JP4709724B2 - Hydrocarbon reforming catalyst - Google Patents

Hydrocarbon reforming catalyst Download PDF

Info

Publication number
JP4709724B2
JP4709724B2 JP2006297983A JP2006297983A JP4709724B2 JP 4709724 B2 JP4709724 B2 JP 4709724B2 JP 2006297983 A JP2006297983 A JP 2006297983A JP 2006297983 A JP2006297983 A JP 2006297983A JP 4709724 B2 JP4709724 B2 JP 4709724B2
Authority
JP
Japan
Prior art keywords
catalyst
nickel
calcium
cao
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006297983A
Other languages
Japanese (ja)
Other versions
JP2008114121A (en
Inventor
正雄 木村
和人 川上
聖記 竹林
幸基 田中
健一郎 藤本
久継 北口
公仁 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006297983A priority Critical patent/JP4709724B2/en
Publication of JP2008114121A publication Critical patent/JP2008114121A/en
Application granted granted Critical
Publication of JP4709724B2 publication Critical patent/JP4709724B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

本発明は、炭化水素から改質反応により水素製造や合成ガス製造を行う触媒に関するものである。   The present invention relates to a catalyst for producing hydrogen or synthesis gas from a hydrocarbon by a reforming reaction.

炭化水素を改質して水素製造する技術は、工業的に重要な技術であり、水素ステーション用水素製造装置や、燃料電池用水素製造装置、工業用オンサイト水素製造装置として用いられることが期待されている。   Technology for reforming hydrocarbons to produce hydrogen is an industrially important technology and is expected to be used as a hydrogen production device for hydrogen stations, a hydrogen production device for fuel cells, and an industrial on-site hydrogen production device. Has been.

例えば、炭化水素としてメタンを用いた場合の改質反応による合成ガスの生成は、下記(1)式で示され、メタンと水蒸気との吸熱反応を利用し、触媒の存在下、10〜40atm程度の圧力と、800〜1000℃の温度で製造される。
CH4+H2O ⇔ CO+3H2・・・(1)
For example, the production of synthesis gas by the reforming reaction when methane is used as the hydrocarbon is represented by the following formula (1), and uses the endothermic reaction between methane and water vapor, and is about 10 to 40 atm in the presence of the catalyst And a temperature of 800 to 1000 ° C.
CH 4 + H 2 O⇔CO + 3H 2 (1)

上記のように合成ガスは、触媒の存在下、高圧、高温下での吸熱反応のため、実用プロセスでは、省エネルギーの観点から反応効率を向上させることが望まれている。   As described above, since the synthesis gas is an endothermic reaction under high pressure and high temperature in the presence of a catalyst, in a practical process, it is desired to improve the reaction efficiency from the viewpoint of energy saving.

合成ガスを製造する際に用いられる炭化水素の改質用触媒として、ニッケル−マグネシア系触媒が提案されている(例えば、特許文献1〜3、参照)が、炭化水素の改質する反応速度や転化率が十分でない。   Nickel-magnesia catalysts have been proposed as hydrocarbon reforming catalysts used in the production of synthesis gas (see, for example, Patent Documents 1 to 3). The conversion rate is not sufficient.

転化率や反応速度を高めるために、RhやRu系の触媒を用いた触媒が提案されている(例えば、特許文献4、参照)が、貴金属系の触媒を使用するため高価であり、工業生産規模として使用するにはランニングコストの上から問題がある。   In order to increase the conversion rate and the reaction rate, a catalyst using a Rh or Ru-based catalyst has been proposed (see, for example, Patent Document 4). However, since a noble metal-based catalyst is used, it is expensive and industrial production. There is a problem in terms of running cost to use as a scale.

高価な貴金属系の元素を使用しない触媒として、ドロマイト(=CaMg(CO32)類とニッケル塩との複合体を有する触媒が提案されている(例えば、特許文献5、参照)が、天然鉱物を原料とするため提供される触媒の組成にばらつきがあり、プラント操業のために多量の触媒を安定的に製造供給する上で問題である。 As a catalyst that does not use an expensive noble metal element, a catalyst having a composite of dolomite (= CaMg (CO 3 ) 2 ) and a nickel salt has been proposed (for example, see Patent Document 5). There is a variation in the composition of the catalyst provided because minerals are used as raw materials, and this is a problem in stably producing and supplying a large amount of catalyst for plant operation.

また、この触媒においては、炭酸塩であるドロマイト(=CaMg(CO32)の機能の詳細は不明である。 Further, in this catalyst, details of the function of dolomite (= CaMg (CO 3 ) 2 ), which is a carbonate, are unknown.

他に、ニッケル、マグネシウム、カルシウムを含有する酸化物を担体とする触媒も提案されている(例えば、特許文献6、参照)が、その表面に高価な白金族金属を添加する必要があり、コストの上から問題がある。   In addition, a catalyst using an oxide containing nickel, magnesium and calcium as a carrier has also been proposed (for example, see Patent Document 6). However, it is necessary to add an expensive platinum group metal to the surface of the catalyst. There is a problem from above.

特開昭63−137754号公報JP-A-63-137754 特開昭63−248444号公報JP-A 63-248444 特開2000−469号公報JP 2000-469 A 特開2003−246990号公報JP 2003-246990 A 特開2006−68723号公報JP 2006-68723 A 特開平9−131533号公報JP-A-9-131533

本発明は、上記従来技術の現状に鑑み、炭化水素を高い転化率で改質する触媒を、高価な貴金属系の元素を使用しないで製造し、かつ、その構成元素の組成のばらつきが小さいことを特徴とする触媒を提供することを目的とする。   In view of the current state of the prior art, the present invention produces a catalyst for reforming hydrocarbons at a high conversion rate without using an expensive noble metal element, and the variation in the composition of the constituent elements is small. It aims at providing the catalyst characterized by these.

本発明は、上記課題を解決するものであって、その発明の要旨とするところは、以下の通りである。   This invention solves the said subject, The place made into the summary of the invention is as follows.

(1)下記式で表される組成を有する化合物からなる炭化水素の改質用触媒であって、
Mg1-x-yCaxNiykm(式中、1−x−y、x、y、k、mは、モル比であり、0.01 ≦x<0.40、0.01≦y<0.60、k、mは、酸素,水素がマグネシウム、カルシウム、及び、ニッケルの陽性元素と電気的中性を保つのに必要な数である。)前記触媒の構成相が、MgO、及び、CaO又はCa(OH) 2 、又は、それらの混合物であり、CaO又はCa(OH) 2 、又は、それらの混合物の平均結晶粒径dが、1nm以上100nm以下であることを特徴とする炭化水素の改質用触媒。
(1) A reforming catalyst for carbonization hydrogen ing from a compound having a composition represented by the following formula,
Mg 1-xy Ca x Ni y O k H m (wherein 1-xy , x, y, k, m are molar ratios, 0.01 ≦ x <0.40, 0.01 ≦ y <0.60, k and m are the numbers necessary for oxygen and hydrogen to be electrically neutral with the positive elements of magnesium, calcium and nickel.) The constituent phase of the catalyst is MgO, And CaO or Ca (OH) 2 or a mixture thereof, wherein the average crystal grain size d of CaO or Ca (OH) 2 or a mixture thereof is 1 nm or more and 100 nm or less. Hydrocarbon reforming catalyst.

(2)前記マグネシウムのモル比と前記カルシウムのモル比との比率が次式を満たすことを特徴とする(1)記載の炭化水素の改質用触媒。
1.5≦(1−x−y)/x≦90
(2) The hydrocarbon reforming catalyst according to (1), wherein a ratio between the molar ratio of magnesium and the molar ratio of calcium satisfies the following formula.
1.5 ≦ (1-xy) / x ≦ 90

本発明によれば、炭化水素を高い転化率で改質する触媒を、高価な貴金属系の元素を使用しないで製造し、かつ、その構成元素の組成のばらつきが小さいことを特徴とする触媒を提供することができる。   According to the present invention, there is provided a catalyst characterized in that a catalyst for reforming hydrocarbons at a high conversion rate is produced without using an expensive noble metal-based element, and the compositional variation of constituent elements is small. Can be provided.

また、原料ガスに、H2S等の触媒反応効率を低下すると考えられているガスが微量含まれていても、炭化水素を高い転化率で改質する触媒を、提供することができる。 Moreover, even if the raw material gas contains a trace amount of a gas that is thought to reduce the catalytic reaction efficiency such as H 2 S, a catalyst that reforms hydrocarbons at a high conversion rate can be provided.

本発明の触媒を適用することにより、バイオマス由来の炭化水素ガスや天然ガス等の各種の炭化水素を原料として、水素製造や化学工業用原料として使用される合成ガスの製造を、高生産性かつ低コストで安定して行うことが可能となるため、本発明の産業上の利用価値は多大である。   By applying the catalyst of the present invention, various hydrocarbons such as biomass-derived hydrocarbon gas and natural gas can be used as raw materials for the production of synthesis gas used as a raw material for hydrogen production or chemical industry, with high productivity and Since it can be performed stably at low cost, the industrial utility value of the present invention is great.

本発明の最良な実施形態について、以下に、詳細に説明する。   The best embodiment of the present invention will be described in detail below.

本発明者らは、触媒活性を向上させるための有効な手段について、実験などにより鋭意検討した結果、下記式で表される組成を有する化合物からなることを特徴とする炭化水素の改質用触媒を見出した。   The inventors of the present invention, as a result of intensive investigations by experiments and the like on effective means for improving the catalyst activity, are characterized by comprising a compound having a composition represented by the following formula: I found.

すなわち、
Mg1-x-yCaxNiykm
(式中、1−x−y、x、y、k、mは、モル比であり、k、mは、酸素,水素がマグネシウム、カルシウム、及び、ニッケルの陽性元素と電気的中性を保つのに必要な数である。)
のモル比を、0.01 ≦x<0.40、0.01≦y<0.60、とすることで、合成ガスの製造を、生産性よく、安定的に行うことが可能であることを見出した。
That is,
Mg 1-xy Ca x Ni y O k H m
(In the formula, 1-xy, x, y, k, and m are molar ratios, and k and m are electrically neutral with positive elements of oxygen, hydrogen, magnesium, calcium, and nickel. It is the number necessary for
By making the molar ratio of 0.01 ≦ x <0.40 and 0.01 ≦ y <0.60, the synthesis gas can be produced stably with high productivity. I found.

さらに、その触媒中のマグネシウムとカルシウムのモル比の比率が、1.5≦(1−x−y)/x≦90を満たすと、より効果が高く、又は、その触媒中の構成相が、MgO、及び、CaO又はCa(OH)2、又は、それらの混合物であるとき、CaO又はCa(OH)2、又は、それらの混合物の平均結晶粒径dが、0.1nm以上100nm以下であると、より効果が高いことを見出した。 Furthermore, when the ratio of the molar ratio of magnesium and calcium in the catalyst satisfies 1.5 ≦ (1-xy) / x ≦ 90, the effect is higher, or the constituent phase in the catalyst is When MgO and CaO or Ca (OH) 2 or a mixture thereof, the average crystal grain size d of CaO or Ca (OH) 2 or a mixture thereof is 0.1 nm or more and 100 nm or less. And found more effective.

なお、Mgは微量の存在で効果があるが、効果を高めるには、モル比で0.01以上あると好ましい。   Note that Mg is effective in the presence of a trace amount, but in order to enhance the effect, it is preferable that the molar ratio is 0.01 or more.

本発明による改質用触媒Mg1-x-yCaxNiykmは、主に、マグネシウム酸化物(MgO)と、カルシウム酸化物(CaO)又はカルシウム水酸化物(Ca(OH)2)、又は、それらの混合物(CaO+Ca(OH)2)から構成されており、それぞれの酸化物、水酸化物の金属元素の一部が、ニッケル金属で置換された構造を有していると考えられる。これら酸化物粒子の表面又は内部に、ニッケル金属、ニッケル含有酸化物、又は、ニッケル含有水酸化物が析出している。 The reforming catalyst Mg 1-xy Ca x Ni y O k H m according to the present invention is mainly composed of magnesium oxide (MgO) and calcium oxide (CaO) or calcium hydroxide (Ca (OH) 2 ). Or a mixture thereof (CaO + Ca (OH) 2 ), which is considered to have a structure in which some of the metal elements of the respective oxides and hydroxides are substituted with nickel metal. . Nickel metal, nickel-containing oxide, or nickel-containing hydroxide is deposited on the surface or inside of these oxide particles.

MgOとCaOは、どちらもNaCl型の結晶構造であるが、その格子定数aの比は、aCaO/aMgO=1.14であり、CaOがMgOより14%も大きな単位胞である。また、Ca(OH)2は、NaCl型とは異なる結晶構造を有する。 Both MgO and CaO have a NaCl-type crystal structure, but the ratio of the lattice constant a is a CaO / a MgO = 1.14, and CaO is a unit cell that is 14% larger than MgO. Ca (OH) 2 has a crystal structure different from the NaCl type.

そのため、触媒中にカルシウムを適切な割合で含むように原料を混合し、酸化処理により触媒を製造すると、生成されるMgO(又はMg1-aNiaO)とCaO(又はCa1-bNibO)又はCa(OH)2(又は、Ca1-cNic(OH)2)が互いに混ざりあうことにより、それぞれの結晶粒の成長が抑制され、両者の結晶粒が微細な混合酸化物が形成される。 Therefore, when raw materials are mixed so that calcium is contained in an appropriate ratio in the catalyst, and the catalyst is manufactured by oxidation treatment, the produced MgO (or Mg 1-a Ni a O) and CaO (or Ca 1-b Ni) are produced. b O) or Ca (OH) 2 (or Ca 1-c Ni c (OH) 2 ) are mixed with each other, so that the growth of each crystal grain is suppressed, and both crystal grains are fine mixed oxides. Is formed.

ここで、1−aとa、1−bとb、及び、1−cとcは、それぞれの酸化物又は水酸化物における元素のモル比である。   Here, 1-a and a, 1-b and b, and 1-c and c are molar ratios of elements in each oxide or hydroxide.

カルシウムのモル比xが0.01未満であると、カルシウムの量が過少となり、マグネシウムの粒成長が生じてしまう。モル比xが0.40以上であると、マグネシウムの量が過少となり、カルシウムの粒成長が生じてしまう。以上の理由により、カルシウムのモル比xを、0.01≦x<0.40の範囲に保つことにより、触媒中のカルシウム含有酸化物粒の平均結晶粒径dを約300nm程度以下の小さな値にすることが可能となる。   When the molar ratio x of calcium is less than 0.01, the amount of calcium becomes too small and magnesium grain growth occurs. When the molar ratio x is 0.40 or more, the amount of magnesium becomes too small, and calcium grain growth occurs. For the above reasons, by keeping the molar ratio x of calcium within the range of 0.01 ≦ x <0.40, the average crystal grain size d of the calcium-containing oxide grains in the catalyst is a small value of about 300 nm or less. It becomes possible to.

本触媒中のニッケルのモル比yが0.01未満であると、MgO、CaO、Ca(OH)2の粒内又は表面のニッケル原子数が少なくなりすぎ、還元雰囲気におかれても、熱的に安定なニッケル金属クラスターを多量に生成することができない。 When the molar ratio y of nickel in the catalyst is less than 0.01, the number of nickel atoms in the grains or on the surface of MgO, CaO, Ca (OH) 2 becomes too small. Large amount of highly stable nickel metal clusters cannot be produced.

また、ニッケルのモル比yが0.60以上であると、MgO、CaO、Ca(OH)2の粒内又は表面のニッケル原子数が多くなりすぎ、還元雰囲気において析出したニッケル金属クラスターが互いに合体して大きなニッケル粒を形成し、触媒活性に重要な単位質量あたりのニッケルの表面積が低下してしまう。 Moreover, when the molar ratio y of nickel is 0.60 or more, the number of nickel atoms in the grains or on the surface of MgO, CaO, Ca (OH) 2 becomes too large, and nickel metal clusters precipitated in a reducing atmosphere coalesce with each other. As a result, large nickel particles are formed, and the surface area of nickel per unit mass, which is important for catalytic activity, is reduced.

そのため、本触媒中のニッケルのモル比yは、0.01≦y<0.60の範囲に保つ必要がある。   Therefore, the molar ratio y of nickel in the present catalyst needs to be kept in the range of 0.01 ≦ y <0.60.

MgOとCaOとCa(OH)2の共存による微細化効果をさらに高めるには、触媒中のマグネシウムとカルシウムのモル比の比率(1−x−y)/yが、1.5≦(1−x−y)/x≦90の範囲にあればよい。比率が1.5未満であると、主体となるマグネシウムの相対的な量が過少となりカルシウムの粒成長が生じてしまう可能性が高くなる。比率が90超であると、カルシウムの相対的な量が過少となりマグネシウムの粒成長が生じてしまう可能性が高くなる。 In order to further enhance the refining effect due to the coexistence of MgO, CaO and Ca (OH) 2 , the ratio of the molar ratio of magnesium to calcium in the catalyst (1-xy) / y is 1.5 ≦ (1- xy) / x ≦ 90. When the ratio is less than 1.5, the relative amount of magnesium as a main component is too small, and there is a high possibility that calcium grain growth will occur. When the ratio is more than 90, the relative amount of calcium becomes too small, and there is a high possibility that magnesium grain growth will occur.

以上の理由により、比率(1−x−y)/y を1.5≦(1−x−y)/x≦90の範囲に保つことにより、触媒媒中のカルシウム含有酸化物粒の平均結晶粒径dを、約200nm程度以下の小さな値にすることが可能となる。   For the above reasons, by maintaining the ratio (1-xy) / y in the range of 1.5 ≦ (1-xy) / x ≦ 90, the average crystal of calcium-containing oxide grains in the catalyst medium The particle size d can be set to a small value of about 200 nm or less.

微細なMgO(又は、Mg1-aNiaO)と、CaO(又は、Ca1-bNibO)又はCa(OH)2(又は、Ca1-cNic(OH)2)が互いに混ざりあった本触媒が、触媒反応が進行する還元環境にさらされると、Mg1-aNiaO又はCa1-bNibO又はCa1-cNic(OH)2中の酸化状態のニッケル金属が還元され、担体表面にニッケル金属が微細析出し、多数の金属クラスターを形成する。 Fine MgO (or Mg 1-a Ni a O) and CaO (or Ca 1-b Ni b O) or Ca (OH) 2 (or Ca 1-c Ni c (OH) 2 ) are mutually When the present mixed catalyst is exposed to a reducing environment in which the catalytic reaction proceeds, the oxidation state in Mg 1-a Ni a O or Ca 1-b Ni b O or Ca 1-c Ni c (OH) 2 is changed. Nickel metal is reduced, and nickel metal is finely deposited on the surface of the carrier, forming a large number of metal clusters.

この反応は、結晶粒の表面から進行するため、結晶粒が微細になるとニッケル金属の析出サイトとなる粒界の比表面積が大きくなり、反応が促進される。そのため、本触媒では、Mg1-aNiaOやCa1-bNibOやCa1-cNic(OH)2の結晶粒径が非常に小さいため、この還元反応が速やかに進行し、非常に微細なニッケル金属クラスターが触媒中に分散した形態で多量に形成される。 Since this reaction proceeds from the surface of the crystal grain, when the crystal grain becomes finer, the specific surface area of the grain boundary that becomes a nickel metal precipitation site increases, and the reaction is promoted. Therefore, in this catalyst, since the crystal grain size of Mg 1-a Ni a O, Ca 1-b Ni b O, and Ca 1-c Ni c (OH) 2 is very small, this reduction reaction proceeds promptly. A large amount of very fine nickel metal clusters are dispersed in the catalyst.

そのために、反応に寄与するニッケル表面の比表面積が大きくなり、高い触媒活性を示す。また、微細なニッケル金属クラスターは分散した形態で形成されるため、反応に寄与するニッケル表面のすぐ近傍に、MgO又はCaO等の酸化物や、Ca(OH)2等の水酸化物が存在する。そのため、原料ガスにH2S等の触媒反応効率を低下すると考えられているガスが微量含まれていても、H2Sと近傍の酸化物が相互作用して、ニッケルへの悪影響を抑制することが期待できる。 For this reason, the specific surface area of the nickel surface contributing to the reaction is increased, and high catalytic activity is exhibited. In addition, since the fine nickel metal cluster is formed in a dispersed form, an oxide such as MgO or CaO or a hydroxide such as Ca (OH) 2 exists in the immediate vicinity of the nickel surface contributing to the reaction. . Therefore, even if the source gas contains a trace amount of gas such as H 2 S that is considered to decrease the catalytic reaction efficiency, H 2 S interacts with nearby oxides to suppress adverse effects on nickel. I can expect that.

さらに、MgO又はCaO等の塩基性酸化物は、改質反応における課題のひとつである炭素析出を抑制する効果があるとされている。本触媒では、微細なMgOと、CaO又はCa(OH)2、又は、それらの混合物(CaO+Ca(OH)2)が互いに混ざりあっているため、ニッケル金属クラスターが析出したMg1-aNiaO、又は、Ca1-bNibO又はCa1-cNic(OH)2粒の近傍に、MgO、CaO、Ca(OH)2の少なくともいずれかの粒が多数存在する。 Furthermore, basic oxides such as MgO or CaO are said to have an effect of suppressing carbon deposition, which is one of the problems in the reforming reaction. In the present catalyst, fine MgO and CaO or Ca (OH) 2 , or a mixture thereof (CaO + Ca (OH) 2 ) are mixed with each other, so that Mg 1-a Ni a O in which nickel metal clusters are deposited is present. Alternatively, there are many grains of at least one of MgO, CaO, and Ca (OH) 2 in the vicinity of 2 grains of Ca 1-b Ni b O or Ca 1-c Ni c (OH) 2 .

そのため、析出していた炭素を酸化(CO化)して除去する効果があると思われる。こうした構造のために、析出したニッケル金属クラスターが炭素析出によりその活性が低下するという現象が最小限に抑制される。これらの作用の結果、本触媒は非常に良好な特性を示す。   Therefore, it is considered that there is an effect of removing the precipitated carbon by oxidation (CO conversion). Due to such a structure, the phenomenon that the activity of the deposited nickel metal cluster is reduced by carbon deposition is suppressed to a minimum. As a result of these actions, the catalyst exhibits very good properties.

本触媒の特性をさらに高めるためには、さらに、前記触媒の構成相が、MgO、及び、CaO又はCa(OH)2、又は、それらの混合物であるとき、CaO又はCa(OH)2、又は、それらの混合物の平均結晶粒径dを、1nm以上100nm以下に保てばよい。 In order to further improve the properties of the catalyst, when the constituent phase of the catalyst is MgO and CaO or Ca (OH) 2 , or a mixture thereof, CaO or Ca (OH) 2 , or The average crystal grain size d of the mixture may be kept at 1 nm or more and 100 nm or less.

これは、上述したMgO(又は、Mg1-aNiaO)と、CaO(又は、Ca1-bNibO)やCa(OH)2(又は、Ca1-cNic(OH)2)が微細に混ざあうことにより、カルシウム含有酸化物粒の平均結晶粒径dが100nm以下になると、ニッケル金属の析出サイトとなる粒界の比表面積が非常に大きくなり、より反応が促進されるためである。 This is because the above-mentioned MgO (or Mg 1-a Ni a O), CaO (or Ca 1-b Ni b O) and Ca (OH) 2 (or Ca 1-c Ni c (OH) 2 are used. ) Are mixed finely, when the average crystal grain size d of the calcium-containing oxide grains becomes 100 nm or less, the specific surface area of the grain boundary that becomes the nickel metal precipitation site becomes very large, and the reaction is further promoted. Because.

平均結晶粒径dが1nm未満であると、CaO(又は、Ca1-bNibO)、Ca(OH)2(又は、Ca1-cNic(OH)2)としての構造を保つのが困難になり、微細化と均一分散効果が期待できなくなる恐れがある。 When the average crystal grain size d is less than 1 nm, the structure as CaO (or Ca 1-b Ni b O), Ca (OH) 2 (or Ca 1-c Ni c (OH) 2 ) is maintained. There is a risk that the effect of miniaturization and uniform dispersion cannot be expected.

なお、平均粒径dの測定法としては、触媒のX線回折図形を測定しピークの幅から粒径を求めればよい。得られた触媒を粉砕して粉末とし、X線回折法の測定を行う。そして、カルシウム酸化物相のピーク(Cu Kα線源で2θ=47degree付近)、又は、カルシウム水酸化物相のピーク(Cu Kα線源で2θ=34degree付近)の半値幅wを求め、次式により、平均結晶粒径dを、それぞれ決定すればよい(いわゆる、Scherrerの方法、例えば、新版X線回折要覧、3−7節、カリティ著、松村源太郎訳、アグネ出版、1980、参照)。
d=0.9λ/(wcosθ)
ここで、λは用いたX線の波長、θは回折ピークの回折角度(単位:ラジアン)である。
In addition, as a measuring method of the average particle diameter d, the X-ray diffraction pattern of the catalyst may be measured and the particle diameter may be obtained from the peak width. The obtained catalyst is pulverized into a powder and measured by an X-ray diffraction method. Then, the half-value width w of the peak of the calcium oxide phase (about 2θ = 47 degrees for the Cu Kα radiation source) or the peak of the calcium hydroxide phase (about 2θ = 34 degrees for the Cu Kα radiation source) is obtained. The average crystal grain size d may be determined respectively (see the so-called Scherrer method, for example, the new edition of X-ray diffraction manual, section 3-7, written by Karity, translated by Gentaro Matsumura, Agne Publishing, 1980).
d = 0.9λ / (w cos θ)
Here, λ is the wavelength of the X-ray used, and θ is the diffraction angle (unit: radians) of the diffraction peak.

なお、触媒中にカルシウム酸化物相とカルシウム水酸化物相が両方存在する場合や、異なる平均結晶粒径dが存在する等、複数の平均結晶粒径dが観測される場合には、その最小値が本発明の範囲を満たせば、効果が期待できる。   When a plurality of average crystal grain diameters d are observed, such as when both a calcium oxide phase and a calcium hydroxide phase are present in the catalyst, or there are different average crystal grain diameters d, the minimum If the value satisfies the scope of the present invention, an effect can be expected.

本発明の改質用触媒の製造方法は、例えば、以下の製造方法を用いることが好ましい。   For example, the following production method is preferably used as the method for producing the reforming catalyst of the present invention.

但し、以下に説明する製造方法及び条件は、好ましい実施形態の一例として例示するものであり、本発明がこれらに限定されるものではないことは言うまでもない。   However, it is needless to say that the manufacturing method and conditions described below are given as examples of preferred embodiments, and the present invention is not limited to these.

ニッケル化合物、マグネシウム化合物、カルシウム化合物を所定の比に混合して、混合水溶液を作成する。これらの化合物は、硝酸塩、塩化物等の水溶液への溶解度の大きなものが好ましい。   A nickel compound, a magnesium compound, and a calcium compound are mixed in a predetermined ratio to create a mixed aqueous solution. These compounds are preferably those having high solubility in aqueous solutions of nitrates, chlorides and the like.

そして、これらの化合物を含む水溶液のpHを調整し、水溶液中に溶解している、ニッケル、マグネシウム、カルシウムの各元素が水酸化物、又は、オキシ水酸化物等の形態で析出させる。上記pHは、好ましくはpH9からpH12の範囲とする。   And pH of the aqueous solution containing these compounds is adjusted, and each element of nickel, magnesium, and calcium dissolved in the aqueous solution is precipitated in the form of a hydroxide or an oxyhydroxide. The pH is preferably in the range of pH 9 to pH 12.

この際、ニッケル、マグネシウム、カルシウムの水酸化物が、均一に混ざり反応するように、例えば、反応槽中にスターラー等で溶液を攪拌しながら加熱することにより、粒子成長のために熟成させることが望ましい。例えば、水溶液の温度を70℃程度とし、2時間程度保持すればよい。このようにして得られた沈殿物を、80℃前後の純水で十分に洗浄する。   At this time, the nickel hydroxide, magnesium hydroxide, and calcium hydroxide can be aged for particle growth, for example, by heating the solution in a reaction vessel while stirring with a stirrer or the like so as to react uniformly. desirable. For example, the temperature of the aqueous solution may be about 70 ° C. and held for about 2 hours. The precipitate thus obtained is thoroughly washed with pure water at around 80 ° C.

その後、例えば、吸引ろ過等により水を分離した後、高温で乾燥することで、触媒前駆体を得る。例えば、水を除去するためには、50〜150℃の温度範囲で乾燥するのが好ましい。また、水の代わりに有機溶媒を用いた場合には、経済性の面から有機溶媒を回収し、再使用することが望ましい。   Then, for example, after separating water by suction filtration or the like, the catalyst precursor is obtained by drying at a high temperature. For example, in order to remove water, it is preferable to dry in a temperature range of 50 to 150 ° C. Further, when an organic solvent is used instead of water, it is desirable to recover and reuse the organic solvent from the economical aspect.

次いで、得られた触媒前駆体を空気中で焼成を行い、炭化水素の改質用触媒とする平均結晶粒径dを、1nm以上100nm以下の範囲に保つには、この焼成反応の温度・時間・雰囲気を制御すればよい。結晶粒径dを小さくするには、現実的な時間で反応が進行する範囲内で、温度を低く、又は、時間を短く、又は、雰囲気の酸素分圧を小さくすればよい。   Next, the obtained catalyst precursor is calcined in air, and the average crystal grain size d used as a hydrocarbon reforming catalyst is maintained within the range of 1 nm to 100 nm.・ The atmosphere should be controlled. In order to reduce the crystal grain size d, the temperature may be lowered, the time may be shortened, or the oxygen partial pressure of the atmosphere may be reduced within a range in which the reaction proceeds in a realistic time.

例えば、大気中で、750−1100℃程度温度範囲、1−5時間加熱すればよい。これにより、本発明のMg1-x-yCaxNiyklで表される組成を有する化合物からなる改質用触媒を得ることができる。 For example, it may be heated in the atmosphere at a temperature range of about 750 to 1100 ° C. for 1 to 5 hours. Thus, it is possible to obtain a reforming catalyst comprising a compound having a composition represented by Mg 1-xy Ca x Ni y O k H l of the present invention.

pHによって、ニッケル、マグネシウム、カルシウム、それぞれの水酸化物の溶解度が異なるので、混合水溶液における各元素のモル比と、製造した触媒中の各元素のモル比とが大きく異なる場合もある。その場合には、pH9からpH12の範囲でpHを変えて、仕込み濃度と最終的な触媒の濃度との関係を事前に把握し、その後、所定濃度になるように仕込み量を調整して製造すればよい。   Since the solubility of nickel, magnesium, calcium, and each hydroxide differs depending on the pH, the molar ratio of each element in the mixed aqueous solution and the molar ratio of each element in the produced catalyst may differ greatly. In that case, change the pH in the range of pH 9 to pH 12, grasp the relationship between the charged concentration and the final catalyst concentration in advance, and then adjust the charged amount so that it becomes a predetermined concentration. That's fine.

なお、触媒の濃度(各成分組成)の測定は、試料にX線又は電子線を照射し、各元素に対応する蛍光X線強度から求めることができる。共存元素が存在すると、当該元素からの蛍光X線が吸収されるので、あらかじめ濃度既知の標準試料を用いた校正曲線を作成して、それによる補正を行ったり、又は、共存元素による当該元素からの蛍光X線の吸収を考慮して濃度を計算する方法での補正を行うことにより、高精度で元素濃度を決定することができる。   The concentration of the catalyst (composition of each component) can be determined from the fluorescent X-ray intensity corresponding to each element by irradiating the sample with X-rays or electron beams. If a coexisting element is present, X-ray fluorescence from the element is absorbed. Therefore, a calibration curve using a standard sample with a known concentration is prepared in advance and corrected accordingly, or from the element due to the coexisting element. The element concentration can be determined with high accuracy by performing the correction by the method of calculating the concentration in consideration of the absorption of the fluorescent X-ray.

このようにして製造した粉末触媒は、そのまま用いてもよいが、通常の乾式成形機を用いて成形し成形体の形にしてもよい。この際の成形機としては、成形機であれば、いずれでもよく、例えば、打錠機、ブリケッティングマシン等の圧縮成形機等が好適に用いられる。また、その場合の成形体の形状は、球状、シリンダー状、リング状、小粒状等、いずれでもよい。   The powder catalyst produced in this manner may be used as it is, but may be molded into a molded body by using a normal dry molding machine. As the molding machine at this time, any molding machine may be used. For example, a compression molding machine such as a tableting machine or a briquetting machine is preferably used. Further, the shape of the molded body in that case may be any of spherical, cylindrical, ring-shaped, small granular, and the like.

本発明による触媒は、広い範囲の炭化水素から改質反応により水素製造や合成ガス製造を行うのに使用可能である。これは、本触媒中が、主に、MgO(又は、Mg1-aNiaO)、及び、CaO(又は、Ca1-bNibO)又はCa(OH)2(又は、Ca1-cNic(OH)2)、又は、両者の混合物の微細粒から構成され、これら酸化物粒子の表面又は内部に、ニッケル金属又はニッケル含有酸化物が微細に析出した形態を有しているためである。 The catalyst according to the present invention can be used for hydrogen production or synthesis gas production from a wide range of hydrocarbons by reforming reaction. This is because the catalyst mainly contains MgO (or Mg 1-a Ni a O) and CaO (or Ca 1-b Ni b O) or Ca (OH) 2 (or Ca 1- c Ni c (OH) 2 ), or a mixture of both, and the surface of or inside these oxide particles has a form in which nickel metal or nickel-containing oxide is finely precipitated. It is.

触媒反応が進行する還元雰囲気では、析出又は還元により触媒中に生成した微細ニッケル金属クラスターが多数存在するために、高活性を示す。生成したニッケル金属クラスター近傍には、MgO又はCaOの微細粒が存在するため、原料ガス中に存在するH2S等や反応中に析出した炭素により触媒活性が低下することが最小限に抑えられる。 In a reducing atmosphere where the catalytic reaction proceeds, a high activity is exhibited because there are many fine nickel metal clusters formed in the catalyst by precipitation or reduction. Since MgO or CaO fine particles are present in the vicinity of the produced nickel metal cluster, it is possible to minimize the decrease in catalytic activity due to H 2 S and the like present in the raw material gas and carbon precipitated during the reaction. .

そのため、原料ガスとして種々のものが使用可能であり、CH4を主体とした原料ガスからCO及びH2を製造する反応や、Cn2n(n=1,2,3,..)、Cn2n+2(n=1,2,3,..)、タール成分を含有するガス、といった原料等からH2を製造するといった反応等、に広く応用が可能である。 Therefore, various types of raw material gases can be used, such as a reaction for producing CO and H 2 from a raw material gas mainly composed of CH 4 , C n H 2n (n = 1, 2, 3,...), The present invention can be widely applied to reactions such as production of H 2 from raw materials such as C n H 2n + 2 (n = 1, 2, 3,...) And a gas containing a tar component.

(実施例1〜13)
下記式で表される組成を有する化合物からなる炭化水素の改質用触媒
Mg1-x-yCaxNiykm
(式中、1−x−y、x、y、k、mは、モル比であり、0.01 ≦x<0.40、0.01≦y<0.60、k、mは、酸素,水素がマグネシウム、カルシウム、及び、ニッケルの陽性元素と電気的中性を保つのに必要な数である。)を以下の方法にて作製した。
(Examples 1 to 13)
Hydrocarbon reforming catalyst comprising a compound having the composition represented by the following formula: Mg 1-xy Ca x Ni y O k H m
(Wherein 1-xy, x, y, k, m are molar ratios, 0.01 ≦ x <0.40, 0.01 ≦ y <0.60, k, m are oxygen , Hydrogen is the number necessary to maintain electrical neutrality with positive elements of magnesium, calcium, and nickel.

酢酸ニッケル、硝酸マグネシウム、硝酸カルシウム、を各金属元素のモル比が所定の値になるように精秤して、60℃前後の加温下で混合水溶液を調製したものに、65℃前後に加温した炭酸カリウム水溶液を加え、スターラーで十分に攪拌した。その際、pHを9〜12の範囲の中の適当な値に保った。   Nickel acetate, magnesium nitrate, and calcium nitrate are precisely weighed so that the molar ratio of each metal element becomes a predetermined value, and mixed aqueous solution is prepared under heating at around 60 ° C. A warm potassium carbonate aqueous solution was added, and the mixture was sufficiently stirred with a stirrer. At that time, the pH was kept at an appropriate value within the range of 9-12.

その後、65℃前後で保持したまま、1時間攪拌を続けて熟成を行った後、吸引ろ過を行い、80℃の純水で十分に洗浄を行った。洗浄後に得られた沈殿物を120℃で10時間乾燥後、空気中950℃にて5〜25時間の範囲で焼成を行い、化合物を得た。化合物の組成を蛍光X線分析で決定した。   Thereafter, the mixture was aged by continuing stirring for 1 hour while being kept at around 65 ° C., and then subjected to suction filtration and sufficiently washed with pure water at 80 ° C. The precipitate obtained after washing was dried at 120 ° C. for 10 hours and then calcined in air at 950 ° C. for 5 to 25 hours to obtain a compound. The composition of the compound was determined by fluorescent X-ray analysis.

得られた粉末のX線回折法の測定を行い、上述の方法で平均結晶粒径dを決定した。   The obtained powder was measured by an X-ray diffraction method, and the average crystal grain size d was determined by the method described above.

この固溶体酸化物粉末を、圧縮成形器で600kg/cm2でプレスした後、十分に粉砕し、100〜300メッシュ(63〜150μm)に整粒することにより、触媒を調製した。このようにして、成分のモル比x及びyを変えた13種類の触媒粉末を得た。 The solid solution oxide powder was pressed at 600 kg / cm 2 with a compression molding machine, and then sufficiently pulverized and sized to 100 to 300 mesh (63 to 150 μm) to prepare a catalyst. In this way, 13 types of catalyst powders having different component molar ratios x and y were obtained.

あらかじめ、管内部の中央位置に多孔質石英板を取りつけた石英製反応管に、この12種類の触媒粉末約1gを充填し、反応管を電気炉内にセットした。   In advance, about 1 g of these 12 kinds of catalyst powder was filled in a quartz reaction tube having a porous quartz plate attached at the center position inside the tube, and the reaction tube was set in an electric furnace.

改質反応を始める前に、まず、反応器を、アルゴンガス雰囲気下で900℃まで昇温した後、水素ガスを、50ml/minの流量で流しながら、900℃で30分間還元処理を行った。その後、50ppmの硫化水素を含有するメタンガスを用いて、温度900℃、反応圧力0.1MPa(絶対圧)、水蒸気改質反応のW/F(触媒重量/ガス流量)2gh/molで運転し、触媒のメタン転化率を測定した。   Before starting the reforming reaction, the reactor was first heated to 900 ° C. in an argon gas atmosphere, and then reduced at 900 ° C. for 30 minutes while flowing hydrogen gas at a flow rate of 50 ml / min. . Then, using methane gas containing 50 ppm of hydrogen sulfide, the operation was performed at a temperature of 900 ° C., a reaction pressure of 0.1 MPa (absolute pressure), and a steam reforming reaction W / F (catalyst weight / gas flow rate) of 2 gh / mol. The methane conversion of the catalyst was measured.

Figure 0004709724
Figure 0004709724

表1に、その結果を実施例1〜13として示す。   Table 1 shows the results as Examples 1 to 13.

本発明の範囲内にあるものは、メタンに硫化水素が含有していても、転化率は60%の高い値を示している。   What is within the scope of the present invention shows a high conversion value of 60% even if hydrogen sulfide is contained in methane.

(比較例1〜5)
下記式で表される組成を有する化合物からなる改質用触媒
Mg1-x-yCaxNiykm
において、その成分組成が本発明の範囲外となるように、原料の混合比率を変え、他は、実施例と同様の条件で触媒試料を作製した。
(Comparative Examples 1-5)
A reforming catalyst comprising a compound having a composition represented by the following formula: Mg 1-xy Ca x Ni y O k H m
In Example 1, a catalyst sample was prepared under the same conditions as in the Examples except that the mixing ratio of the raw materials was changed so that the component composition was outside the scope of the present invention.

表1に、その結果を示す。   Table 1 shows the results.

比較例1は、成分のモル比x及びyの両方が、本発明の範囲外であり、比較例2〜5は、成分のモル比x及びyの一方が、本発明の範囲外である。   In Comparative Example 1, both the component molar ratios x and y are outside the scope of the present invention, and in Comparative Examples 2 to 5, one of the component molar ratios x and y is outside the scope of the present invention.

Figure 0004709724
Figure 0004709724

表1に示す実施例及び比較例の結果から、本発明の範囲内にあるものは、メタンに硫化水素が含有していても、転化率は60%の高い値を示している。以上のことから、本発明の効果が明瞭に認められる。   From the results of Examples and Comparative Examples shown in Table 1, those within the scope of the present invention show a high conversion rate of 60% even when methane contains hydrogen sulfide. From the above, the effect of the present invention is clearly recognized.

実施例から判るように、本発明の適用により、課題としていた、炭化水素を高い転化率で改質する触媒を、高価な貴金属系の元素を使用しないで製造することができた。   As can be seen from the examples, the application of the present invention enabled the production of a catalyst for reforming hydrocarbons at a high conversion rate, which was a problem, without using expensive noble metal elements.

また、実施例5、6、及び、11で使用した触媒を、同じ条件で、n=3回製造したところ、x、yのモル比は、それぞれ、±3%のばらつき内で製造することができ、製造時の条件を適切に選定することにより、触媒の構成元素の組成を制御可能であることが判った。すなわち、触媒の構成元素の組成のばらつきを非常に小さくすることが可能であることを確認することができた。   Further, when the catalysts used in Examples 5, 6 and 11 were produced n = 3 times under the same conditions, the molar ratio of x and y could be produced within a variation of ± 3%. It was found that the composition of the constituent elements of the catalyst can be controlled by appropriately selecting the conditions at the time of production. That is, it has been confirmed that the variation in the composition of the constituent elements of the catalyst can be made extremely small.

Claims (2)

下記式で表される組成を有する化合物からなる炭化水素の改質用触媒であって、
Mg1-x-yCaxNiykm
(式中、1−x−y、x、y、k、mは、モル比であり、0.01≦x<0.40、0.01≦y<0.60、k、mは、酸素,水素がマグネシウム、カルシウム、及び、ニッケルの陽性元素と電気的中性を保つのに必要な数である。)
前記触媒の構成相が、MgO、及び、CaO又はCa(OH) 2 、又は、それらの混合物であり、CaO又はCa(OH) 2 、又は、それらの混合物の平均結晶粒径dが、1nm以上100nm以下であることを特徴とする炭化水素の改質用触媒。
A reforming catalyst for carbonization hydrogen ing from a compound having a composition represented by the following formula,
Mg 1-xy Ca x Ni y O k H m
(Where 1-xy, x, y, k, m are molar ratios, 0.01 ≦ x <0.40, 0.01 ≦ y <0.60, k, m are oxygen , Hydrogen is the number necessary to maintain electrical neutrality with positive elements of magnesium, calcium and nickel.)
The constituent phase of the catalyst is MgO and CaO or Ca (OH) 2 or a mixture thereof, and the average crystal grain size d of CaO or Ca (OH) 2 or a mixture thereof is 1 nm or more. A hydrocarbon reforming catalyst characterized by being 100 nm or less.
前記マグネシウムのモル比と前記カルシウムのモル比との比率が次式を満たすことを特徴とする請求項1記載の炭化水素の改質用触媒。
1.5≦(1−x−y)/x≦90
2. The hydrocarbon reforming catalyst according to claim 1, wherein the ratio of the molar ratio of magnesium to the molar ratio of calcium satisfies the following formula.
1.5 ≦ (1-xy) / x ≦ 90
JP2006297983A 2006-11-01 2006-11-01 Hydrocarbon reforming catalyst Active JP4709724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006297983A JP4709724B2 (en) 2006-11-01 2006-11-01 Hydrocarbon reforming catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006297983A JP4709724B2 (en) 2006-11-01 2006-11-01 Hydrocarbon reforming catalyst

Publications (2)

Publication Number Publication Date
JP2008114121A JP2008114121A (en) 2008-05-22
JP4709724B2 true JP4709724B2 (en) 2011-06-22

Family

ID=39500544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006297983A Active JP4709724B2 (en) 2006-11-01 2006-11-01 Hydrocarbon reforming catalyst

Country Status (1)

Country Link
JP (1) JP4709724B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4719194B2 (en) * 2007-08-22 2011-07-06 新日本製鐵株式会社 Tar reforming catalyst, method for producing the catalyst, and method for steam reforming tar using the catalyst

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0977501A (en) * 1995-09-08 1997-03-25 Sekiyu Shigen Kaihatsu Kk Production of synthetic gas of hydrogen and carbon monoxide using methane and water as raw materials

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0977501A (en) * 1995-09-08 1997-03-25 Sekiyu Shigen Kaihatsu Kk Production of synthetic gas of hydrogen and carbon monoxide using methane and water as raw materials

Also Published As

Publication number Publication date
JP2008114121A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
JP5666777B2 (en) Carbon monoxide conversion catalyst and carbon monoxide conversion method using the same
US8475684B2 (en) Composite oxide for hydrocarbon reforming catalyst, process for producing the same, and process for producing syngas using the same
US7001586B2 (en) CO-free hydrogen from decomposition of methane
Yusuf et al. Syngas production from greenhouse gases using Ni–W bimetallic catalyst via dry methane reforming: Effect of W addition
KR101319137B1 (en) A Catalyst for Decomposing Hydrocarbons, a Method for Decomposing Hydrocarbons using the Same and a Method for Preparing Hydrogen, and an Electric Generating System
Shahnazi et al. Improving the catalytic performance of LaNiO3 perovskite by manganese substitution via ultrasonic spray pyrolysis for dry reforming of methane
JP5110249B2 (en) Hydrocarbon decomposition catalyst, hydrocarbon decomposition method and hydrogen production method using the catalyst, and power generation system
KR20180127145A (en) A Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, Preparation Method Thereof and Methane Reforming Method Threrewith
US10010876B2 (en) Catalyst for high temperature steam reforming
KR102035714B1 (en) Nickel catalysts for reforming hydrocarbons
US6995115B2 (en) Catalyst for the generation of CO-free hydrogen from methane
KR102092736B1 (en) Preparation Method of Reduced Carbon Poisoning Perovskite Catalyst Impregnated with Metal Ion, and Methane Reforming Method Threrewith
JP6631245B2 (en) Method for producing catalyst for reforming hydrocarbon and method for reforming light hydrocarbon
Tri et al. High activity and stability of nano‐nickel catalyst based on LaNiO3 perovskite for methane bireforming
JP4709724B2 (en) Hydrocarbon reforming catalyst
JP2008279337A (en) Hydrocarbon modifying catalyst
JP2009241036A (en) Carbon monoxide conversion catalyst comprising composition for carbon monoxide conversion catalyst, and method of removing carbon monoxide using the same
JP2002126529A (en) Method for preparing reforming catalyst
JP2004321924A (en) Catalyst for water gas shift reaction
JP2002126528A (en) Method for preparing reforming catalyst
JP4776403B2 (en) Hydrocarbon reforming catalyst
WO2013187436A1 (en) Reforming catalyst, method for preparing same, and process for manufacturing synthesis gas
Dogan et al. H2 production via H2S decomposition over activated carbon supported Fe-and W-catalysts
JP4767738B2 (en) Hydrocarbon reforming catalyst
JP5619598B2 (en) Copper-zinc-aluminum catalyst, production method thereof, carbon monoxide conversion method, and hydrogen production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110318

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140325

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350