JPH11244700A - Carbon monoxide conversion catalyst - Google Patents

Carbon monoxide conversion catalyst

Info

Publication number
JPH11244700A
JPH11244700A JP10051927A JP5192798A JPH11244700A JP H11244700 A JPH11244700 A JP H11244700A JP 10051927 A JP10051927 A JP 10051927A JP 5192798 A JP5192798 A JP 5192798A JP H11244700 A JPH11244700 A JP H11244700A
Authority
JP
Japan
Prior art keywords
catalyst
carbon monoxide
oxide
fired body
cesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10051927A
Other languages
Japanese (ja)
Inventor
Susumu Takami
晋 高見
Shinichi Nagase
真一 永瀬
Masataka Masuda
正孝 増田
Yukio Yasuda
征雄 安田
Kamin Chiyou
華民 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP10051927A priority Critical patent/JPH11244700A/en
Publication of JPH11244700A publication Critical patent/JPH11244700A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To enhance catalytic activity under a low temp. environment by incorporating at least one of metallic cesium and strontium when expressed as metallic elements into an oxide fired body consisting of copper oxide, zinc oxide and alumina. SOLUTION: Metallic cesium and/or strontium when expressed as metallic elements is incorporated into an oxide fired body consisting of copper oxide, zinc oxide and alumina to obtain the objective carbon monoxide conversion catalyst used in a process for producing hydrogen and carbon dioxide by the reaction of carbon monoxide with steam. The metallic cesium and/or strontium is preferably incorporated by 1-5 wt.% (expressed in terms of metallic elements) of the amt. of the oxide fired body. The oxide fired body contains about 20-50 wt.% copper oxide, about 25-60 wt.% zinc oxide and about 5-30 wt.% alumina.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は一酸化炭素転化反応
のための触媒に関する。
[0001] The present invention relates to a catalyst for a carbon monoxide conversion reaction.

【0002】[0002]

【従来の技術】一酸化炭素と水蒸気との反応により水素
と二酸化炭素を生成する反応は、化学工業における重要
な反応であり、現在でもアンモニア合成プロセス、石油
化学プロセス、低カロリー都市ガス製造プロセス、リン
酸型燃料電池プロセスなどで水素製造の基幹反応として
広く使用されている。この反応は熱力学的には発熱反応
であるため低温ほど有利である。
2. Description of the Related Art The reaction of producing hydrogen and carbon dioxide by the reaction between carbon monoxide and water vapor is an important reaction in the chemical industry. Even today, ammonia synthesis process, petrochemical process, low calorie city gas production process, It is widely used as a key reaction in hydrogen production in phosphoric acid type fuel cell processes and the like. Since this reaction is thermodynamically exothermic, the lower the temperature, the more advantageous.

【0003】工業的に使用されている一酸化炭素転化触
媒としては2種類あり、一つは鉄、クロム系で比較的高
温(320℃〜510℃)で用いられるため高温転化触
媒ともいわれている。もう一つは銅、亜鉛系触媒であ
り、これは耐熱性には劣るが比較的低温(180℃〜2
90℃)で高活性を示すため低温転化触媒といわれてい
る。
There are two types of carbon monoxide conversion catalysts used industrially. One is an iron or chromium-based catalyst which is used at a relatively high temperature (320 ° C. to 510 ° C.) and is also called a high temperature conversion catalyst. . The other is a copper or zinc-based catalyst, which is inferior in heat resistance but relatively low in temperature (180 ° C to 2 ° C).
It is called a low-temperature conversion catalyst because of its high activity at 90 ° C).

【0004】炭化水素を原料とするリン酸型燃料電池で
は、電池燃料に用いられる水素の収率を高めるため、お
よび一酸化炭素による電池の被毒劣化を防止するため、
一酸化炭素転化触媒が用いられている。特に、電池の被
毒劣化を防止するためには、燃料水素中の一酸化炭素濃
度を1%未満(乾燥状態)まで下げる必要性があり、炭
化水素を原料とするリン酸型燃料電池においては、高活
性の銅、亜鉛系低温転化触媒が用いられるのが一般的で
ある。
In a phosphoric acid fuel cell using hydrocarbon as a raw material, in order to increase the yield of hydrogen used for cell fuel and to prevent the poisoning deterioration of the cell due to carbon monoxide,
A carbon monoxide conversion catalyst has been used. In particular, in order to prevent poisoning deterioration of the battery, it is necessary to reduce the concentration of carbon monoxide in the fuel hydrogen to less than 1% (dry state). In general, a low activity, high activity copper or zinc conversion catalyst is used.

【発明が解決しようとする課題】しかしながら、従来知
られている高活性の銅、亜鉛系転化触媒を、例えば燃料
電池プロセス中一酸化炭素転化工程等に適用し、反応速
度の遅い比較的低温(200℃)で使用する場合、多く
の触媒量を必要とし、一酸化炭素転化器は大きな容積を
占めている。そのため一酸化炭素転化器の大きさが燃料
電池の小型化、低コスト化をはばんでいる。この問題は
燃料電池システムのみならずその他のアンモニア合成プ
ロセス、石油化学プロセス、低カロリー都市ガス製造プ
ロセス等にも同様に当てはまる問題である。係る問題の
一つの解決方法としては、触媒活性を向上させ、使用す
る触媒量を少なくすることである。したがって、燃料電
池はもちろん、その他種々のシステムの小型化、低コス
ト化の面からも触媒活性の向上が望まれている。
However, a conventionally known high-activity copper / zinc conversion catalyst is applied to, for example, a carbon monoxide conversion step in a fuel cell process, and a relatively low temperature (low reaction rate) is required. (200 ° C.) requires a large amount of catalyst and the carbon monoxide converter occupies a large volume. Therefore, the size of the carbon monoxide converter has reduced the size and cost of the fuel cell. This problem applies not only to fuel cell systems but also to other ammonia synthesis processes, petrochemical processes, low-calorie city gas production processes, and the like. One solution to this problem is to improve the catalyst activity and reduce the amount of catalyst used. Therefore, improvement in catalytic activity is desired not only for fuel cells, but also for miniaturization and cost reduction of various other systems.

【0005】本発明はこのような事情に鑑みなされたも
のであり、低温環境下でより高活性の一酸化炭素転化触
媒を提供することを目的とする。
The present invention has been made in view of such circumstances, and has as its object to provide a carbon monoxide conversion catalyst having higher activity under a low temperature environment.

【0006】本発明は、さらに上記特性に加え、耐熱性
に優れた一酸化炭素転化触媒を提供することを 目的と
する。
Another object of the present invention is to provide a carbon monoxide conversion catalyst having excellent heat resistance in addition to the above characteristics.

【0007】[0007]

【課題を解決するための手段】すなわち本発明は酸化
銅、酸化亜鉛およびアルミナからなる酸化物焼成体に、
金属元素として表した場合に、セシウムまたはストロン
チウム金属元素の少なくとも1種が含有されてなる一酸
化炭素転化触媒に関する。
That is, the present invention provides an oxide fired body comprising copper oxide, zinc oxide and alumina,
The present invention relates to a carbon monoxide conversion catalyst containing at least one cesium or strontium metal element when expressed as a metal element.

【0008】酸化銅、酸化亜鉛およびアルミナからなる
酸化物焼成体は既に知られているものを使用することが
でき、基本的に酸化銅が約20〜約50重量%、酸化亜
鉛が約25〜約60重量%およびアルミナが約5〜約3
0重量%含有されている構成をしている。
[0008] As the oxide fired body composed of copper oxide, zinc oxide and alumina, known ones can be used. Basically, copper oxide is about 20 to about 50% by weight and zinc oxide is about 25 to 25% by weight. About 60% by weight and about 5 to about 3 alumina
It is configured to contain 0% by weight.

【0009】本発明はそのよな焼成体に、金属元素とし
て表した場合に、セシウムおよびストロンチウムからな
る群から選択される金属元素の少なくとも1種、特に好
ましくはセシウムを含有させてなることを特徴としてい
る。
The present invention is characterized in that such a fired body contains, when expressed as a metal element, at least one metal element selected from the group consisting of cesium and strontium, particularly preferably cesium. And

【0010】それらの金属元素の含有量は、金属元素に
換算した値で、焼結体に対して約1〜約5重量%、好ま
しくは約1〜約4重量%、より好ましくは約2〜約3重
量%とする。
The content of the metal element is about 1 to about 5% by weight, preferably about 1 to about 4% by weight, more preferably about 2 to about 5% by weight, based on the metal element. It is about 3% by weight.

【0011】本発明の一酸化炭素転化触媒の製造方法
は、特に限定されるものではないが、例えば以下のよう
にして製造することができる。
Although the method for producing the carbon monoxide conversion catalyst of the present invention is not particularly limited, it can be produced, for example, as follows.

【0012】銅化合物(例えば硝酸銅、酢酸銅等)、お
よび亜鉛化合物(例えば硝酸亜鉛、酢酸亜鉛等)を含む
水溶液に水酸化アルミニウムを加え、その混合溶液を、
約60℃程度に保ったアルカリ物質(例えば炭酸ナトリ
ウム、炭酸カリウム等)の水溶液に攪拌下に滴下して沈
殿を生成させる。この沈殿を生成させる工程は、溶液を
加える順序を逆にして、すなわちアルカリ物質の水溶液
に銅化合物、亜鉛化合物および水酸化アルミニウムの混
合溶液を添加させてもよい。また水酸化アルミニウムは
アルカリ物質の溶液に加えておいて、この溶液と銅化合
物および亜鉛化合物を含む水溶液を添加混合して沈殿を
生成させてもよい。
Aluminum hydroxide is added to an aqueous solution containing a copper compound (eg, copper nitrate, copper acetate, etc.) and a zinc compound (eg, zinc nitrate, zinc acetate, etc.).
A precipitate is formed by adding dropwise to an aqueous solution of an alkaline substance (eg, sodium carbonate, potassium carbonate, etc.) maintained at about 60 ° C. with stirring. In the step of forming the precipitate, the order of adding the solution may be reversed, that is, a mixed solution of a copper compound, a zinc compound and aluminum hydroxide may be added to an aqueous solution of an alkaline substance. Alternatively, aluminum hydroxide may be added to a solution of an alkali substance, and this solution and an aqueous solution containing a copper compound and a zinc compound may be added and mixed to form a precipitate.

【0013】生成した沈殿物は充分に水で洗浄し、濾
過、乾燥する。次にこの乾燥物を270℃から400℃
で焼成し、一旦、水でスラリーとする。得られたスラリ
ーを濾過、乾燥し、酸化銅−酸化亜鉛−酸化アルミニウ
ムの焼結体を得る。さらに、必要に応じて本発明の効果
を損なわない範囲で助剤(例えばグラファイト等)を加
えて所望の形状、大きさに成形し、本発明の触媒前駆焼
成体を得る。
The resulting precipitate is thoroughly washed with water, filtered and dried. Next, the dried product is heated from 270 ° C to 400 ° C.
And once slurried with water. The obtained slurry is filtered and dried to obtain a sintered body of copper oxide-zinc oxide-aluminum oxide. Further, if necessary, an auxiliary agent (for example, graphite or the like) is added to the extent that the effects of the present invention are not impaired, and the mixture is shaped into a desired shape and size to obtain a fired catalyst precursor of the present invention.

【0014】このようにして得られた前駆焼結体に、セ
シウムおよびストロンチウム化合物(例えば硝酸塩、炭
酸塩等)が、セシウムおよびストロンチウム金属元素で
換算して、焼結体に対して約1〜約5重量%、好ましく
は約1〜約4重量%、より好ましくは約2〜約3重量%
となるような量で含有される水溶液を全量に吸収させ
る。得られた金属塩吸収焼結体を乾燥、焼成して本発明
の一酸化炭素添加触媒を得る。この時、焼成は270〜
400℃程度で行えばよい。
In the precursor sintered body thus obtained, a cesium and strontium compound (for example, nitrate, carbonate, etc.) is converted into about 1 to about 5% by weight, preferably about 1 to about 4% by weight, more preferably about 2 to about 3% by weight
The aqueous solution contained in such an amount as to be absorbed into the whole amount. The obtained metal salt absorption sintered body is dried and fired to obtain the carbon monoxide-added catalyst of the present invention. At this time, firing is 270-
It may be performed at about 400 ° C.

【0015】以上のようにして得られた本発明の一酸化
炭素転化触媒は、酸化銅−酸化亜鉛−アルミナ系一酸化
炭素転化触媒と同様に、予め水素還元して使用に供す
る。
The carbon monoxide conversion catalyst of the present invention obtained as described above is subjected to hydrogen reduction in advance, similarly to the copper oxide-zinc oxide-alumina carbon monoxide conversion catalyst, before use.

【0016】触媒前駆焼成体の調製硝酸銅、硝酸亜鉛お
よび水酸化アルミニウムを1:1:0.3のモル比で含
有する混合水溶液を、約60℃に保った炭酸ナトリウム
水溶液に攪拌下滴下し、沈殿を生ぜしめた。得られた沈
殿を充分に水で洗浄し、濾過、乾燥した。
Preparation of Catalyst Prefired Body A mixed aqueous solution containing copper nitrate, zinc nitrate and aluminum hydroxide at a molar ratio of 1: 1: 0.3 was added dropwise with stirring to an aqueous sodium carbonate solution maintained at about 60 ° C. , Resulting in precipitation. The obtained precipitate was sufficiently washed with water, filtered and dried.

【0017】乾燥した沈殿物を270℃で焼成し、一旦
水でスラリーとした後、濾過乾燥した。成形剤(グラフ
ァイト)を添加し、直径1/8インチ×長さ1/8イン
チの固体に成形した触媒前駆焼成体を得た。
The dried precipitate was calcined at 270 ° C., once slurried with water, and filtered and dried. A molding agent (graphite) was added to obtain a catalyst precursor fired body formed into a solid having a diameter of 1/8 inch and a length of 1/8 inch.

【0018】実施例1 得られた触媒前駆焼成体を1mm〜2mmに粉砕した。
粉砕焼成体10gに対して2重量%のセシウムを含有す
る硝酸セシウム水溶液の全量を、該10gの焼成体に全
量吸収させた。この硝酸セシウム吸収物を300℃で焼
成して目的とする本発明の一酸化炭素転化触媒を得た。
Example 1 The obtained fired catalyst precursor was pulverized to 1 mm to 2 mm.
The entire amount of the cesium nitrate aqueous solution containing 2% by weight of cesium per 10 g of the pulverized fired body was absorbed by the 10 g of the fired body. The cesium nitrate absorbent was calcined at 300 ° C. to obtain a target carbon monoxide conversion catalyst of the present invention.

【0019】上記で得られた触媒を内径10mmの石英
製反応管に充填して、下記試験条件で一酸化炭素転化反
応を行った。
The catalyst obtained above was filled in a quartz reaction tube having an inner diameter of 10 mm, and a carbon monoxide conversion reaction was carried out under the following test conditions.

【0020】試験条件 触媒充填量: 1ml 触媒活性化条件:2vol%H2/N2ガス300mlに
て200℃で2時間還元 原料ガス組成: 11.5vol%CO、7.5
vol%CO2、0.75vol%CH4、22.8vo
l%H2O、残りH2 原料ガス流量: 338ml/min. GHSV: 20280h-1 圧力: 大気圧 温度: 170℃ 結果を下記表1に示した。
Test conditions Catalyst loading amount: 1 ml Catalyst activation condition: 2 vol% H 2 / N 2 gas reduced at 200 ° C. for 2 hours at 200 ° C. Raw material gas composition: 11.5 vol% CO, 7.5
vol% CO 2 , 0.75 vol% CH 4 , 22.8 vo
1% H 2 O, remaining H 2 raw material gas flow rate: 338 ml / min. GHSV: 20280 h -1 Pressure: atmospheric pressure Temperature: 170 ° C. The results are shown in Table 1 below.

【0021】実施例2 触媒前駆焼成体に対して2重量%のセシウムを含有する
炭酸セシウム水溶液を吸収させた以外は、実施例1と同
様に触媒を得た。また得られた触媒を実施例1と同じ試
験条件で一酸化炭素転化反応を行った。結果を表1に示
した。
Example 2 A catalyst was obtained in the same manner as in Example 1 except that a cesium carbonate aqueous solution containing 2% by weight of cesium was absorbed with respect to the catalyst precursor fired body. The obtained catalyst was subjected to a carbon monoxide conversion reaction under the same test conditions as in Example 1. The results are shown in Table 1.

【0022】実施例3 触媒前駆焼成体に対して2重量%のセシウムを含有する
水酸化セシウム水溶液を吸収させた以外は、実施例1と
同様に触媒を得た。また得られた触媒を実施例1と同じ
試験条件で一酸化炭素転化反応を行った。結果を表1に
示した。
Example 3 A catalyst was obtained in the same manner as in Example 1 except that a cesium hydroxide aqueous solution containing 2% by weight of cesium was absorbed with respect to the catalyst precursor fired body. The obtained catalyst was subjected to a carbon monoxide conversion reaction under the same test conditions as in Example 1. The results are shown in Table 1.

【0023】実施例4 触媒前駆焼成体に対して2重量%のストロンチウムを含
有する硝酸ストロンチウム水溶液を吸収させた以外は、
実施例1と同様に触媒を得た。また得られた触媒を実施
例1と同じ試験条件で一酸化炭素転化反応を行った。結
果を表1に示した。
Example 4 A strontium nitrate aqueous solution containing 2% by weight of strontium with respect to a catalyst precursor calcined product was absorbed.
A catalyst was obtained in the same manner as in Example 1. The obtained catalyst was subjected to a carbon monoxide conversion reaction under the same test conditions as in Example 1. The results are shown in Table 1.

【0024】実施例5 触媒前駆焼成体に対して1重量%のセシウムを含有する
硝酸セシウム水溶液を吸収させた以外は、実施例1と同
様に触媒を得た。また得られた触媒を実施例1と同じ試
験条件で一酸化炭素転化反応を行った。結果を表1に示
した。
Example 5 A catalyst was obtained in the same manner as in Example 1 except that an aqueous cesium nitrate solution containing 1% by weight of cesium was absorbed with respect to the catalyst precursor fired body. The obtained catalyst was subjected to a carbon monoxide conversion reaction under the same test conditions as in Example 1. The results are shown in Table 1.

【0025】実施例6 触媒前駆焼成体に対して3重量%のセシウムを含有する
硝酸セシウム水溶液を吸収させた以外は、実施例1と同
様に触媒を得た。また得られた触媒を実施例1と同じ試
験条件で一酸化炭素転化反応を行った。結果を表1に示
した。
Example 6 A catalyst was obtained in the same manner as in Example 1 except that a cesium nitrate aqueous solution containing 3% by weight of cesium was absorbed with respect to the catalyst precursor fired body. The obtained catalyst was subjected to a carbon monoxide conversion reaction under the same test conditions as in Example 1. The results are shown in Table 1.

【0026】比較例1 実施例1で得られた1mm〜2mmに粉砕した焼成体
を、そのまま300℃で焼成して触媒を得た。また得ら
れた触媒を実施例1と同じ試験条件で一酸化炭素転化反
応を行った。結果を表1に示した。
Comparative Example 1 The fired body obtained in Example 1 and ground to 1 mm to 2 mm was fired at 300 ° C. as it was to obtain a catalyst. The obtained catalyst was subjected to a carbon monoxide conversion reaction under the same test conditions as in Example 1. The results are shown in Table 1.

【0027】[0027]

【表1】 [Table 1]

【0028】なお、一酸化炭素の転化率は、下記式によ
り算出した。
The conversion of carbon monoxide was calculated by the following equation.

【数1】 上記式中、COoutは出口CO濃度、CO2outは出口C
2の濃度、COinは入口CO濃度、CO2inは入口CO
2濃度を表す。
(Equation 1) In the above formula, CO out is the outlet CO concentration, CO 2out exit C
O 2 concentration, CO in is inlet CO concentration, CO 2in is inlet CO
2 represents the concentration.

【0029】表1より本発明の触媒はCO転化率が高い
ことがわかる。
Table 1 shows that the catalyst of the present invention has a high CO conversion.

【0030】実施例7 触媒前駆焼成体10gに対して2重量%のセシウムを含
有する硝酸セシウム水溶液の全量を、該10gの焼成体
に全量吸収させた。この硝酸セシウム吸収物を300℃
で焼成して目的とする本発明の一酸化炭素転化触媒を得
た。
Example 7 The entire amount of the cesium nitrate aqueous solution containing 2% by weight of cesium per 10 g of the fired catalyst precursor was absorbed by the fired body of 10 g. This cesium nitrate absorbent is heated to 300 ° C.
To obtain the desired carbon monoxide conversion catalyst of the present invention.

【0031】上記で得られた触媒を内径30mmの石英
製反応管に充填して、下記試験条件で一酸化炭素転化反
応を行い、1時間後と126時間後のCO転化率を測定
した。
The above-obtained catalyst was filled in a quartz reaction tube having an inner diameter of 30 mm, a carbon monoxide conversion reaction was performed under the following test conditions, and the CO conversion rates after 1 hour and 126 hours were measured.

【0032】試験条件 触媒充填量: 5ml 触媒活性化条件:2vol%H2/N2ガス1500ml
にて200℃で2時間還元 原料ガス組成: 12.1vol%CO、7.9vol
%CO2、0.78vol%CH4、17.2vol%H
2O、残りH2 原料ガス流量: 18600ml/min. GHSV: 223200h-1 圧力: 大気圧 温度: 350℃ 結果を下記表2に示した。
Test conditions Catalyst filling amount: 5 ml Catalyst activation condition: 2 vol% H 2 / N 2 gas 1500 ml
At 200 ° C. for 2 hours Raw material gas composition: 12.1 vol% CO, 7.9 vol
% CO 2 , 0.78 vol% CH 4 , 17.2 vol% H
2 O, remaining H 2 raw material gas flow rate: 18600 ml / min. GHSV: 223200 h -1 Pressure: Atmospheric pressure Temperature: 350 ° C. The results are shown in Table 2 below.

【0033】比較例2 触媒前駆焼成体をそのまま触媒として用いた以外は、実
施例7と同じ試験条件により一酸化炭素転化反応を行っ
た。結果を表2に示す。
Comparative Example 2 A carbon monoxide conversion reaction was carried out under the same test conditions as in Example 7 except that the fired catalyst precursor was used as a catalyst. Table 2 shows the results.

【0034】[0034]

【表2】 [Table 2]

【0035】表2より、本発明の触媒は高温環境下でも
良好なCO転化率を維持でき、耐久性に優れたものであ
ることがわかる。
From Table 2, it can be seen that the catalyst of the present invention can maintain a good CO conversion even under a high temperature environment and has excellent durability.

【0036】実施例8 図1は本実施例で使用した100kWリン酸型燃料電池
発電システムの概略フロー構成図を示す。
Embodiment 8 FIG. 1 shows a schematic flow diagram of a 100 kW phosphoric acid fuel cell power generation system used in this embodiment.

【0037】原燃料(都市ガス)1は一酸化炭素変成器
6aより導かれる水素を主成分とする燃料ガスと適宜な
混合比に混合されて、脱硫器2に導入され付臭剤中の硫
黄が除去される。脱硫された原燃料1は混合器3で気水
分離器18から生成した水蒸気と適宜の混合比で混合さ
れた後、水蒸気改質器5に導入され、水蒸気改質反応に
付されて水素を主成分とする燃料ガスに変換される。水
蒸気改質器5から排出される水素を主成分とする燃料ガ
スは、一酸化炭素変成器6aに送られ、一酸化炭素含有
量を減少させるとともに水素含有量が高められる。この
一酸化炭素変成器6aに本発明の一酸化炭素転化触媒6
bが充填されている。次いで、一酸化炭素変成器6aか
ら排出された燃料ガスは、電池7の燃料極8に送られ、
空気ブロワー9より空気極11に流入している空気10
中の酸素と電気化学的反応を行い、その結果燃料ガスの
一部が消費されて電気エネルギーが得られ、水が副生す
る。なお、燃料極7から排出された燃料ガスは、バーナ
ー12に送り、燃焼させて水蒸気改質器の加熱源として
利用する。
The raw fuel (city gas) 1 is mixed with a fuel gas containing hydrogen as a main component, which is led from a carbon monoxide converter 6a, at an appropriate mixing ratio. Is removed. The desulfurized raw fuel 1 is mixed with the steam generated from the steam separator 18 at an appropriate mixing ratio in the mixer 3 and then introduced into the steam reformer 5 where it is subjected to a steam reforming reaction to remove hydrogen. It is converted into fuel gas as the main component. The fuel gas containing hydrogen as a main component discharged from the steam reformer 5 is sent to the carbon monoxide converter 6a to reduce the carbon monoxide content and increase the hydrogen content. The carbon monoxide conversion catalyst 6 of the present invention is
b is filled. Next, the fuel gas discharged from the carbon monoxide converter 6a is sent to the fuel electrode 8 of the battery 7,
The air 10 flowing from the air blower 9 to the air electrode 11
An electrochemical reaction occurs with oxygen in the fuel, and as a result, a part of the fuel gas is consumed, electric energy is obtained, and water is by-produced. The fuel gas discharged from the fuel electrode 7 is sent to the burner 12, where it is burned and used as a heating source for the steam reformer.

【0038】本システムで使用された触媒は、以下の通
りである。直径1/4インチ×長さ1/8インチに成形
した以外は触媒前駆焼成体の調製と同様に作製し、触媒
前駆焼成体を調製し、300℃で焼成した。得られた焼
成体をそのまま150リットルを用いて、図1に示す1
00kWリン酸型燃料電池発電システムの一酸化炭素転
化反応器に充填した。、次いで13A都市ガスを原料と
して該燃料電池を運転し、定格負荷での一酸化炭素転化
反応器出口での一酸化炭素濃度を測定したところ0.6
1容量%(乾燥状態)であった。
The catalyst used in the present system is as follows. A catalyst precursor fired body was prepared in the same manner as in the preparation of the catalyst precursor fired body except that the catalyst precursor fired body was formed to have a diameter of 1/4 inch and a length of 1/8 inch, and fired at 300 ° C. Using the obtained fired body as it is, using 150 liters,
A 00 kW phosphoric acid fuel cell power generation system was charged into a carbon monoxide conversion reactor. Then, the fuel cell was operated using 13A city gas as a raw material, and the carbon monoxide concentration at the outlet of the carbon monoxide conversion reactor at the rated load was measured.
It was 1% by volume (dry state).

【0039】一方、直径1/4インチ×長さ1/8イン
チに成形した以外は触媒前駆焼成体の調製と同様に作製
し、触媒前駆焼成体を得た。該焼成体に対して2重量%
のセシウムを含有する硝酸セシウム水溶液を焼成体に全
量吸収させ、この硝酸セシウム吸収物を300℃で焼成
して本発明の一酸化炭素転化触媒を得た。得られた触媒
120リットルを用いて、100kWリン酸型燃料電池
用の一酸化炭素転化反応器に充填した。次いで13A都
市ガスを原料として該燃料電池を運転し、定格負荷での
一酸化炭素転化反応器出口での一酸化炭素濃度を測定し
たところ0.60容量%であった。
On the other hand, a catalyst precursor fired body was prepared in the same manner as in the preparation of the catalyst precursor fired body except that it was formed to have a diameter of 1/4 inch and a length of 1/8 inch. 2% by weight based on the fired body
The cesium nitrate aqueous solution containing cesium was completely absorbed by the calcined body, and the cesium nitrate absorbent was calcined at 300 ° C. to obtain a carbon monoxide conversion catalyst of the present invention. Using 120 liters of the obtained catalyst, it was charged into a carbon monoxide conversion reactor for a 100 kW phosphoric acid type fuel cell. Next, the fuel cell was operated using 13A city gas as a raw material, and the carbon monoxide concentration at the outlet of the carbon monoxide conversion reactor at the rated load was measured to be 0.60% by volume.

【0040】以上から、本発明の触媒は、従来の触媒よ
りも少ない触媒量で従来の触媒と同等の性能が得られる
ことがわかる。
From the above, it can be seen that the catalyst of the present invention can achieve the same performance as the conventional catalyst with a smaller amount of the catalyst than the conventional catalyst.

【0041】なお、上記フロー図中における、都市ガス
の組成、スチーム添加後のガス組成、改質器5で改質後
のガス組成、CO変成器6aでの変成後のガス組成、未
反応ガス組成を表3に示した。
In the above flow chart, the composition of the city gas, the gas composition after the addition of steam, the gas composition after the reforming in the reformer 5, the gas composition after the conversion in the CO converter 6a, the unreacted gas The composition is shown in Table 3.

【0042】[0042]

【表3】 [Table 3]

【0043】さらに本発明の触媒を充填したシステムで
運転した時のCO変成器6aにおける温度分布とCO濃
度を触媒層長に対してプロットした図を図2に示す。
FIG. 2 is a diagram plotting the temperature distribution and the CO concentration in the CO converter 6a with respect to the catalyst layer length when the system is operated with the system filled with the catalyst of the present invention.

【0044】図2において温度分布はガス入り口付近で
入り口温度より上昇し約350℃近くまで達している。
これはCO変成器6aにおけるCO転化反応が発熱反応
でありその時生じる熱による温度上昇を表している。そ
の後、温度が徐々に下がっているのは冷却水で熱交換し
ているためである。このように、燃料電池発電システム
に本発明の触媒を使用する場合、入口付近の触媒温度が
350℃にまで達するので、その温度に対する耐熱性が
要求されるのである。この耐熱性があることを実施例7
は示すものであり、本発明の触媒は燃料電池システムに
好適に使用できることが示されている。
In FIG. 2, the temperature distribution near the gas inlet rises from the inlet temperature and reaches about 350 ° C.
This indicates that the CO conversion reaction in the CO converter 6a is an exothermic reaction and the temperature rise due to the heat generated at that time. Thereafter, the temperature is gradually lowered because heat is exchanged with the cooling water. As described above, when the catalyst of the present invention is used in a fuel cell power generation system, the catalyst temperature near the inlet reaches 350 ° C., so that heat resistance to that temperature is required. Example 7 shows that this heat resistance exists.
Shows that the catalyst of the present invention can be suitably used for a fuel cell system.

【0045】[0045]

【発明の効果】本発明の一酸化炭素転化触媒は低温環境
下で高活性である。また本発明の一酸化炭素転化触媒は
左記特性に加え、耐熱性および耐久性に優れている。
The carbon monoxide conversion catalyst of the present invention has high activity under a low temperature environment. Further, the carbon monoxide conversion catalyst of the present invention is excellent in heat resistance and durability in addition to the properties described on the left.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例で使用した燃料電池発電システムの概
略フロー構成図。
FIG. 1 is a schematic flow configuration diagram of a fuel cell power generation system used in an example.

【図2】 CO変成器6aにおける温度分布とCO濃度
を触媒層長に対してプロットしたグラフ。
FIG. 2 is a graph in which the temperature distribution and the CO concentration in the CO converter 6a are plotted against the catalyst layer length.

【符号の説明】[Explanation of symbols]

1:原燃料(都市ガス) 2:脱硫器 3:混合器 4:熱交換器 5:水蒸気改質器 6a:一酸化炭素変成器 6b:一酸化炭素転化触媒 7:電池 8:燃料極 9:空気ブロワー 10:空気 11:空気極 12:バーナー 13:熱交換器 14:凝縮器 15:給水ライン 16:給水ポンプ 17:冷却水ポンプ 18:気水分離器 1: Raw fuel (city gas) 2: Desulfurizer 3: Mixer 4: Heat exchanger 5: Steam reformer 6a: Carbon monoxide converter 6b: Carbon monoxide conversion catalyst 7: Battery 8: Fuel electrode 9: Air blower 10: Air 11: Air electrode 12: Burner 13: Heat exchanger 14: Condenser 15: Water supply line 16: Water supply pump 17: Cooling water pump 18: Air / water separator

フロントページの続き (72)発明者 安田 征雄 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 張 華民 京都府京都市下京区中堂寺南町17 京都リ サーチパーク株式会社関西新技術研究所内Continued on the front page (72) Inventor Yasuo Yasuda 4-1-2-1, Hirano-cho, Chuo-ku, Osaka-shi, Osaka Prefecture Inside Osaka Gas Co., Ltd. Search Park Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸化銅、酸化亜鉛およびアルミナからな
る酸化物焼成体に、金属元素として表した場合に、セシ
ウムおよび/またはストロンチウム金属元素が含有され
てなる一酸化炭素転化触媒。
1. A carbon monoxide conversion catalyst comprising an oxide fired body comprising copper oxide, zinc oxide and alumina, when expressed as a metal element, containing a cesium and / or strontium metal element.
【請求項2】 セシウムおよび/またはストロンチウム
金属元素が、酸化物焼成体に対して金属元素換算で1〜
5重量%含有されている請求項3記載の一酸化炭素転化
触媒。
2. A cesium and / or strontium metal element is 1 to 1 in terms of a metal element with respect to an oxide fired body.
The carbon monoxide conversion catalyst according to claim 3, which is contained in an amount of 5% by weight.
JP10051927A 1998-03-04 1998-03-04 Carbon monoxide conversion catalyst Pending JPH11244700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10051927A JPH11244700A (en) 1998-03-04 1998-03-04 Carbon monoxide conversion catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10051927A JPH11244700A (en) 1998-03-04 1998-03-04 Carbon monoxide conversion catalyst

Publications (1)

Publication Number Publication Date
JPH11244700A true JPH11244700A (en) 1999-09-14

Family

ID=12900520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10051927A Pending JPH11244700A (en) 1998-03-04 1998-03-04 Carbon monoxide conversion catalyst

Country Status (1)

Country Link
JP (1) JPH11244700A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001078892A1 (en) * 2000-04-19 2001-10-25 Osaka Gas Co., Ltd. Method for preparing catalyst for reforming methanol
JP2006223985A (en) * 2005-02-17 2006-08-31 Catalysts & Chem Ind Co Ltd Water gas shift reaction catalyst
JP2006239557A (en) * 2005-03-03 2006-09-14 National Institute Of Advanced Industrial & Technology Catalyst for water gas shift reaction
JP2007313487A (en) * 2006-05-29 2007-12-06 National Institute Of Advanced Industrial & Technology Catalyst for water gas shift reaction, and method for water gas shift reaction using the same
JP2009241036A (en) * 2008-03-31 2009-10-22 Idemitsu Kosan Co Ltd Carbon monoxide conversion catalyst comprising composition for carbon monoxide conversion catalyst, and method of removing carbon monoxide using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001078892A1 (en) * 2000-04-19 2001-10-25 Osaka Gas Co., Ltd. Method for preparing catalyst for reforming methanol
US6844292B1 (en) 2000-04-19 2005-01-18 Osaka Gas Co., Ltd. Method for preparing catalyst for reforming methanol
JP2006223985A (en) * 2005-02-17 2006-08-31 Catalysts & Chem Ind Co Ltd Water gas shift reaction catalyst
JP2006239557A (en) * 2005-03-03 2006-09-14 National Institute Of Advanced Industrial & Technology Catalyst for water gas shift reaction
JP4512748B2 (en) * 2005-03-03 2010-07-28 独立行政法人産業技術総合研究所 Catalyst for water gas conversion reaction
JP2007313487A (en) * 2006-05-29 2007-12-06 National Institute Of Advanced Industrial & Technology Catalyst for water gas shift reaction, and method for water gas shift reaction using the same
JP2009241036A (en) * 2008-03-31 2009-10-22 Idemitsu Kosan Co Ltd Carbon monoxide conversion catalyst comprising composition for carbon monoxide conversion catalyst, and method of removing carbon monoxide using the same

Similar Documents

Publication Publication Date Title
JP5279227B2 (en) Catalyst for fuel reforming reaction and method for producing hydrogen using the same
JP3759406B2 (en) Methanol reforming catalyst, methanol reforming apparatus and methanol reforming method
WO2000030745A1 (en) Carbon monoxide oxidation catalyst, method for preparation of carbon monoxide oxidation catalyst and method for production of hydrogen-containing gas
JP4460126B2 (en) Method for removing carbon monoxide from hydrogen-containing gas
JP3756229B2 (en) Catalyst for removing CO in hydrogen-containing gas and method for removing CO in hydrogen-containing gas using the same
JPH11244700A (en) Carbon monoxide conversion catalyst
JP3756565B2 (en) Method for removing CO in hydrogen gas
JP4824332B2 (en) Carbon monoxide removal catalyst
JP2005066516A (en) Catalyst for reforming dimethyl ether and synthesizing method therefor
KR100277048B1 (en) Hydrogen Production Method and Catalysts Used Thereon
JP4478280B2 (en) Method for producing CO removal catalyst in hydrogen-containing gas, catalyst produced by the production method, and method for removing CO in hydrogen-containing gas using the catalyst
JP5164297B2 (en) CO oxidation catalyst and method for producing hydrogen-containing gas
JP4478281B2 (en) Method for producing CO removal catalyst in hydrogen-containing gas, catalyst produced by the production method, and method for removing CO in hydrogen-containing gas using the catalyst
JP4835070B2 (en) Carbon dioxide absorbent having steam reforming catalyst function, method for producing the same, and method for reforming fuel gas in hydrogen production system
JP3943606B2 (en) Method for selective removal of carbon monoxide
JP2000169107A (en) Production of hydrogen-containing gas reduced in carbon monoxide
JP2001179097A (en) Method for manufacturing catalyst for removing co in hydrogen-containing gas, catalyst manufactured thereby and method for removing co in hydrogen gas
JP4463914B2 (en) Method for producing hydrogen-containing gas for fuel cell
JP3831004B2 (en) Method for generating electrical energy in a high temperature fuel cell
JP3996378B2 (en) Catalyst production method
JP4569408B2 (en) Water gas shift reaction catalyst and method for removing carbon monoxide gas from hydrogen gas using the same
JPH07309603A (en) Production of hydrogen-containing gas for fuel cell
CN1672788A (en) Catalyst for autothermal reformation of methanol to prepare hydrogen and its prepn process and application
JP2004337659A (en) Manufacturing method of honeycomb-shaped methanol reforming catalyst and honeycomb-shaped methanol reforming catalyst
JPH06279001A (en) Production of hydrogen-containing gas