JP5354142B2 - Steam reforming catalyst and reaction gas production method - Google Patents

Steam reforming catalyst and reaction gas production method Download PDF

Info

Publication number
JP5354142B2
JP5354142B2 JP2007004944A JP2007004944A JP5354142B2 JP 5354142 B2 JP5354142 B2 JP 5354142B2 JP 2007004944 A JP2007004944 A JP 2007004944A JP 2007004944 A JP2007004944 A JP 2007004944A JP 5354142 B2 JP5354142 B2 JP 5354142B2
Authority
JP
Japan
Prior art keywords
steam reforming
reforming catalyst
catalyst
aluminum
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007004944A
Other languages
Japanese (ja)
Other versions
JP2007313496A (en
Inventor
斉也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2007004944A priority Critical patent/JP5354142B2/en
Publication of JP2007313496A publication Critical patent/JP2007313496A/en
Application granted granted Critical
Publication of JP5354142B2 publication Critical patent/JP5354142B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Catalysts (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、耐硫黄被毒性に優れるとともに、工業的に大量に生産可能な触媒用の担体及び該担体を用いた水蒸気改質用触媒、並びに該触媒を用いた硫黄を含有する炭化水素の水蒸気改質反応によるC1成分と水素の混合ガスの製造方法の提供を目的とする。   The present invention relates to a catalyst carrier that is excellent in sulfur poisoning resistance and that can be industrially produced in large quantities, a steam reforming catalyst using the carrier, and a sulfur-containing hydrocarbon steam using the catalyst. It aims at providing the manufacturing method of the mixed gas of C1 component and hydrogen by reforming reaction.

大きな発電装置を用いエネルギー源として石炭や石油に偏っている現況は、地震などの天災や原料価格高騰、テロや戦争による影響を受けやすいことから、早急なるエネルギー源の多様化並びに分散電源化が叫ばれている。   The current situation of biasing to coal and oil as an energy source using a large power generation device is easily affected by natural disasters such as earthquakes, rising raw material prices, terrorism and war. Screamed.

発電所で電気エネルギーを発生させ送電線・電線を経由して各家庭・事業所等に配分するよりも、電気を必要とする場所においてコジェネレーションシステムで発電することはエネルギー利用効率が高く、二酸化炭素などの発生量を削減できるため、地球環境や資源の枯渇の面からも大きな期待を寄せられている。このうち、もっとも期待されているのは、水素を利用した燃料電池システムによる発電であり、近年のうちにまさに実用化されつつある。   Rather than generating electrical energy at a power plant and allocating it to households and business establishments via transmission lines and wires, generating electricity with a cogeneration system in a place where electricity is required is more energy efficient. Since the generation amount of carbon and the like can be reduced, there are great expectations in terms of the global environment and the depletion of resources. Of these, the most promising is power generation by a fuel cell system using hydrogen, which is being put into practical use in recent years.

燃料電池に用いる水素の発生燃料源としては、灯油、イソオクタン、ガソリン等の石油系、LPガス、都市ガスなど幅広い炭化水素原料が検討されている。   A wide variety of hydrocarbon raw materials, such as petroleum, such as kerosene, isooctane, and gasoline, LP gas, and city gas, are being studied as a source of hydrogen generated in fuel cells.

しかしながら、石油系原料やLPガスには原料自体に、また、都市ガスには後添加によって、全硫黄含有量としておおよそ10ppm〜100ppmあるいはそれ以上の硫黄が含有される。   However, petroleum-based raw materials and LP gas contain sulfur in the raw material itself, and city gas contains sulfur in a total sulfur content of approximately 10 ppm to 100 ppm or more by post-addition.

炭化水素原料を水素リッチな混合ガスに改質する場合、炭化水素原料中に硫黄分が多量に存在すると燃料電池システムにおける改質器の触媒を被毒し触媒活性を劣化させることから、大量の脱硫触媒や高価な脱硫システムを燃料電池システムの上流側に設置しなければならない。この結果、システム全体のコストが大きく割高となってしまい、将来の燃料電池システム普及妨害要素の一つとなっている。   When reforming a hydrocarbon feedstock to a hydrogen-rich mixed gas, a large amount of sulfur in the hydrocarbon feedstock poisons the reformer catalyst in the fuel cell system and degrades the catalytic activity. A desulfurization catalyst and an expensive desulfurization system must be installed upstream of the fuel cell system. As a result, the cost of the entire system is greatly increased, which is one of the factors that obstruct the spread of fuel cell systems in the future.

そのため耐硫黄被毒性の高い触媒体を用いることによってコストを低減させる検討が進められている。触媒活性金属自身への耐硫黄被毒性の付与は、触媒活性金属を担持させる担体の改良によって主に行われている(特許文献1乃至4)。また、炭化水素の水蒸気改質触媒として、マグネシウムとアルミニウムとを含有するものが知られている(特許文献5、6)。   Therefore, studies are underway to reduce the cost by using a catalyst body with high sulfur poisoning resistance. Giving sulfur-resistant poisoning to the catalytically active metal itself is mainly carried out by improving the carrier for supporting the catalytically active metal (Patent Documents 1 to 4). Moreover, what contains magnesium and aluminum as a steam reforming catalyst of hydrocarbon is known (patent documents 5 and 6).

特開平9−173842号公報JP-A-9-173842 特開2001−340759号公報JP 2001-340759 A 特開2004−900号公報JP 2004-900 A 特開2004−82034号公報JP 2004-82034 A 特開昭55−139836号公報Japanese Patent Application Laid-Open No. 55-139836 特開2003−225566号公報Japanese Patent Application Laid-Open No. 2003-225566

上記特許文献1乃至4記載の技術では、耐硫黄被毒性の向上は得られるものの、未だ十分とは言い難いものである。また、特許文献5、6には、耐硫黄被毒性については考慮されていない。   Although the techniques described in Patent Documents 1 to 4 improve sulfur poisoning resistance, they are still not sufficient. Patent Documents 5 and 6 do not consider sulfur poisoning resistance.

また、特に水素を得るための水蒸気改質反応は600℃以上の高温の反応場温度で行われるため、担体主成分のアルミニウムやジルコニウムなどの焼結が水蒸気反応において促進されるため、担体自身の細孔や比表面積が少なくなり活性種金属の活性が損なわれるだけではなく、活性種金属のシンタリングも同時に促進されるので、加速度的に触媒活性が低下してしまうこととなり、触媒体の耐久性に大きな問題がある。   In particular, since the steam reforming reaction for obtaining hydrogen is performed at a high reaction field temperature of 600 ° C. or higher, sintering of the support main component such as aluminum or zirconium is promoted in the steam reaction, so that the support itself Not only are the pores and specific surface area reduced, the activity of the active species metal is impaired, but also the sintering of the active species metal is promoted at the same time. There is a big problem with sex.

高性能な耐硫黄被毒性を触媒に付与する焼結しにくい多孔質担体が求められているものの、十分な効果、性能並びに耐久性を持つ触媒体が得られていないのが現状である。   Although there is a demand for a porous carrier that does not sinter and imparts high-performance sulfur poisoning resistance to the catalyst, a catalyst body having sufficient effects, performance, and durability has not been obtained.

前記技術的課題は、次の通りの本発明によって達成できる。   The technical problem can be achieved by the present invention as follows.

即ち、本発明は、少なくともアルミニウムとマグネシウムから構成された複合酸化物であり、BET比表面積が10〜300m/gであって、平均細孔径が300Å以下であり、且つ、細孔容積が0.1cm/g以上であることを特徴とする水蒸気改質用触媒の多孔質担体である(本発明1)。 That is, the present invention is a composite oxide composed of at least aluminum and magnesium, has a BET specific surface area of 10 to 300 m 2 / g, an average pore diameter of 300 mm or less, and a pore volume of 0. 1. A porous carrier for a steam reforming catalyst, characterized by being 1 cm 3 / g or more (Invention 1).

また、本発明は、前記多孔質担体と、ケイ素、ジルコニウム、セリウム、チタン、アルミニウム、イットリウムやスカンジウムを含む希土類元素、第Ia族元素及び第IIa族元素から選ばれる少なくとも1種類以上の元素の酸化物、水酸化物、炭酸塩又は含水酸化物との混合物であって、前記混合物のMg含有量がMg換算で20〜50wt%であることを特徴とする水蒸気改質用触媒の多孔質担体の混合物である(本発明2)。   The present invention also provides the porous carrier and oxidation of at least one element selected from rare earth elements including silicon, zirconium, cerium, titanium, aluminum, yttrium and scandium, group Ia elements and group IIa elements. A porous support for a steam reforming catalyst, characterized in that the Mg content of the mixture is 20 to 50 wt% in terms of Mg It is a mixture (Invention 2).

また、本発明は、前記多孔質担体又は前記多孔質担体の混合物に、平均粒径が1〜15nmのRu、Rh、Ir、Pt、Pd、Co、Ni、Fe、Agから選ばれた一種又は二種以上の活性種金属を担持させたことを特徴とする水蒸気改質用触媒である(本発明3)。   In the present invention, the porous carrier or the mixture of the porous carriers is a kind selected from Ru, Rh, Ir, Pt, Pd, Co, Ni, Fe, and Ag having an average particle diameter of 1 to 15 nm or A steam reforming catalyst characterized by supporting two or more active species metals (Invention 3).

また、本発明は、前記水蒸気改質用触媒を用いて気体状又は液体状の炭化水素原料を分解してC1成分及び水素を主成分とした反応混合ガスを得ることを特徴とする反応混合ガスの製造方法である。(本発明4)。   Further, the present invention provides a reaction mixed gas characterized in that a gaseous mixture or a liquid hydrocarbon raw material is decomposed using the steam reforming catalyst to obtain a reaction mixed gas mainly composed of a C1 component and hydrogen. It is a manufacturing method. (Invention 4).

本発明に係る多孔質担体及び水蒸気改質用触媒は、多孔質担体及び活性種金属の焼結が抑制され、高性能な触媒活性はもちろん優れた耐硫黄被毒性を長時間にわたり維持することができる。
従って、本発明においては、微量の硫黄を含有する炭化水素原料であっても効率よく水蒸気改質を行って、C1成分と水素との混合ガスを製造することができる。
The porous carrier and the steam reforming catalyst according to the present invention can suppress the sintering of the porous carrier and the active species metal, and maintain high sulfur catalytic resistance as well as high-performance catalytic activity over a long period of time. it can.
Therefore, in this invention, even if it is a hydrocarbon raw material containing a trace amount sulfur, steam reforming can be performed efficiently and the mixed gas of C1 component and hydrogen can be manufactured.

先ず、本発明に係る水蒸気改質触媒用の多孔質担体について述べる。   First, the porous carrier for the steam reforming catalyst according to the present invention will be described.

本発明に係る水蒸気改質触媒用の多孔質担体のBET比表面積は10〜300m/gである。BET比表面積が10m/g未満の場合、平均細孔径が大きくなり担持させる活性種金属のシンタリングを十分に抑制させることができない。300m/gを超えたものは工業的な生産ができないため現実的ではない。好ましくは20〜280m/g、より好ましくは23〜270m/gである。 The BET specific surface area of the porous carrier for a steam reforming catalyst according to the present invention is 10 to 300 m 2 / g. When the BET specific surface area is less than 10 m 2 / g, the average pore diameter becomes large and sintering of the active species metal to be supported cannot be sufficiently suppressed. Those exceeding 300 m 2 / g are not realistic because they cannot be industrially produced. Preferably it is 20-280 m < 2 > / g, More preferably, it is 23-270 m < 2 > / g.

本発明に係る水蒸気改質触媒用の多孔質担体の平均細孔径は300Å以下である。平均細孔径が300Åを超えると活性種金属のシンタリングを十分に抑制できないだけではなく耐硫黄被毒性の特性を十分に発揮できない。好ましくは290Å以下、より好ましくは280Å以下である。下限値は10Å程度である。   The average pore diameter of the porous carrier for the steam reforming catalyst according to the present invention is 300 mm or less. When the average pore diameter exceeds 300 mm, not only the sintering of the active species metal cannot be sufficiently suppressed but also the characteristic of sulfur poisoning resistance cannot be exhibited sufficiently. Preferably it is 290 mm or less, more preferably 280 mm or less. The lower limit is about 10 mm.

本発明に係る水蒸気改質触媒用の多孔質担体の細孔容積は0.1cm/g以上である。0.1cm/g未満の場合、十分な触媒活性が得られないだけではなく耐硫黄被毒性の特性を十分に発揮できない。好ましくは0.12cm/gである。上限値は5cm/g程度である。 The pore volume of the porous carrier for the steam reforming catalyst according to the present invention is 0.1 cm 3 / g or more. When it is less than 0.1 cm 3 / g, not only a sufficient catalytic activity cannot be obtained, but also the characteristics of sulfur poisoning resistance cannot be exhibited sufficiently. Preferably it is 0.12 cm 3 / g. The upper limit is about 5 cm 3 / g.

本発明1に係る水蒸気改質用触媒の多孔質担体は粉末状、又はビーズ状やシート状等の成形体であってもよい。   The porous carrier of the steam reforming catalyst according to the first aspect of the present invention may be a powder, or a molded body such as a bead or a sheet.

本発明に係る水蒸気改質用触媒の多孔質担体が成形体である場合、BET比表面積は10〜100m/gであることが好ましい。BET比表面積が10m/g未満の場合、触媒活性が低下するだけではなく優れた耐硫黄被毒性を発揮することが困難となる。100m/gを超えたものは成形強度が低下するため現実的ではない。より好ましくは10〜98m/g、更により好ましくは11〜95m/gである。 When the porous carrier of the steam reforming catalyst according to the present invention is a molded body, the BET specific surface area is preferably 10 to 100 m 2 / g. When the BET specific surface area is less than 10 m 2 / g, it is difficult not only to reduce the catalytic activity but also to exhibit excellent sulfur poisoning resistance. Those exceeding 100 m 2 / g are not realistic because the molding strength decreases. More preferably, it is 10-98 m < 2 > / g, More preferably, it is 11-95 m < 2 > / g.

本発明に係る水蒸気改質用触媒の多孔質担体の成形体である場合、平均細孔径は250Å以下であることが好ましい。平均細孔径が250Åを超えると活性種金属のシンタリングを十分に抑制できない。より好ましくは245Å以下、更により好ましくは240Å以下である。下限値は10Å程度である。   In the case of the molded body of the porous carrier of the steam reforming catalyst according to the present invention, the average pore diameter is preferably 250 mm or less. When the average pore diameter exceeds 250 mm, sintering of the active species metal cannot be sufficiently suppressed. More preferably, it is 245 mm or less, and still more preferably 240 mm or less. The lower limit is about 10 mm.

本発明に係る水蒸気改質用触媒の多孔質担体の成形体である場合、細孔容積は0.1cm/g以上であることが好ましい。細孔容積が0.1cm/gを下回ると十分な触媒活性を得ることが困難となり耐硫黄被毒性の特性を十分に発揮できない。より好ましくは0.12cm/g以上である。上限値は5cm/g程度である。 In the case of the molded body of the porous carrier of the steam reforming catalyst according to the present invention, the pore volume is preferably 0.1 cm 3 / g or more. When the pore volume is less than 0.1 cm 3 / g, it is difficult to obtain sufficient catalytic activity, and the characteristics of sulfur poisoning resistance cannot be exhibited sufficiently. More preferably, it is 0.12 cm 3 / g or more. The upper limit is about 5 cm 3 / g.

ビーズ状やシート状の多孔質担体は、上記多孔質担体のみから作製されても良いし、所望のサイズや形態、形状のコージェライトやアルミナなどの基材に塗布されても良い。   The bead-like or sheet-like porous carrier may be produced only from the above porous carrier, or may be applied to a base material such as cordierite or alumina having a desired size, form and shape.

本発明の多孔質担体を構成する複合酸化物中のマグネシウム含有量は、多孔質担体重量に対してMg換算で22〜60wt%、好ましくは23〜55wt%であり、アルミニウム含有量は、多孔質担体重量に対してAl換算で5〜30wt%、好ましくは7.5〜25wt%である(ただし、成形した多孔質担体の場合には、コージェライトやアルミナなどの基材は重量からは除く)。
マグネシウム含有量が多孔質担体重量に対してMg換算で22wt%未満の場合、十分な耐硫黄被毒性を発揮することが困難である。60wt%を超えてマグネシウムを含有させても耐硫黄被毒性の効果の向上はない。
多孔質単体を構成する複合酸化物自体の、マグネシウム元素とアルミニウム元素とのモル比率(Mg:Al)は、1.2:1〜5:1、好ましくは1.5:1〜4.8である。
The magnesium content in the composite oxide constituting the porous carrier of the present invention is 22 to 60 wt%, preferably 23 to 55 wt% in terms of Mg with respect to the weight of the porous carrier, and the aluminum content is porous. 5 to 30 wt%, preferably 7.5 to 25 wt% in terms of Al with respect to the weight of the carrier (however, in the case of a shaped porous carrier, base materials such as cordierite and alumina are excluded from the weight) .
When the magnesium content is less than 22 wt% in terms of Mg with respect to the weight of the porous carrier, it is difficult to exhibit sufficient sulfur poisoning resistance. Even if magnesium exceeds 60 wt%, the effect of sulfur poisoning resistance is not improved.
The molar ratio (Mg: Al) of magnesium element to aluminum element of the composite oxide itself constituting the porous simple substance is 1.2: 1 to 5: 1, preferably 1.5: 1 to 4.8. is there.

本発明においては、前記本発明1に係る多孔質担体又はその成形体に、ケイ素、ジルコニウム、セリウム、チタン、アルミニウム、イットリウムやスカンジウムを含む希土類元素、第Ia族元素及び第IIa族元素から選ばれる少なくとも1種類以上の元素の酸化物、水酸化物、炭酸塩又は含水酸化物を混合させても良い。   In the present invention, the porous support according to the present invention 1 or a molded body thereof is selected from rare earth elements including silicon, zirconium, cerium, titanium, aluminum, yttrium and scandium, group Ia elements and group IIa elements. An oxide, hydroxide, carbonate, or hydrated oxide of at least one element may be mixed.

前記元素の酸化物、水酸化物、炭酸塩又は含水酸化物としては、シリカ、ジルコニア、セリア、チタニア、水ガラス、イットリア、スカンジア、炭酸カリウム、カルシア、酸化ランタン、酸化ネオジウム、酸化セリウム、水酸化ルビジウム、炭酸バリウム、ベーマイト、αアルミナ、θアルミナ、γアルミナ等であり、これらの化合物の一種又は二種以上である。   Examples of the oxide, hydroxide, carbonate or hydrated oxide of the element include silica, zirconia, ceria, titania, water glass, yttria, scandia, potassium carbonate, calcia, lanthanum oxide, neodymium oxide, cerium oxide, and hydroxide. Rubidium, barium carbonate, boehmite, α-alumina, θ-alumina, γ-alumina and the like, and one or more of these compounds.

なお、前記元素の酸化物、水酸化物、炭酸塩又は含水酸化物の粒子形状は、粒状、繊維状、針状、紡錘状等のいずれの形状であってもよい。   The particle shape of the oxide, hydroxide, carbonate or hydrated oxide of the element may be any shape such as granular, fibrous, needle-shaped, or spindle-shaped.

本発明2に係る水蒸気改質用触媒の多孔質担体の混合物は、Mg含有量がMg換算で全体に対して20.0〜50.0wt%含有するものである。20.0wt%未満の場合、十分な耐硫黄被毒性を発揮できなくなる。50.0wt%を超えてマグネシウムを含有しても耐硫黄被毒性の効果の向上はない。好ましくは21.0〜49.0wt%、より好ましくは22.0〜48.0wt%である。
また、アルミニウム含有量は、Al換算で全体に対して3〜30wt%、好ましくは4〜28wt%である。
これらの場合、成形した多孔質担体の場合にはコージェライトやアルミナなどの基材は重量からは除く。
The mixture of the porous support | carrier of the catalyst for steam reforming which concerns on this invention 2 contains Mg content 20.0-50.0 wt% with respect to the whole in conversion of Mg. If it is less than 20.0 wt%, sufficient sulfur poisoning resistance cannot be exhibited. Even if magnesium exceeds 50.0 wt%, the effect of sulfur poisoning resistance is not improved. Preferably it is 21.0-49.0 wt%, More preferably, it is 22.0-48.0 wt%.
Moreover, aluminum content is 3-30 wt% with respect to the whole in conversion of Al, Preferably it is 4-28 wt%.
In these cases, the base material such as cordierite and alumina is excluded from the weight in the case of the molded porous carrier.

本発明3に係る水蒸気改質用触媒は、本発明1の多孔質担体又は本発明2の多孔質担体の混合物に、活性種金属を1〜15nmの任意範囲のサイズで担持させることによって、高い触媒活性を長時間維持することができる触媒である。   The steam reforming catalyst according to the present invention 3 is high by supporting the active species metal in a size within a range of 1 to 15 nm on the porous support of the present invention 1 or the mixture of the porous support of the present invention 2. It is a catalyst that can maintain the catalytic activity for a long time.

活性種金属としては、Ru、Rh、Ir、Pt、Pd、Co、Ni、Fe、Agなどから少なくとも1種類を選択すればよい。   The active species metal may be at least one selected from Ru, Rh, Ir, Pt, Pd, Co, Ni, Fe, Ag, and the like.

活性種金属の平均粒径は、1〜20nmが好ましい。平均粒径が20nmを超える場合は、触媒活性の低下やコーキングが起きることがある。より好ましくは1.5〜15nmである。   The average particle size of the active species metal is preferably 1 to 20 nm. When the average particle diameter exceeds 20 nm, catalyst activity may be reduced or coking may occur. More preferably, it is 1.5-15 nm.

本発明3に係る水蒸気改質用触媒は、本発明1の多孔質担体又は本発明2の多孔質担体の混合物に、活性種金属を1〜15nmの任意範囲のサイズで担持させることによって、高い触媒活性を長時間維持することができる触媒である。   The steam reforming catalyst according to the present invention 3 is high by supporting the active species metal in a size within a range of 1 to 15 nm on the porous support of the present invention 1 or the mixture of the porous support of the present invention 2. It is a catalyst that can maintain the catalytic activity for a long time.

本発明3に係る水蒸気改質用触媒の活性種金属の担持量は、0.1〜40wt%が好ましく、より好ましくは0.5〜30wt%である。   The supported amount of the active species metal in the steam reforming catalyst according to the present invention 3 is preferably 0.1 to 40 wt%, more preferably 0.5 to 30 wt%.

本発明3に係る水蒸気改質用触媒のマグネシウム含有量はMg換算で20〜55wt%が好ましく、アルミニウム含有量はAl換算で7〜25wt%が好ましい。
本発明3に係る水蒸気改質用触媒のマグネシウムとアルミニウムとのモル比率(Mg:Al)は、1.2:1〜5:1が好ましい。
The magnesium content of the steam reforming catalyst according to the present invention 3 is preferably 20 to 55 wt% in terms of Mg, and the aluminum content is preferably 7 to 25 wt% in terms of Al.
The molar ratio (Mg: Al) of magnesium and aluminum in the steam reforming catalyst according to the present invention 3 is preferably 1.2: 1 to 5: 1.

次に、本発明1に係る多孔質担体の製造方法について述べる。   Next, a method for producing a porous carrier according to the present invention 1 will be described.

本発明に係る多孔質担体は、少なくともアルミニウム原料とマグネシウム原料とを混合し、pH8以上で沈澱させることによって得られる含水複水酸化物、又は、含水複水酸化物とアルミニウム化合物及び/又はマグネシウム化合物とからなる混合生成物を、350〜1250℃にて熱処理することによって得られる。   The porous carrier according to the present invention is a hydrated double hydroxide obtained by mixing at least an aluminum raw material and a magnesium raw material and precipitated at a pH of 8 or higher, or a hydrated double hydroxide and an aluminum compound and / or a magnesium compound. Is obtained by heat treatment at 350 to 1250 ° C.

アルミニウム原料としては、硫酸塩、硝酸塩、塩化物塩、水酸化物、酸化物、オキシ水酸化物、アルコキシド化合物、クエン酸などの錯体などを用いることができる。   As the aluminum raw material, sulfates, nitrates, chloride salts, hydroxides, oxides, oxyhydroxides, alkoxide compounds, complexes of citric acid, and the like can be used.

マグネシウム原料としては、硫酸塩、硝酸塩、塩化物塩、水酸化物、酸化物、炭酸塩、アルコキシド化合物、クエン酸などの錯体などを用いることができる。   As the magnesium raw material, sulfates, nitrates, chloride salts, hydroxides, oxides, carbonates, alkoxide compounds, complexes of citric acid, and the like can be used.

反応液中のpHを8以上、より好ましくは8.5〜14に調整する。pHを調整するためにはアンモニアや尿素、又は、マグネシウム、カリウム、ナトリウム等のアルカリ金属元素やアルカリ土類金属元素の水酸化物、炭酸塩、酸化物などを利用することができる。   The pH in the reaction solution is adjusted to 8 or more, more preferably 8.5 to 14. In order to adjust pH, ammonia, urea, or hydroxides, carbonates, oxides, or the like of alkali metal elements or alkaline earth metal elements such as magnesium, potassium, and sodium can be used.

沈澱させる温度は10〜300℃、好ましくは15〜280℃、さらに好ましくは20〜250℃である。300℃を超えると工業的な生産が難しくなる。10℃よりも低い温度には冷却装置が必要となりコスト的な問題が発生する。
熱処理温度が1250℃を超えると細孔径が大きくなり、細孔容積が減少し、BET比表面積も減少するため、触媒の活性の低下、耐硫黄被毒性の効果の低下が起きてしまう。350℃よりも低い場合には多孔質な担体にならない。好ましくは370〜1230℃、より好ましくは400〜1210℃である。
The temperature for precipitation is 10 to 300 ° C, preferably 15 to 280 ° C, more preferably 20 to 250 ° C. If it exceeds 300 ° C., industrial production becomes difficult. A temperature lower than 10 ° C. requires a cooling device, which causes a cost problem.
When the heat treatment temperature exceeds 1250 ° C., the pore diameter increases, the pore volume decreases, and the BET specific surface area also decreases, resulting in a decrease in the activity of the catalyst and a decrease in the effect of sulfur poisoning resistance. When it is lower than 350 ° C., it does not become a porous carrier. Preferably it is 370-1230 degreeC, More preferably, it is 400-1210 degreeC.

なお、成形体を作製する際は、常法に従って、製造すればよいが、例えば、コージェライトハニカム体やアルミナ板上、ステンレス系金属板上への塗布や、圧縮成型機あるいは押出成形機によるビーズ形状の成型体の作製方法などを用いればよい。   In addition, when producing a molded body, it may be produced according to a conventional method. For example, it is applied to a cordierite honeycomb body, an alumina plate, a stainless steel metal plate, or a bead by a compression molding machine or an extrusion molding machine. A method for producing a shaped molded body may be used.

本発明2の多孔質担体の混合物は、常法に従って、多孔質担体又はその成形体と、シリカやベーマイト等とを混合すればよい。また、本発明の多孔質担体とシリカやベーマイト等とを混合した後、成形したものであってもよい。   The porous carrier mixture of the present invention 2 may be prepared by mixing a porous carrier or a molded product thereof with silica, boehmite or the like according to a conventional method. Further, it may be formed after mixing the porous carrier of the present invention with silica, boehmite or the like.

本発明において、多孔質担体とケイ素、ジルコニウム、セリウム、チタン、アルミニウム、イットリウムやスカンジウムを含む希土類元素、第Ia族元素及び第IIa族元素から選ばれる少なくとも1種類以上の元素の酸化物、水酸化物、炭酸塩又は含水酸化物との混合割合は、多孔質担体に対して0.1〜30wt%が好ましい。より好ましくは0.5〜28wt%であり、得られた混合物のMg含有量は、Mg換算で20〜50wt%である。   In the present invention, a porous carrier and an oxide or hydroxide of at least one element selected from rare earth elements including silicon, zirconium, cerium, titanium, aluminum, yttrium and scandium, group Ia elements and group IIa elements The mixing ratio of the product, carbonate or hydrated oxide is preferably 0.1 to 30 wt% with respect to the porous carrier. More preferably, it is 0.5-28 wt%, and Mg content of the obtained mixture is 20-50 wt% in terms of Mg.

本発明3に係る水蒸気改質触媒は、前記多孔質担体又は多孔質担体の混合物に、活性種金属を担持させたものであるが、活性種金属の担持方法は常法に従って行えばよい。
例えば、所望の活性種金属の塩を含有する水溶液に前記多孔質担体を浸漬させて、活性種金属を含浸させ、乾燥、熱処理を行う方法、コージェライトハニカム体やアルミナ板上、ステンレス系金属板上への塗布や、圧縮成型機あるいは押出成形機によるビーズ形状の成型体の作製方法などである。
The steam reforming catalyst according to the present invention 3 is one in which an active species metal is supported on the porous carrier or a mixture of porous carriers. The method for supporting the active species metal may be performed according to a conventional method.
For example, a method of immersing the porous carrier in an aqueous solution containing a salt of a desired active species metal, impregnating the active species metal, drying and heat treatment, on a cordierite honeycomb body or alumina plate, a stainless steel metal plate For example, a method of producing a bead-shaped molded body by coating on top or a compression molding machine or an extrusion molding machine.

次に、本発明3に係る水蒸気改質触媒を用いた反応混合ガスの製造方法について述べる(本発明4)。   Next, a method for producing a reaction gas mixture using the steam reforming catalyst according to the present invention 3 will be described (present invention 4).

本発明に係る水蒸気改質触媒を用いて炭化水素原料を分解してC1成分及び水素を主成分とした反応混合ガスを得る工程は、全硫黄含有量が50ppm以下のガス状の炭化水素原料の場合、GHSVが100〜1,000,000h−1、反応温度が300〜800℃、S/Cが1.0〜6.0である。 The step of decomposing a hydrocarbon raw material using the steam reforming catalyst according to the present invention to obtain a reaction mixed gas mainly composed of C1 component and hydrogen is a process for producing a gaseous hydrocarbon raw material having a total sulfur content of 50 ppm or less. In this case, GHSV is 100 to 1,000,000 h −1 , the reaction temperature is 300 to 800 ° C., and S / C is 1.0 to 6.0.

ガス状の炭化水素原料は、メタン、エタンや、気化させたプロパン、イソオクタン、灯油、ガソリン系など幅広い炭化水素化合物である。   Gaseous hydrocarbon raw materials are a wide variety of hydrocarbon compounds such as methane, ethane, vaporized propane, isooctane, kerosene, and gasoline.

この炭化水素原料に含まれる硫黄を含んだ化合物としては、例えば、メチルメルカプタン、エチルメルカプタン、イソブチルメルカプタン、メテルエチルサルファイド、硫化ジメチル、ターシャリーブチルメルカプタン、sec−ブチルメルカプタン、n−ブチルメルカプタン、イソプロピルメルカプタン、n−プロピルメルカプタン、イソアミルメルカプタン、n−アミルメルカプタン、α−メチルブチルメルカプタン、α−エチルプロピルメルカプタン、n−ヘキシルメルカプタン、2−メチルカプトヘキサン、3−メルカプトヘキサンなどがある。   Examples of the sulfur-containing compound contained in the hydrocarbon raw material include methyl mercaptan, ethyl mercaptan, isobutyl mercaptan, metaethyl sulfide, dimethyl sulfide, tertiary butyl mercaptan, sec-butyl mercaptan, n-butyl mercaptan, isopropyl mercaptan. N-propyl mercaptan, isoamyl mercaptan, n-amyl mercaptan, α-methylbutyl mercaptan, α-ethylpropyl mercaptan, n-hexyl mercaptan, 2-methylcaptohexane, 3-mercaptohexane, and the like.

GHSVが100h−1よりも低い場合は得られるC1成分及び水素が少なすぎて現実的ではない。GHSVが1,000,000h−1を超えた場合には反応で引き起こされる吸熱に対して十分な熱源を与えることができない。好ましくは150〜800,000h−1、より好ましくは200〜500,000h−1である。 When GHSV is lower than 100 h −1, the obtained C1 component and hydrogen are too small, which is not practical. When GHSV exceeds 1,000,000 h −1 , a sufficient heat source cannot be provided for the endotherm caused by the reaction. Preferably it is 150-800,000h < -1 >, More preferably, it is 200-500,000h- 1 .

反応温度が300℃を下回るとC1成分及び水素への転換がほとんど進まない。800℃を超えると触媒の反応缶の材質がインコネル等の高価な材料となり現実的ではない。好ましくは300〜780℃、より好ましくは320〜750℃である。   When the reaction temperature is below 300 ° C., the conversion to the C1 component and hydrogen hardly proceeds. If it exceeds 800 ° C., the material of the catalyst reactor becomes an expensive material such as Inconel, which is not realistic. Preferably it is 300-780 degreeC, More preferably, it is 320-750 degreeC.

S/Cが1.0よりも低い場合には炭化水素自身の分解が進みコーキングや炭素析出が大きく進んでしまう。S/Cが6.0を超えると得られるC1成分や水素の分率が低く現実的ではない。好ましくは1.5〜4.0である。   When S / C is lower than 1.0, the decomposition of the hydrocarbon itself proceeds and coking and carbon deposition progress greatly. If the S / C exceeds 6.0, the C1 component and hydrogen fraction obtained are low and not realistic. Preferably it is 1.5-4.0.

本発明に係る水蒸気改質触媒を用いて炭化水素原料を分解してC1成分及び水素を主成分とした反応混合ガスを得る工程は、全硫黄含有量が50ppm以下の液状の炭化水素原料の場合、LHSVが5h−1以下、反応温度が300〜800℃、S/Cが1.0〜6.0である。 The process of decomposing a hydrocarbon raw material using the steam reforming catalyst according to the present invention to obtain a reaction mixed gas mainly composed of C1 component and hydrogen is a liquid hydrocarbon raw material having a total sulfur content of 50 ppm or less. , LHSV is 5 h −1 or less, the reaction temperature is 300 to 800 ° C., and S / C is 1.0 to 6.0.

液状の炭化水素原料は、プロパン、イソオクタン、灯油、ガソリン系など幅広い炭化水素化合物である。   Liquid hydrocarbon raw materials are a wide variety of hydrocarbon compounds such as propane, isooctane, kerosene, and gasoline.

この炭化水素原料に含まれる硫黄を含んだ化合物としては、例えば、メチルメルカプタン、エチルメルカプタン、イソブチルメルカプタン、メテルエチルサルファイド、硫化ジメチル、ターシャリーブチルメルカプタン、sec−ブチルメルカプタン、n−ブチルメルカプタン、イソプロピルメルカプタン、n−プロピルメルカプタン、イソアミルメルカプタン、n−アミルメルカプタン、α−メチルブチルメルカプタン、α−エチルプロピルメルカプタン、n−ヘキシルメルカプタン、2−メチルカプトヘキサン、3−メルカプトヘキサンなどがある。   Examples of the sulfur-containing compound contained in the hydrocarbon raw material include methyl mercaptan, ethyl mercaptan, isobutyl mercaptan, metaethyl sulfide, dimethyl sulfide, tertiary butyl mercaptan, sec-butyl mercaptan, n-butyl mercaptan, isopropyl mercaptan. N-propyl mercaptan, isoamyl mercaptan, n-amyl mercaptan, α-methylbutyl mercaptan, α-ethylpropyl mercaptan, n-hexyl mercaptan, 2-methylcaptohexane, 3-mercaptohexane, and the like.

LHSVが5h−1を超えると活性種金属と炭化水素原料が十分に接触できない。より好ましくは1〜4h−1である。 If the LHSV exceeds 5h- 1 , the active species metal and the hydrocarbon raw material cannot be sufficiently contacted. More preferably, it is 1-4h- 1 .

反応温度が300℃を下回るとC1成分及び水素への転換がほとんど進まない。800℃を超えると触媒の反応缶の材質がインコネル等の高価な材料となり現実的ではない。好ましくは310〜800℃、より好ましくは320〜800℃である。   When the reaction temperature is below 300 ° C., the conversion to the C1 component and hydrogen hardly proceeds. If it exceeds 800 ° C., the material of the catalyst reactor becomes an expensive material such as Inconel, which is not realistic. Preferably it is 310-800 degreeC, More preferably, it is 320-800 degreeC.

S/Cが1.0よりも低い場合には炭化水素自身の分解が進みコーキングや炭素析出が大きく進んでしまう。S/Cが6.0を超えると得られるC1成分や水素の分率が低く現実的ではない。より好ましくは1.5〜5.5である。   When S / C is lower than 1.0, the decomposition of the hydrocarbon itself proceeds and coking and carbon deposition progress greatly. If the S / C exceeds 6.0, the C1 component and hydrogen fraction obtained are low and not realistic. More preferably, it is 1.5-5.5.

<作用>
本発明に係る炭化水素原料を水蒸気改質する触媒用の多孔質担体が耐硫黄被毒性に優れる理由は未だ明らかではないが、本発明者は次のように推定している。
<Action>
The reason why the porous support for catalyst for steam reforming the hydrocarbon raw material according to the present invention is excellent in sulfur poisoning resistance is not yet clear, but the present inventor estimates as follows.

即ち、本発明に係る多孔質担体に含まれる十分な量のマグネシウムが、活性種金属に結合しようとする硫黄化合物を先に捕捉し吸着する。大部分は吸着したままであるが、アルミニウムが一部の硫黄化合物を触媒より放出させる。しかも、該多孔質担体が適度なBET比表面積、平均細孔径及び細孔容積を有することから、高活性な触媒活性を長時間維持することができるものと本発明者は推定している。   That is, a sufficient amount of magnesium contained in the porous carrier according to the present invention first captures and adsorbs the sulfur compound to be bound to the active species metal. Most remain adsorbed, but aluminum releases some sulfur compounds from the catalyst. Moreover, since the porous carrier has an appropriate BET specific surface area, average pore diameter, and pore volume, the inventor presumes that highly active catalytic activity can be maintained for a long time.

従って、本発明に係る水蒸気改質用触媒を用いれば、硫黄含有量を低減することなく、炭化水素を分解してC1成分及び水素を主成分とした反応混合ガスを容易に得ることができる。   Therefore, by using the steam reforming catalyst according to the present invention, it is possible to easily obtain a reaction mixed gas mainly composed of C1 component and hydrogen by decomposing hydrocarbon without reducing the sulfur content.

本発明に係る多孔質担体および水蒸気改質用触媒は、多孔質担体および活性種金属の焼結が抑制され、高性能な触媒活性はもちろん優れた耐硫黄被毒性を長時間にわたり維持することができる。
従って、本発明においては、微量の硫黄を含有する炭化水素原料であっても効率よく水蒸気改質を行って、C1成分と水素との混合ガスを製造することができる。
The porous carrier and the steam reforming catalyst according to the present invention can suppress the sintering of the porous carrier and the active species metal, and can maintain high sulfur catalytic resistance as well as high-performance catalytic activity over a long period of time. it can.
Therefore, in this invention, even if it is a hydrocarbon raw material containing a trace amount sulfur, steam reforming can be performed efficiently and the mixed gas of C1 component and hydrogen can be manufactured.

本発明は、工業的に大量に生産可能な耐硫黄被毒性に優れた担体を提供でき、さらには該担体を用いた触媒を用いると硫黄を含んだ炭化水素の水蒸気改質反応におけるC1成分および水素の混合ガスを製造する場合に非常に有用である。   The present invention can provide a carrier excellent in sulfur poisoning resistance that can be industrially produced in large quantities. Furthermore, when a catalyst using the carrier is used, the C1 component in the steam reforming reaction of hydrocarbon containing sulfur and This is very useful when producing a mixed gas of hydrogen.

本発明の代表的な実施の形態は次の通りである。   A typical embodiment of the present invention is as follows.

BET比表面積値は、窒素によるB.E.T.法により測定した。   The BET specific surface area value is the B.B. E. T.A. Measured by the method.

担持された活性種金属のサイズは透過型電子顕微鏡(日本電子(株)、JEM−1200EXII)を用いて測定した。   The size of the supported active metal was measured using a transmission electron microscope (JEOL Ltd., JEM-1200EXII).

Mg及び活性種金属の含有量は、試料を酸で溶解し、プラズマ発光分光分析装置(セイコー電子工業(株)、SPS4000)を用い分析して求めた。   The contents of Mg and active species metal were obtained by dissolving a sample with an acid and analyzing it using a plasma emission spectroscopic analyzer (Seiko Electronics Co., Ltd., SPS4000).

細孔径、細孔容積は高速比表面積/細孔分布測定装置(マイクロメリティックス社製、ASAP2010)を用いて75Kにおける窒素の吸着等温線を作成し、該吸着等温線から、BJH法により細孔分布曲線を得て求めた。   For the pore diameter and pore volume, an adsorption isotherm of nitrogen at 75K was prepared using a high-speed specific surface area / pore distribution measuring device (ASAP2010, manufactured by Micromeritics), and the adsorption isotherm was reduced by the BJH method. The pore distribution curve was obtained and obtained.

水蒸気改質反応はラボレベルの単管固定床流通式を用いた。一般に市販されているものでもよいが、自作した装置にて本発明の検討を実施した。改質後の成分分析はガスクロマトグラフを用いた。   For the steam reforming reaction, a laboratory-level single pipe fixed bed flow type was used. Although what is generally marketed may be sufficient, examination of this invention was implemented with the self-made apparatus. A gas chromatograph was used for component analysis after the modification.

実施例1 <担体の調製>
Mg(NO・6HO 73.3gとAl(NO・9HO 42.9gとを水で溶解させ600mlとした。別にNaOH 60ml(14mol/L濃度)とNaCO 14.5gを溶解させたものを合わせた400mlのアルカリ混合溶液を用意した。このアルカリ混合溶液に前記マグネシウム塩とアルミニウム塩との混合溶液を加え、90℃で5.5時間熟成を行って含水複水酸化物を得た。これを濾別分離し、乾燥して、粉砕し、480℃にて20h熱処理を行った。得られた触媒担体のBETは80.0m/gであり、平均細孔径は237Å、細孔容積は0.58cm/gであった。
Example 1 <Preparation of carrier>
73.3 g of Mg (NO 3 ) 2 .6H 2 O and 42.9 g of Al (NO 3 ) 3 .9H 2 O were dissolved in water to make 600 ml. Separately, a mixed solution of 400 ml of alkali was prepared by combining 60 ml of NaOH (concentration of 14 mol / L) and 14.5 g of Na 2 CO 3 . A mixed solution of the magnesium salt and aluminum salt was added to the alkali mixed solution, and aging was performed at 90 ° C. for 5.5 hours to obtain a hydrated double hydroxide. This was separated by filtration, dried, pulverized, and heat-treated at 480 ° C. for 20 hours. The obtained catalyst carrier had a BET of 80.0 m 2 / g, an average pore diameter of 237 mm, and a pore volume of 0.58 cm 3 / g.

<触媒の調製及び触媒活性評価>
上記担体成分に、担体対比8.5wt%相当の針状ベーマイトを加えて直径3mmの球状に成形した。このときMg含有量は分析の結果32.5wt%であった。Ni金属を触媒体として27wt%含まれるように硝酸ニッケルを含浸させ、乾燥後、700℃で1h熱処理した。さらに水素5vol%−窒素ガス中で780℃にて2h還元処理をして担体上にNi金属を析出固定化し触媒とした。分析の結果、Ni金属担持量は26.9wt%であった。Ni金属のサイズは8nmであった。
また、含有されるマグネシウム、アルミニウム量はそれぞれ金属換算で23.6wt%、13.6wt%であり、マグネシウム元素とアルミニウム元素とのモル比率(Mg:Al)は1.9:1であった。
得られた触媒6cc(6.63g)を流通反応装置において、全硫黄含有量が5ppmの都市ガス13AをGHSV=500h−1で流し、温度430℃、S/C=2にて触媒の水蒸気改質活性評価を行った。反応時間25hでもC1成分と水素のみが確認され、C2以上のガス成分は検出されなかった。
<Catalyst preparation and catalytic activity evaluation>
To the carrier component, acicular boehmite equivalent to 8.5% by weight of the carrier was added to form a spherical shape having a diameter of 3 mm. At this time, the Mg content was 32.5 wt% as a result of analysis. Nickel nitrate was impregnated so as to contain 27 wt% of Ni metal as a catalyst body, dried, and then heat treated at 700 ° C. for 1 h. Furthermore, reduction treatment was performed at 780 ° C. for 2 hours in 5 vol% hydrogen-nitrogen gas, and Ni metal was deposited and fixed on the support to prepare a catalyst. As a result of the analysis, the Ni metal loading was 26.9 wt%. The size of the Ni metal was 8 nm.
Further, the amounts of magnesium and aluminum contained were 23.6 wt% and 13.6 wt% in terms of metal, respectively, and the molar ratio of magnesium element to aluminum element (Mg: Al) was 1.9: 1.
In a flow reactor, 6 cc (6.63 g) of the obtained catalyst was passed through a city gas 13A having a total sulfur content of 5 ppm at GHSV = 500 h −1, at a temperature of 430 ° C. and S / C = 2, and steam reforming of the catalyst. Quality activity evaluation was performed. Only the C1 component and hydrogen were confirmed even at a reaction time of 25 h, and no gas component of C2 or higher was detected.

実施例2
実施例1同様にして、Mg(NO・6HO 63.1gとAl(NO・9HO 57.7g、NaOH 60ml(14mol/L濃度)とNaCO 19.6gを用いて50℃にて3h反応を行った。950℃にて1h熱処理を行った。得られた触媒担体のBETは268m/gであり、平均細孔径は292Å、細孔容積は3.69cm/gであった。
Example 2
In the same manner as in Example 1, 63.1 g of Mg (NO 3 ) 2 .6H 2 O, 57.7 g of Al (NO 3 ) 3 .9H 2 O, 60 ml of NaOH (14 mol / L concentration) and Na 2 CO 3 19. The reaction was performed at 50 ° C. for 3 h using 6 g. Heat treatment was performed at 950 ° C. for 1 h. The obtained catalyst support had a BET of 268 m 2 / g, an average pore diameter of 292 mm, and a pore volume of 3.69 cm 3 / g.

上記担体成分に、担体対比18.9wt%相当のチタニアを加えて直径10mmのディスク状に成形し、破砕し、篩い分けすることで1〜1.5mmの破砕ペレットを得た。このときMg含有量は分析の結果22.2wt%であった。得られたペレットを500℃にて2h熱処理後、硝酸ロジウム溶液に浸して乾燥させ、Rh金属を触媒体として1.5wt%含む触媒前駆体とした。乾燥後、450℃で1h熱処理した。さらに水素5vol%−窒素ガス中で500℃にて1hの水素還元処理を行った。分析の結果、Rh金属担持量は1.50wt%であった。Rh金属のサイズは3nmであった。
また、含有されるマグネシウム、アルミニウム量はそれぞれ金属換算で21.1wt%、14.6wt%であり、マグネシウム元素とアルミニウム元素とのモル比率(Mg:Al)は1.6:1であった。
得られた触媒3cc(7.02g)を流通反応装置において、全硫黄含有量を30ppmとしたイソオクタンを気化させて原料として用いた。GHSV=20000h−1、温度550℃、S/C=2.4にて触媒の水蒸気改質活性評価を行った。反応時間7hでもC1成分と水素のみが確認され、C2以上のガス成分は検出されなかった。
The carrier component was added with titania corresponding to 18.9 wt% relative to the carrier, formed into a disk shape having a diameter of 10 mm, crushed and sieved to obtain crushed pellets of 1 to 1.5 mm. At this time, the Mg content was 22.2 wt% as a result of analysis. The obtained pellets were heat treated at 500 ° C. for 2 hours, then dipped in a rhodium nitrate solution and dried to obtain a catalyst precursor containing 1.5 wt% of Rh metal as a catalyst body. After drying, heat treatment was performed at 450 ° C. for 1 h. Further, hydrogen reduction treatment was performed for 1 h at 500 ° C. in 5 vol% hydrogen-nitrogen gas. As a result of the analysis, the amount of Rh metal supported was 1.50 wt%. The size of the Rh metal was 3 nm.
Moreover, the amounts of magnesium and aluminum contained were 21.1 wt% and 14.6 wt%, respectively, in terms of metal, and the molar ratio of magnesium element to aluminum element (Mg: Al) was 1.6: 1.
3 cc (7.02 g) of the obtained catalyst was used as a raw material by vaporizing isooctane having a total sulfur content of 30 ppm in a flow reactor. The steam reforming activity of the catalyst was evaluated at GHSV = 20000h −1 , temperature 550 ° C., and S / C = 2.4. Even at a reaction time of 7 h, only the C1 component and hydrogen were confirmed, and no gas component of C2 or higher was detected.

実施例3
実施例1同様にして、Mg(NO・6HO 83.2gとAl(NO・9HO 28.3g、NaOH 58ml(14mol/L濃度)とNaCO 9.6gを用いて85℃にて12h反応を行った。次いで1150℃にて1h熱処理を行った。得られた触媒担体のBETは32m/gであり、平均細孔径は256Å、細孔容積は0.28cm/gであった。
Example 3
In the same manner as in Example 1, Mg (NO 3) 2 · 6H 2 O 83.2g and Al (NO 3) 3 · 9H 2 O 28.3g, NaOH 58ml (14mol / L concentration) and Na 2 CO 3 9. The reaction was performed at 85 ° C. for 12 h using 6 g. Next, heat treatment was performed at 1150 ° C. for 1 h. The obtained catalyst carrier had a BET of 32 m 2 / g, an average pore diameter of 256 mm, and a pore volume of 0.28 cm 3 / g.

上記担体成分に、担体対比3.2wt%相当のジルコニアが添加されるようジルコニアゾルを添加して直径2mm、高さ3mmの円柱状に圧縮成型した。このときMg含有量は分析の結果42.8wt%であった。これを硝酸ルテニウム溶液に浸して乾燥させ、Ru金属を触媒体として3wt%含む触媒とした。乾燥後、450℃で1h熱処理した。さらに水素5vol%−窒素ガス中で500℃にて1hの水素還元処理を行った。分析の結果、Ru金属担持量は2.9wt%であった。Ru金属のサイズは6nmであった。
また、含有されるマグネシウム、アルミニウム量はそれぞれ金属換算で41.5wt%、10.7wt%であり、マグネシウム元素とアルミニウム元素とのモル比率(Mg:Al)は4.3:1であった。
得られた触媒10cc(8.99g)を流通反応装置において、全硫黄含有量が8ppmである灯油をLHSV=2h−1、温度800℃、S/C=3にて触媒の活性評価を行った。反応時間3hでもC1成分と水素が主成分の混合ガスであった。反応時間3hでの灯油の転化率は98.8%であった。
なお、灯油の平均分子式はC14として、灯油の転化率は、
灯油の転化率(%)
=(1−(生成ガス中の全炭化水素分子数/供給灯油中の全炭化水素分子数))×100
によって求めた。
A zirconia sol was added to the carrier component so that zirconia corresponding to 3.2% by weight of the carrier was added, and compression-molded into a cylindrical shape having a diameter of 2 mm and a height of 3 mm. At this time, the Mg content was 42.8 wt% as a result of analysis. This was dipped in a ruthenium nitrate solution and dried to obtain a catalyst containing 3 wt% of Ru metal as a catalyst body. After drying, heat treatment was performed at 450 ° C. for 1 h. Further, hydrogen reduction treatment was performed for 1 h at 500 ° C. in 5 vol% hydrogen-nitrogen gas. As a result of the analysis, the Ru metal loading was 2.9 wt%. The size of the Ru metal was 6 nm.
Moreover, the amounts of magnesium and aluminum contained were 41.5 wt% and 10.7 wt%, respectively, in terms of metal, and the molar ratio of magnesium element to aluminum element (Mg: Al) was 4.3: 1.
Using the obtained catalyst 10 cc (8.99 g), the activity of the catalyst was evaluated using kerosene having a total sulfur content of 8 ppm at LHSV = 2h −1 , temperature 800 ° C., and S / C = 3 in a flow reactor. . Even in the reaction time of 3 hours, the mixed gas was mainly composed of C1 component and hydrogen. The conversion rate of kerosene at the reaction time of 3 h was 98.8%.
The average molecular formula of kerosene is C 6 H 14 , and the conversion rate of kerosene is
Kerosene conversion rate (%)
= (1- (total number of hydrocarbon molecules in product gas / total number of hydrocarbon molecules in feed kerosene)) × 100
Sought by.

実施例4
実施例1同様にして、Mg(NO・6HO 75.3gとAl(NO・9HO 28.3g、Ni(NO・6HO 9.0g、NaOH 58ml(14mol/L濃度)とNaCO 9.6gを用いて80℃にて6h反応を行い、700℃にて2h熱処理を行った。得られた触媒担体のBETは177m/gであり、平均細孔径は278Å、細孔容積は1.34cm/gであった。
Example 4
In the same manner as in Example 1, Mg (NO 3) 2 · 6H 2 O 75.3g and Al (NO 3) 3 · 9H 2 O 28.3g, Ni (NO 3) 2 · 6H 2 O 9.0g, NaOH Using 58 ml (14 mol / L concentration) and Na 2 CO 3 9.6 g, a reaction was performed at 80 ° C. for 6 hours, and a heat treatment was performed at 700 ° C. for 2 hours. The obtained catalyst support had a BET of 177 m 2 / g, an average pore diameter of 278 mm, and a pore volume of 1.34 cm 3 / g.

上記生成物に、担体対比2.0wt%相当の粒状のθアルミナを添加して直径3mmの球状に成形し900℃にて5h熱処理した。このときMg含有量は分析の結果39.3wt%であった。さらに水素5vol%−窒素ガス中で820℃にて1h還元処理をして担体上にNi金属を析出固定化し触媒とした。分析の結果、Ni金属担持量は9.2wt%であった。Ni金属のサイズは9nmであった。
また、含有されるマグネシウム、アルミニウム量はそれぞれ金属換算で35.4wt%、12.1wt%であり、マグネシウム元素とアルミニウム元素とのモル比率(Mg:Al)は3.3:1であった。
得られた触媒4cc(4.88g)を流通反応装置において、全硫黄含有量が6ppmのプロパンをGHSV=4000h−1で流し、温度650℃、S/C=3にて触媒の水蒸気改質活性評価を行った。反応時間10hでもC1成分と水素のみが確認され、C2以上のガス成分は検出されなかった。
To the above product, granular θ-alumina equivalent to 2.0 wt% of the carrier was added to form a spherical shape having a diameter of 3 mm, and heat-treated at 900 ° C. for 5 hours. At this time, the Mg content was 39.3 wt% as a result of analysis. Further, reduction treatment was performed at 820 ° C. for 1 h in 5 vol% hydrogen-nitrogen gas to deposit and fix Ni metal on the support to prepare a catalyst. As a result of the analysis, the Ni metal loading was 9.2 wt%. The size of the Ni metal was 9 nm.
The amounts of magnesium and aluminum contained were 35.4 wt% and 12.1 wt%, respectively, in terms of metal, and the molar ratio of magnesium element to aluminum element (Mg: Al) was 3.3: 1.
4 cc (4.88 g) of the obtained catalyst was flowed in a flow reactor, propane having a total sulfur content of 6 ppm was flowed at GHSV = 4000 h −1 , the steam reforming activity of the catalyst at a temperature of 650 ° C. and S / C = 3 Evaluation was performed. Only the C1 component and hydrogen were confirmed even at a reaction time of 10 h, and no gas component higher than C2 was detected.

実施例5
実施例1同様にして、Mg(NO・6HO 70.5gとAl(NO・9HO 46.9g、NaOH 59ml(14mol/L濃度)とNaCO 15.9gを用いて105℃にて4.5h反応を行い、550℃にて1h熱処理を行った。得られた触媒担体のBETは74m/gであり、平均細孔径は246Å、細孔容積は0.54cm/gであった。
Example 5
In the same manner as in Example 1, Mg (NO 3) 2 · 6H 2 O 70.5g and Al (NO 3) 3 · 9H 2 O 46.9g, NaOH 59ml (14mol / L concentration) and Na 2 CO 3 15. Using 9 g, the reaction was carried out at 105 ° C. for 4.5 h, and heat treatment was carried out at 550 ° C. for 1 h. The obtained catalyst carrier had a BET of 74 m 2 / g, an average pore diameter of 246 mm, and a pore volume of 0.54 cm 3 / g.

上記担体成分に、担体対比6.8wt%相当のγアルミナを添加して直径3mmの球状に成形し550℃にて20h熱処理した。このときMg含有量は分析の結果30.7wt%であった。Ni金属を触媒体として10wt%及びCo金属を触媒体として5wt%含まれるように硝酸ニッケル及び酢酸コバルトを含浸させ、乾燥後、900℃で0.5h熱処理した。さらに水素5vol%−窒素ガス中で800℃にて1h還元処理をして担体上にNi金属及びCo金属を析出固定化し触媒とした。分析の結果、Ni金属及びCo金属の担持量はそれぞれ9.3wt%及び4.5wt%であった。Ni金属及びCo金属のサイズは14nmであった。
また、含有されるマグネシウム、アルミニウム量はそれぞれ金属換算で26.0wt%、16.2wt%であり、マグネシウム元素とアルミニウム元素とのモル比率(Mg:Al)は1.8:1であった。
得られた触媒3cc(3.60g)を流通反応装置において、全硫黄含有量が4ppmの都市ガス13AをGHSV=12000h−1で流し、温度700℃、S/C=2.8にて触媒の水蒸気改質活性評価を行った。反応時間20hでもC1成分と水素のみが確認され、C2以上のガス成分は検出されなかった。
Γ alumina corresponding to 6.8 wt% relative to the carrier was added to the carrier component to form a spherical shape having a diameter of 3 mm and heat-treated at 550 ° C. for 20 hours. At this time, the Mg content was 30.7 wt% as a result of analysis. Nickel nitrate and cobalt acetate were impregnated so as to contain 10 wt% of Ni metal as a catalyst body and 5 wt% of Co metal as a catalyst body, dried and then heat treated at 900 ° C. for 0.5 h. Further, reduction treatment was performed at 800 ° C. for 1 hour in 5 vol% hydrogen-nitrogen gas to deposit and fix Ni metal and Co metal on the support to prepare a catalyst. As a result of the analysis, the supported amounts of Ni metal and Co metal were 9.3 wt% and 4.5 wt%, respectively. The size of Ni metal and Co metal was 14 nm.
Further, the amounts of magnesium and aluminum contained were 26.0 wt% and 16.2 wt%, respectively, in terms of metal, and the molar ratio of magnesium element to aluminum element (Mg: Al) was 1.8: 1.
In a flow reactor, 3 cc (3.60 g) of the obtained catalyst was passed through a city gas 13A having a total sulfur content of 4 ppm at GHSV = 12000 h −1, at a temperature of 700 ° C. and S / C = 2.8. The steam reforming activity was evaluated. Only the C1 component and hydrogen were confirmed even at a reaction time of 20 h, and no gas component of C2 or higher was detected.

実施例6
実施例1同様にして、Mg(NO・6HO 68.4gとAl(NO・9HO 50.0g、Ni(NO・6HO 9.0g、NaOH 33ml(14mol/L濃度)とNaCO 21.2gを用いて75℃にて8h反応を行い、1000℃にて1h熱処理を行った。得られた触媒担体のBETは40m/gであり、平均細孔径は263Å、細孔容積は0.30cm/gであった。
Example 6
In the same manner as in Example 1, 68.4 g of Mg (NO 3 ) 2 .6H 2 O, 50.0 g of Al (NO 3 ) 3 .9H 2 O, 9.0 g of Ni (NO 3 ) 2 .6H 2 O, NaOH Using 33 ml (14 mol / L concentration) and 21.2 g of Na 2 CO 3, a reaction was performed at 75 ° C. for 8 h, and a heat treatment was performed at 1000 ° C. for 1 h. The obtained catalyst carrier had a BET of 40 m 2 / g, an average pore diameter of 263 mm, and a pore volume of 0.30 cm 3 / g.

上記生成物を直径2mm、高さ2.5mmの円柱状に圧縮成型し、1000℃にて14h熱処理した。このときMg含有量は分析の結果29.2wt%であった。さらに水素5vol%−窒素ガス中で840℃にて3h還元処理をして担体上にNi金属を析出固定化し触媒とした。分析の結果、Ni金属担持量は8.1wt%であった。Ni金属のサイズは6nmであった。
また、含有されるマグネシウム、アルミニウム量はそれぞれ金属換算で29.2wt%、16.2wt%であり、マグネシウム元素とアルミニウム元素とのモル比率(Mg:Al)は2.0:1であった。
得られた触媒6cc(5.46g)を流通反応装置において、全硫黄含有量が1ppmの都市ガス13AをGHSV=1000h−1で流し、温度650℃、S/C=3にて触媒の水蒸気改質活性評価を行った。反応時間100hでもC1成分と水素のみが確認され、C2以上のガス成分は検出されなかった。また、300hの転化率は開始時の転化率より4%低い程度であった。
なお、都市ガス13Aの転化率は、
都市ガス13Aの転化率(%)
=(1−(生成ガス中の全炭化水素分子数/供給都市ガス13A中の全炭化水素分子数))×100
によって求めた。
The product was compression molded into a cylindrical shape with a diameter of 2 mm and a height of 2.5 mm, and heat-treated at 1000 ° C. for 14 hours. At this time, the Mg content was 29.2 wt% as a result of analysis. Further, reduction treatment was performed at 840 ° C. in 5 vol% hydrogen-nitrogen gas for 3 hours to precipitate and fix Ni metal on the support to prepare a catalyst. As a result of analysis, the amount of Ni metal supported was 8.1 wt%. The size of the Ni metal was 6 nm.
Further, the amounts of magnesium and aluminum contained were 29.2 wt% and 16.2 wt%, respectively, in terms of metal, and the molar ratio of magnesium element to aluminum element (Mg: Al) was 2.0: 1.
In a flow reactor, 6 cc (5.46 g) of the obtained catalyst was passed through a city gas 13A having a total sulfur content of 1 ppm at GHSV = 1000 h −1, at a temperature of 650 ° C. and S / C = 3, steam reforming of the catalyst. Quality activity evaluation was performed. Only the C1 component and hydrogen were confirmed even at a reaction time of 100 h, and no gas component greater than C2 was detected. Also, the conversion rate at 300 h was about 4% lower than the conversion rate at the start.
The conversion rate of city gas 13A is
Conversion rate of city gas 13A (%)
= (1- (total number of hydrocarbon molecules in product gas / total number of hydrocarbon molecules in supplied city gas 13A)) × 100
Sought by.

実施例7
実施例1同様にして、Mg(NO・6HO 76.9gとAl(NO・9HO 37.5g、NaOH 60.8ml(14mol/L濃度)とNaCO 10.6gを用いて80℃にて12h反応を行い、1000℃にて1.5h熱処理を行った。得られた触媒担体のBETは38m/gであり、平均細孔径は269Å、細孔容積は0.32cm/gであった。
Example 7
In the same manner as in Example 1, 76.9 g of Mg (NO 3 ) 2 .6H 2 O, 37.5 g of Al (NO 3 ) 3 .9H 2 O, 60.8 ml of NaOH (14 mol / L concentration), and Na 2 CO 3 Using 10.6 g, a reaction was performed at 80 ° C. for 12 hours, and a heat treatment was performed at 1000 ° C. for 1.5 hours. The obtained catalyst support had a BET of 38 m 2 / g, an average pore diameter of 269 mm, and a pore volume of 0.32 cm 3 / g.

上記生成物に担体対比0.1wt%相当の粒状のθアルミナを添加して直径3mmの球状に成型し、1000℃にて12h熱処理した。このときMg含有量は分析の結果38.6wt%であった。これに硝酸銀溶液をスプレー塗布して乾燥させ、Ag金属を触媒体として18wt%含む触媒とした。乾燥後、450℃で2h熱処理した。さらに水素5vol%−窒素ガス中で700℃にて1hの水素還元処理を行った。分析の結果、Ag金属担持量は18.0wt%であった。Ag金属のサイズは12nmであった。
また、含有されるマグネシウム、アルミニウム量はそれぞれ金属換算で30.8wt%、11.4wt%であり、マグネシウム元素とアルミニウム元素とのモル比率(Mg:Al)は3.0:1であった。
得られた触媒6cc(7.13g)を流通反応装置において、全硫黄含有量が3.5ppmの都市ガス13AをGHSV=830h−1で流し、温度650℃、S/C=2.6にて触媒の水蒸気改質活性評価を行った。反応時間45hでもC1成分と水素のみが確認され、C2以上のガス成分は検出されなかった。また、45hの転化率は開始時の転化率より2.5%低い程度であった。
なお、都市ガス13Aの転化率は、
都市ガス13Aの転化率(%)
=(1−(生成ガス中の全炭化水素分子数/供給都市ガス13A中の全炭化水素分子数))×100
によって求めた。
Granular θ-alumina equivalent to 0.1 wt% of the carrier was added to the product to form a spherical shape with a diameter of 3 mm and heat-treated at 1000 ° C. for 12 hours. At this time, the Mg content was 38.6 wt% as a result of analysis. A silver nitrate solution was spray-coated on this and dried to obtain a catalyst containing 18 wt% of Ag metal as a catalyst body. After drying, heat treatment was performed at 450 ° C. for 2 hours. Further, hydrogen reduction treatment was performed for 1 h at 700 ° C. in 5 vol% hydrogen-nitrogen gas. As a result of the analysis, the amount of Ag metal supported was 18.0 wt%. The size of the Ag metal was 12 nm.
Further, the amounts of magnesium and aluminum contained were 30.8 wt% and 11.4 wt%, respectively, in terms of metal, and the molar ratio of magnesium element to aluminum element (Mg: Al) was 3.0: 1.
In a flow reactor, 6 cc (7.13 g) of the obtained catalyst was passed through a city gas 13A having a total sulfur content of 3.5 ppm at GHSV = 830 h −1 at a temperature of 650 ° C. and S / C = 2.6. The steam reforming activity of the catalyst was evaluated. Only the C1 component and hydrogen were confirmed even at a reaction time of 45 h, and no gas component of C2 or higher was detected. The 45 h conversion was about 2.5% lower than the starting conversion.
The conversion rate of city gas 13A is
Conversion rate of city gas 13A (%)
= (1- (total number of hydrocarbon molecules in product gas / total number of hydrocarbon molecules in supplied city gas 13A)) × 100
Sought by.

比較例1
実施例1同様にして、Mg(NO・6HO 51.3gとAl(NO・9HO 75.0g、NaOH 62ml(14mol/L濃度)とNaCO 25.4gを用いて65℃にて4h反応を行い、1000℃にて1h熱処理を行った。得られた触媒担体のBETは149m/gであり、平均細孔径は316Å、細孔容積は2.45cm/gであった。
Comparative Example 1
In the same manner as in Example 1, Mg (NO 3) 2 · 6H 2 O 51.3g and Al (NO 3) 3 · 9H 2 O 75.0g, NaOH 62ml (14mol / L concentration) and Na 2 CO 3 25. Using 4 g, a reaction was performed at 65 ° C. for 4 hours, and a heat treatment was performed at 1000 ° C. for 1 hour. The obtained catalyst support had a BET of 149 m 2 / g, an average pore size of 316 mm, and a pore volume of 2.45 cm 3 / g.

上記担体成分に、担体対比10.3wt%相当のθアルミナを添加して直径3mmの球状に成形し600℃にて10h熱処理した。このときMg含有量は分析の結果15.5wt%であった。Ni金属を触媒体として18.0wt%含まれるように硝酸ニッケルを含浸させ、乾燥後、770℃で1h熱処理した。さらに水素5vol%−窒素ガス中で790℃にて2h還元処理をして担体上にNi金属を析出固定化し触媒とした。分析の結果、Ni金属担持量は18.0wt%であった。Ni金属のサイズは12nmであった。
また、含有されるマグネシウム、アルミニウム量はそれぞれ金属換算で12.6wt%、18.1wt%であり、マグネシウム元素とアルミニウム元素とのモル比率(Mg:Al)は0.8:1であった。
得られた触媒3cc(3.30g)を流通反応装置において、全硫黄含有量が5ppmの都市ガス13AをGHSV=500h−1で流し、温度430℃、S/C=2にて触媒の水蒸気改質活性評価を行った。反応初期段階はC1成分と水素のみが確認され、C2以上のガス成分は検出されなかったが、反応時間11hで閉塞してしまった。耐硫黄被毒性が十分でなかったためNiに硫黄が結合しコーキングが促進されたことによって閉塞が起きた。
To the above carrier component, θ alumina corresponding to 10.3 wt% relative to the carrier was added to form a spherical shape having a diameter of 3 mm, and heat-treated at 600 ° C. for 10 hours. At this time, the Mg content was 15.5 wt% as a result of analysis. Nickel nitrate was impregnated so as to contain 18.0 wt% of Ni metal as a catalyst body, dried and then heat treated at 770 ° C. for 1 h. Further, a reduction treatment was performed at 790 ° C. for 2 hours in 5 vol% hydrogen-nitrogen gas to deposit and fix Ni metal on the support to prepare a catalyst. As a result of the analysis, the Ni metal loading was 18.0 wt%. The size of the Ni metal was 12 nm.
The amounts of magnesium and aluminum contained were 12.6 wt% and 18.1 wt%, respectively, in terms of metal, and the molar ratio of magnesium element to aluminum element (Mg: Al) was 0.8: 1.
In a flow reactor, 3 cc (3.30 g) of the obtained catalyst was passed through a city gas 13A having a total sulfur content of 5 ppm at GHSV = 500 h −1 and steam reforming of the catalyst at a temperature of 430 ° C. and S / C = 2. Quality activity evaluation was performed. In the initial stage of the reaction, only the C1 component and hydrogen were confirmed, and no gas component of C2 or higher was detected, but the reaction was blocked after 11 hours. Since the sulfur poisoning resistance was not sufficient, sulfur was bound to Ni and coking was promoted to cause clogging.

比較例2
MgO 8.1gとγAl 20.4gを合わせて固形分として10wt%となるスラリーをペイントシェーカーでガラスビーズと共に24h粉砕した。これを濾別し、乾燥し、粉砕を行った。さらに、1200℃にて1.5h熱処理を行った。得られた触媒担体のBETは7m/gであり、平均細孔径は435Å、細孔容積は0.05cm/gであった。
Comparative Example 2
8.1 g of MgO and 20.4 g of γAl 2 O 3 were combined and a slurry having a solid content of 10 wt% was pulverized with glass beads for 24 hours using a paint shaker. This was filtered off, dried and ground. Further, heat treatment was performed at 1200 ° C. for 1.5 hours. The obtained catalyst carrier had a BET of 7 m 2 / g, an average pore diameter of 435 mm, and a pore volume of 0.05 cm 3 / g.

上記担体成分に、担体対比20.4wt%相当のチタニアを添加して直径10mmのディスク状に成形し、破砕し、篩い分けすることで1〜1.5mmの破砕ペレットを得た。このときMg含有量は分析の結果14.2wt%であった。500℃にて2h熱処理後、硝酸ロジウム溶液に浸して乾燥させ、Rh金属を触媒体として1.5wt%含む触媒とした。乾燥後、450℃で1h熱処理した。さらに水素5vol%−窒素ガス中で500℃にて1hの水素還元処理を行った。分析の結果、Rh金属担持量は1.50wt%であった。Rh金属のサイズは7nmであった。
また、含有されるマグネシウム、アルミニウム量はそれぞれ金属換算で9.9wt%、14.9wt%であり、マグネシウム元素とアルミニウム元素とのモル比率(Mg:Al)は0.7:1であった。
得られた触媒3cc(4.01g)を流通反応装置において、全硫黄含有量を10ppmとしたイソオクタンを気化させて原料として用いた。GHSV=20000h−1、温度550℃、S/C=2.4にて触媒の水蒸気改質活性評価を行った。反応初期段階はC1成分と水素のみが確認され、C2以上のガス成分は検出されなかったが、反応時間2hで閉塞してしまった。耐硫黄被毒性が十分でなかったためコーキングによって閉塞が起きた。
Titania corresponding to 20.4 wt% of the carrier was added to the carrier component, formed into a disk shape having a diameter of 10 mm, crushed and sieved to obtain crushed pellets of 1 to 1.5 mm. At this time, the Mg content was 14.2 wt% as a result of analysis. After heat treatment at 500 ° C. for 2 hours, it was immersed in a rhodium nitrate solution and dried to obtain a catalyst containing 1.5 wt% of Rh metal as a catalyst body. After drying, heat treatment was performed at 450 ° C. for 1 h. Further, hydrogen reduction treatment was performed for 1 h at 500 ° C. in 5 vol% hydrogen-nitrogen gas. As a result of the analysis, the amount of Rh metal supported was 1.50 wt%. The size of Rh metal was 7 nm.
Further, the amounts of magnesium and aluminum contained were 9.9 wt% and 14.9 wt%, respectively, in terms of metal, and the molar ratio of magnesium element to aluminum element (Mg: Al) was 0.7: 1.
3 cc (4.01 g) of the obtained catalyst was used as a raw material by vaporizing isooctane having a total sulfur content of 10 ppm in a flow reactor. The steam reforming activity of the catalyst was evaluated at GHSV = 20000h −1 , temperature 550 ° C., and S / C = 2.4. In the initial stage of the reaction, only the C1 component and hydrogen were confirmed, and no gas component of C2 or more was detected, but the reaction was blocked after 2 hours of reaction. Due to insufficient sulfur poisoning resistance, clogging caused clogging.

本発明は、工業的に大量に生産可能な耐硫黄被毒性に優れた担体を提供でき、さらには該担体を用いた触媒を用いると硫黄を含んだ炭化水素の水蒸気改質反応におけるC1成分及び水素の混合ガスを製造する場合に非常に有用である。

The present invention can provide a carrier excellent in sulfur poisoning resistance that can be produced industrially in large quantities, and further, when a catalyst using the carrier is used, the C1 component in the steam reforming reaction of hydrocarbon containing sulfur and This is very useful when producing a mixed gas of hydrogen.

Claims (3)

少なくともアルミニウムとマグネシウムから構成された複合酸化物であり、BET比表面積が10〜300m/gであって、平均細孔径が300Å以下であり、且つ、細孔容積が0.1cm/g以上である水蒸気改質用触媒の多孔質担体に、平均粒径が1〜15nmのRu、Rh、Ir、Pt、Pd、Co、Ni、Fe、Agから選ばれた一種又は二種以上の活性種金属を担持させた水蒸気改質用触媒であり、前記水蒸気改質触媒のマグネシウム元素とアルミニウム元素とのモル比率(Mg:Al)が1.2:1〜5:1であることを特徴とする水蒸気改質用触媒。 It is a composite oxide composed of at least aluminum and magnesium, has a BET specific surface area of 10 to 300 m 2 / g, an average pore diameter of 300 mm or less, and a pore volume of 0.1 cm 3 / g or more. 1 or 2 or more types of active species selected from Ru, Rh, Ir, Pt, Pd, Co, Ni, Fe, and Ag having an average particle diameter of 1 to 15 nm a steam reforming catalyst supported metal, the molar ratio of magnesium element and aluminum element of the steam reforming catalyst (Mg: Al) is 1.2: 1 to 5: characterized by 1 Dearuko and Steam reforming catalyst. 少なくともアルミニウムとマグネシウムから構成された複合酸化物であり、BET比表面積が10〜300m/gであって、平均細孔径が300Å以下であり、且つ、細孔容積が0.1cm/g以上である水蒸気改質用触媒の多孔質担体と、ケイ素、ジルコニウム、セリウム、チタン、アルミニウム、イットリウムやスカンジウムを含む希土類元素、第Ia族元素及び第IIa族元素から選ばれる少なくとも1種類以上の元素の酸化物、水酸化物、炭酸塩又は含水酸化物との混合物であって、前記混合物のMg含有量がMg換算で20〜50wt%であり、前記混合物に、平均粒径が1〜15nmのRu、Rh、Ir、Pt、Pd、Co、Ni、Fe、Agから選ばれた一種又は二種以上の活性種金属を担持させた水蒸気改質用触媒であり、前記水蒸気改質触媒のマグネシウム元素とアルミニウム元素とのモル比率(Mg:Al)が1.2:1〜5:1であることを特徴とする水蒸気改質用触媒。 It is a composite oxide composed of at least aluminum and magnesium, has a BET specific surface area of 10 to 300 m 2 / g, an average pore diameter of 300 mm or less, and a pore volume of 0.1 cm 3 / g or more. A porous carrier of a steam reforming catalyst, and at least one element selected from rare earth elements including silicon, zirconium, cerium, titanium, aluminum, yttrium and scandium, group Ia elements and group IIa elements A mixture of oxide, hydroxide, carbonate or hydrated oxide, wherein the Mg content of the mixture is 20 to 50 wt% in terms of Mg, and the mixture has a Ru having an average particle size of 1 to 15 nm. , Rh, Ir, Pt, Pd, Co, Ni, Fe, Ag, a steam reforming catalyst carrying one or more active species metals selected from Ag , A steam reforming catalyst, wherein the steam reforming catalyst has a molar ratio (Mg: Al) of magnesium element to aluminum element of 1.2: 1 to 5: 1 . 請求項1又は2記載の水蒸気改質用触媒を用いて気体状又は液体状の炭化水素原料を分解してC1成分及び水素を主成分とした反応混合ガスを得ることを特徴とする反応混合ガスの製造方法。
A reaction mixed gas comprising a gas or liquid hydrocarbon raw material decomposed using the steam reforming catalyst according to claim 1 or 2 to obtain a reaction mixed gas mainly comprising a C1 component and hydrogen. Manufacturing method.
JP2007004944A 2006-01-16 2007-01-12 Steam reforming catalyst and reaction gas production method Active JP5354142B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007004944A JP5354142B2 (en) 2006-01-16 2007-01-12 Steam reforming catalyst and reaction gas production method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006007193 2006-01-16
JP2006007193 2006-01-16
JP2006126266 2006-04-28
JP2006126266 2006-04-28
JP2007004944A JP5354142B2 (en) 2006-01-16 2007-01-12 Steam reforming catalyst and reaction gas production method

Publications (2)

Publication Number Publication Date
JP2007313496A JP2007313496A (en) 2007-12-06
JP5354142B2 true JP5354142B2 (en) 2013-11-27

Family

ID=38847836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007004944A Active JP5354142B2 (en) 2006-01-16 2007-01-12 Steam reforming catalyst and reaction gas production method

Country Status (1)

Country Link
JP (1) JP5354142B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4981561B2 (en) * 2007-07-17 2012-07-25 住友化学株式会社 Method for producing magnesia spinel molded body
KR101504776B1 (en) * 2007-07-19 2015-03-20 도다 고교 가부시끼가이샤 Catalyst for decomposing hydrocarbon, process for producing a mixed reformed gas and fuel cell system using the catalyst
US9388082B2 (en) * 2007-12-28 2016-07-12 Toda Kogyo Corporation Porous molded product and process for producing the same, carrier for catalysts, and catalyst
KR101523122B1 (en) * 2008-03-06 2015-05-26 도다 고교 가부시끼가이샤 A porous catalytic body that decomposes hydrocarbons and a manufacturing method thereof, a method for manufacturing mixed reformed gas that comprises hydrogen from hydrocarbon, and a fuel cell system
JP5340681B2 (en) * 2008-09-12 2013-11-13 Jx日鉱日石エネルギー株式会社 Reforming catalyst for hydrogen production suitable for hydrogen production at a low temperature, and hydrogen production method using the catalyst
BRPI1010991B1 (en) 2009-05-19 2020-02-11 Nippon Steel Corporation "CATALYST TO REFORM GAS CONTAINING TAR, METHOD TO PREPARE CATALYST TO REFORM A GAS CONTAINING TAR, AND METHOD TO REGENERATE CATALYST TO REFORM A GAS CONTAINING TAR.
EP2776158B1 (en) * 2011-11-09 2017-04-26 Basf Se Catalyst composition for steam reforming of methane in fuel cells
CN102515096A (en) * 2011-11-22 2012-06-27 中国科学院广州能源研究所 Application of three-dimensional ordered macro-porous perovskite type oxide in preparing hydrogen through carbonic fuel chemical chain
JP6631245B2 (en) * 2014-12-24 2020-01-15 日本製鉄株式会社 Method for producing catalyst for reforming hydrocarbon and method for reforming light hydrocarbon
CN114797858B (en) * 2022-06-08 2023-12-19 辽宁工业大学 Method for improving catalytic hydrogen production performance of copper-based catalyst

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035176B2 (en) * 1979-08-27 1985-08-13 株式会社豊田中央研究所 Steam reforming catalyst and its manufacturing method
JP3818710B2 (en) * 1996-06-03 2006-09-06 出光興産株式会社 Alumina-supported ruthenium catalyst
JP5072136B2 (en) * 1998-07-24 2012-11-14 千代田化工建設株式会社 Method for producing porous spinel complex oxide
JP2000061307A (en) * 1998-08-17 2000-02-29 Cosmo Sogo Kenkyusho:Kk High dispersion type steam reforming catalyst and method for producing hydrogen
JP4622010B2 (en) * 1999-08-04 2011-02-02 株式会社豊田中央研究所 Spinel powder and spinel slurry
JP2001276620A (en) * 2000-03-31 2001-10-09 Toyota Central Res & Dev Lab Inc Catalyst for reforming hydrocarbon
JP2003290657A (en) * 2002-01-31 2003-10-14 National Institute Of Advanced Industrial & Technology Catalyst for reforming hydrocarbon, manufacture method therefor, method for manufacturing synthetic gas and catalyst precursor
JP4119652B2 (en) * 2002-02-01 2008-07-16 財団法人 ひろしま産業振興機構 Hydrocarbon cracking catalyst and process for producing the same
JP4222827B2 (en) * 2002-03-25 2009-02-12 新日本製鐵株式会社 Hydrocarbon reforming method
JP4332724B2 (en) * 2004-02-13 2009-09-16 戸田工業株式会社 Autothermal reforming catalyst and method for producing the same, and method for producing hydrogen using the autothermal reforming catalyst

Also Published As

Publication number Publication date
JP2007313496A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP5354142B2 (en) Steam reforming catalyst and reaction gas production method
US20070167323A1 (en) Porous carrier for steam-reforming catalysts, steam-reforming catalyst and process for producing reactive mixed gas
Al-Fatesh et al. CO2 reforming of CH4: Effect of Gd as promoter for Ni supported over MCM-41 as catalyst
JP5666777B2 (en) Carbon monoxide conversion catalyst and carbon monoxide conversion method using the same
Chen et al. Effect of Mg-modified mesoporous Ni/Attapulgite catalysts on catalytic performance and resistance to carbon deposition for ethanol steam reforming
Parinyaswan et al. Catalytic performances of Pt–Pd/CeO2 catalysts for selective CO oxidation
WO2005079979A1 (en) Catalyst for producing hydrocarbons, method for preparing the same, and method for producing hydrocarbons using the same
Zeng et al. Ni–Ce–Al composite oxide catalysts synthesized by solution combustion method: Enhanced catalytic activity for CO methanation
JP5094028B2 (en) Carbon monoxide methanation catalyst and carbon monoxide methanation method using the catalyst
US10259709B2 (en) Steam reforming catalyst for hydrocarbon-containing gas, apparatus for producing hydrogen, and method for producing hydrogen
Sun et al. Ni/CeO2 nanoparticles promoted by yttrium doping as catalysts for CO2 methanation
Tabakova Recent advances in design of gold-based catalysts for H2 clean-up reactions
JP2007252989A (en) Catalyst for carbon monoxide methanation and methanation method of carbon monoxide using the catalyst
WO2021042874A1 (en) Nickel-based catalyst for carbon dioxide methanation, preparation method therefor and application thereof
Tang et al. Morphology-dependent support effect of Ru/MnOx catalysts on CO2 methanation
Jiang et al. Highly stable and selective CoxNiyTiO3 for CO2 methanation: Electron transfer and interface interaction
Byeon et al. Promotion of methanation suppression by alkali and alkaline earth metals in Ni-CeO2 catalysts for water–gas shift reaction using waste-derived synthesis gas
Claude et al. Sol–gel synthesis of Ni/Al2O3 catalysts for toluene reforming: Support modification with alkali, alkaline earth or rare-earth dopant (Ca, K, Mg or Ce)
Ho et al. Promotion effect of rare earth elements (Ce, Nd, Pr) on physicochemical properties of M-Al mixed oxides (M= Cu, Ni, Co) and their catalytic activity in N2O decomposition
Mohamedali et al. Hydrogen production from oxygenated hydrocarbons: Review of catalyst development, reaction mechanism and reactor modeling
Zhang et al. Enhanced catalytic activity of CO 2 hydrogenation to CO over sulfur-containing Ni/ZrO 2 catalysts: Support size effect
Jiang et al. Hydrogenolysis of glycerol aqueous solution to glycols over Ni–Co bimetallic catalyst: Effect of ceria promoting
Zhang et al. Upgrading biogas into syngas via bi-reforming of model biogas over ruthenium-based nano-catalysts synthesized via mechanochemical method
JP5446060B2 (en) Porous material for honeycomb, porous material mixture, suspension for supporting honeycomb, catalyst body, and method for producing mixed reaction gas using the catalyst body
JP2009241036A (en) Carbon monoxide conversion catalyst comprising composition for carbon monoxide conversion catalyst, and method of removing carbon monoxide using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110727

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121004

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130813

R150 Certificate of patent or registration of utility model

Ref document number: 5354142

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250