroxide, kneaded in a kneader and dried, and then 15 g of graphite was added to a crushed product of 10 mesh pass,
After mixing, the mixture was tabletted into a size of 3/16 in x 3/16 in.
This tablet was placed in an electric furnace at 1,100 ° C. × 4 hrs. A catalyst carrier was prepared by firing (designated as carrier A).

【0028】これとは別に酸性側で安定化された30w
t%のジルコニアゾル150ccを300ccビーカー
中に秤取しておき、担体A60gをゾル中に1.5hr
s浸漬し、次いで取り出した後110℃×20hrs.
乾燥し、続いて電気炉中で500℃×1hr.焼成した
(担体Bとする)。
Separately, 30w stabilized on the acidic side
150% t% zirconia sol was weighed in a 300 cc beaker, and 60 g of carrier A was added to the sol for 1.5 hr.
After immersing for 10 seconds at 110 ° C. for 20 hrs.
Dry, and subsequently in an electric furnace at 500 ° C. × 1 hr. It was baked (designated as carrier B).

【0029】更にこれとは別に塩化ルテニウムを純水に
溶解し、ルテニウム金属濃度として3.8wt%の水溶
液として調製準備しておいた塩化ルテニウム水溶液5c
cを担体B、38gにスプレーすることによって添着
し、次いで110℃×20hrs乾燥した後、電気炉中
で500℃×1hr.焼成することにより、実施例1の
触媒を得たが、アルミナの一部はX線的にα・アルミナ
化していた。
Separately, ruthenium chloride was dissolved in pure water to prepare an aqueous solution having a ruthenium metal concentration of 3.8 wt%, which was prepared in advance.
c to the carrier B by spraying 38 g, followed by drying at 110 ° C. for 20 hrs and then 500 ° C. for 1 hr. in an electric furnace. By calcination, the catalyst of Example 1 was obtained, but a part of the alumina was converted to α-alumina by X-ray.

【0030】この触媒は水素還元後下記の組成を示し、 Ru 0.48 wt% ZrO2 3.20 〃 Al23 BALANCE そのメタン水蒸気改質性能評価結果及び物性測定結果は
表−1に、n−ヘキサン水蒸気改質性能評価結果を表−
2に夫々示した。
This catalyst has the following composition after hydrogen reduction: Ru 0.48 wt% ZrO 2 3.20 〃 Al 2 O 3 BALANCE The methane steam reforming performance evaluation results and physical property measurement results are shown in Table 1. Shows the results of n-hexane steam reforming performance evaluation-
2 respectively.

【0031】実施例 2 実施例1における担体A調製で、水酸化アルミニウム5
00gの他に炭酸カルシウム30gを加え、打錠物の焼
成温度を900℃とした以外は実施例1と同じ処理法に
よって実施例2の触媒を調製した。この触媒は水素還元
後下記の組成を示し、 Ru 0.49 wt% ZrO2 3.14 〃 CaO 5.32 Al23 BALANCE そのメタン水蒸気改質性能評価結果及び物性測定結果は
表−1に、n−ヘキサン水蒸気改質性能評価結果を表−
2に夫々示した。
Example 2 Preparation of carrier A in Example 1 was carried out using aluminum hydroxide 5
A catalyst of Example 2 was prepared by the same treatment method as in Example 1 except that 30 g of calcium carbonate was added in addition to 00 g and the baking temperature of the tableted product was set to 900 ° C. This catalyst has the following composition after hydrogen reduction: Ru 0.49 wt% ZrO 2 3.14 〃 CaO 5.32 Al 2 O 3 BALANCE The methane steam reforming performance evaluation results and physical property measurement results are shown in Table 1. , N-hexane steam reforming performance evaluation results-
2 respectively.

【0032】実施例 3 実施例1における担体A調製で、水酸化アルミニウム5
00gの他に炭酸カルシウム146gを加え、打錠物の
焼成温度を1,250℃とした以外は実施例1同じ処理
法によって実施例3の触媒を調製したが、アルミナの一
部はカルシウムとの化合物を形成しており、この触媒は
水素還元後下記の組成を示した。
Example 3 Preparation of carrier A in Example 1 was carried out using aluminum hydroxide 5
A catalyst of Example 3 was prepared by the same treatment method as in Example 1 except that 146 g of calcium carbonate was added in addition to 00 g, and the baking temperature of the tableting product was 1,250 ° C. The compound has formed and the catalyst had the following composition after hydrogen reduction:

【0033】 Ru 0.51 wt% ZrO2 3.76 〃 CaO 20.83 Al23 BALANCE そのメタン水蒸気改質性能評価結果及び物性測定結果は
表−1に、n−ヘキサン水蒸気改質性能評価結果を表−
2に夫々示した。
Ru 0.51 wt% ZrO 2 3.76 〃 CaO 20.83 Al 2 O 3 BALANCE The methane steam reforming performance evaluation results and physical property measurement results are shown in Table 1, and n-hexane steam reforming performance evaluation. Table of results
2 respectively.

【0034】実施例 4 実施例1における担体B調製で、ジルコニアゾルへの担
体Aの浸漬操作の際、10wt%に希釈したジルコニア
ゾルを使用した以外は、実施例1と同じ処理法によって
実施例4の触媒を調製した。この触媒は水素還元後下記
の組成を示し、 Ru 0.47 wt% ZrO2 0.97 〃 Al23 BALANCE そのメタン水蒸気改質性能評価結果及び物性測定結果は
表−1の通りであった。
Example 4 In the preparation of the carrier B in Example 1, the same treatment method as in Example 1 was used except that the zirconia sol diluted to 10 wt% was used in the operation of immersing the carrier A in the zirconia sol. The catalyst of 4 was prepared. This catalyst has the following composition after hydrogen reduction: Ru 0.47 wt% ZrO 2 0.97 〃 Al 2 O 3 BALANCE The methane steam reforming performance evaluation results and physical property measurement results are shown in Table 1. ..

【0035】実施例 5 実施例1における担体B調製で、30wt%濃度のアル
カリ性側で安定化されたジルコニアゾルを使用した以外
は、実施例1と同じ処理法によって実施例5の触媒を調
製した。この触媒は水素還元後下記の組成を示し、 Ru 0.50 wt% ZrO2 5.71 〃 Al23 BALANCE そのメタン水蒸気改質性能評価結果及び物性測定結果は
表−1の通りであった。
Example 5 The catalyst of Example 5 was prepared by the same treatment method as in Example 1 except that 30 wt% concentration of zirconia sol stabilized on the alkaline side was used in the preparation of carrier B in Example 1. .. This catalyst has the following composition after hydrogen reduction: Ru 0.50 wt% ZrO 2 5.71 〃 Al 2 O 3 BALANCE The methane steam reforming performance evaluation results and physical property measurement results are shown in Table 1. ..

【0036】実施例 6 実施例1において担体Aから担体Bを調製する操作の中
間で、210gの硝酸カルシウムを純水100cc溶解
し、予め調製しておいた硝酸カルシウム水溶液に、担体
A60gを浸漬し、次いで110℃×20hrs.乾燥
した後900℃×2hrs.焼成した以外は実施例1と
同じ処理法によって実施例6の触媒を調製した。
Example 6 210 g of calcium nitrate was dissolved in 100 cc of pure water in the middle of the operation for preparing carrier B from carrier A in Example 1, and 60 g of carrier A was immersed in an aqueous solution of calcium nitrate prepared in advance. , And then 110 ° C. × 20 hrs. After drying, 900 ° C. × 2 hrs. The catalyst of Example 6 was prepared by the same treatment method as in Example 1 except that it was calcined.

【0037】この触媒は水素還元後下記の組成を示し、 Ru 0.48 wt% ZrO2 3.16 〃 CaO 14.34 〃 Al23 BALANCE そのメタン水蒸気改質性能評価結果及び物性測定結果は
表−1の通りであった。
This catalyst has the following composition after hydrogen reduction: Ru 0.48 wt% ZrO 2 3.16 〃 CaO 14.34 〃 Al 2 O 3 BALANCE The methane steam reforming performance evaluation results and physical property measurement results are as follows. The results are shown in Table 1.

【0038】実施例 7 実施例1における担体A調製で、水酸化アルミニウム5
00gの他に炭酸バリウム20gを加えた以外は、実施
例1と同じ処理法によって実施例2の触媒を調製した。
この触媒は水素還元後下記の組成を示し、 Ru 0.49 wt% ZrO2 3.17 〃 BaO 5.02 Al23 BALANCE そのメタン水蒸気改質性能評価結果及び物性測定結果は
表−1に、n−ヘキサン水蒸気改質性能評価結果を表−
2に夫々示した。
Example 7 Preparation of carrier A in Example 1 was carried out using aluminum hydroxide 5
The catalyst of Example 2 was prepared by the same treatment method as in Example 1 except that 20 g of barium carbonate was added in addition to 00 g.
This catalyst has the following composition after hydrogen reduction: Ru 0.49 wt% ZrO 2 3.17 〃 BaO 5.02 Al 2 O 3 BALANCE The methane steam reforming performance evaluation results and physical property measurement results are shown in Table 1. , N-hexane steam reforming performance evaluation results-
2 respectively.

【0039】実施例 8 実施例1において、ルテニウム金属濃度3.8wt%の
塩化ルテニウム水溶液に替えて、その濃度が1.5wt
%の塩化ルテニウム水溶液を使用した以外は、実施例1
と同じ処理法によって実施例8の触媒を調製した。この
触媒は水素還元後下記の組成を示し、 Ru 0.19 wt% ZrO2 3.12 〃 Al23 BALANCE そのメタン水蒸気改質性能評価結果及び物性測定結果は
表−1の通りであった。
Example 8 In Example 1, the concentration was changed to 1.5 wt% instead of the ruthenium chloride aqueous solution having a ruthenium metal concentration of 3.8 wt%.
% Example 1 except that a 1% ruthenium chloride aqueous solution was used.
The catalyst of Example 8 was prepared by the same treatment method as described above. This catalyst has the following composition after hydrogen reduction: Ru 0.19 wt% ZrO 2 3.12 Al 2 O 3 BALANCE The methane steam reforming performance evaluation results and physical property measurement results are shown in Table 1. ..

【0040】比較例 1 実施例1において、担体Aをジルコニアゾル水溶液に浸
漬する操作を行わなかった以外は、実施例1と同じ処理
法によって比較例1の触媒を調製した。この触媒は水素
還元後下記の組成を示し、 Ru 0.52 wt% Al23 BALANCE そのメタン水蒸気改質性能評価結果及び物性測定結果は
表−1に、n−ヘキサン水蒸気改質性能評価結果を表−
2に夫々示した。
Comparative Example 1 The catalyst of Comparative Example 1 was prepared by the same treatment method as in Example 1 except that the operation of immersing the carrier A in the zirconia sol aqueous solution was not carried out. This catalyst has the following composition after hydrogen reduction: Ru 0.52 wt% Al 2 O 3 BALANCE The methane steam reforming performance evaluation results and physical property measurement results are shown in Table 1, and n-hexane steam reforming performance evaluation results. Table-
2 respectively.

【0041】比較例 2 実施例1における担体A調製で、水酸化アルミニウム5
00gの他に炭酸カルシウム30gを加えたが、担体A
をジルコニアゾル水溶液に浸漬する操作を行わなかった
以外は、実施例1と同じ処理法によって比較例2の触媒
を調製した。この触媒は水素還元後下記の組成を示し、 Ru 0.50 wt% CaO 5.28 Al23 BALANCE そのメタン水蒸気改質性能評価結果及び物性測定結果は
表−1に、n−ヘキサン水蒸気改質性能評価結果を表−
2に夫々示した。
Comparative Example 2 Preparation of Carrier A in Example 1 was carried out using aluminum hydroxide 5
In addition to 00g, 30g of calcium carbonate was added.
A catalyst of Comparative Example 2 was prepared by the same treatment method as that of Example 1 except that the operation of immersing the above in a zirconia sol aqueous solution was not performed. This catalyst shows the following composition after hydrogen reduction: Ru 0.50 wt% CaO 5.28 Al 2 O 3 BALANCE The methane steam reforming performance evaluation results and physical property measurement results are shown in Table 1, and n-hexane steam reformed. Table of quality performance evaluation results
2 respectively.

【0042】比較例 3 実施例1における担体B調製で、酸性側で安定化された
30wt%ジルコニアゾル150ccの替わりに、ジル
コニアに換算して15wt%の硝酸ジルコニル水溶液1
50cc使用した以外は、実施例1と同じ処理法によっ
て比較例3の触媒を調製した。
Comparative Example 3 In the preparation of carrier B in Example 1, instead of 150 cc of 30 wt% zirconia sol stabilized on the acidic side, a 15 wt% aqueous solution of zirconyl nitrate 1 converted to zirconia 1
The catalyst of Comparative Example 3 was prepared by the same treatment method as in Example 1 except that 50 cc was used.

【0043】この触媒は水素還元後下記の組成を示し、 Ru 0.50 wt% ZrO2 3.53 〃 Al23 BALANCE そのメタン水蒸気改質性能評価結果及び物性測定結果は
表−1の通りであった。
This catalyst has the following composition after hydrogen reduction: Ru 0.50 wt% ZrO 2 3.53 〃 Al 2 O 3 BALANCE The methane steam reforming performance evaluation results and physical property measurement results are shown in Table 1. Met.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年6月22日[Submission date] June 22, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0007[Correction target item name] 0007

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0007】[0007]

【発明が解決しようとする課題】アルミナは安価、高耐
熱性、機械的強度に優れていること等炭化水素水蒸気改
質触媒担体に適した性質を有しており、改質用ルテニウ
ム触媒担体としての利用が検討されてきているが、その
改質活性はニッケル系触媒と同水準でり、実用化の為
にはその価格に引き合う高活性を有する触媒となすこと
が必要であり、又ルテニウムの特性を生かして実際の使
用に耐える高級炭化水素水蒸気改質触媒となす為には、
より炭素析出が起こり難い触媒となすことが要求され
る。
Alumina has properties suitable for a hydrocarbon steam reforming catalyst carrier, such as low cost, high heat resistance, and excellent mechanical strength, and thus it can be used as a ruthenium catalyst carrier for reforming. of but utilization has been studied, the reforming activity is Ri Oh at the same level and the nickel-based catalyst, for practical application is required to be formed with the catalyst having a high activity which attract each other in the price, also ruthenium To make a high-grade hydrocarbon steam reforming catalyst that can withstand the actual use by utilizing the characteristics of
It is required to form a catalyst that is less likely to cause carbon precipitation.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】[0008]

課題を解決するための手段】本願発明者は以前より炭
化水素水蒸気改質触媒の研究を行って来ているが、その
一環として貴金属系触媒が炭素析出を起こし難い傾向を
有していることに着目してその実用化を図ってきたが、
その中でアルミナを担体に選び、各種助触媒の添加を試
みてきた。
SUMMARY OF THE INVENTION The present inventors have come studied earlier than the hydrocarbon steam reforming catalyst, but the noble metal catalyst has a tendency to hardly cause carbon deposition as part I focused on and tried to put it into practical use,
Among them, alumina has been selected as a carrier, and attempts have been made to add various promoters.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】ジルコニアの原料としては硝酸ジルコニル
が一般的であり、先ずそのアルミナ担体への添加を検討
したが、高活性触媒は得られなかったのに対し、ジルコ
ニアゾルのアルミへの添加を試みたところ予想以上の
高活性を示す触媒が得られた。即ち、通常のジルコニア
原料としての硝酸ジルコニルをアルミナに担持し、焼成
した後、ルテニウムを担持することによって得た触媒
は、炭化水素水蒸気改質反応に対して低活性であるだけ
でなく、反応温度を上げるとかえって活性が低下する傾
向を示し、負の触媒作用を呈したが、驚くべきことにジ
ルコニアゾルを添加し焼成した後ルテニウムを加えるこ
とによって得た触媒は高活性を示し、ジルコニアそのも
のを担体として使用することによって得た触媒と同等の
活性を有しているばかりではなく、高温度においても安
定した活性を示し、又高級炭化水素水蒸気改質反応にも
優れた性能であり、炭素析出を起こし難い触媒であるこ
とを確認し、本発明を完成した。
[0010] As the raw material of zirconia is zirconyl nitrate are generally first was examined added to the alumina support, whereas high activity catalyst was obtained, attempts to addition to the zirconia sol alumina As a result, a catalyst having a higher activity than expected was obtained. That is, a catalyst obtained by supporting zirconyl nitrate as a usual zirconia raw material on alumina, firing and then supporting ruthenium is not only low in activity for a hydrocarbon steam reforming reaction, but also at a reaction temperature. However, the catalyst obtained by adding ruthenium after adding zirconia sol and calcining shows high activity, and the activity of zirconia itself was increased. Not only does it have the same activity as the catalyst obtained by using it as a carrier, it also shows stable activity at high temperatures, and it has excellent performance in steam reforming of higher hydrocarbons. The present invention has been completed by confirming that the catalyst does not easily cause

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】ジルコニアゾルの添加量は全触媒重量に対
するジルコニアとして表示した場合、0.2〜20.0
wt%、好ましくは0.5〜10.0wt%であること
が必要で、その添加量が0.2wt%以下ではジルコニ
アの助触媒としての効果が不充分であり、20.0wt
%以上ではその添加量に見合った助触媒効果が望めない
ばかりでなく担体が高価になり、又担持されたジルコニ
アの剥離発生が無視できなくなる。
The amount of zirconia sol added is 0.2 to 20.0 when expressed as zirconia based on the total weight of the catalyst.
wt%, preferably 0.5 to 10.0 wt% is necessary. If the added amount is 0.2 wt% or less, the effect of the zirconia as a co-catalyst is insufficient, and 20.0 wt%.
If the content is more than 0.1%, not only the effect of the cocatalyst corresponding to the added amount cannot be expected, but also the carrier becomes expensive, and the exfoliation of the supported zirconia cannot be ignored.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】ジルコニアゾルにはその粒子形状が球形の
もの、或いは球が直線に連結した形状のもの等があ
り、いずれの形状のゾルも使用可能であるが、後者の形
状のゾルであることが好ましく、その粒子の大きさは5
0〜2,000オングストローム、好ましくは100〜
1,000オングストロームであり、又ジルコニアゾル
が安定化されているPH領域は酸性側、中性或いはアル
カリ性側いずれでも良い。
[0013] zirconia sol as its particle shape is spherical, or ball has such a shape that linearly connected, is a sol of any shape can be used, it is sol of the latter shape Is preferred, and the particle size is 5
0-2,000 Angstroms, preferably 100-
The PH region is 1,000 angstroms and the zirconia sol is stabilized. The PH region may be on the acidic side, neutral side or alkaline side.

【手続補正6】[Procedure correction 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】アルカリ土類金属酸化物とアルミナとは化
合物を生させることが好ましく、700℃以下の温度
では化合物生に不充分で良好な担体とはなし得ず、又
1350℃以上ではアルミナの焼結が進む為表面積が小
さくなり過ぎて、適した担体を得ることはできない。
The earth alkali metal oxide and preferably be a compound generate the alumina, the alumina at 700 ° C. without obtaining good carrier and talk insufficient to compound raw formed at a temperature below also 1350 ° C. or higher Due to the progress of sintering, the surface area becomes too small to obtain a suitable carrier.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Correction target item name] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0024】 n−ヘキサン水蒸気改質反応性能評価条件 触媒使用量 25CC 触媒サイズ 3/16in×3/16in(打錠
品) 出口全ガス空間速度 5,000hr-1 スチーム/カーボン 2.5(モル比) 圧力 常圧 反応温度 750℃ 反応時間 7日間 触媒の性能を示すn−ヘキサン転化率(%)は下式によ
って計算した。
[0024] n-Hexane steam reforming reaction performance evaluation condition Catalyst usage amount 25CC Catalyst size 3/16 in x 3/16 in (tablet product) Outlet total gas space velocity 5,000 hr -1 steam / carbon 2.5 (molar ratio) Pressure Normal Pressure Reaction temperature 750 ° C. Reaction time 7 days The n-hexane conversion rate (%) showing the performance of the catalyst was calculated by the following formula.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 アルカリ土類金属アルミネ−トを含む酸
化アルミニウム若しくは酸化アルミニウム自体を担体と
し、ジルコニアゾルを前駆体とする酸化ジルコニウムを
助触媒として担持させ、ルテニウムを活性成分として含
有して成る炭化水素水蒸気改質触媒。
1. A carbonization comprising aluminum oxide containing alkaline earth metal aluminate or aluminum oxide itself as a carrier, zirconium oxide having zirconia sol as a precursor supported thereon as a co-catalyst, and ruthenium as an active ingredient. Hydrogen steam reforming catalyst.
【請求項2】 酸化ジルコニウムの含有量が触媒100
重量部に対し0.2〜20重量部である請求項1記載の
触媒。
2. A catalyst having a zirconium oxide content of 100%.
The catalyst according to claim 1, which is 0.2 to 20 parts by weight with respect to parts by weight.
【請求項3】 ルテニウム含有量が触媒100重量部に
対し0.02〜5.0重量部である請求項1記載の触
媒。
3. The catalyst according to claim 1, wherein the ruthenium content is 0.02 to 5.0 parts by weight based on 100 parts by weight of the catalyst.
【請求項4】 アルカリ土類金属アルミネ−ト中のアル
カリ土類金属成分がカルシウム、バリウム及びマグネシ
ウムより選ばれる1種以上からなり、担体100重量部
に対しアルカリ土類金属が酸化物換算で2.0〜50重
量部である請求項1記載の触媒。
4. The alkaline earth metal component in the alkaline earth metal aluminate is one or more selected from calcium, barium and magnesium, and the alkaline earth metal is 2 in terms of oxide per 100 parts by weight of the carrier. The catalyst according to claim 1, which is from 0.0 to 50 parts by weight.
【請求項5】 アルカリ土類金属アルミネートを含む酸
化アルミニウム又は酸化アルミニウム担体に、ジルコニ
ウムゾルを添着し次いでルテニウム化合物を添着した
後、焼成することによる請求項1記載の触媒製造法。
5. The method for producing a catalyst according to claim 1, wherein a zirconium sol is impregnated on an aluminum oxide or aluminum oxide support containing an alkaline earth metal aluminate, then a ruthenium compound is impregnated, and then calcined.
JP05673792A 1992-02-07 1992-02-07 Hydrocarbon steam reforming catalyst Expired - Lifetime JP3307976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05673792A JP3307976B2 (en) 1992-02-07 1992-02-07 Hydrocarbon steam reforming catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05673792A JP3307976B2 (en) 1992-02-07 1992-02-07 Hydrocarbon steam reforming catalyst

Publications (2)

Publication Number Publication Date
JPH05220397A true JPH05220397A (en) 1993-08-31
JP3307976B2 JP3307976B2 (en) 2002-07-29

Family

ID=13035839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05673792A Expired - Lifetime JP3307976B2 (en) 1992-02-07 1992-02-07 Hydrocarbon steam reforming catalyst

Country Status (1)

Country Link
JP (1) JP3307976B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1093852A1 (en) * 1998-06-09 2001-04-25 Idemitsu Kosan Company Limited Catalyst and process for reforming hydrocarbon
JP2002126522A (en) * 2000-10-20 2002-05-08 Mitsubishi Heavy Ind Ltd Hydrocarbon reforming catalyst
EP1894622A1 (en) 2001-03-29 2008-03-05 Idemitsu Kosan Co., Ltd. Catalytic processes for reforming a hydrocarbon
JP2009078267A (en) * 1998-07-14 2009-04-16 Idemitsu Kosan Co Ltd Autothermal reforming catalyst and method for producing hydrogen or synthesis gas
JP2012020888A (en) * 2010-07-12 2012-02-02 Honda Motor Co Ltd Reformer and method for manufacturing the same
JP2017013049A (en) * 2011-02-14 2017-01-19 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Catalyst used in steam modification process
US10328416B2 (en) 2014-02-05 2019-06-25 Mitsui Mining & Smelting Co., Ltd. Fuel reforming catalyst
CN114100595A (en) * 2020-08-28 2022-03-01 中国石油化工股份有限公司 Silver catalyst carrier for ethylene epoxidation and preparation method thereof, silver catalyst and method for producing ethylene oxide by ethylene epoxidation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1093852A1 (en) * 1998-06-09 2001-04-25 Idemitsu Kosan Company Limited Catalyst and process for reforming hydrocarbon
EP1093852A4 (en) * 1998-06-09 2002-09-04 Idemitsu Kosan Co Catalyst and process for reforming hydrocarbon
JP2009078267A (en) * 1998-07-14 2009-04-16 Idemitsu Kosan Co Ltd Autothermal reforming catalyst and method for producing hydrogen or synthesis gas
JP2002126522A (en) * 2000-10-20 2002-05-08 Mitsubishi Heavy Ind Ltd Hydrocarbon reforming catalyst
EP1894622A1 (en) 2001-03-29 2008-03-05 Idemitsu Kosan Co., Ltd. Catalytic processes for reforming a hydrocarbon
JP2012020888A (en) * 2010-07-12 2012-02-02 Honda Motor Co Ltd Reformer and method for manufacturing the same
JP2017013049A (en) * 2011-02-14 2017-01-19 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Catalyst used in steam modification process
US10328416B2 (en) 2014-02-05 2019-06-25 Mitsui Mining & Smelting Co., Ltd. Fuel reforming catalyst
CN114100595A (en) * 2020-08-28 2022-03-01 中国石油化工股份有限公司 Silver catalyst carrier for ethylene epoxidation and preparation method thereof, silver catalyst and method for producing ethylene oxide by ethylene epoxidation

Also Published As

Publication number Publication date
JP3307976B2 (en) 2002-07-29

Similar Documents

Publication Publication Date Title
JP5279227B2 (en) Catalyst for fuel reforming reaction and method for producing hydrogen using the same
US20040142817A1 (en) Modified theta-alumina-supported nickel reforming catalyst and its use for producing synthesis gas from natural gas
JP3260411B2 (en) Hydrocarbon steam reforming catalyst and method for producing the same
KR100400591B1 (en) Catalyst for steam reforming of methanol and method for producing hydrogen therewith
CN102143798A (en) Bimetallic Mo/Co catalyst for producing of alcohols from hydrogen and carbon monoxide containing gas
JP3667801B2 (en) Method for producing ruthenium catalyst and method for steam reforming hydrocarbon using the catalyst
JPH05220397A (en) Steam reforming catalyst for hydrocarbon
JP4222839B2 (en) Hydrocarbon reforming method
JP3365657B2 (en) Catalyst for steam reforming of hydrocarbons
JP4226684B2 (en) Method for producing synthesis gas by partial oxidation method
JP2559715B2 (en) Heat resistant catalyst for catalytic combustion reaction and method for producing the same
JP2807053B2 (en) Decomposition method of methanol
JPH05221602A (en) Production of synthesis gas
JPH05177140A (en) Preparation of precursor of catalyst for hydrogenation and preparation of alcohol using the precursor
JPH0611401B2 (en) Methanol reforming catalyst
KR101166074B1 (en) Manganese based Catalysts for Carbon dioxide reforming of Methane, Preparing method thereof, and Preparing method of Syngas using the same
JP4175452B2 (en) Dimethyl ether reforming catalyst and dimethyl ether reforming method
JP4133432B2 (en) Methanol steam reforming catalyst and method for producing hydrogen by steam reforming of methanol using the catalyst
KR101440193B1 (en) Catalyst for the mixed reforming of natural gas, preparation method thereof and method for mixed reforming of natural gas using the catalyst
JPH0361494B2 (en)
KR101173028B1 (en) Tungsten based Catalysts for Carbon dioxide reforming of Methane and Preparing method of Syngas using the same
JP3291538B2 (en) Methanol decomposition catalyst and method for producing the same
JP3390778B2 (en) Methanol decomposition catalyst and method for producing the same
JP2001232198A (en) Catalyst and manufacturing method of catalyst
JPS60122038A (en) Catalyst for reforming methanol

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110517

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120517

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120517

Year of fee payment: 10