JP2009241036A - Carbon monoxide conversion catalyst comprising composition for carbon monoxide conversion catalyst, and method of removing carbon monoxide using the same - Google Patents

Carbon monoxide conversion catalyst comprising composition for carbon monoxide conversion catalyst, and method of removing carbon monoxide using the same Download PDF

Info

Publication number
JP2009241036A
JP2009241036A JP2008094080A JP2008094080A JP2009241036A JP 2009241036 A JP2009241036 A JP 2009241036A JP 2008094080 A JP2008094080 A JP 2008094080A JP 2008094080 A JP2008094080 A JP 2008094080A JP 2009241036 A JP2009241036 A JP 2009241036A
Authority
JP
Japan
Prior art keywords
catalyst
group
carbon monoxide
monoxide conversion
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008094080A
Other languages
Japanese (ja)
Inventor
Kozo Takatsu
幸三 高津
Yoshimi Kawashima
義実 河島
Takashi Umeki
孝 梅木
Satoshi Nakai
敏 仲井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2008094080A priority Critical patent/JP2009241036A/en
Publication of JP2009241036A publication Critical patent/JP2009241036A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon monoxide conversion catalyst having excellent catalytic activity and durability, small in the deterioration of activity even when applied to a fuel cell and used as a water gas shift reaction catalyst which can be used for a long period of time, and a method of removing carbon monoxide using the carbon monoxide conversion catalyst. <P>SOLUTION: The carbon monoxide conversion catalyst contains (A) a copper oxide component, (B) a zinc oxide component and (C) an aluminum oxide component, wherein at least 0.01-0.5 mmol element of one of a group I, a group II, a group VIII, a group X and a group XIII per 1 g in total of (A)-(C) is contained as a (D) component. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、炭化水素を改質して得られるガスから一酸化炭素を除去する触媒に関する。さらに詳しくは、銅、亜鉛およびアルミニウムを含み、特定の格子面間隔d(Å)にブロードなピークを示すX線回折パターンを有する触媒前駆体物質に特定の元素を極微量添加して得られ、水生ガスシフト反応用触媒として好適な一酸化炭素転換用触媒、さらには、該一酸化炭素転換用触媒を用いた一酸化炭素除去方法に関する。   The present invention relates to a catalyst for removing carbon monoxide from a gas obtained by reforming hydrocarbons. More specifically, it is obtained by adding a trace amount of a specific element to a catalyst precursor material containing copper, zinc and aluminum and having an X-ray diffraction pattern showing a broad peak at a specific lattice spacing d (Å), The present invention also relates to a carbon monoxide conversion catalyst suitable as an aquatic gas shift reaction catalyst, and further to a carbon monoxide removal method using the carbon monoxide conversion catalyst.

近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術の一つとして燃料電池が注目されている。この燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換するもので、エネルギーの利用効率が高く、民生用、産業用あるいは自動車用などとして、実用化研究が広範に且つ積極的に行われている。   In recent years, new energy technology has attracted attention due to environmental problems, and fuel cells are attracting attention as one of the new energy technologies. This fuel cell converts chemical energy into electrical energy by electrochemically reacting hydrogen and oxygen, has high energy utilization efficiency, and is researched for practical use for consumer, industrial or automotive applications. Is widely and actively conducted.

燃料電池には、使用する電解質の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物型、固体高分子型などのタイプが知られている。これら燃料電池用の水素を製造する水素源としては、メタンを主体とする液化天然ガス、この天然ガスを主成分とする都市ガス、天然ガスを原料とする合成液体燃料や石油系の液化石油ガス、ナフサ、灯油などの石油系炭化水素類が研究の対象なとなっている。これらのガス状または液状炭化水素類から水素を製造する場合には、一般に、脱硫処理後、炭化水素を改質触媒の存在下に部分酸化改質,自己熱改質又は水蒸気改質などの改質処理が行われる。   There are known types of fuel cells such as a phosphoric acid type, a molten carbonate type, a solid oxide type, and a solid polymer type depending on the type of electrolyte used. The hydrogen source for producing hydrogen for these fuel cells includes liquefied natural gas mainly composed of methane, city gas mainly composed of this natural gas, synthetic liquid fuel using natural gas as a raw material, and petroleum-based liquefied petroleum gas. Petroleum hydrocarbons such as naphtha and kerosene are the subject of research. When hydrogen is produced from these gaseous or liquid hydrocarbons, in general, after desulfurization treatment, the hydrocarbon is modified in the presence of a reforming catalyst such as partial oxidation reforming, autothermal reforming or steam reforming. Quality processing is performed.

上記の改質処理によって主に水素と一酸化炭素が得られるが、このうち一酸化炭素は水と水性ガスシフト反応によって水素と二酸化炭素に変換できる。水性ガスシフト反応は、水性ガスの水素と一酸化炭素の比率を合成反応の目的に応じて変えることにも利用されているが、水素製造のためにも適用できる。水性ガスシフト反応に使用される銅‐亜鉛‐アルミニウム触媒は貴金属系触媒に比べて、比較的低温で作動できるので、一酸化炭素濃度を1%以下の低濃度まで下げることができるが、熱および水蒸気の存在下で銅のシンタリングが起り、失活する問題がある。そのため、一定条件で運転を行う工業装置では長期間使用できるが、燃料電池のように頻繁に起動停止を行い、触媒が酸化・還元の雰囲気を繰り返される場合には、銅のシンタリングが起りやすく、触媒が失活しやすい。白金などの貴金属をチタニアやセリアに担持した触媒の耐久性は高いが、低温での活性は銅‐亜鉛‐アルミニウム触媒に及ばない。   Although hydrogen and carbon monoxide are mainly obtained by the above reforming treatment, carbon monoxide can be converted into hydrogen and carbon dioxide by water and water gas shift reaction. The water gas shift reaction is also used to change the ratio of hydrogen and carbon monoxide in the water gas depending on the purpose of the synthesis reaction, but can also be applied for hydrogen production. The copper-zinc-aluminum catalyst used in the water gas shift reaction can operate at a relatively low temperature compared to the noble metal catalyst, so that the carbon monoxide concentration can be lowered to a low concentration of 1% or less. In the presence of copper, there is a problem that copper sintering occurs and deactivates. Therefore, it can be used for a long time in industrial equipment that operates under certain conditions, but when the catalyst is frequently started and stopped like a fuel cell and the atmosphere of oxidation and reduction is repeated, copper sintering is likely to occur. The catalyst tends to be deactivated. Catalysts with precious metals such as platinum supported on titania or ceria are highly durable, but their activity at low temperatures is not as good as that of copper-zinc-aluminum catalysts.

そこで銅‐亜鉛‐アルミニウム触媒の活性および触媒の耐久性(特に起動・停止を繰り返して使用する状態で、触媒が実用上満足できる活性を維持できる時間。以下、単に耐久性と呼ぶ場合もある)を改良するため、種々検討されており、下記のような報告がある。
特許文献1には、ハイドロタルサイト形態のアルミニウム及びハイドロタルサイトとは異なるアルミニウムを含む触媒前駆体から製造した触媒活性が高いとしている。この触媒に酸化カリウムや酸化セシウムなど酸化物形態のIA族元素を添加してもよく、典型的な量は約50ppm〜1000ppmと記載されている。特許文献2では、ハイドロタルサイト担体に銅と貴金属を複合化した酸化物活性種を担持させると活性が高いシフト触媒が得られるとしている。また、特許文献3では、オーリカルサイト型の銅及び亜鉛からなる複合塩基炭酸塩から得た触媒はメタノール合成反応に高活性であるとしている。
さらに、特許文献4では、既存の銅−亜鉛系触媒の1〜5重量%のセシウムまたはストロンチウムを含有させた触媒は活性、耐久性に優れている。また、特許文献5には亜鉛・アルミニウム複合酸化物を含む担体に、銅と助触媒元素としてアルカリ金属元素又はアルカリ土類金属元素を担持した触媒は耐久性が高いとする。助触媒元素は1重量%以上2重量%以下がよいと開示されている。
しかしながら、頻繁に起動、停止を繰り返す燃料電池で使用する水素製造用水生ガスシフト反応用触媒としては、いずれも未だ十分でない。
Therefore, the activity of the copper-zinc-aluminum catalyst and the durability of the catalyst (especially, the time during which the catalyst can maintain a practically satisfactory activity in a state where it is repeatedly started and stopped, sometimes referred to simply as durability) Various studies have been made to improve the above, and the following reports have been made.
Patent Document 1 states that the catalytic activity produced from a hydrotalcite-form aluminum and a catalyst precursor containing aluminum different from hydrotalcite is high. Group IA elements in oxide form, such as potassium oxide and cesium oxide, may be added to the catalyst, and typical amounts are described as about 50 ppm to 1000 ppm. In Patent Document 2, it is said that a shift catalyst having high activity can be obtained by supporting a hydrotalcite support with an oxide active species in which copper and a noble metal are combined. Patent Document 3 states that a catalyst obtained from a complex base carbonate composed of auricalcite-type copper and zinc is highly active in a methanol synthesis reaction.
Furthermore, in Patent Document 4, a catalyst containing 1 to 5% by weight of cesium or strontium of an existing copper-zinc catalyst is excellent in activity and durability. In Patent Document 5, it is assumed that a catalyst in which copper and an alkali metal element or alkaline earth metal element as a promoter element are supported on a support containing a zinc / aluminum composite oxide has high durability. It is disclosed that the cocatalyst element is preferably 1% by weight or more and 2% by weight or less.
However, none of them are yet sufficient as aquatic gas shift reaction catalysts for hydrogen production used in fuel cells that are frequently started and stopped.

特表2005−520689号公報JP 2005-52089A 特開2003−80072号公報JP 2003-80072 A 特開平9−187654号公報JP-A-9-187654 特開平11−244700号公報JP 11-244700 A 特開2004−321924号公報JP 2004-321924 A

本発明は、このような状況に鑑みてなされたもので、触媒活性及び耐久性に優れ、燃料電池に適用しても活性の低下が少なく、長期間使用できる水性ガスシフト反応用触媒として用いられる一酸化炭素転換触媒用組成物からなる一酸化炭素転換用触媒、さらには、該一酸化炭素転換用触媒を用いた一酸化炭素除去方法を提供することを目的とするものである。   The present invention has been made in view of such a situation, and is excellent in catalytic activity and durability, has little decrease in activity even when applied to a fuel cell, and is used as a catalyst for a water gas shift reaction that can be used for a long period of time. It is an object of the present invention to provide a carbon monoxide conversion catalyst comprising a carbon oxide conversion catalyst composition, and further a carbon monoxide removal method using the carbon monoxide conversion catalyst.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、銅、亜鉛及びアルミニウムを含み、新規なX線回折パターンを示す触媒前駆体物質にさらに、特定の元素を極微量添加した一酸化炭素転換触媒用組成物を焼成して得られる触媒が、活性及び耐久性が高く、燃料電池に適用しても活性の低下が少なく、長期間使用できる水性ガスシフト反応用触媒となることを見出し、かかる知見に基づいて、本発明を完成した。
すなわち、本発明は、
[1] (A)酸化銅成分、(B)酸化亜鉛成分および(C)酸化アルミニウム成分を 含み、(A)〜(C)の合計質量1gに対し、(D)成分として0.01〜0.5mm olの周期表1族、2族、8族、10族、及び13族元素の少なくとも一種を含む一酸 化炭素転換用触媒、
[2] (A)酸化銅成分が10〜90質量%、(B)酸化亜鉛成分が5〜50質量%、および(C)酸化アルミニウム成分が5〜50質量%であり((A)〜(C)の総和は100質量%)、比表面積が100〜300m2/g、酸化銅結晶子径が200Å以下である上記[1]の一酸化炭素転換用触媒、
[3] (D)成分がK,Cs,Na,Mg,Ba,Fe,Pt,及びGaのいずれかである上記[1]又は[2]の一酸化炭素転換用触媒、
[4] (D)成分含有量が0.02〜0.1mmol/gである上記[1]〜[3]いずれかの一酸化炭素転換用触媒、
[5] 銅、亜鉛及びアルミニウムを含み、格子面間隔d(Å)5.0±0.5Å、3.7±0.3Å、2.6±0.2Å、2.3±0.2Å及び1.7±0.1Åにブロードなピークを示すX線回折パターンを有することを特徴とする触媒前駆体に、周期表1族、2族、8族、10族、及び13族元素のいずれかを含む単体又は化合物を、前記触媒前駆体に含ませた物を焼成して得られる、上記[1]〜[3]いずれかの一酸化炭素転換用触媒、
[6] 前記前駆体が、銅塩、亜鉛塩及びアルミニウム塩を含有する溶液とアルカリ金属又はアルカリ土類金属水酸化物を含有する溶液とを混合し、該混合液のpHを8.5〜11.0の条件下で沈殿させて得られたものである、上記[5]の一酸化炭素転換用触媒、
[7] 前記アルカリ金属又はアルカリ土類金属水酸化物が水酸化ナトリウムである上記[6]の一酸化炭素転換用触媒、
[8] 前記焼成する温度が200〜600℃である、上記[5]〜[7]いずれかの一酸化炭素転換用触媒、
[9] 銅塩、亜鉛塩及びアルミニウム塩を含有する溶液とアルカリ金属又はアルカリ土類金属水酸化物を含有する溶液とを混合し、該混合液のpHを8.5〜11.0の条件下で沈殿させて得られた触媒前駆体に、周期表1族、2族、8族、10族、及び13族元素のいずれかを含む単体又は化合物を含ませた後、それらを200〜600℃で焼成して得られる、上記[1]〜[8]いずれかの一酸化炭素転換用触媒の製造方法、
[10] 上記[1]〜[8]いずれかの触媒と、COを含む水素含有ガスを100〜400℃で接触させる工程を含む、水素含有ガスからのCO除去方法、及び
[11]炭化水素の改質により生成させる水素含有ガスを、上記[10]の水素含有ガスからのCO除去方法でCOを除去する工程を含む、燃料電池システム、
を提供するものである。
As a result of intensive studies to achieve the above object, the present inventors have added a trace amount of a specific element to a catalyst precursor material containing copper, zinc and aluminum and exhibiting a novel X-ray diffraction pattern. The catalyst obtained by calcining the carbon monoxide conversion catalyst composition is high in activity and durability, has little decrease in activity even when applied to a fuel cell, and becomes a catalyst for water gas shift reaction that can be used for a long time. And the present invention was completed based on this finding.
That is, the present invention
[1] (A) A copper oxide component, (B) a zinc oxide component, and (C) an aluminum oxide component, and 0.01 to 0 as component (D) with respect to 1 g of the total mass of (A) to (C) A catalyst for conversion of carbon monoxide containing at least one of the elements of Group 1, Group 2, Group 8, Group 10, and Group 13 of the 5 mmol periodic table;
[2] (A) The copper oxide component is 10 to 90% by mass, (B) the zinc oxide component is 5 to 50% by mass, and (C) the aluminum oxide component is 5 to 50% by mass ((A) to ( The sum of C) is 100% by mass), the specific surface area is 100 to 300 m 2 / g, and the copper oxide crystallite diameter is 200 mm or less;
[3] The carbon monoxide conversion catalyst according to the above [1] or [2], wherein the component (D) is any one of K, Cs, Na, Mg, Ba, Fe, Pt, and Ga,
[4] The catalyst for carbon monoxide conversion according to any one of the above [1] to [3], wherein the component content (D) is 0.02 to 0.1 mmol / g,
[5] Including copper, zinc and aluminum, lattice spacing d (Å) 5.0 ± 0.5 ±, 3.7 ± 0.3Å, 2.6 ± 0.2Å, 2.3 ± 0.2Å and A catalyst precursor characterized by having an X-ray diffraction pattern showing a broad peak at 1.7 ± 0.1%, and any one of the elements of Group 1, Group 2, Group 8, Group 10, and Group 13 of the periodic table A catalyst for carbon monoxide conversion according to any one of the above [1] to [3], which is obtained by calcining a simple substance or a compound containing the catalyst precursor in the catalyst precursor,
[6] A solution in which the precursor contains a copper salt, a zinc salt and an aluminum salt and a solution containing an alkali metal or alkaline earth metal hydroxide are mixed, and the pH of the mixture is 8.5 to 8.5. [5] the catalyst for carbon monoxide conversion, obtained by precipitation under the condition of 11.0,
[7] The carbon monoxide conversion catalyst according to [6], wherein the alkali metal or alkaline earth metal hydroxide is sodium hydroxide,
[8] The carbon monoxide conversion catalyst according to any one of the above [5] to [7], wherein the calcination temperature is 200 to 600 ° C.
[9] A solution containing a copper salt, a zinc salt and an aluminum salt is mixed with a solution containing an alkali metal or alkaline earth metal hydroxide, and the pH of the mixture is 8.5 to 11.0. After the catalyst precursor obtained by precipitation below contains a simple substance or a compound containing any of the elements of Group 1, Group 2, Group 8, Group 10, and Group 13 of the periodic table, they are added to 200 to 600. A method for producing a carbon monoxide conversion catalyst according to any one of the above [1] to [8], which is obtained by firing at ° C
[10] A method for removing CO from a hydrogen-containing gas, comprising a step of bringing the catalyst according to any one of [1] to [8] above into contact with a hydrogen-containing gas containing CO at 100 to 400 ° C., and [11] a hydrocarbon A fuel cell system comprising a step of removing CO from the hydrogen-containing gas produced by reforming of the hydrogen-containing gas from the hydrogen-containing gas of [10] above,
Is to provide.

本発明によれば、銅、亜鉛及びアルミニウムを含み、水酸化ナトリウムを沈殿剤として特定のpHで沈殿させた新規なX線回折パターンを示す触媒前駆体物質にさらに、周期表1族、2族、8族、10族及び13族元素の少なくとも一種の特定の元素を極微量添加した一酸化炭素転換触媒用組成物を焼成して得られる触媒が、活性及び耐久性が高く、燃料電池に適用しても活性の低下が少なく、長期間使用できる水性ガスシフト反応用触媒である一酸化炭素転換用触媒を提供することができる。   According to the present invention, the catalyst precursor material containing copper, zinc and aluminum and precipitated with sodium hydroxide as a precipitating agent at a specific pH and exhibiting a novel X-ray diffraction pattern is further added to groups 1 and 2 of the periodic table. , A catalyst obtained by calcining a composition for carbon monoxide conversion catalyst to which at least one specific element of at least one of Group 8, Group 10 and Group 13 elements is added, has high activity and durability, and is applied to fuel cells Even in such a case, it is possible to provide a catalyst for carbon monoxide conversion which is a catalyst for water gas shift reaction that can be used for a long period of time with little decrease in activity.

本発明の一酸化炭素転換用触媒の触媒組成としては、各元素を酸化物で表した場合に(A)酸化銅成分が10〜90質量%、好ましは30〜80質量%、(B)酸化亜鉛成分は5〜50質量%、好ましくは10〜40質量%、(C)酸化アルミニウム成分は5〜50質量%、好ましくは15〜40質量%、(D)成分として、前記(A)〜(C)の合計質量1gに対し0.01〜0.5mmol、好ましくは0.02〜0.1mmolの周期表1族、2族、8族、10族及び13族元素の少なくとも一種を含むものである。
従来最適と考えられていた触媒に比べて、酸化亜鉛成分が少なく、酸化アルミニウム成分が多いのが特徴の一つである。
前記触媒組成として、酸化銅成分が10〜90質量%を外れると、活性種の銅が少なくて触媒活性が低下したり、相対的に亜鉛、アルミニウムが少なくなるため、触媒の耐久性が低下する恐れがある。
前記触媒組成として、酸化亜鉛成分が5〜50質量%を外れると、亜鉛が少なくなることで触媒の耐久性が低下したり、相対的に銅が少なくて触媒活性が低下する恐れがある。
前記触媒組成として、酸化アルミニウムが5〜50質量%を外れると、触媒強度が低下したり、触媒の耐久性が低下する恐れがある。又、相対的に銅が少なくて触媒活性が低下する恐れがある。
前記触媒組成として、前記(D)成分を上記範囲のように極微量添加することによって本発明の優れた効果を奏することができる。(D)成分として添加する元素については、周期表1族、2族、8族、10族及び13族の元素であれば特に制限はないが、周期表1族の元素としてはK、Cs、Na、2族の元素としてはMg、Ba、8族の元素としてはFe、10族の元素としてはPt、13族の元素としてはGaが好ましい。特に好ましい元素としては K,Cs である。
より好ましくは、触媒組成として酸化亜鉛成分に、ジンサイト(zincite)を含まないものである。ジンサイト(zincite)を含まないことで、より本発明の一酸化炭素転換用触媒の耐久性、活性とも向上し、一酸化炭素転換用(シフト)触媒として燃料電池用改質器に搭載すると、起動停止を繰り返して使用しても活性の低下が少なく長期間使用できるメリットがある。
As a catalyst composition of the catalyst for carbon monoxide conversion of the present invention, when each element is represented by an oxide, (A) the copper oxide component is 10 to 90% by mass, preferably 30 to 80% by mass, (B) The zinc oxide component is 5 to 50% by mass, preferably 10 to 40% by mass, (C) the aluminum oxide component is 5 to 50% by mass, preferably 15 to 40% by mass, and (D) as the component (A) to The total mass of (C) is 0.01 to 0.5 mmol, preferably 0.02 to 0.1 mmol, and contains at least one element of Group 1, Group 2, Group 8, Group 10, and Group 13 of the Periodic Table. .
One of the features is that the amount of zinc oxide component is small and the amount of aluminum oxide component is large compared to a catalyst that has been considered to be optimal.
As the catalyst composition, if the copper oxide component departs from 10 to 90% by mass, the active species of copper is reduced and the catalytic activity is lowered, or the relative durability of the catalyst is lowered because zinc and aluminum are relatively reduced. There is a fear.
If the zinc oxide component deviates from 5 to 50% by mass as the catalyst composition, the durability of the catalyst may be reduced due to the decrease in zinc, or the catalytic activity may be decreased due to relatively little copper.
If the aluminum oxide is out of 5 to 50% by mass as the catalyst composition, the catalyst strength may decrease or the durability of the catalyst may decrease. Moreover, there is a possibility that the catalytic activity is lowered due to relatively little copper.
By adding a very small amount of the component (D) within the above range as the catalyst composition, the excellent effects of the present invention can be achieved. The element to be added as the component (D) is not particularly limited as long as it is an element of Group 1, Group 2, Group 8, Group 10, or Group 13 of the periodic table, but elements of Group 1 of the periodic table include K, Cs, Na and Group 2 elements are preferably Mg, Ba, Group 8 elements are Fe, Group 10 elements are Pt, and Group 13 elements are preferably Ga. Particularly preferred elements are K and Cs.
More preferably, the zinc oxide component does not contain zincite as the catalyst composition. By not containing zincite, the durability and activity of the carbon monoxide conversion catalyst of the present invention are further improved, and when mounted on a fuel cell reformer as a carbon monoxide conversion (shift) catalyst, There is an advantage that it can be used for a long time with little decrease in activity even if it is used repeatedly starting and stopping.

本発明による銅‐亜鉛‐アルミニウム系の一酸化炭素転換用触媒の物性は、比表面積が120〜300m2/g、好ましくは120〜200m2/g、一酸化炭素吸着量が20〜80μmol/g、好ましくは30〜70μmol/g、酸化銅結晶子径が200Å以下、好ましくは150Å以下である。
酸化亜鉛成分は少なくとも亜鉛アルミニウムスピネル(ZnAl24)として存在することが好ましい。亜鉛アルミニウムスピネルの微細な結晶のものほど銅のシンタリング抑制に効果的であり、結晶子径は100Å以下が好ましく、特に50Å以下が好ましい。
ジンサイト(zincite)や亜鉛アルミニウムスピネルの存在は粉末X線回折測定による回折パターンから確認できる。
ジンサイト(zincite)のX線回折パターンは
d=2.475、d=2.814、d=2.602、d=1.625, d=1.477、d=1.378
に回折線を示す。
亜鉛アルミニウムスピネル(ZnAl24)のX線回折パターンは
d=2.442、d=2.863、d=1.432、d=1.559, d=1.653、d=1.281
に回折線を示す。
亜鉛アルミニウムスピネルが銅原子の近傍にあると、熱および水蒸気の存在下や触媒が酸化、還元の雰囲気が繰り返される状態にある酸化銅または還元された銅がシンタリングして活性が失われることを抑制する効果があり、熱および水蒸気の存在下や酸化、還元の雰囲気が繰り返される条件下においても安定に存在し、銅のシンタリングが抑制され、安定した触媒活性を示す。他方、酸化亜鉛成分がジンサイト(zincite)であると上記、酸化還元の繰り返しでジンサイト(zincite)粒子自体がシンタリングし、銅のシンタリングを促進することがわかった。
比表面積が120〜300m2/gを外れると、触媒活性が低下したり、銅のシンタリング抑制効果が低下する。
一酸化炭素吸着量は反応に有効な銅の活性点の量に関係するが、20〜80μmol/gの範囲が活性、耐久性の観点から好ましい。あまり高すぎても耐久性が低下する。
酸化銅結晶子径が200Åを超えると、反応に有効な銅の活性点数が減少することから、活性が低下する。
亜鉛アルミニウムスピネルの結晶子径が100Åを超えると、銅のシンタリング抑制効果が低下し耐久性の点から好ましくない。
The physical properties of the copper-zinc-aluminum-based carbon monoxide conversion catalyst according to the present invention have a specific surface area of 120 to 300 m 2 / g, preferably 120 to 200 m 2 / g, and a carbon monoxide adsorption amount of 20 to 80 μmol / g. , Preferably 30 to 70 μmol / g, and the copper oxide crystallite diameter is 200 mm or less, preferably 150 mm or less.
The zinc oxide component is preferably present as at least zinc aluminum spinel (ZnAl 2 O 4 ). Finer crystals of zinc aluminum spinel are more effective in suppressing copper sintering, and the crystallite diameter is preferably 100 mm or less, particularly preferably 50 mm or less.
Presence of zincite and zinc aluminum spinel can be confirmed from a diffraction pattern by powder X-ray diffraction measurement.
The X-ray diffraction pattern of zincite is d = 2.475, d = 2.814, d = 2.602, d = 1.625, d = 1.477, d = 1.378.
Shows diffraction lines.
X-ray diffraction pattern of zinc aluminum spinel (ZnAl 2 O 4 ) is d = 2.442, d = 2.863, d = 1.432, d = 1.559, d = 1.653, d = 1.281
Shows diffraction lines.
If zinc aluminum spinel is in the vicinity of copper atoms, copper oxide or reduced copper in the presence of heat and water vapor or in a state where the catalyst is oxidized and reduced repeatedly will sinter and lose activity. It has an inhibitory effect, exists stably even in the presence of heat and water vapor, and under conditions of repeated oxidation and reduction atmospheres, suppresses copper sintering, and exhibits stable catalytic activity. On the other hand, it has been found that when the zinc oxide component is zincite, the zincite particles themselves are sintered by the repeated oxidation and reduction, thereby promoting copper sintering.
When the specific surface area deviates from 120 to 300 m 2 / g, the catalytic activity decreases and the copper sintering suppression effect decreases.
The amount of carbon monoxide adsorbed is related to the amount of active sites of copper effective for the reaction, but the range of 20 to 80 μmol / g is preferable from the viewpoint of activity and durability. If it is too high, the durability is lowered.
When the copper oxide crystallite diameter exceeds 200 mm, the number of active points of copper effective for the reaction decreases, and therefore the activity decreases.
When the crystallite diameter of the zinc aluminum spinel exceeds 100%, the copper sintering suppression effect is lowered, which is not preferable from the viewpoint of durability.

本発明による銅‐亜鉛‐アルミニウム系の一酸化炭素転換用触媒は、銅/亜鉛の原子比が1.0以上、および亜鉛のアルミニウムに対する原子比(Zn/Al)が0.1〜1.5であることが好ましい。特に好ましくは、銅/亜鉛の原子比が2〜10, および亜鉛のアルミニウムに対する原子比(Zn/Al)が0.2〜1.0である。
銅/亜鉛の原子比が1.0未満であると、活性が十分でない。
亜鉛のアルミニウムに対する原子比(Zn/Al)が0.1〜1.5を外れると、焼成した後に亜鉛アルミニウムスピネルが生成しないか、十分な量生成しないことによる触媒の耐久性(特に起動・停止を繰り返して使用する状態で、触媒が実用上満足できる活性を維持できる時間)の低下や、亜鉛原子が多すぎてジンサイト(zincite)等を生成し、その結果、触媒の耐久性が思ったほど向上しない恐れがある。
The copper-zinc-aluminum-based carbon monoxide conversion catalyst according to the present invention has a copper / zinc atomic ratio of 1.0 or more and a zinc to aluminum atomic ratio (Zn / Al) of 0.1 to 1.5. It is preferable that Particularly preferably, the atomic ratio of copper / zinc is 2 to 10, and the atomic ratio of zinc to aluminum (Zn / Al) is 0.2 to 1.0.
If the atomic ratio of copper / zinc is less than 1.0, the activity is not sufficient.
If the atomic ratio of zinc to aluminum (Zn / Al) deviates from 0.1 to 1.5, the durability of the catalyst (especially starting and stopping) due to the fact that zinc aluminum spinel does not form after firing or does not generate a sufficient amount In the state where the catalyst is repeatedly used, the time during which the catalyst can maintain a practically satisfactory activity) is reduced, and zinc atoms are generated too much, and as a result, the durability of the catalyst is thought. May not improve as much.

本発明の一酸化炭素転換用触媒は、後述する触媒前駆体物質に前記(D)成分を含む単体又は化合物を触媒前駆体物質1gに対し0.01〜1.0mmol、好ましくは0.02〜0.8mmol、特に好ましくは0.03〜0.7mmol添加したものを焼成して製造することが好ましい。焼成して得られる触媒中の前記(D)成分に由来する成分は、焼成前の(D)成分を含む単体又は化合物より幾らか少なくなることが通常であるためである。
触媒前駆体物質は、銅、亜鉛及びアルミニウムを含み、格子面間隔d(Å)5.0±0.5Å、3.7±0.3Å、2.6±0.2Å、2.3±0.2Å及び1.7±0.1ÅにブロードなX線回折ピークを示すspertiniite鉱物(Cu(OH)2)のX線回折パターンに類似したX線回折パターンを示す銅、亜鉛及びアルミニウムを含む物質である。
さらに、前記触媒前駆体物質は銅、亜鉛及びアルミニウムを含み、上記のX線回折パターンに加えて、さらに、格子面間隔d(Å)8.4±0.6Å及び4.2±0.3ÅにブロードなX線回折ピークを示す物質であってもよく、8.4±0.6Å、4.2±0.3Åは、hydroscarbroite鉱物(Al14(CO33(OH)36・n(H2O))のX線回折パターンに類似したX線回折パターンを示す物質である。
また、触媒前駆体物質は、上記2種類のX線回折パターンに加えてTenorite(CuO)のX線回折パターン(格子面間隔2.3±0.2Å及び2.57±0.2Å)を示す物質が含まれる場合があるが、少量であれば触媒性能への問題はない。
The catalyst for carbon monoxide conversion of the present invention contains 0.01 to 1.0 mmol, preferably 0.02 to 1 g of the catalyst precursor material containing a simple substance or a compound containing the component (D) in the catalyst precursor material described later. It is preferable to sinter and prepare 0.8 mmol, particularly preferably 0.03 to 0.7 mmol added. This is because the component derived from the component (D) in the catalyst obtained by calcination is usually somewhat less than the simple substance or compound containing the component (D) before calcination.
The catalyst precursor material includes copper, zinc and aluminum, and the lattice spacing d (Å) is 5.0 ± 0.5Å, 3.7 ± 0.3Å, 2.6 ± 0.2Å, 2.3 ± 0. Substances containing copper, zinc and aluminum showing X-ray diffraction patterns similar to those of spertiniite minerals (Cu (OH) 2 ) showing broad X-ray diffraction peaks at .2X and 1.7 ± 0.1Å. It is.
Further, the catalyst precursor material includes copper, zinc, and aluminum. In addition to the above X-ray diffraction pattern, the lattice spacing d (Å) is 8.4 ± 0.6Å and 4.2 ± 0.3Å. It may be a substance showing a broad X-ray diffraction peak, and 8.4 ± 0.6Å, 4.2 ± 0.3Å is hydroscarbroite mineral (Al 14 (CO 3 ) 3 (OH) 36 · n ( It is a substance showing an X-ray diffraction pattern similar to that of H 2 O)).
In addition to the above two types of X-ray diffraction patterns, the catalyst precursor material exhibits an X-ray diffraction pattern (lattice spacing 2.3 ± 0.2 mm and 2.57 ± 0.2 mm) of Tenorite (CuO). Substances may be included, but there is no problem with catalyst performance if the amount is small.

ここで、X線回折パターンの測定条件は次の通りである。
Cu−Kα線:波長λ=1.5406Å、出力:40kV、40mA
光学系:反射法;2θ・θ連続スキャン、DS、SSスリット:1°
RSスリット:0.3mm、ステップ間隔:0.02°、スキャン速度:1°/分
Here, the measurement conditions of the X-ray diffraction pattern are as follows.
Cu-Kα ray: wavelength λ = 1.5406Å, output: 40 kV, 40 mA
Optical system: reflection method; 2θ · θ continuous scan, DS, SS slit: 1 °
RS slit: 0.3 mm, step interval: 0.02 °, scan speed: 1 ° / min

上記触媒前駆体物質の製造方法は、銅塩、亜鉛塩及びアルミニウム塩を含有する溶液と水酸化ナトリウム(沈殿剤)を含有する溶液を混合して、形成させた沈殿物を洗浄及び乾燥することによって得ることができる。銅塩、亜鉛塩及びアルミニウム塩を含有する溶液と水酸化ナトリウム溶液を混合して銅、亜鉛及びアルミニウムを共沈させる場合には、いずれか一方の溶液を攪拌しながら、もう一方の溶液を混合してもよい。このとき、混合液のpHが8〜11.5になるように調整を行うことが好ましい。
沈殿剤としてはアルカリ金属またはアルカリ土類金属水酸化物を用いる。水酸化ナトリウム、水酸化カリウム、水酸化バリウムが好ましく、水酸化ナトリウムがもっとも好ましい。炭酸ナトリウムなどアルカリまたはアルカリ土類金属炭酸塩を用いると本発明の触媒前駆体物質は得られない。
The method for producing the catalyst precursor material comprises mixing a solution containing a copper salt, a zinc salt and an aluminum salt and a solution containing sodium hydroxide (precipitating agent), and washing and drying the formed precipitate. Can be obtained by: When mixing a solution containing copper salt, zinc salt and aluminum salt with sodium hydroxide solution to coprecipitate copper, zinc and aluminum, mix one solution while stirring the other solution. May be. At this time, it is preferable to adjust so that the pH of a liquid mixture may be 8-11.5.
As the precipitant, an alkali metal or alkaline earth metal hydroxide is used. Sodium hydroxide, potassium hydroxide and barium hydroxide are preferred, and sodium hydroxide is most preferred. When an alkali or alkaline earth metal carbonate such as sodium carbonate is used, the catalyst precursor material of the present invention cannot be obtained.

銅塩及び亜鉛塩の塩種としては、硝酸塩、塩化物、硫酸塩、塩酸塩、有機酸塩例えば酢酸塩、クエン酸塩などを用いることができるが、これらの中で硝酸塩が好ましい。アルミニウム塩は硝酸塩、塩化物、塩酸塩、硫酸塩、水酸化物、アルミン酸ナトリウム及びプソイドベーマイトなどを用いることができるが、これらの中で硝酸塩及びアルミン酸ナトリウムが好ましい。
銅塩、亜鉛塩及びアルミニウム塩を含有する溶液とアルカリ金属またはアルカリ土類金属水酸化物例えば、水酸化ナトリウムを含有する溶液の混合は、攪拌しながら、約0〜約90℃の温度に維持して行う。沈殿形成後、直ぐに洗浄、ろ過を行ってもよいし、熟成させた後、洗浄、ろ過を行ってもよい。
得られた沈殿物の乾燥条件としては特に制限はないが、室温〜200℃程度の温度で乾燥が終了するまで行えばよい。
本発明の一酸化炭素転換用触媒は、(D)成分を含む硝酸塩、水酸化物、酢酸塩、クエン酸塩の水溶液を用いて、含侵、蒸発乾固などの方法で上記の触媒前駆体物質に含有させた一酸化炭素転換触媒用組成物を、乾燥し、200〜600℃程度の温度で焼成することで得ることができる。焼成して得られる触媒は元の触媒前駆体のX線回折パターンを示さず、酸化銅のX線回折パターンを示す。
少量の酸化亜鉛のX線回折パターンを伴う場合もある。このようにして得られた触媒は、そのままで、又は適当な方法により造粒又は打錠成形して用いる。触媒の粒子径や形状は、反応方式、反応器の形状によって任意に選択することができ、本発明の触媒は、固定床、流動床等のいずれの反応方式においても用いることができる。
As salt types of the copper salt and zinc salt, nitrates, chlorides, sulfates, hydrochlorides, organic acid salts such as acetates and citrates can be used, among which nitrates are preferable. As the aluminum salt, nitrate, chloride, hydrochloride, sulfate, hydroxide, sodium aluminate, pseudoboehmite and the like can be used, and among these, nitrate and sodium aluminate are preferable.
Mixing a solution containing copper, zinc and aluminum salts with a solution containing an alkali metal or alkaline earth metal hydroxide such as sodium hydroxide is maintained at a temperature of about 0 to about 90 ° C. with stirring. And do it. After formation of the precipitate, washing and filtration may be performed immediately, or after aging, washing and filtration may be performed.
Although there is no restriction | limiting in particular as drying conditions of the obtained deposit, What is necessary is just to carry out until drying is completed at the temperature of about room temperature-200 degreeC.
The catalyst for carbon monoxide conversion of the present invention comprises the above catalyst precursor by a method such as impregnation and evaporation to dryness using an aqueous solution of nitrate, hydroxide, acetate and citrate containing the component (D). The carbon monoxide conversion catalyst composition contained in the substance can be obtained by drying and firing at a temperature of about 200 to 600 ° C. The catalyst obtained by calcination does not show the X-ray diffraction pattern of the original catalyst precursor, but shows the X-ray diffraction pattern of copper oxide.
It may be accompanied by a small amount of zinc oxide X-ray diffraction pattern. The catalyst thus obtained is used as it is or after being granulated or tableted by an appropriate method. The particle size and shape of the catalyst can be arbitrarily selected depending on the reaction method and the shape of the reactor, and the catalyst of the present invention can be used in any reaction method such as a fixed bed and a fluidized bed.

本発明の一酸化炭素転換用触媒は、特に水性ガスシフト反応用触媒として有用である。
本発明の一酸化炭素転換用触媒を用い、水性ガスシフト反応を利用した一酸化炭素の除去方法は、原料ガス中の一酸化炭素や水素の濃度及び触媒成分の含有量などにより異なり得るが、通常、反応温度は150〜400℃程度、反応圧力は常圧〜10MPa(絶対圧)程度、水蒸気と原料ガス中の一酸化炭素のモル比は、1〜100程度、原料ガス(水蒸気を除く)の空間速度(GHSV値)は100〜100,000hr-1程度の範囲が適当である。
また、本発明の一酸化炭素転換用触媒を用いた、一酸化炭素の除去方法は、炭化水素の改質により生成される水素含有ガスを用いる燃料電池システムに採用することができる。
The catalyst for carbon monoxide conversion of the present invention is particularly useful as a catalyst for water gas shift reaction.
The method for removing carbon monoxide using the carbon monoxide conversion catalyst of the present invention and utilizing the water gas shift reaction may vary depending on the concentration of carbon monoxide and hydrogen in the raw material gas and the content of the catalyst component. The reaction temperature is about 150 to 400 ° C., the reaction pressure is about normal pressure to 10 MPa (absolute pressure), the molar ratio of water vapor to carbon monoxide in the raw material gas is about 1 to 100, and the raw material gas (excluding water vapor) The space velocity (GHSV value) is suitably in the range of about 100 to 100,000 hr −1 .
In addition, the carbon monoxide removal method using the catalyst for carbon monoxide conversion of the present invention can be employed in a fuel cell system using a hydrogen-containing gas generated by hydrocarbon reforming.

次に、本発明を実施例により、さらに具体的に説明するが、本発明は、これらの例によってなんら限定されるものではない。
なお、触媒の比表面積、銅表面積、一酸化炭素吸着量、CuO結晶子径の測定は下記の方法により行った。
触媒の物性測定
(a) 比表面積測定
比表面積測定はユアサアイオニクス社製比表面積測定装置を用い、試料約100mgを試料管に充填し、前処理として200℃で20分間窒素気流中で加熱脱水した。次に液体窒素温度で窒素(30%)/ヘリウム(70%)混合ガスを流通させ窒素を吸着させた後、脱離させTCD検出器で測定した窒素の吸着量から比表面積を求めた。
(b) 触媒の銅表面積
触媒の銅表面積の測定は、ブルカーAXS社製示差熱天秤装置を用い、水素ガスで120分間還元処理をおこなった。その後、90℃、60分間Heでパージを行った後、90℃で亜酸化窒(1%)/ヘリウム(99%)ガスを流通させ、次の反応式に示すように表面の銅を酸化させた。
2O+2Cu→N2+Cu2
CuからCu2Oへの重量変化を測定して表面の銅の原子数を算出し、また、1m2中に存在する銅原子の数が1.46×1019であることから銅面積を計算した。
(c) CO吸着量測定
CO吸着量測定は、パルス吸着量測定装置R6015(大倉理研製)を用い、パルス法にて測定した。試料約200mgを秤量し、前処理として100%-水素下で200℃,60分還元処理をおこなった。その後、200℃、60分Heでパージを行った。測定は50℃でCOガスをパルスで導入した。COの吸着が見られなくなるまでCOパルスを繰返し、CO吸着量を測定した。
(d) XRD測定
XRD測定はリガク社製 X線回折装置を用いておこなった。試料をガラス製試料セルに充填し、X線源 Cu−Kα(1.5406Å, グラファイトモノクロメーターにより単色化)、2θ-θ反射法により測定した。CuO、ZnAl24の結晶子径をシェラー式から算出した。(ZnAl24の結晶子径については、実施例1、6、8及び比較例1について測定した。)
(e) 組成分析
触媒のCu、Zn、Al量はプラズマ発光(ICP)法で定量した。Cu、Zn、Alの定量測定値からCuO、ZnO、Al23量を算出し、合計を100質量%になるよう換算した。
EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
The specific surface area of the catalyst, the copper surface area, the carbon monoxide adsorption amount, and the CuO crystallite diameter were measured by the following methods.
Measurement of physical properties of catalyst
(a) Specific surface area measurement The specific surface area measurement was performed using a specific surface area measurement device manufactured by Yuasa Ionics Co., Ltd., and about 100 mg of a sample was filled in a sample tube, and was subjected to heat dehydration in a nitrogen stream at 200 ° C. for 20 minutes as a pretreatment. Next, nitrogen (30%) / helium (70%) mixed gas was circulated at the liquid nitrogen temperature to adsorb nitrogen, and then desorbed and the specific surface area was determined from the amount of nitrogen adsorbed measured by a TCD detector.
(b) Copper surface area of the catalyst The copper surface area of the catalyst was measured by reducing with hydrogen gas for 120 minutes using a differential thermal balance apparatus manufactured by Bruker AXS. After purging with He at 90 ° C. for 60 minutes, nitrous oxide (1%) / helium (99%) gas was circulated at 90 ° C. to oxidize copper on the surface as shown in the following reaction formula. It was.
N 2 O + 2Cu → N 2 + Cu 2 O
The weight change from Cu to Cu 2 O is measured to calculate the number of copper atoms on the surface, and the copper area is calculated because the number of copper atoms present in 1 m 2 is 1.46 × 10 19. did.
(c) CO adsorption amount measurement The CO adsorption amount measurement was performed by a pulse method using a pulse adsorption amount measuring device R6015 (manufactured by Okura Riken). About 200 mg of the sample was weighed and subjected to reduction treatment at 200 ° C. for 60 minutes under 100% -hydrogen as a pretreatment. Thereafter, purging was performed at 200 ° C. for 60 minutes with He. In the measurement, CO gas was introduced in pulses at 50 ° C. The CO pulse was repeated until no CO adsorption was observed, and the CO adsorption amount was measured.
(d) XRD measurement XRD measurement was performed using an X-ray diffractometer manufactured by Rigaku Corporation. The sample was filled in a glass sample cell and measured by an X-ray source Cu-Kα (1.5406 mm, monochromatized with a graphite monochromator), 2θ-θ reflection method. The crystallite diameters of CuO and ZnAl 2 O 4 were calculated from the Scherrer equation. (The crystallite size of ZnAl 2 O 4 was measured for Examples 1, 6, 8 and Comparative Example 1.)
(e) Composition analysis The amount of Cu, Zn, and Al in the catalyst was quantified by a plasma emission (ICP) method. CuO, ZnO, and Al 2 O 3 amounts were calculated from the quantitative measurement values of Cu, Zn, and Al, and the total was converted to 100% by mass.

触媒の活性評価方法
0.5〜1mmに整粒した各触媒0.5ccにSiC 4mLを加えたものを内径12mmの反応管に充填した。反応管内で触媒をH2/N2=20/80の気流中で、230℃で2時間還元処理を行った後、GHSV:60,000h-1の条件でH2/CO/CO2/H2O=49.9/9.9/10.2/30.0(vol%)のガスを導入し、200℃で一酸化炭素変成反応を実施した。得られたガスをサンプリングしてガスクロマトグラフィーにてその濃度を測定した。この結果をもとに、CO転化率を下記の式により求めた。結果を表1に示す。
CO転化率(%) = ((A−B)/A)×100
上式において、A=反応器入口側のCO量=(変成前のCO濃度(vol%))×(変成前のガス量(mL/分))およびB=反応器出口側のCO量=(変成後のCO濃度(vol%))×(変成後のガス量(mL/分))である。
Catalyst Activity Evaluation Method A reaction tube having an inner diameter of 12 mm was filled with 0.5 cc of each catalyst adjusted to 0.5 to 1 mm and 4 mL of SiC added thereto. In the reaction tube, the catalyst was reduced in an air stream of H 2 / N 2 = 20/80 at 230 ° C. for 2 hours, and then H 2 / CO / CO 2 / H under the condition of GHSV: 60,000 h −1. A gas of 2 O = 49.9 / 9.9 / 10.2 / 30.0 (vol%) was introduced, and carbon monoxide shift reaction was carried out at 200 ° C. The obtained gas was sampled and its concentration was measured by gas chromatography. Based on this result, the CO conversion was determined by the following formula. The results are shown in Table 1.
CO conversion rate (%) = ((A−B) / A) × 100
In the above equation, A = CO amount on the reactor inlet side = (CO concentration before transformation (vol%)) × (gas amount before transformation (mL / min)) and B = CO amount on the reactor outlet side = ( CO concentration after modification (vol%)) × (gas amount after modification (mL / min)).

製造例1 触媒前躯体物質の製造
硝酸銅三水和物1415g、硝酸亜鉛六水和物560g、硝酸アルミニウム九水和物1650gを水15lに溶解し、A液とした。水酸化ナトリウム2モル/リットル溶液を調合した。A液と水酸化ナトリウム溶液を50℃の2lの水の入った容器に同時に滴下した。滴下中、沈殿物を攪拌しながら50℃に維持し、pHが9.5〜10.0となるように水酸化ナトリウム溶液の滴下速度を調製した。この沈殿物を3時間熟成した後、濾過し、充分、水洗を行った。取り出した沈殿物を120℃で乾燥した後、X線回折測定を行った。格子面間隔 d(Å)5.07Å、3.70Å、2.61Å、2.27Å及び1.71Åにブロードなピークを示した。X線回析図を図1に示す。
Production Example 1 Production of Catalyst Precursor Material 1415 g of copper nitrate trihydrate, 560 g of zinc nitrate hexahydrate, and 1650 g of aluminum nitrate nonahydrate were dissolved in 15 l of water to prepare solution A. A sodium hydroxide 2 mol / liter solution was prepared. Liquid A and sodium hydroxide solution were simultaneously added dropwise to a container containing 2 liters of water at 50 ° C. During the dropping, the precipitate was maintained at 50 ° C. with stirring, and the dropping rate of the sodium hydroxide solution was adjusted so that the pH was 9.5 to 10.0. The precipitate was aged for 3 hours, filtered, and thoroughly washed with water. The taken out precipitate was dried at 120 ° C. and then subjected to X-ray diffraction measurement. Broad peaks were shown at lattice spacings d (ピ ー ク) of 5.07Å, 3.70Å, 2.61Å, 2.27Å and 1.71Å. An X-ray diffraction diagram is shown in FIG.

実施例1〜15及び比較例1〜3
前記製造例1で得られた触媒前躯体物質の一部(20g)に表1に示す化合物の水溶液を含浸した。120℃で乾燥した後、350℃で3時間焼成し、触媒とした。各触媒を圧縮成型及び粉砕し、0.5mm〜1mmに整粒した。
この触媒の組成は酸化銅54.7質量%,酸化亜鉛19.4質量%、酸化アルミニウム25.9質量%であった。
次に、前記触媒の活性評価方法に基づいて各触媒のCO転化率(%)を測定した。その評価結果を表1に示す。
Examples 1-15 and Comparative Examples 1-3
A portion (20 g) of the catalyst precursor material obtained in Production Example 1 was impregnated with an aqueous solution of the compounds shown in Table 1. After drying at 120 ° C., it was calcined at 350 ° C. for 3 hours to obtain a catalyst. Each catalyst was compression-molded and pulverized, and sized to 0.5 mm to 1 mm.
The composition of this catalyst was 54.7% by mass of copper oxide, 19.4% by mass of zinc oxide, and 25.9% by mass of aluminum oxide.
Next, the CO conversion rate (%) of each catalyst was measured based on the activity evaluation method of the catalyst. The evaluation results are shown in Table 1.

Figure 2009241036
Figure 2009241036

製造例1で得られた触媒前駆体のX線回折図である。2 is an X-ray diffraction pattern of a catalyst precursor obtained in Production Example 1. FIG.

本発明によれば、銅、亜鉛及びアルミニウムを含み、新規なX線回折パターンを示す触媒前駆体物質にさらに、周期表1族、2族、8族、10族及び13族元素の少なくとも一種の特定の元素を極微量添加し焼成して得られる触媒が、活性及び耐久性が高く、燃料電池に適用しても活性の低下が少なく、長期間使用できる水性ガスシフト反応用触媒である一酸化炭素転換用触媒を提供することができる。   According to the present invention, the catalyst precursor material containing copper, zinc and aluminum and exhibiting a novel X-ray diffraction pattern is further added to at least one element of Group 1, Group 2, Group 8, Group 10 and Group 13 of the periodic table. Carbon monoxide is a catalyst for water gas shift reaction that can be used for a long period of time because the catalyst obtained by adding a very small amount of a specific element and calcining has high activity and durability, has little decrease in activity even when applied to a fuel cell A conversion catalyst can be provided.

Claims (11)

(A)酸化銅成分、(B)酸化亜鉛成分および(C)酸化アルミニウム成分を含み 、(A)〜(C)の合計質量1gに対し、(D)成分として0.01〜0.5mmolの 周期表1族、2族、8族、10族、及び13族元素の少なくとも一種を含む一酸化炭素転換用触媒。 (A) A copper oxide component, (B) a zinc oxide component and (C) an aluminum oxide component, and 0.01 to 0.5 mmol of (D) component with respect to 1 g of the total mass of (A) to (C) A catalyst for carbon monoxide conversion comprising at least one of Group 1, Group 2, Group 8, Group 10, and Group 13 elements of the Periodic Table. (A)酸化銅成分が10〜90質量%、(B)酸化亜鉛成分が5〜50質量%、および(C)酸化アルミニウム成分が5〜50質量%であり((A)〜(C)の総和は100質量%)、比表面積が100〜300m2/g、酸化銅結晶子径が200Å以下である請求項1に記載の一酸化炭素転換用触媒。 (A) The copper oxide component is 10 to 90% by mass, (B) the zinc oxide component is 5 to 50% by mass, and (C) the aluminum oxide component is 5 to 50% by mass ((A) to (C) 2. The catalyst for carbon monoxide conversion according to claim 1, wherein the sum is 100% by mass), the specific surface area is 100 to 300 m 2 / g, and the copper oxide crystallite diameter is 200 mm or less. (D)成分がK,Cs,Na,Mg,Ba,Fe,Pt,及びGaのいずれかである請求項1又は2に記載の一酸化炭素転換用触媒。 The catalyst for carbon monoxide conversion according to claim 1 or 2, wherein the component (D) is any one of K, Cs, Na, Mg, Ba, Fe, Pt, and Ga. (D)成分含有量が0.02〜0.1mmol/gである請求項1〜3のいずれかに記載の一酸化炭素転換用触媒。 (D) Component content is 0.02-0.1 mmol / g, The carbon monoxide conversion catalyst in any one of Claims 1-3. 銅、亜鉛及びアルミニウムを含み、格子面間隔d(Å)5.0±0.5Å、3.7±0.3Å、2.6±0.2Å、2.3±0.2Å及び1.7±0.1Åにブロードなピークを示すX線回折パターンを有することを特徴とする触媒前駆体に、周期表1族、2族、8族、10族、及び13族元素のいずれかを含む単体又は化合物を含ませた物を焼成して得られたものである、請求項1〜4のいずれかに記載の一酸化炭素転換用触媒。   Including copper, zinc and aluminum, lattice spacing d (Å) 5.0 ± 0.5Å, 3.7 ± 0.3Å, 2.6 ± 0.2Å, 2.3 ± 0.2Å and 1.7 A catalyst precursor characterized by having an X-ray diffraction pattern showing a broad peak at ± 0.1Å, and a simple substance containing any of the elements of Group 1, Group 2, Group 8, Group 10, and Group 13 of the periodic table Or the catalyst for carbon monoxide conversion in any one of Claims 1-4 obtained by baking the thing containing the compound. 前記前駆体が、銅塩、亜鉛塩及びアルミニウム塩を含有する溶液とアルカリ金属又はアルカリ土類金属水酸化物を含有する溶液とを混合し、該混合液のpHを8.5〜11.0の条件下で沈殿させて得られたものである、請求項5に記載の一酸化炭素転換用触媒。     The precursor contains a solution containing a copper salt, a zinc salt and an aluminum salt and a solution containing an alkali metal or alkaline earth metal hydroxide, and the pH of the mixture is 8.5 to 11.0. The catalyst for carbon monoxide conversion according to claim 5, which is obtained by precipitation under the conditions of 前記アルカリ金属又はアルカリ土類金属水酸化物が水酸化ナトリウムである請求項6に記載の一酸化炭素転換用触媒。   7. The carbon monoxide conversion catalyst according to claim 6, wherein the alkali metal or alkaline earth metal hydroxide is sodium hydroxide. 前記焼成する温度が200〜600℃である、請求項5〜7のいずれかに記載の一酸化炭素転換用触媒。   The catalyst for carbon monoxide conversion according to any one of claims 5 to 7, wherein the calcination temperature is 200 to 600 ° C. 銅塩、亜鉛塩及びアルミニウム塩を含有する溶液とアルカリ金属又はアルカリ土類金属水酸化物を含有する溶液とを混合し、該混合液のpHを8.5〜11.0の条件下で沈殿させて得られた触媒前駆体に、周期表1族、2族、8族、10族、及び13族元素のいずれかを含む単体又は化合物を、前記触媒前駆体に含ませた後、それらを200〜600℃で焼成して得られる、請求項1〜8のいずれかに記載の一酸化炭素転換用触媒の製造方法。   A solution containing a copper salt, a zinc salt and an aluminum salt is mixed with a solution containing an alkali metal or alkaline earth metal hydroxide, and the pH of the mixture solution is precipitated under a condition of 8.5 to 11.0. The catalyst precursor obtained by adding a simple substance or a compound containing any of the elements of Group 1, Group 2, Group 8, Group 10, and Group 13 of the periodic table to the catalyst precursor, The manufacturing method of the catalyst for carbon monoxide conversion in any one of Claims 1-8 obtained by baking at 200-600 degreeC. 請求項1〜8のいずれかに記載の触媒と、COを含む水素含有ガスを100〜400℃で接触させる工程を含む、水素含有ガスからのCO除去方法。   A method for removing CO from a hydrogen-containing gas, comprising a step of bringing the catalyst according to any one of claims 1 to 8 into contact with a hydrogen-containing gas containing CO at 100 to 400 ° C. 炭化水素の改質により生成させる水素含有ガスを、請求項10に記載の水素含有ガスからのCO除去方法でCOを除去する工程を含む、燃料電池システム。   A fuel cell system comprising a step of removing CO from a hydrogen-containing gas produced by reforming a hydrocarbon using the method for removing CO from a hydrogen-containing gas according to claim 10.
JP2008094080A 2008-03-31 2008-03-31 Carbon monoxide conversion catalyst comprising composition for carbon monoxide conversion catalyst, and method of removing carbon monoxide using the same Pending JP2009241036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008094080A JP2009241036A (en) 2008-03-31 2008-03-31 Carbon monoxide conversion catalyst comprising composition for carbon monoxide conversion catalyst, and method of removing carbon monoxide using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008094080A JP2009241036A (en) 2008-03-31 2008-03-31 Carbon monoxide conversion catalyst comprising composition for carbon monoxide conversion catalyst, and method of removing carbon monoxide using the same

Publications (1)

Publication Number Publication Date
JP2009241036A true JP2009241036A (en) 2009-10-22

Family

ID=41303574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008094080A Pending JP2009241036A (en) 2008-03-31 2008-03-31 Carbon monoxide conversion catalyst comprising composition for carbon monoxide conversion catalyst, and method of removing carbon monoxide using the same

Country Status (1)

Country Link
JP (1) JP2009241036A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211100A (en) * 2011-03-31 2012-11-01 Nippon Steel Corp Method and catalyst for producing methanol
CN109621967A (en) * 2018-12-26 2019-04-16 西安向阳航天材料股份有限公司 A kind of preparation method of copper system low temperature conversion catalyst
CN113750950A (en) * 2020-06-05 2021-12-07 中国石油化工股份有限公司 Purifying agent for removing carbonyl metal compound and preparation method and application thereof
WO2023237239A1 (en) 2022-06-09 2023-12-14 Clariant International Ltd Hydrotalcite-precursor based catalyst with improved performance for lts reaction

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253740A (en) * 1985-08-30 1987-03-09 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Catalyst precursor
JPH02174936A (en) * 1988-11-14 1990-07-06 United Catalyst Inc Low-temperature shift catalyst
JPH11244700A (en) * 1998-03-04 1999-09-14 Osaka Gas Co Ltd Carbon monoxide conversion catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253740A (en) * 1985-08-30 1987-03-09 インペリアル・ケミカル・インダストリ−ズ・ピ−エルシ− Catalyst precursor
JPH02174936A (en) * 1988-11-14 1990-07-06 United Catalyst Inc Low-temperature shift catalyst
JPH11244700A (en) * 1998-03-04 1999-09-14 Osaka Gas Co Ltd Carbon monoxide conversion catalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012211100A (en) * 2011-03-31 2012-11-01 Nippon Steel Corp Method and catalyst for producing methanol
CN109621967A (en) * 2018-12-26 2019-04-16 西安向阳航天材料股份有限公司 A kind of preparation method of copper system low temperature conversion catalyst
CN113750950A (en) * 2020-06-05 2021-12-07 中国石油化工股份有限公司 Purifying agent for removing carbonyl metal compound and preparation method and application thereof
CN113750950B (en) * 2020-06-05 2024-03-26 中国石油化工股份有限公司 Purifying agent for removing carbonyl metal compound and preparation method and application thereof
WO2023237239A1 (en) 2022-06-09 2023-12-14 Clariant International Ltd Hydrotalcite-precursor based catalyst with improved performance for lts reaction

Similar Documents

Publication Publication Date Title
JP5666777B2 (en) Carbon monoxide conversion catalyst and carbon monoxide conversion method using the same
US8475684B2 (en) Composite oxide for hydrocarbon reforming catalyst, process for producing the same, and process for producing syngas using the same
JP5421770B2 (en) Catalyst precursor material and catalyst using the same
Yang et al. Steam CO2 reforming of methane over La1− xCexNiO3 perovskite catalysts
KR101994152B1 (en) A Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, Preparation Method Thereof and Methane Reforming Method Threrewith
US7001586B2 (en) CO-free hydrogen from decomposition of methane
JP2005520689A (en) Water gas shift reaction
US9540241B2 (en) Catalysts for producing hydrogen and synthesis gas
Xiong et al. Strong structural modification of Gd to Co3O4 for catalyzing N2O decomposition under simulated real tail gases
JP5354142B2 (en) Steam reforming catalyst and reaction gas production method
US9168510B2 (en) Nickel catalysts for reforming hydrocarbons
JP2009241036A (en) Carbon monoxide conversion catalyst comprising composition for carbon monoxide conversion catalyst, and method of removing carbon monoxide using the same
US6995115B2 (en) Catalyst for the generation of CO-free hydrogen from methane
Li et al. Effect of phase transformation on the stability of Ni-Mg-Al catalyst for dry reforming of methane
JP4525909B2 (en) Water gas shift reaction catalyst, method for producing the same, and method for producing water gas
Long et al. High active and coke-resistant CeNiO3-based catalyst for methane bi-reforming
Jin et al. Exploring the influence of chemical state of Cu species on CO-SCR performance in spinel-type CuM2O4 (M= Co, Mn, Fe, Ni, and Cr): The synergy between Cu2+ and surface oxygen vacancy
Pham et al. Synthesis of CeO 2-Fe 2 O 3 Mixed Oxides for Low-Temperature Carbon Monoxide Oxidation
JP5619598B2 (en) Copper-zinc-aluminum catalyst, production method thereof, carbon monoxide conversion method, and hydrogen production method
Choya Atencia et al. Comparative Study of Strategies for Enhancing the Performance of Co3O4/Al2O3 Catalysts for Lean Methane Combustion
JP4709724B2 (en) Hydrocarbon reforming catalyst
Kenmoe et al. Low-Temperature Catalytic Methane Deep Oxidation over Sol-gel derived Mesoporous Hausmannite (Mn3O4) Spherical Particles
Batakliev et al. Gas phase ozone decomposition over co-precipitated Ni-based catalysts
BR102021015712A2 (en) METHOD OF PREPARATION OF THE WATER GAS DISPLACEMENT CATALYST, CATALYST, USE AND PROCESS TO REDUCE THE CONTENT OF CARBON MONOXIDE
Otor Catalyst Development and Control of Catalyst Deactivation for Carbon Dioxide Conversion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130917