JP2015167887A - Co selection methanation catalyst - Google Patents

Co selection methanation catalyst Download PDF

Info

Publication number
JP2015167887A
JP2015167887A JP2014042850A JP2014042850A JP2015167887A JP 2015167887 A JP2015167887 A JP 2015167887A JP 2014042850 A JP2014042850 A JP 2014042850A JP 2014042850 A JP2014042850 A JP 2014042850A JP 2015167887 A JP2015167887 A JP 2015167887A
Authority
JP
Japan
Prior art keywords
catalyst
mesoporous
coating layer
methanation
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014042850A
Other languages
Japanese (ja)
Other versions
JP6350898B2 (en
Inventor
敏広 宮尾
Toshihiro Miyao
敏広 宮尾
東山 和寿
Kazuhisa Higashiyama
和寿 東山
壽生 山下
Hisao Yamashita
壽生 山下
橋本 登
Noboru Hashimoto
登 橋本
出来 成人
Shigeto Deki
成人 出来
渡辺 政廣
Masahiro Watanabe
政廣 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Yamanashi NUC
Original Assignee
University of Yamanashi NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Yamanashi NUC filed Critical University of Yamanashi NUC
Priority to JP2014042850A priority Critical patent/JP6350898B2/en
Publication of JP2015167887A publication Critical patent/JP2015167887A/en
Application granted granted Critical
Publication of JP6350898B2 publication Critical patent/JP6350898B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PROBLEM TO BE SOLVED: To extend service life of a CO selection methanation catalyst, enhance a CO removal ratio of the CO selection methanation catalyst for making outlet CO density a low value in a wide temperature range, and enhance steam tolerance of the CO selection methanation catalyst.SOLUTION: There is provided the CO selection methanation catalyst comprising: a carrying metal catalyst for performing methanation of CO in hydrogen-rich gas including CO and COselectively; and a coating layer for covering a surface of the carrying metal catalyst. The coating layer has a mesoporous structure and formed of an oxide including a non-Si metal.

Description

本発明は、家庭用固体高分子形燃料電池用燃料改質器のCO除去工程や、反応物の蓄積によって活性低下を伴う触媒反応プロセスに広く適用可能であるCO選択メタン化触媒に関する。   The present invention relates to a CO selective methanation catalyst that can be widely applied to a CO removal step of a domestic solid polymer fuel cell fuel reformer and a catalytic reaction process accompanied by a decrease in activity due to accumulation of reactants.

固体高分子形燃料電池は80℃程度の低温で運転するため、燃料である水素リッチガス中に一酸化炭素が、あるレベル以上含まれていると、アノード白金触媒のCO被毒により、発電性能が低下したり遂には全く発電ができなくなったりするという問題が生じる。   Since the polymer electrolyte fuel cell is operated at a low temperature of about 80 ° C., if the hydrogen rich gas as the fuel contains carbon monoxide at a certain level or more, the power generation performance is reduced due to CO poisoning of the anode platinum catalyst. There will be a problem that it will drop or eventually no power can be generated at all.

このCO被毒を回避するため、都市ガス、LPガス又は灯油などを燃料改質器で水素リッチガスに転換して使用する家庭用固体高分子形燃料電池発電システムでは、燃料電池アノード入口ガスのCO濃度を常に10ppm以下に抑えることが望まれる。実システムの多くは、燃料改質プロセスの最終段階で生成ガスに空気を混合しガス中に含まれるCOをCOに酸化するCO選択酸化触媒を採用している。
CO + 1/2 O = CO (反応式1)
In order to avoid this CO poisoning, in a domestic polymer electrolyte fuel cell power generation system that uses city gas, LP gas, kerosene or the like after being converted to hydrogen-rich gas by a fuel reformer, CO in the fuel cell anode inlet gas It is desirable to always keep the concentration below 10 ppm. Many actual systems employ a CO selective oxidation catalyst that mixes air with the product gas at the final stage of the fuel reforming process and oxidizes CO contained in the gas to CO 2 .
CO + 1/2 O 2 = CO 2 (Scheme 1)

この触媒では反応式1に示すように外部から常に空気を取り込む必要があるため、空気ブロアやその制御システム、更には供給した空気を反応ガスと均一に混合するための複雑なガス混合構造体を燃料改質器に設置する必要がある。   In this catalyst, as shown in Reaction Formula 1, since it is necessary to constantly take in air from the outside, an air blower, its control system, and a complicated gas mixing structure for uniformly mixing the supplied air with the reaction gas are provided. It is necessary to install it in the fuel reformer.

最近、このCO選択酸化触媒に変わる新たな方法として、CO選択メタン化触媒が注目されている(例えば特許文献1〜2)。   Recently, a CO selective methanation catalyst has attracted attention as a new method to replace this CO selective oxidation catalyst (for example, Patent Documents 1 and 2).

特許文献1には、噴霧プラズマ法により作製した非化学量論組成のNi−Al複合酸化物前駆体にルテニウム塩を含浸担持し、還元処理を行うことで、従来触媒ではCOメタン化反応よりCOメタン化反応と逆水性シフト反応が支配的に進行する高温度領域においても選択的にCOメタン化反応を起こさせることができるCO選択メタン化触媒が開示されている。 In Patent Document 1, a non-stoichiometric Ni-Al composite oxide precursor produced by a spray plasma method is impregnated with a ruthenium salt and subjected to a reduction treatment. A CO selective methanation catalyst capable of selectively causing a CO methanation reaction even in a high temperature region where a 2- methanation reaction and a reverse aqueous shift reaction proceed predominantly is disclosed.

特許文献2には、一酸化炭素をメタン化する触媒の活性成分に、二酸化炭素の反応抑制剤であるハロゲン、無機酸、金属酸素酸から選ばれた少なくとも1種が吸着又は結合させることによって、COメタン化反応の選択性に優れたCO選択メタン化触媒が開示されている。   In Patent Document 2, at least one selected from halogen, an inorganic acid, and a metal oxyacid, which are carbon dioxide reaction inhibitors, is adsorbed or bonded to an active component of a catalyst for methanating carbon monoxide, A CO selective methanation catalyst excellent in the selectivity of the CO methanation reaction is disclosed.

WO2010/122855号WO2010 / 122855 WO2011/142481号WO2011 / 142481

特許文献1〜2に開示された触媒は、COメタン化反応の選択性に優れたものであるが、このような触媒の実用化に向けてさらに研究を進めたところ、これらの文献の触媒を用いた場合、特に反応ガスの空塔速度が大きい場合に、触媒が劣化(触媒活性が低下)しやすいことが分かった。また、CO選択酸化触媒を用いた場合の出口ガスのCO濃度(以下、「出口CO濃度」)は10ppm以下にすることが容易であったが、CO選択メタン化触媒を用いた場合には、非常に狭い温度範囲においてのみ、出口CO濃度を10ppm以下にすることができたので、このままでは実用化が容易でないという問題もあった。   The catalysts disclosed in Patent Documents 1 and 2 are excellent in the selectivity of the CO methanation reaction. However, when further research was carried out for practical use of such a catalyst, the catalysts of these documents were used. When used, it was found that the catalyst is likely to deteriorate (catalytic activity decreases) particularly when the reaction gas has a high superficial velocity. In addition, when the CO selective oxidation catalyst was used, the CO concentration of the outlet gas (hereinafter referred to as “outlet CO concentration”) was easy to be 10 ppm or less, but when the CO selective methanation catalyst was used, Only in a very narrow temperature range, the outlet CO concentration could be reduced to 10 ppm or less.

本発明はこのような事情に鑑みてなされたものであり、第1の課題は、CO選択メタン化触媒を長寿命化させることであり、第2の課題は、CO選択メタン化触媒のCO除去率を高めて、広い温度範囲において出口CO濃度を低い値にすることであり、第3の課題は、CO選択メタン化触媒の水蒸気耐性を高めることである。   The present invention has been made in view of such circumstances, and the first problem is to extend the life of the CO selective methanation catalyst, and the second problem is to remove CO from the CO selective methanation catalyst. The third problem is to increase the steam resistance of the CO selective methanation catalyst by increasing the rate and lowering the outlet CO concentration over a wide temperature range.

本発明の第1の観点によれば、CO及びCOを含有する水素リッチガス中のCOを選択的にメタン化する担持金属触媒と、前記担持金属触媒の表面を覆う被覆層を備え、前記被覆層は、メソポーラス構造を有し、且つ非Si金属を含む酸化物からなる、CO選択メタン化触媒が提供される。 According to a first aspect of the present invention, there is provided a supported metal catalyst that selectively methanates CO in a hydrogen-rich gas containing CO and CO 2 , and a coating layer that covers a surface of the supported metal catalyst, The layer is provided with a CO selective methanation catalyst having a mesoporous structure and made of an oxide containing a non-Si metal.

本発明者らは、担持金属触媒上に被覆層を設けることによって、CO選択メタン化触媒の長寿命化及びCO除去率の向上が可能であることを見出した。また、被覆層の構造及び材料について種々検討を行ったところ、被覆層をメソポーラスシリカとすることによって、触媒寿命が飛躍的に伸びることを見出した。   The present inventors have found that by providing a coating layer on a supported metal catalyst, it is possible to extend the life of the CO selective methanation catalyst and improve the CO removal rate. Further, various studies were made on the structure and material of the coating layer, and as a result, it was found that the life of the catalyst was dramatically increased by using mesoporous silica as the coating layer.

しかし、さらに研究を進めたところ、メソポーラスシリカからなる被覆層は、水素リッチガス中の水蒸気濃度が20%程度の通常の運転条件下では安定性が優れているものの、水素リッチガス中の水蒸気濃度が60%程度の条件下では触媒活性の低下速度が大幅に高まることが分かった。燃料電池システムの起動停止時や異常停止時には水素リッチガス中の水蒸気濃度が60%に到達することがあり得るため、このような条件下においても、触媒活性の低下速度が低いことが重要である。   However, as a result of further research, the coating layer made of mesoporous silica has excellent stability under normal operating conditions in which the water vapor concentration in the hydrogen rich gas is about 20%, but the water vapor concentration in the hydrogen rich gas is 60%. It was found that the rate of decrease in catalyst activity was greatly increased under conditions of about%. Since the water vapor concentration in the hydrogen-rich gas can reach 60% when the fuel cell system is started or stopped or abnormally stopped, it is important that the rate of decrease in catalyst activity is low even under such conditions.

そこでさらに研究を進めたところ、高濃度水蒸気環境下での触媒活性の劣化は、メソポーラスシリカからなる被覆層が高濃度水蒸気にさらされるとその構造が崩壊してしまうことが原因であることが分かった。そして、この知見に基づき、被覆層の構造崩壊を抑制する方法について研究を行ったところ、メソポーラス構造を有する被覆層が非Si金属を含む酸化物からなる場合に構造崩壊が起きにくいことが分かり、本発明の完成に到った。   As a result of further research, it was found that the deterioration of the catalytic activity in a high-concentration steam environment was caused by the collapse of the structure of the coating layer made of mesoporous silica when exposed to high-concentration steam. It was. And based on this knowledge, when research was conducted on a method for suppressing the structural collapse of the coating layer, it was found that the structural collapse hardly occurs when the coating layer having a mesoporous structure is made of an oxide containing a non-Si metal, The present invention has been completed.

また、さらに検討を進めたところ、被覆層がジルコニアからなる場合には、被覆層の構造安定性が著しく高まることが分かった。このような観点によれば、被覆層は必ずしもメソポーラス構造を有する必要はなく、従って、本発明の第2の観点によれば、CO及びCO2を含有する水素リッチガス中のCOを選択的にメタン化する担持金属触媒と、前記担持金属触媒の表面を覆う被覆層を備え、前記被覆層は、ジルコニアからなる、CO選択メタン化触媒が提供される。   Further investigations have shown that when the coating layer is made of zirconia, the structural stability of the coating layer is significantly increased. According to such a viewpoint, the coating layer does not necessarily have a mesoporous structure. Therefore, according to the second aspect of the present invention, CO in the hydrogen-rich gas containing CO and CO2 is selectively methanated. There is provided a CO selective methanation catalyst comprising a supported metal catalyst and a coating layer covering a surface of the supported metal catalyst, wherein the coating layer is made of zirconia.

水素製造システム全体の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the whole hydrogen production system. (A)〜(B)は、ハニカム基材の例を示す斜視図であり、(C)は、ハニカム基材の1つのセルの平面図である。(A)-(B) is a perspective view which shows the example of a honeycomb base material, (C) is a top view of one cell of a honeycomb base material. (A)は、製造例1のコア触媒のTEM像を示し、(B)は、製造例2のメソポーラスシリカ被覆触媒のTEM像を示す。(A) shows a TEM image of the core catalyst of Production Example 1, and (B) shows a TEM image of the mesoporous silica-coated catalyst of Production Example 2. 製造例2のメソポーラスシリカ被覆触媒の高濃度水蒸気処理による触媒活性の変化を示すグラフである。(B)は、(A)の縦軸を拡大したグラフである。4 is a graph showing changes in catalytic activity of the mesoporous silica-coated catalyst of Production Example 2 by high-concentration steam treatment. (B) is the graph which expanded the vertical axis | shaft of (A). (A)〜(B)は、製造例3のメソポーラスジルコニア被覆触媒の被覆層の微細構造を示すSEM像である。(A)-(B) are SEM images which show the fine structure of the coating layer of the mesoporous zirconia-coated catalyst of Production Example 3. 製造例3のメソポーラスジルコニア被覆触媒のSTEM−EDS測定結果を示す。The STEM-EDS measurement result of the mesoporous zirconia-coated catalyst of Production Example 3 is shown. (A)〜(F)は、水とジルコニウムアルコキシドの配合量を変えて作製した製造例4のメソポーラスジルコニア被覆触媒のTEM像である。(A)-(F) are TEM images of the mesoporous zirconia-coated catalyst of Production Example 4 produced by changing the blending amounts of water and zirconium alkoxide. 製造例3のメソポーラスジルコニア被覆触媒の高濃度水蒸気処理による触媒活性の変化を示すグラフである。(B)は、(A)の縦軸を拡大したグラフである。6 is a graph showing changes in catalytic activity of the mesoporous zirconia-coated catalyst of Production Example 3 by high-concentration steam treatment. (B) is the graph which expanded the vertical axis | shaft of (A). (A)〜(D)は、それぞれ、メソポーラスシリカ、メソポーラスチタニア、メソポーラスアルミナ、及びメソポーラスジルコニアでコア触媒を被覆して得られた触媒の水蒸気処理前後の触媒活性を示すグラフである。(A)-(D) is a graph which shows the catalyst activity before and behind the steam treatment of the catalyst obtained by coat | covering a core catalyst with mesoporous silica, mesoporous titania, mesoporous alumina, and mesoporous zirconia, respectively. (A)〜(B)は、それぞれ、メソポーラスジルコニア被覆触媒と、メソポーラスアルミナ被覆触媒についての長期耐久試験の結果を示すグラフである。(A)-(B) is a graph which shows the result of the long-term durability test about a mesoporous zirconia coating catalyst and a mesoporous alumina coating catalyst, respectively.

以下、本発明の実施形態について説明する。   Hereinafter, embodiments of the present invention will be described.

1.システム全体の構成
図1は、原燃料(都市ガス等)から燃料電池(たとえば固体高分子形燃料電池(PEFCスタック))に供給する高い濃度の水素ガスを製造、精製するフロー及びシステム全体の概略構成を示すものである。破線で囲まれた部分が燃料改質装置(燃料処理装置)14に相当し、この中を、原燃料供給系4から供給される原燃料が流れ、各触媒層を通過する過程で改質とCOの除去を行い(10ppm以下)高い濃度の水素ガス(改質ガス:H約75%、CO約20%)を得る。
1. 1 is a flow diagram for producing and purifying a high-concentration hydrogen gas supplied from a raw fuel (city gas, etc.) to a fuel cell (for example, a polymer electrolyte fuel cell (PEFC stack)) and an outline of the entire system. The configuration is shown. A portion surrounded by a broken line corresponds to the fuel reforming device (fuel processing device) 14, in which the raw fuel supplied from the raw fuel supply system 4 flows and passes through each catalyst layer. It performs the removal of CO (10 ppm or less) high concentration of hydrogen gas (reformed gas: H 2 to about 75%, CO 2 20%) obtained.

原燃料はまず脱硫器5で硫黄成分を除去した後,改質触媒層を含む改質器7において改質反応により水素(H)と一酸化炭素(CO)を生成し(水蒸気発生器6からの水蒸気を用いた水蒸気改質)、さらにCO変成触媒層を含むCO変成器8でCOをCOに変換する。 The raw fuel is first removed from the sulfur component by the desulfurizer 5, and then hydrogen (H 2 ) and carbon monoxide (CO) are generated by the reforming reaction in the reformer 7 including the reforming catalyst layer (steam generator 6). CO is converted to CO 2 by a CO converter 8 including a CO conversion catalyst layer.

COを0.5〜1.0%程度含むガス(H、COなど)は本発明によるCO選択メタン化触媒を用いたCOの選択メタン化触媒層を含むCO選択メタン化反応器11内に流入して、この触媒層を通過する過程でCO濃度が10ppm以下の高濃度Hガス(改質ガス)となり、PEFCスタック13に供給される。 A gas containing about 0.5 to 1.0% of CO (H 2 , CO 2, etc.) is in the CO selective methanation reactor 11 including a selective methanation catalyst layer of CO using the CO selective methanation catalyst according to the present invention. In the course of passing through the catalyst layer, the H 2 gas (reformed gas) having a CO concentration of 10 ppm or less is supplied to the PEFC stack 13.

CO選択メタン化触媒は、好ましくは粒状触媒として使用される。また、CO選択メタン化触媒は、ハニカム基材上にコーティングして使用してもよい。ハニカム基材の一例が図2(A)、図2(B)に示されている。図2(A)はコージェライト製のハニカム基材の例であり、図2(B)はメタル製のハニカム基材の例である。いずれにしても、筒体(円筒、角筒等)内部に、その長手方向に沿って配置された多数の縦、横、斜め、波形等の仕切り板(隔壁)が交叉して設けられ、隣接する仕切り板間がガスの通路となっている。これらの仕切り板の表面全体にCO選択メタン化触媒がコーティングされる。断面が六角形のみならず、四角形、正弦波形、その他の形状のガス通路(流路)(セル)を有するハニカム構造のものを、この明細書では、単にハニカムまたはハニカム基材と呼ぶ。   The CO selective methanation catalyst is preferably used as a granular catalyst. Further, the CO selective methanation catalyst may be used by coating on a honeycomb substrate. An example of the honeycomb substrate is shown in FIGS. 2 (A) and 2 (B). 2A is an example of a cordierite honeycomb substrate, and FIG. 2B is an example of a metal honeycomb substrate. In any case, a large number of vertical, horizontal, diagonal, corrugated partition plates (partitions) arranged along the longitudinal direction of the cylinder (cylindrical, rectangular tube, etc.) are provided in an intersecting manner. A gas passage is provided between the partition plates. The entire surface of these partition plates is coated with a CO selective methanation catalyst. A honeycomb structure having not only a hexagonal cross section but also gas passages (flow paths) (cells) having a quadrangular shape, a sinusoidal waveform, or other shapes is simply referred to as a honeycomb or a honeycomb substrate in this specification.

また、CO選択メタン化触媒をハニカム基材上にコーティングする方法としては、粉末に被覆層を形成したものをハニカム基材上にコーティングする方法や、図2(C)に示すように、触媒粉末をハニカム基材1上にコーティングして触媒層3を形成し、その後に、被覆層5を形成する方法が挙げられる。   Moreover, as a method of coating the honeycomb base material with the CO selective methanation catalyst, a method of coating the honeycomb base material with a coating layer formed on the powder, or a catalyst powder as shown in FIG. A method of forming the catalyst layer 3 by coating the honeycomb substrate 1 on the honeycomb substrate 1 and then forming the coating layer 5 can be mentioned.

2.CO選択メタン化触媒の構成
本発明の一実施形態のCO選択メタン化触媒は、CO及びCOを含有する水素リッチガス中のCOを選択的にメタン化する担持金属触媒と、前記担持金属触媒の表面を覆う被覆層を備える。
2. Configuration of CO Selective Methanation Catalyst A CO selective methanation catalyst according to an embodiment of the present invention includes a supported metal catalyst that selectively methanates CO in a hydrogen-rich gas containing CO and CO 2 , and the supported metal catalyst. A coating layer covering the surface is provided.

<担持金属触媒>
担持金属触媒の担体と活性金属の種類は、特に限定されず、特許文献1〜2に記載されているようなCOメタン化能を有するものであればよい。具体的には、例えば活性金属としては、Ni、Ru、Fe、Co、V、Nb、Ta、Cr、Mo、W、Mn、Tc、Reおよびこれらの複合物が利用可能であり、担体としては、Al、V、Ti、Zr、Si、Mg、Ceの少なくとも一つ以上からなる酸化物、窒化物、炭化物が利用可能である。具体例としてはゼオライトやシリカアルミナなどが挙げられる。このような担持金属触媒は、COのメタン化反応を選択的に抑制するメタン化反応抑制剤を含んでいることが好ましい。メタン化反応抑制剤としては、前記活性金属の表面電荷をδ+側にする材料、又はCOメタン化活性を抑制する効果のある種々の材料が適用できるが、特に、F、Cl、Br、I等のハロゲン、HCl、HNO、HSO、HPO等の無機酸、ホウ酸、バナジウム酸、タングステン酸、クロム酸などの金属酸素酸のいずれか又は二つ以上を含むことが望ましい。触媒上での存在形態としては、その作製工程に依存するため、前記化合物に限定されるものではなく、その前駆体、反応物、分解生成物でも良い。一具体例では、活性金属は、Ni、又はNiとVの合金又は混合物であり、担体は、V酸化物を含んだAl酸化物(つまり、Al酸化物のマトリックス中にV酸化物が担持または分散・混合されたような状態)である。このような構成の担持金属触媒は、長期間に渡ってCOを選択的にメタン化可能であることが特許文献1に記載の実験などから明らかになったからである。
<Supported metal catalyst>
The type of the support metal catalyst and the active metal is not particularly limited as long as it has a CO methanation ability as described in Patent Documents 1 and 2. Specifically, for example, Ni, Ru, Fe, Co, V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, and a composite thereof can be used as the active metal. Oxides, nitrides, and carbides composed of at least one of Al, V, Ti, Zr, Si, Mg, and Ce can be used. Specific examples include zeolite and silica alumina. Such a supported metal catalyst preferably contains a methanation reaction inhibitor that selectively suppresses the methanation reaction of CO 2 . As the methanation reaction inhibitor, a material that brings the surface charge of the active metal to the δ + side or various materials that have an effect of suppressing CO 2 methanation activity can be applied, and in particular, F, Cl, Br, I Or any one or more of inorganic acids such as halogen, HCl, HNO 3 , H 2 SO 4 , H 3 PO 4 , and metal oxygen acids such as boric acid, vanadate acid, tungstic acid, chromic acid, etc. desirable. Since the existence form on the catalyst depends on the production process, it is not limited to the above compound, but may be a precursor, a reaction product, or a decomposition product thereof. In one embodiment, the active metal is Ni, or an alloy or mixture of Ni and V, and the support is an Al oxide containing V oxide (ie, the V oxide is supported in the matrix of Al oxide or A state of being dispersed and mixed). This is because it became clear from the experiment described in Patent Document 1 that the supported metal catalyst having such a structure can selectively methanate CO over a long period of time.

<被覆層>
本実施形態の触媒は、上記担持金属触媒上に、CO濃度を低減する機能を有する被覆層を形成したことを特徴としている。上記の通り、CO選択メタン化反応器11に流入する反応ガス中には、通常、COが0.5〜1.0%程度含まれており、担持金属触媒がこのような濃度のCOに長時間さらされると、担持金属触媒上に徐々に炭素種が堆積し、その活性が徐々に低下するが、本実施形態によれば、担持金属触媒上に被覆層が形成され、それによって、担持金属触媒上でのCO濃度が反応ガス中のCO濃度に比べて低減されるので、担持金属触媒の劣化が抑制される。本発明者らの実験によれば、CO濃度が高いほど担持金属触媒の劣化の速度が大きく、CO濃度が0.2%以下の場合には担持金属触媒の劣化が極めて遅くなることが分かったので、担持金属触媒上に被覆層を形成することによって担持金属触媒表面でのCO濃度を0.2%以下にすることが好ましい。
<Coating layer>
The catalyst of this embodiment is characterized in that a coating layer having a function of reducing the CO concentration is formed on the supported metal catalyst. As described above, the reaction gas flowing into the CO selective methanation reactor 11 usually contains about 0.5 to 1.0% of CO, and the supported metal catalyst is long in CO having such a concentration. When exposed to time, carbon species gradually deposit on the supported metal catalyst and its activity gradually decreases, but according to the present embodiment, a coating layer is formed on the supported metal catalyst, thereby supporting the supported metal catalyst. Since the CO concentration on the catalyst is reduced as compared with the CO concentration in the reaction gas, deterioration of the supported metal catalyst is suppressed. According to the experiments by the present inventors, it was found that the higher the CO concentration, the greater the rate of deterioration of the supported metal catalyst, and when the CO concentration was 0.2% or less, the deterioration of the supported metal catalyst was extremely slow. Therefore, it is preferable that the CO concentration on the surface of the supported metal catalyst is 0.2% or less by forming a coating layer on the supported metal catalyst.

被覆層を設けることによって担持金属触媒表面でのCO濃度の低減される原理としては、通常、拡散抵抗による濃度勾配とメタン化反応による濃度勾配の少なくとも一方が関係する。拡散抵抗による濃度勾配は、被覆層内の細孔内ではCOの拡散が制限されるために、担持金属触媒表面でのメタン化によるCOの消費速度よりも担持金属触媒表面へのCOの供給速度が小さくなる場合に形成される濃度勾配である。メタン化反応による濃度勾配は、細孔の壁面に担持された被覆層金属によってCOがメタン化されることによって形成される濃度勾配である。   The principle of reducing the CO concentration on the surface of the supported metal catalyst by providing the coating layer usually involves at least one of a concentration gradient due to diffusion resistance and a concentration gradient due to methanation reaction. Since the concentration gradient due to diffusion resistance is limited in the diffusion of CO in the pores in the coating layer, the CO supply rate to the surface of the supported metal catalyst is higher than the CO consumption rate due to methanation on the surface of the supported metal catalyst. Is a concentration gradient formed when. The concentration gradient due to the methanation reaction is a concentration gradient formed when CO is methanated by the coating layer metal supported on the wall surfaces of the pores.

本実施形態では、被覆層は、メソポーラス構造を有する。本明細書において、「メソポーラス構造」とは、直径が1〜50nmである細孔(メソ孔)を多数有する構造である。細孔の構造は、限定されず、規則的な構造であっても、ランダムな構造であってもよい。メソポーラス構造であるかどうかは、電子顕微鏡像で観察される細孔の直径が1〜50nmの範囲内に入っているかどうかによって決定することができる。また、別の観点では、メソポーラス構造であるかどうかは、JIS Z 8831-2:2010に従って測定した細孔径分布において、細孔径が1〜50nmの範囲内にピークが存在するかどうかによって決定してもよい。細孔径分布での細孔径のピーク位置は、具体的には例えば、1、2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50nmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。また、さらに別の観点では、メソポーラス構造であるかどうかは、上記細孔径分布において、(細孔径1〜50nmの細孔容積)/(細孔径1〜100nmの細孔容積)によって規定されるメソ孔比率が0.1以上であるかどうかによって決定してもよい。このメソ孔比率は、具体的には例えば、0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。   In the present embodiment, the coating layer has a mesoporous structure. In the present specification, the “mesoporous structure” is a structure having a large number of pores (mesopores) having a diameter of 1 to 50 nm. The structure of the pores is not limited, and may be a regular structure or a random structure. Whether or not it has a mesoporous structure can be determined by whether or not the diameter of the pores observed in the electron microscope image is in the range of 1 to 50 nm. In another aspect, whether or not the mesoporous structure is determined by whether or not a peak exists in the pore diameter range of 1 to 50 nm in the pore diameter distribution measured according to JIS Z 8831-2: 2010. Also good. Specifically, the peak position of the pore diameter in the pore diameter distribution is, for example, 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50 nm, and may be within a range between any two of the numerical values exemplified here. In another aspect, the mesoporous structure is determined by the mesopore defined by (pore diameter 1 to 50 nm pore volume) / (pore diameter 1 to 100 nm pore volume) in the pore size distribution. It may be determined depending on whether the pore ratio is 0.1 or more. Specifically, this mesopore ratio is, for example, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0,. 55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1 and between any two of the numerical values illustrated here It may be within the range.

被覆層は、非Si金属を含む酸化物からなる。本発明者らによる実験によれば、非Si金属を含む酸化物で構成されたメソポーラス構造は、高濃度水蒸気環境下での構造安定性が高いことが分かった。非Si金属としては、アルミニウム、チタニウム、バナジウム、ストロンチウム、イットリウム、ジルコニウム、ニオブ、ランタン、及びタンタルから選択される少なくとも1つからなるものが好ましい。メソポーラス構造は、一例では、アルキルトリメチルアンモニウム塩の存在下で金属アルコキシドを加水分解することによって形成することができるが、上記列挙した金属は、適度に安定なアルコキシドが形成しやすいためにメソポーラス構造を形成しやすいという利点がある。また、非Si金属としては、アルミニウムを含むことが好ましく、被覆層がメソポーラスアルミナからなることがさらに好ましい。この場合、高濃度水蒸気処理によって触媒活性が向上するからである。また、非Si金属としては、ジルコニウムを含むことが好ましく、被覆層がメソポーラスジルコニアからなることがさらに好ましい。この場合、被覆層の構造安定性が特に高くなるからである。   The coating layer is made of an oxide containing a non-Si metal. According to experiments by the present inventors, it has been found that a mesoporous structure composed of an oxide containing a non-Si metal has high structural stability in a high-concentration water vapor environment. The non-Si metal is preferably made of at least one selected from aluminum, titanium, vanadium, strontium, yttrium, zirconium, niobium, lanthanum, and tantalum. In one example, the mesoporous structure can be formed by hydrolyzing a metal alkoxide in the presence of an alkyltrimethylammonium salt. However, since the metals listed above tend to form a reasonably stable alkoxide, the mesoporous structure is There is an advantage that it is easy to form. The non-Si metal preferably contains aluminum, and the coating layer is more preferably made of mesoporous alumina. In this case, the catalyst activity is improved by the high-concentration steam treatment. Moreover, as a non-Si metal, it is preferable that a zirconium is included and it is further more preferable that a coating layer consists of mesoporous zirconia. In this case, the structural stability of the coating layer is particularly high.

被覆層は、Siを含んでいてもいなくてもよいが、Siを実質的に含まないことが好ましい。Si/非Si金属の原子比は、1以下であることが好ましく、0.2以下であることがさらに好ましく、具体的には例えば、0、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。   The coating layer may or may not contain Si, but preferably does not substantially contain Si. The atomic ratio of Si / non-Si metal is preferably 1 or less, more preferably 0.2 or less, specifically, for example, 0, 0.1, 0.2, 0.3, 0 .4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 and may be within a range between any two of the numerical values exemplified here.

被覆層の厚さは、例えば1〜200nmであり、具体的には例えば、1、3、5、10、15、20、25、30、35、40、45、50、60、70、80、90、100、150、200nmであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。   The thickness of the coating layer is, for example, 1 to 200 nm, specifically, for example, 1, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, and 200 nm, and may be within a range between any two of the numerical values exemplified here.

ところで、被覆層がジルコニアからなる場合に被覆層の構造安定性が極めて高くなるという観点では、被覆層は必ずしもメソポーラス構造でなくてもよく、メソポーラス構造を有しない緻密な薄膜や、粒子の集積構造、ネットワーク構造などであってもよい。この場合、高濃度水蒸気環境下において構造安定性が高い被覆層を有するCO選択メタン化触媒が得られる。   By the way, from the viewpoint that the structural stability of the coating layer becomes extremely high when the coating layer is made of zirconia, the coating layer does not necessarily have a mesoporous structure, a dense thin film having no mesoporous structure, or an integrated structure of particles Or a network structure. In this case, a CO selective methanation catalyst having a coating layer with high structural stability in a high-concentration steam environment can be obtained.

本発明の効果を実証すべく、以下に示す種々の実験を行った。   In order to demonstrate the effect of the present invention, various experiments shown below were conducted.

1.製造例1(コア触媒の調製)
以下の方法で触媒担体であるAlVOx触媒粉末を調製した。バナジウム酸アンモニウム(NHVO 0.60gを純水61mLに入れ、加温し溶解させた。また、硝酸アルミニウム44.1gを純水235mLに溶解させた。これら二つの溶液を混合した後、2Lのビーカーに移し2500rpmで撹拌しながら炭酸アンモニウム水溶液を約15分でpH=8になるように滴下した。その後、30分撹拌を継続した。析出した沈殿は、0.2μmのメンブレンフィルターで濾過し、1Lの純水で洗浄した。得られた沈殿は室温で半日減圧乾燥後、110℃の乾燥炉で12時間乾燥した。得られたゲルは、磨砕した後、空気中500℃で3時間焼成した。これによりAl:V=0.96:0.04のモル比の酸化物担体を得た。
1. Production Example 1 (Preparation of core catalyst)
An AlVOx catalyst powder as a catalyst carrier was prepared by the following method. 0.60 g of ammonium vanadate (NH 4 ) 2 VO 3 was placed in 61 mL of pure water and heated to dissolve. In addition, 44.1 g of aluminum nitrate was dissolved in 235 mL of pure water. After mixing these two solutions, the solution was transferred to a 2 L beaker, and an aqueous ammonium carbonate solution was added dropwise so that pH = 8 in about 15 minutes while stirring at 2500 rpm. Thereafter, stirring was continued for 30 minutes. The deposited precipitate was filtered through a 0.2 μm membrane filter and washed with 1 L of pure water. The obtained precipitate was dried under reduced pressure at room temperature for half a day and then dried in a drying furnace at 110 ° C. for 12 hours. The obtained gel was ground and then fired in air at 500 ° C. for 3 hours. As a result, an oxide carrier having a molar ratio of Al: V = 0.96: 0.04 was obtained.

上記AlVOx触媒粉末6.26gを純水50mLに投入し縣濁液とした。また硝酸ニッケルNi(NO・6HO(関東化学社製)12.8gを純水50mLに溶解した。酸化物担体の懸濁液を撹拌しながら硝酸ニッケル水溶液をビュレットを用いて約20分間で全量投入した。室温で30分、45℃の湯浴中で30分攪拌した後、一度室温まで冷却した。その後、35〜50℃の湯浴中でエバポレーターにかけ、水分を全て飛ばした。得られた粉末を、110℃で12時間乾燥させた後、500℃で3時間焼成し、金属換算でNi30wt%を担持したNi/AlVOxからなるコア触媒を得た。 6.26 g of the AlVOx catalyst powder was added to 50 mL of pure water to prepare a suspension. The dissolved nickel nitrate Ni (NO 3) 2 · 6H 2 O ( Kanto Chemical) 12.8 g of pure water 50 mL. While stirring the suspension of the oxide carrier, a total amount of nickel nitrate aqueous solution was added using a burette in about 20 minutes. The mixture was stirred at room temperature for 30 minutes and in a 45 ° C. water bath for 30 minutes, and then cooled to room temperature once. Then, it was applied to an evaporator in a hot water bath at 35 to 50 ° C. to remove all moisture. The obtained powder was dried at 110 ° C. for 12 hours and then calcined at 500 ° C. for 3 hours to obtain a core catalyst made of Ni / AlVOx supporting Ni 30 wt% in terms of metal.

2.製造例2(コア触媒上へのメソポーラスシリカ層の構築)
製造例1で作製したコア触媒上に、以下の方法で、メソポーラスシリカ層を構築した。
コア触媒5.00gと28%アンモニア水(関東化学社製)2.00gを超純水150mLに投入し縣濁液とした。またヘキサデシルトリメチルアンモニウム臭化物(アクロス社製)0.6gをエタノール(関東化学社製)40mLと超純水6mLの混合液に入れ溶解した。次にテトラエチルオルトシリケート(関東化学社製)1.20gをエタノール8mLに加えアルコキシド溶液とした。コア触媒の懸濁液を撹拌しながら、ヘキサデシルトリメチルアンモニウム臭化物溶液をピペットを用いて1分間で全量投入し、室温で懸濁液を30分撹拌した。次に懸濁液を撹拌しながらアルコキシド溶液をピペットを用いて1分間で全量投入し、室温で16時間撹拌した。その後懸濁液をろ過し400mLのエタノールでろ物を洗浄した。得られたろ物を室温で減圧乾燥した後さらに250℃で1.5時間乾燥させ、次に550℃で4時間焼成し、厚さ15nmのメソポーラスシリカ層をコア触媒の表面に構築した粉末状のメソポーラスシリカ被覆触媒を得た。メソポーラスシリカからなる被覆層形成前後のTEM像を図3に示す。
2. Production Example 2 (construction of mesoporous silica layer on core catalyst)
A mesoporous silica layer was constructed on the core catalyst prepared in Production Example 1 by the following method.
5.00 g of the core catalyst and 2.00 g of 28% ammonia water (manufactured by Kanto Chemical Co., Inc.) were added to 150 mL of ultrapure water to prepare a suspension. Further, 0.6 g of hexadecyltrimethylammonium bromide (manufactured by Acros) was dissolved in a mixed solution of 40 mL of ethanol (manufactured by Kanto Chemical Co., Ltd.) and 6 mL of ultrapure water. Next, 1.20 g of tetraethyl orthosilicate (manufactured by Kanto Chemical Co., Inc.) was added to 8 mL of ethanol to obtain an alkoxide solution. While stirring the suspension of the core catalyst, the whole amount of hexadecyltrimethylammonium bromide solution was added using a pipette in 1 minute, and the suspension was stirred at room temperature for 30 minutes. Next, while stirring the suspension, the entire amount of the alkoxide solution was added using a pipette in 1 minute, followed by stirring at room temperature for 16 hours. Thereafter, the suspension was filtered, and the residue was washed with 400 mL of ethanol. The obtained residue was dried at room temperature under reduced pressure, further dried at 250 ° C. for 1.5 hours, then calcined at 550 ° C. for 4 hours, and a mesoporous silica layer having a thickness of 15 nm was built on the surface of the core catalyst. A mesoporous silica-coated catalyst was obtained. FIG. 3 shows TEM images before and after the formation of the coating layer made of mesoporous silica.

3.メソポーラスシリカ被覆触媒の水蒸気耐性試験
製造例2で得たメソポーラスシリカ被覆触媒の耐水蒸気特性を調べた。
メソポーラスシリカ被覆触媒を、10MPaの圧力下10分間加圧し直径20mmのディスク状成型体を得た。これを粉砕し1mmから2mmの粒状に整粒したもの2.1mLを直径1/2インチの石英管に充填した。この試料を500℃で1時間、水素流通下還元処理を行った後に、CO選択メタン化反応に対する温度特性を測定した。次にこの試料を200℃に於いて、60%水蒸気を含む窒素ガスを12時間流通した後に温度特性を測定した。この後、さらに、12時間の水蒸気処理と温度特性測定を繰り返し行った。得られた結果を図4に示す。図4中、処理時間0hは、水蒸気処理前の温度特性を示す。図4に示すように、メソポーラスシリカ被覆触媒は、200℃、60%水蒸気/窒素雰囲気で処理すると、触媒活性の著しい低下が起きた。この活性低下は、窒素吸着測定と電子顕微鏡観察から、メソポーラスシリカ層の構造崩壊によって引き起こされたことが分かった。
3. Water vapor resistance test of mesoporous silica-coated catalyst The water-resistant property of the mesoporous silica-coated catalyst obtained in Production Example 2 was examined.
The mesoporous silica-coated catalyst was pressurized under a pressure of 10 MPa for 10 minutes to obtain a disk-shaped molded body having a diameter of 20 mm. This was pulverized and sized to 1 mm to 2 mm and filled with 2.1 mL of a quartz tube having a diameter of 1/2 inch. This sample was subjected to a reduction treatment under a flow of hydrogen at 500 ° C. for 1 hour, and then the temperature characteristics for the CO selective methanation reaction were measured. Next, the temperature characteristics of this sample were measured after flowing nitrogen gas containing 60% water vapor at 200 ° C. for 12 hours. Thereafter, the water vapor treatment for 12 hours and the temperature characteristic measurement were further repeated. The obtained results are shown in FIG. In FIG. 4, the treatment time 0h indicates the temperature characteristic before the steam treatment. As shown in FIG. 4, when the mesoporous silica-coated catalyst was treated in a steam / nitrogen atmosphere at 200 ° C. and 60%, the catalytic activity significantly decreased. From the nitrogen adsorption measurement and electron microscope observation, it was found that this decrease in activity was caused by the structural collapse of the mesoporous silica layer.

4.製造例3(コア触媒上へのメソポーラスジルコニア層の構築)
製造例1で作製したコア触媒上に、以下の方法で、メソポーラスジルコニア層を構築した。
コア触媒5.00gを脱水エタノール(関東化学製)150mLに投入し縣濁液とした。またヘキサデシルトリメチルアンモニウム臭化物(アクロス社製)0.6gをエタノール(関東化学社製)48mLと超純水5.3mLの混合液に入れ溶解した。次にジルコニウムテトラn−ブトキシド(関東化学社製)2.12gをエタノール10mLに加えアルコキシド溶液とした。コア触媒の懸濁液を撹拌しながら、ヘキサデシルトリメチルアンモニウム臭化物溶液をピペットを用いて1分間で全量投入し、室温で懸濁液を30分撹拌した。次に懸濁液を撹拌しながらアルコキシド溶液をピペットを用いて1分間で全量投入し、室温で16時間撹拌した。その後懸濁液をろ過し400mLのエタノールでろ物を洗浄した。得られたろ物を50℃で3時間、減圧乾燥した後さらに250℃で1.5時間乾燥させ、次に550℃で4時間焼成し、メソポーラスジルコニア層をコア触媒の表面に構築した粉末状のメソポーラスジルコニア被覆触媒を得た。得られた触媒についてのSEM像を図5に示す。図5を参照すると、メソポーラスジルコニア層には、2〜50nm程度の細孔がランダムに形成されていることが分かる。この細孔によってコア触媒への反応ガスの良好な拡散が実現される。また、得られた触媒について、走査透過型電子顕微鏡エネルギー分散X線分光(STEM-EDS)によって、元素分析を行った。その結果を図6に示す。図6を参照すると、Zrがほぼ一様に分布していることが分かる。この結果は、メソポーラスジルコニア層が略一様に形成されていることを示している。
4). Production Example 3 (construction of mesoporous zirconia layer on core catalyst)
On the core catalyst produced in Production Example 1, a mesoporous zirconia layer was constructed by the following method.
5.00 g of the core catalyst was added to 150 mL of dehydrated ethanol (manufactured by Kanto Chemical Co.) to prepare a suspension. Further, 0.6 g of hexadecyltrimethylammonium bromide (manufactured by Acros) was dissolved in 48 mL of ethanol (manufactured by Kanto Chemical Co., Ltd.) and 5.3 mL of ultrapure water. Next, 2.12 g of zirconium tetra-n-butoxide (manufactured by Kanto Chemical Co., Inc.) was added to 10 mL of ethanol to obtain an alkoxide solution. While stirring the suspension of the core catalyst, the whole amount of hexadecyltrimethylammonium bromide solution was added using a pipette in 1 minute, and the suspension was stirred at room temperature for 30 minutes. Next, while stirring the suspension, the entire amount of the alkoxide solution was added using a pipette in 1 minute, followed by stirring at room temperature for 16 hours. Thereafter, the suspension was filtered, and the residue was washed with 400 mL of ethanol. The obtained filtrate was dried under reduced pressure at 50 ° C. for 3 hours, further dried at 250 ° C. for 1.5 hours, and then calcined at 550 ° C. for 4 hours to form a mesoporous zirconia layer on the surface of the core catalyst. A mesoporous zirconia-coated catalyst was obtained. An SEM image of the obtained catalyst is shown in FIG. Referring to FIG. 5, it can be seen that pores of about 2 to 50 nm are randomly formed in the mesoporous zirconia layer. These pores realize good diffusion of the reaction gas to the core catalyst. The obtained catalyst was subjected to elemental analysis by scanning transmission electron microscope energy dispersive X-ray spectroscopy (STEM-EDS). The result is shown in FIG. Referring to FIG. 6, it can be seen that Zr is distributed almost uniformly. This result shows that the mesoporous zirconia layer is formed substantially uniformly.

5.製造例4(コア触媒上へのメソポーラスジルコニア層の構築、原料の配合を変更)
コア触媒5gに対する水とジルコニウムアルコキシド(ジルコニウムテトラn−ブトキシド)(ZB)の添加量を変更した以外は、製造例3と同様の方法でメソポーラスジルコニア層を構築して、メソポーラスジルコニア被覆触媒を得た。各条件で得られた触媒についてのTEM像を図7に示す。
図7に示すように、ジルコニア被覆の際に用いる加水分解の為の添加水量と、ジルコニア源となるジルコニウムアルコキシドの添加量によってジルコニア層の構造が変化し、コア触媒5gに対して添加水量5g近傍の場合において良好なジルコニア層が形成された。またジルコニウムアルコキシドの添加量によってメソポーラスジルコニア層の厚みを調節することができた。
5. Production Example 4 (construction of a mesoporous zirconia layer on the core catalyst, change of the raw material composition)
A mesoporous zirconia-coated catalyst was obtained by constructing a mesoporous zirconia layer in the same manner as in Production Example 3, except that the addition amount of water and zirconium alkoxide (zirconium tetra n-butoxide) (ZB) to 5 g of the core catalyst was changed. . A TEM image of the catalyst obtained under each condition is shown in FIG.
As shown in FIG. 7, the structure of the zirconia layer varies depending on the amount of water added for hydrolysis used for zirconia coating and the amount of zirconium alkoxide as a zirconia source, and the amount of water added is about 5 g relative to 5 g of the core catalyst. In this case, a good zirconia layer was formed. In addition, the thickness of the mesoporous zirconia layer could be adjusted by the amount of zirconium alkoxide added.

6.メソポーラスジルコニア被覆触媒の水蒸気耐性試験
上記「3.メソポーラスシリカ被覆触媒の水蒸気耐性試験」と同様の方法で、製造例3で得たメソポーラスジルコニア被覆触媒の耐水蒸気特性を調べた。得られた結果を図8に示す。図8に示すように、メソポーラスジルコニア被覆触媒は、200℃、60%水蒸気/窒素雰囲気で72時間の水蒸気処理を行っても、活性の変化は全く観察されなかった。以上の結果、メソポーラスジルコニア被覆層は、メソポーラスシリカ被覆層と異なり、優れた水蒸気耐性を有することが明らかとなった。
6). Water vapor resistance test of mesoporous zirconia-coated catalyst The water resistance property of the mesoporous zirconia-coated catalyst obtained in Production Example 3 was examined in the same manner as in “3. Water vapor resistance test of mesoporous silica-coated catalyst”. The obtained result is shown in FIG. As shown in FIG. 8, the mesoporous zirconia-coated catalyst showed no change in activity even when subjected to a steam treatment for 72 hours at 200 ° C. in a 60% steam / nitrogen atmosphere. As a result, it became clear that the mesoporous zirconia coating layer has excellent water vapor resistance unlike the mesoporous silica coating layer.

7.種々の金属酸化物被覆触媒の水蒸気耐性試験
図9(A)〜(D)は、それぞれ、メソポーラスシリカ、メソポーラスチタニア、メソポーラスアルミナ、及びメソポーラスジルコニアでコア触媒を被覆して得られた触媒についての水蒸気耐性試験の結果を示す。図9に示すように、メソポーラスチタニア、メソポーラスアルミナ、及びメソポーラスジルコニアの何れでコア触媒を被覆した場合でも、被覆触媒の水蒸気耐性が向上していることが分かる。また、図9(C)に示すように、メソポーラスアルミナ被覆触媒では、水蒸気処理によって触媒活性が向上するという驚きの結果が得られた。
7). Steam Resistance Tests of Various Metal Oxide Coated Catalysts FIGS. 9 (A) to (D) show the steam for the catalysts obtained by coating the core catalyst with mesoporous silica, mesoporous titania, mesoporous alumina, and mesoporous zirconia, respectively. The result of a tolerance test is shown. As shown in FIG. 9, it can be understood that the water vapor resistance of the coated catalyst is improved when the core catalyst is coated with any of mesoporous titania, mesoporous alumina, and mesoporous zirconia. Further, as shown in FIG. 9C, a surprising result was obtained that the catalytic activity of the mesoporous alumina-coated catalyst was improved by the steam treatment.

なお、メソポーラスシリカ被覆触媒は、製造例2で製造したもの、メソポーラスジルコニア被覆触媒は、製造例3で製造したものを用いた。メソポーラスチタニア被覆触媒及びメソポーラスアルミナ被覆触媒は、以下の方法で製造したものを用いた。   In addition, the mesoporous silica-coated catalyst produced in Production Example 2 was used, and the mesoporous zirconia-coated catalyst produced in Production Example 3 was used. As the mesoporous titania-coated catalyst and mesoporous alumina-coated catalyst, those produced by the following method were used.

(メソポーラスチタニア被覆触媒)
製造例1で作製したコア触媒上に、以下の方法で、メソポーラスチタニア層を構築した。
コア触媒5.00gを脱水エタノール(関東化学製)150mLに投入し縣濁液とした。またヘキサデシルトリメチルアンモニウム臭化物(アクロス社製)0.6gをエタノール(関東化学社製)48mLと超純水5.3mLの混合液に入れ溶解した。次にチタニウムテトライソプロポキシド(関東化学社製)1.57gをエタノール10mLに加えアルコキシド溶液とした。コア触媒の懸濁液を撹拌しながら、ヘキサデシルトリメチルアンモニウム臭化物溶液をピペットを用いて1分間で全量投入し、室温で懸濁液を30分撹拌した。次に懸濁液を撹拌しながらアルコキシド溶液をピペットを用いて1分間で全量投入し、室温で16時間撹拌した。その後懸濁液をろ過し400mLのエタノールでろ物を洗浄した。得られたろ物を50℃で3時間、減圧乾燥した後さらに250℃で1.5時間乾燥させ、次に550℃で4時間焼成し、メソポーラスチタニア層をコア触媒の表面に構築した粉末状のメソポーラスチタニア被覆触媒を得た。
(Mesoporous titania-coated catalyst)
On the core catalyst produced in Production Example 1, a mesoporous titania layer was constructed by the following method.
5.00 g of the core catalyst was added to 150 mL of dehydrated ethanol (manufactured by Kanto Chemical Co.) to prepare a suspension. Further, 0.6 g of hexadecyltrimethylammonium bromide (manufactured by Acros) was dissolved in 48 mL of ethanol (manufactured by Kanto Chemical Co., Ltd.) and 5.3 mL of ultrapure water. Next, 1.57 g of titanium tetraisopropoxide (manufactured by Kanto Chemical Co., Inc.) was added to 10 mL of ethanol to obtain an alkoxide solution. While stirring the suspension of the core catalyst, the whole amount of hexadecyltrimethylammonium bromide solution was added using a pipette in 1 minute, and the suspension was stirred at room temperature for 30 minutes. Next, while stirring the suspension, the entire amount of the alkoxide solution was added using a pipette in 1 minute, followed by stirring at room temperature for 16 hours. Thereafter, the suspension was filtered, and the residue was washed with 400 mL of ethanol. The obtained filtrate was dried under reduced pressure at 50 ° C. for 3 hours, further dried at 250 ° C. for 1.5 hours, and then calcined at 550 ° C. for 4 hours to form a mesoporous titania layer on the surface of the core catalyst. A mesoporous titania-coated catalyst was obtained.

(メソポーラスアルミナ被覆触媒)
製造例1で作製したコア触媒上に、以下の方法で、メソポーラスアルミナ層を構築した。
コア触媒5.00gを脱水エタノール(関東化学製)150mLに投入し縣濁液とした。またヘキサデシルトリメチルアンモニウム臭化物(アクロス社製)0.6gをエタノール(関東化学社製)48mLと超純水5.3mLの混合液に入れ溶解した。次にアルミニウムトリイソプロポキシド(関東化学社製)1.12gをトルエン15mLに加えアルコキシド溶液とした。コア触媒の懸濁液を撹拌しながら、ヘキサデシルトリメチルアンモニウム臭化物溶液をピペットを用いて1分間で全量投入し、室温で懸濁液を30分撹拌した。次に懸濁液を撹拌しながらアルコキシド溶液をピペットを用いて1分間で全量投入し、室温で16時間撹拌した。その後懸濁液をろ過し400mLのエタノールでろ物を洗浄した。得られたろ物を50℃で3時間、減圧乾燥した後さらに250℃で1.5時間乾燥させ、次に550℃で4時間焼成し、メソポーラスアルミナ層をコア触媒の表面に構築した粉末状のメソポーラスアルミナ被覆触媒を得た。
(Mesoporous alumina-coated catalyst)
A mesoporous alumina layer was constructed on the core catalyst produced in Production Example 1 by the following method.
5.00 g of the core catalyst was added to 150 mL of dehydrated ethanol (manufactured by Kanto Chemical Co.) to prepare a suspension. Further, 0.6 g of hexadecyltrimethylammonium bromide (manufactured by Acros) was dissolved in 48 mL of ethanol (manufactured by Kanto Chemical Co., Ltd.) and 5.3 mL of ultrapure water. Next, 1.12 g of aluminum triisopropoxide (manufactured by Kanto Chemical Co., Inc.) was added to 15 mL of toluene to obtain an alkoxide solution. While stirring the suspension of the core catalyst, the whole amount of hexadecyltrimethylammonium bromide solution was added using a pipette in 1 minute, and the suspension was stirred at room temperature for 30 minutes. Next, while stirring the suspension, the entire amount of the alkoxide solution was added using a pipette in 1 minute, followed by stirring at room temperature for 16 hours. Thereafter, the suspension was filtered, and the residue was washed with 400 mL of ethanol. The obtained filtrate was dried under reduced pressure at 50 ° C. for 3 hours, further dried at 250 ° C. for 1.5 hours, and then calcined at 550 ° C. for 4 hours to form a mesoporous alumina layer on the surface of the core catalyst. A mesoporous alumina-coated catalyst was obtained.

8.触媒の長期耐久試験
次に、メソポーラスジルコニア被覆触媒と、メソポーラスアルミナ被覆触媒について長期耐久試験を行った。
触媒の長期評価条件と手順を以下に説明する。活性評価に先立ち触媒試料の水素還元を行った。これは、触媒活性成分を還元するためである。還元は反応管に500mL/minのHガスを流し、20℃/minで500℃まで昇温した後、1時間温度保持した。還元終了後、HからNにガスを切り替え5分間流しHをパージした。還元終了後、触媒の活性評価を行う温度(メソポーラスジルコニア被覆触媒は197℃、メソポーラスアルミナ被覆触媒は203℃)まで降温した。水蒸気を反応管内に導入しはじめ、5分後に反応ガスを導入した。水蒸気供給速度は水蒸気/CO=34(モル比)に相当する値とし、イオン交換水をマイクロポンプで200℃に保った気化器に送り、発生した水蒸気をNキャリアで反応管に導入した。各反応ガスはマスフローコントローラーにより反応管に導入し、組成はドライベースでCO 0.5vol%、H 80vol%、CO 19vol%とした。空塔速度SVは4800h−1とした。反応管は外径13mmの石英管を使用した。この反応管の中央所定位置に1.1mm〜2mmに整粒した粒状触媒2.1mLを充てんした。シース熱電対の先端を触媒層の上端から約2mmの位置に挿入し触媒層の温度測定を行った。反応管出口からのガスは、非分散型赤外分析計(堀場製作所製)によって定量を行った。
得られた結果を図10に示す。図10に示すように、どちらの触媒も、長期間に渡って、高い活性が維持されていることが分かる。
8). Next, a long-term durability test was performed on the mesoporous zirconia-coated catalyst and the mesoporous alumina-coated catalyst.
The long-term evaluation conditions and procedure of the catalyst will be described below. Prior to the activity evaluation, the catalyst sample was subjected to hydrogen reduction. This is to reduce the catalytically active component. For reduction, 500 mL / min of H 2 gas was allowed to flow through the reaction tube, the temperature was raised to 500 ° C. at 20 ° C./min, and the temperature was maintained for 1 hour. After the reduction, the gas was switched from H 2 to N 2 for 5 minutes to purge H 2 . After completion of the reduction, the temperature was lowered to a temperature at which the activity of the catalyst was evaluated (197 ° C. for mesoporous zirconia-coated catalyst and 203 ° C. for mesoporous alumina-coated catalyst). Steam was introduced into the reaction tube, and the reaction gas was introduced after 5 minutes. The water vapor supply rate was set to a value corresponding to water vapor / CO = 34 (molar ratio), ion exchange water was sent to a vaporizer maintained at 200 ° C. with a micropump, and the generated water vapor was introduced into the reaction tube with N 2 carrier. Each reaction gas was introduced into the reaction tube by a mass flow controller, and the composition was CO 0.5 vol%, H 2 80 vol%, and CO 2 19 vol% on a dry basis. The superficial velocity SV was 4800h- 1 . A quartz tube having an outer diameter of 13 mm was used as the reaction tube. 2.1 mL of granular catalyst adjusted to 1.1 mm to 2 mm was packed in a predetermined position in the center of the reaction tube. The temperature of the catalyst layer was measured by inserting the tip of the sheath thermocouple at a position of about 2 mm from the upper end of the catalyst layer. The gas from the reaction tube outlet was quantified with a non-dispersive infrared analyzer (manufactured by Horiba, Ltd.).
The obtained result is shown in FIG. As shown in FIG. 10, it can be seen that both catalysts maintain high activity over a long period of time.

9.種々のメソポーラス金属酸化物被覆触媒の細孔径分布測定
次に、メソポーラスジルコニア被覆触媒と、メソポーラスアルミナ被覆触媒、メソポーラスチタニア被覆触媒、メソポーラスシリカ被覆触媒について細孔径分布測定を行った。
触媒の細孔径分布測定条件と手順を以下に説明する。細孔径分布測定に先立ち触媒試料の加熱脱気処理を行った。これは、触媒に吸着した空気中の成分を除去するためである。触媒をパイレックス硝子製試料管に0.5g充填し、真空に排気しながら、10℃/minで300℃まで昇温した後、30分温度保持した。加熱脱気終了後、真空排気したまま室温まで降温し、容量法吸着量測定装置(ベルソープマックス、日本ベル製)に速やかに取付け超高真空排気した後に液体窒素温度における窒素吸着等温線の測定を行った。次に得られた吸着等温線をBJH法(Barrett,Joyner,Hallender法)を用いて解析し細孔径分布を得た。
次に、この細孔径分布において、(細孔径1〜50nmの細孔容積)/(細孔径1〜100nmの細孔容積)によって規定されるメソ孔比率を測定したところ、表1に示すように、何れも0.2以上であった。また、細孔径分布におけるピーク位置は、何れも、1〜50nmの範囲内であった。
9. Measurement of pore size distribution of various mesoporous metal oxide-coated catalysts Next, pore size distribution measurement was performed on mesoporous zirconia-coated catalyst, mesoporous alumina-coated catalyst, mesoporous titania-coated catalyst, and mesoporous silica-coated catalyst.
The conditions and procedures for measuring the pore size distribution of the catalyst will be described below. Prior to the measurement of the pore size distribution, the catalyst sample was heated and degassed. This is for removing components in the air adsorbed on the catalyst. The catalyst was filled with 0.5 g of a Pyrex glass sample tube, heated to 300 ° C. at 10 ° C./min while being evacuated, and then maintained for 30 minutes. After completion of heating and degassing, the temperature is lowered to room temperature while evacuated, quickly attached to a capacity method adsorption amount measuring device (Bell Soap Max, manufactured by Nippon Bell), and then subjected to ultra-high vacuum evacuation and then measuring the nitrogen adsorption isotherm at liquid nitrogen temperature Went. Next, the obtained adsorption isotherm was analyzed using the BJH method (Barrett, Joyner, Hallender method) to obtain a pore size distribution.
Next, in this pore size distribution, the mesopore ratio defined by (pore size 1 to 50 nm pore volume) / (pore size 1 to 100 nm pore volume) was measured. , Both were 0.2 or more. Moreover, the peak positions in the pore size distribution were all in the range of 1 to 50 nm.

Claims (7)

CO及びCOを含有する水素リッチガス中のCOを選択的にメタン化する担持金属触媒と、前記担持金属触媒の表面を覆う被覆層を備え、
前記被覆層は、メソポーラス構造を有し、且つ非Si金属を含む酸化物からなる、CO選択メタン化触媒。
Comprises a supported metal catalyst which selectively methanation of CO in the hydrogen-rich gas containing CO and CO 2, a coating layer covering the surface of the supported metal catalyst,
The CO selective methanation catalyst, wherein the coating layer has a mesoporous structure and is made of an oxide containing a non-Si metal.
前記非Si金属は、アルミニウム、チタニウム、バナジウム、ストロンチウム、イットリウム、ジルコニウム、ニオブ、ランタン、及びタンタルから選択される少なくとも1つからなる、請求項1に記載の触媒。 The catalyst according to claim 1, wherein the non-Si metal is made of at least one selected from aluminum, titanium, vanadium, strontium, yttrium, zirconium, niobium, lanthanum, and tantalum. 前記非Si金属は、アルミニウムとジルコニウムの少なくとも一方を含む、請求項2に記載の触媒。 The catalyst according to claim 2, wherein the non-Si metal includes at least one of aluminum and zirconium. Si/非Si金属の原子比は、1以下である、請求項1〜請求項3の何れか1つに記載の触媒。 The catalyst according to any one of claims 1 to 3, wherein an atomic ratio of Si / non-Si metal is 1 or less. 前記被覆層は、メソポーラスアルミナ又はメソポーラスジルコニアからなる、請求項1〜請求項4の何れか1つに記載の触媒。 The catalyst according to any one of claims 1 to 4, wherein the coating layer is made of mesoporous alumina or mesoporous zirconia. CO及びCOを含有する水素リッチガス中のCOを選択的にメタン化する担持金属触媒と、前記担持金属触媒の表面を覆う被覆層を備え、
前記被覆層は、ジルコニアからなる、CO選択メタン化触媒。
Comprises a supported metal catalyst which selectively methanation of CO in the hydrogen-rich gas containing CO and CO 2, a coating layer covering the surface of the supported metal catalyst,
The coating layer is a CO selective methanation catalyst made of zirconia.
前記被覆層は、厚さが1〜200nmである、請求項1〜請求項6の何れか1つに記載の触媒。 The catalyst according to any one of claims 1 to 6, wherein the coating layer has a thickness of 1 to 200 nm.
JP2014042850A 2014-03-05 2014-03-05 CO selective methanation catalyst Active JP6350898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014042850A JP6350898B2 (en) 2014-03-05 2014-03-05 CO selective methanation catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014042850A JP6350898B2 (en) 2014-03-05 2014-03-05 CO selective methanation catalyst

Publications (2)

Publication Number Publication Date
JP2015167887A true JP2015167887A (en) 2015-09-28
JP6350898B2 JP6350898B2 (en) 2018-07-04

Family

ID=54201155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014042850A Active JP6350898B2 (en) 2014-03-05 2014-03-05 CO selective methanation catalyst

Country Status (1)

Country Link
JP (1) JP6350898B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112774663A (en) * 2019-11-04 2021-05-11 中国石油天然气股份有限公司 Hierarchical pore catalyst for directly preparing ethylene from methane and preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930355B1 (en) * 1969-07-12 1974-08-12
JP2005238131A (en) * 2004-02-26 2005-09-08 Toda Kogyo Corp Methanization catalyst, production method thereof, and method for methanizing carbon monoxide with the catalyst
JP2007130525A (en) * 2005-11-08 2007-05-31 Nissan Motor Co Ltd Inclusion catalyst and its manufacturing method
WO2010122855A1 (en) * 2009-04-24 2010-10-28 国立大学法人山梨大学 Catalyst for selective methanation of carbon monoxide, process for producing same, and device using same
WO2011142481A1 (en) * 2010-05-13 2011-11-17 国立大学法人山梨大学 Fuel reforming device, method for selective methanisation of carbon monoxide, catalyst for selective methanisation of carbon monoxide, and manufacturing method for same
JP2012187565A (en) * 2011-03-10 2012-10-04 Hiromi Yamashita Core-shell type catalyst and method for producing the same
JP2014534307A (en) * 2011-10-22 2014-12-18 クラリアント インターナショナル リミティド Trisazo acid dyes based on pyridone
US20150246347A1 (en) * 2012-09-04 2015-09-03 University Of Yamanashi Co-selective methanation catalyst

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4930355B1 (en) * 1969-07-12 1974-08-12
JP2005238131A (en) * 2004-02-26 2005-09-08 Toda Kogyo Corp Methanization catalyst, production method thereof, and method for methanizing carbon monoxide with the catalyst
JP2007130525A (en) * 2005-11-08 2007-05-31 Nissan Motor Co Ltd Inclusion catalyst and its manufacturing method
WO2010122855A1 (en) * 2009-04-24 2010-10-28 国立大学法人山梨大学 Catalyst for selective methanation of carbon monoxide, process for producing same, and device using same
US20120063963A1 (en) * 2009-04-24 2012-03-15 University Of Yamanashi Selective co methanation catalyst, method of producing the same, and apparatus using the same
WO2011142481A1 (en) * 2010-05-13 2011-11-17 国立大学法人山梨大学 Fuel reforming device, method for selective methanisation of carbon monoxide, catalyst for selective methanisation of carbon monoxide, and manufacturing method for same
US20130071318A1 (en) * 2010-05-13 2013-03-21 University Of Yamanashi Fuel reformer, selective co methanation method, selective co methanation catalyst, and process for producing the same
JP2012187565A (en) * 2011-03-10 2012-10-04 Hiromi Yamashita Core-shell type catalyst and method for producing the same
JP2014534307A (en) * 2011-10-22 2014-12-18 クラリアント インターナショナル リミティド Trisazo acid dyes based on pyridone
US20150246347A1 (en) * 2012-09-04 2015-09-03 University Of Yamanashi Co-selective methanation catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112774663A (en) * 2019-11-04 2021-05-11 中国石油天然气股份有限公司 Hierarchical pore catalyst for directly preparing ethylene from methane and preparation method and application thereof

Also Published As

Publication number Publication date
JP6350898B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
JP6160005B2 (en) CO selective methanation catalyst
Nair et al. Nanocast LaNiO3 perovskites as precursors for the preparation of coke-resistant dry reforming catalysts
US9005552B2 (en) Selective CO methanation catalyst, method of producing the same, and apparatus using the same
Naik et al. Enhanced H2 Generation of Au‐Loaded, Nitrogen‐Doped TiO2 Hierarchical Nanostructures under Visible Light
JP4312765B2 (en) SUPPORT FOR FUEL GAS REFORMING REACTION CATALYST AND ITS MANUFACTURING METHOD, SUPPORTED CATALYST AND FUEL TREATMENT DEVICE INCLUDING THE SAME
Chai et al. Free-standing NiO-MgO-Al2O3 nanosheets derived from layered double hydroxides grown onto FeCrAl-fiber as structured catalysts for dry reforming of methane
WO2015106634A1 (en) Metal-phase carrier loaded catalyst, and preparation method therefor and uses thereof
US9409155B2 (en) Metal structure catalyst and preparation method thereof
Melchionna et al. Highly efficient hydrogen production through ethanol photoreforming by a carbon nanocone/Pd@ TiO 2 hybrid catalyst
JP6646317B2 (en) Catalyst particles coated with carbon nanotubes
JP2008542018A (en) Improved high selective oxidation catalyst containing platinum, copper and iron
US20120184430A1 (en) CO2 Reforming Catalyst Composition
Zeng et al. Activating Surface Lattice Oxygen of a Cu/Zn1–x Cu x O Catalyst through Interface Interactions for CO Oxidation
JP6350898B2 (en) CO selective methanation catalyst
Zhu et al. CO preferential oxidation in a novel Au@ ZrO2 flow-through catalytic membrane reactor with high stability and efficiency
JP6376494B2 (en) CO selective methanation reactor
CN108367278B (en) The method and apparatus strengthened for chemical technology
Choi et al. Durability tests of Rh/Al-Ce-Zr catalysts coated on NiCrAl metal foam for ATR of dodecane at high temperature
Hasanpour et al. Incorporating Pb2+ templates into the crystalline structure of MnO2 catalyst supported on monolith: Applications in H2O2 decomposition
JP5989306B2 (en) Carbon monoxide methanation catalyst
JP4250971B2 (en) Inorganic material and shift catalyst using the same
Vera et al. Comparative Study of Exsolved and Impregnated Ni Nanoparticles Supported on Nanoporous Perovskites for Low-Temperature CO Oxidation
JP2012187485A (en) Catalyst
JP2011183346A (en) Catalyst for producing hydrogen, method for producing the catalyst and method for producing hydrogen
KR20160149446A (en) A monolith catalyst for steam reforming of hydrocarbons and Fabrication method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180524

R150 Certificate of patent or registration of utility model

Ref document number: 6350898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250