JP2008207070A - Method for producing catalyst for producing hydrogen - Google Patents

Method for producing catalyst for producing hydrogen Download PDF

Info

Publication number
JP2008207070A
JP2008207070A JP2007044146A JP2007044146A JP2008207070A JP 2008207070 A JP2008207070 A JP 2008207070A JP 2007044146 A JP2007044146 A JP 2007044146A JP 2007044146 A JP2007044146 A JP 2007044146A JP 2008207070 A JP2008207070 A JP 2008207070A
Authority
JP
Japan
Prior art keywords
catalyst
producing
particles
composite oxide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007044146A
Other languages
Japanese (ja)
Inventor
Takayuki Fukazawa
孝幸 深澤
Keizo Shimamura
慶三 島村
Yoshio Hanakada
佳男 羽中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007044146A priority Critical patent/JP2008207070A/en
Publication of JP2008207070A publication Critical patent/JP2008207070A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a catalyst for producing hydrogen, which catalyst is not only high in catalytic activity at low temperature but also excellent in oxidation resistance and sintering resistance and high also in durability. <P>SOLUTION: The method for producing the catalyst for producing hydrogen, which is a Cu fine particle/α-Al<SB>2</SB>O<SB>3</SB>base material integrated type, comprises the steps of: sintering a mixture, in which CuO is mixed with Al<SB>2</SB>O<SB>3</SB>by 1-4 Cu/Al molar ratio, in a non-oxidizing atmosphere to produce a compound oxide (CuAlO<SB>2</SB>); and reducing the compound oxide by heat treatment, so that metal Cu particles are exposed on the surface of the compound oxide. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水素製造のための触媒の製造方法に関し、特にメタノールもしくはジメチルエーテル(DME)などの炭化水素系液体燃料の水蒸気改質のための改質反応またはCOを水蒸気と反応させるためのシフト反応による水素製造に用いられる触媒の製造方法に係わる。   The present invention relates to a method for producing a catalyst for producing hydrogen, and in particular, a reforming reaction for steam reforming of a hydrocarbon liquid fuel such as methanol or dimethyl ether (DME) or a shift reaction for reacting CO with steam. The present invention relates to a method for producing a catalyst used for hydrogen production by the method.

工業先進国のわが国は、エネルギー資源の自給率が低く、そのほとんどを諸外国に頼っている。このため、将来のエネルギー資源の一つとして、クリーンで質の高い電気エネルギーへ変換が容易な水素エネルギーに高い関心が集まっている。定置用の燃料電池は既に一般家庭向けに販売が開始されている。燃料電池自動車についても研究開発が進められており、今後水素関連の事業が大きく成長していくものと予測されている。その中で最近、従来は廃熱として捨てられていた300℃以下の熱源を利用して水素を製造する試みがなされている。   Japan, an industrialized country, has a low self-sufficiency rate for energy resources, and most of them rely on foreign countries. For this reason, as one of the future energy resources, there is a high interest in hydrogen energy that can be easily converted into clean and high-quality electric energy. Stationary fuel cells have already been sold to households. Research and development is also underway for fuel cell vehicles, and hydrogen-related businesses are expected to grow significantly in the future. Recently, attempts have been made to produce hydrogen using a heat source of 300 ° C. or lower, which has been conventionally discarded as waste heat.

水素の製造には、炭化水素系燃料を水蒸気改質による方法が知られており、その燃料としてメタノールもしくはジメチルエーテルなどの液体燃料が用いられている。炭化水素系燃料の水蒸気改質には触媒が用いられている。Cu系の触媒は、前記液体燃料を低温で効率よく改質でき、かつ安価であるために、広く用いられている。特に、Cu−Zn系材料は著名で、比表面積が大きく、活性とともに生成ガスの選択性にも優れるため、改質触媒およびシフト触媒として利用されている。   For producing hydrogen, a method using steam reforming of a hydrocarbon fuel is known, and liquid fuel such as methanol or dimethyl ether is used as the fuel. Catalysts are used for steam reforming of hydrocarbon fuels. Cu-based catalysts are widely used because they can efficiently reform the liquid fuel at low temperatures and are inexpensive. In particular, Cu—Zn-based materials are prominent, have a large specific surface area, and are excellent in selectivity of product gas as well as activity, and thus are used as reforming catalysts and shift catalysts.

しかしながら、これら従来のCu系触媒は耐酸化性および耐シンタリング性が劣るという最大の欠点を有する。すなわち、従来のCu系触媒は大気に曝されると急激な発熱を伴って酸化し、Cu粒子同士が凝集する。また、熱的な要因等により時間とともに粒成長が起こり、結果として比表面積が低下し活性が低下する。これらの理由により、反応器に触媒を充填した後に還元を行う、初期の還元処理が必要不可欠必要である。また、運転中は温度の管理、大気の混入などを徹底して制御する必要がある。   However, these conventional Cu-based catalysts have the greatest drawback of inferior oxidation resistance and sintering resistance. That is, when a conventional Cu-based catalyst is exposed to the atmosphere, it is oxidized with rapid heat generation, and Cu particles are aggregated. In addition, grain growth occurs with time due to thermal factors, and as a result, the specific surface area decreases and the activity decreases. For these reasons, an initial reduction treatment in which the reduction is performed after the reactor is filled with the catalyst is indispensable. Also, during operation, it is necessary to thoroughly control temperature management and atmospheric contamination.

特許文献1には、γ−Al23などの高比表面積を有する多孔質セラミックス上に共沈法等によりCu系酸化物を含む微粒子を担持させた後、還元して金属Cu微粒子を析出させるCu系触媒の製造方法が開示されている。 In Patent Document 1, fine particles containing a Cu-based oxide are supported on porous ceramics having a high specific surface area such as γ-Al 2 O 3 by a coprecipitation method or the like, and then reduced to deposit metal Cu fine particles. A method for producing a Cu-based catalyst is disclosed.

しかしながら、このような方法で得られた触媒はCu粒子とγ−Al23を含むセラミックス基材との密着性(結合性)が低い問題がある。その上、生成直後の形態が数nm程度の微粒子であるために長時間の使用により粒成長や凝集を起こし易い問題がある。 However, the catalyst obtained by such a method has a problem of low adhesion (bonding) between the Cu particles and the ceramic substrate containing γ-Al 2 O 3 . In addition, since the form immediately after generation is a fine particle of about several nm, there is a problem that grain growth and aggregation are likely to occur due to long-term use.

一方、非特許文献1及び非特許文献2にはスピネル型複合酸化物を還元処理して得た触媒が記載されている。還元処理により基材内部から析出させた金属粒子は、基材との結合性が良好で、かつ高度に分散できるために優れた耐久性を有すると考えられている。この文献中では、Cu−Al系、Cu−Mn系、Cu−Mn−Fe系のスピネル型複合酸化物を還元処理して得た触媒が評価され、Cu−Mn系、Cu−Mn−Fe系スピネル型複合酸化物を還元処理して得た触媒が最も活性が高いことが記載されている。   On the other hand, Non-Patent Document 1 and Non-Patent Document 2 describe catalysts obtained by reducing spinel complex oxides. The metal particles deposited from the inside of the base material by the reduction treatment are considered to have excellent durability because they have good binding properties with the base material and can be highly dispersed. In this document, a catalyst obtained by reduction treatment of a Cu-Al-based, Cu-Mn-based, or Cu-Mn-Fe-based spinel-type composite oxide is evaluated, and a Cu-Mn-based or Cu-Mn-Fe-based catalyst is evaluated. It is described that the catalyst obtained by reducing spinel complex oxide has the highest activity.

しかしながら、還元により生成されたMnOなどの基材は機械的強度が劣る。また、Mnがいくつかの価数を取り得るために、長時間使用による安定性が危惧される。さらに、CuAl24系の触媒は400℃以下の温度の還元で得られることが記載されている。この温度でもCuは析出するものの、他の系と異なりCu成分がすべて還元されて析出せず、基材中にCu成分を含んだ状態で残留する。その結果、反応器の充填した後の実使用等の状況によっては新たなCuの析出も考えられ、組織が不均一になって特性が不安定になる虞がある。
特開昭60−84142号公報 Appl. Catal. A: General, 242,287(2003) 第94回触媒討論会予稿集,390(2004)
However, base materials such as MnO produced by reduction are inferior in mechanical strength. Further, since Mn can take several valences, there is a concern about stability due to long-term use. Furthermore, it is described that a CuAl 2 O 4 based catalyst can be obtained by reduction at a temperature of 400 ° C. or lower. Although Cu precipitates even at this temperature, unlike other systems, all of the Cu component is reduced and does not precipitate, and remains in a state containing the Cu component in the substrate. As a result, depending on the situation such as actual use after filling the reactor, the precipitation of new Cu may be considered, and the structure may become uneven and the characteristics may become unstable.
JP 60-84142 A Appl. Catal. A: General, 242,287 (2003) Proceedings of the 94th Catalysis Conference, 390 (2004)

Cu系材料を用いた従来の触媒は、貴金属系触媒に比べて安価で入手が容易であり、改質触媒やCOシフト触媒などへの利用が期待されている。しかしながら、その耐酸化性、耐シンタリング性(焼結による粒子の成長や合体の耐性)に劣り、使用条件に制約を受ける。また、Cu系スピネル型酸化物においては粒子の分散性や基材との密着性においては優れるが、長期の使用において組成の安定性や組織の均一性が保たれない虞がある。   Conventional catalysts using Cu-based materials are cheaper and easier to obtain than noble metal-based catalysts, and are expected to be used for reforming catalysts, CO shift catalysts, and the like. However, its oxidation resistance and sintering resistance (particle growth and coalescence resistance by sintering) are inferior, and the usage conditions are limited. In addition, the Cu-based spinel oxide is excellent in particle dispersibility and adhesion to a substrate, but there is a risk that composition stability and tissue uniformity may not be maintained over a long period of use.

本発明は、低温での触媒活性が高いのみならず、耐酸化性、耐シンタリング性に優れ、耐久性も高い水素製造用触媒の製造方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a catalyst for hydrogen production that has not only high catalytic activity at low temperatures, but also excellent oxidation resistance and sintering resistance, and high durability.

本発明によると、銅化合物およびアルミニウム化合物をCu/Alのモル比が1〜4になるように混合した後、この混合物を非酸化性雰囲気中、900〜1300℃の温度で焼成してCuAlO2、またはCuAlO2とAl23の混合相からなる複合酸化物を生成する工程と、
前記複合酸化物を還元性雰囲気中で加熱して還元処理することによりα型Al23の基材の少なくとも表面部に5〜500nmの平均粒径を有する金属Cu粒子を析出させる工程と
を含むことを特徴とする水素製造用触媒の製造方法が提供される。
According to the present invention, a copper compound and an aluminum compound are mixed so that the molar ratio of Cu / Al is 1 to 4, and then the mixture is fired at a temperature of 900 to 1300 ° C. in a non-oxidizing atmosphere to obtain CuAlO 2. Or a step of producing a composite oxide composed of a mixed phase of CuAlO 2 and Al 2 O 3 ;
Precipitating metal Cu particles having an average particle diameter of 5 to 500 nm on at least the surface portion of the base material of α-type Al 2 O 3 by heating and reducing the composite oxide in a reducing atmosphere. The manufacturing method of the catalyst for hydrogen production characterized by including is provided.

本発明によれば、耐酸化性、耐シンタリング性に優れ、低温触媒性能の高いCu系の水素製造用触媒を製造することができる。また、従来のCu系触媒のように使用直前での還元処理の必要がなく、合成後、大気中でも搬送が可能になる。   According to the present invention, it is possible to produce a Cu-based hydrogen production catalyst having excellent oxidation resistance and sintering resistance and high low-temperature catalytic performance. Further, there is no need for a reduction treatment just before use as in the case of a conventional Cu-based catalyst, and it becomes possible to carry in the air after synthesis.

したがって、得られた水素製造用触媒は市販のCu系触媒の欠点である酸化後の性能も十分維持できるため、メタノールやジメチルエーテル等の低温改質用触媒、またはシフト反応のためのシフト触媒として優れた性能を有する。   Therefore, since the obtained catalyst for hydrogen production can sufficiently maintain the performance after oxidation, which is a disadvantage of the commercially available Cu-based catalyst, it is excellent as a low temperature reforming catalyst such as methanol and dimethyl ether, or a shift catalyst for shift reaction. Have good performance.

以下、本発明の実施形態に係る水素製造用触媒の製造方法を詳細に説明する。   Hereinafter, a method for producing a catalyst for hydrogen production according to an embodiment of the present invention will be described in detail.

(複合酸化物の生成工程)
銅化合物およびアルミニウム化合物をCu/Alのモル比が1〜4になるように混合した後、この混合物を非酸化性雰囲気中、900〜1300℃の温度で焼成してCuAlO2、またはCuAlO2とAl23の混合相からなる複合酸化物を生成する。
(Composite oxide production process)
After mixing the copper compound and the aluminum compound so that the molar ratio of Cu / Al is 1 to 4, this mixture is fired at a temperature of 900 to 1300 ° C. in a non-oxidizing atmosphere to obtain CuAlO 2 or CuAlO 2 . A composite oxide composed of a mixed phase of Al 2 O 3 is generated.

銅化合物およびアルミニウム化合物は、例えばCuOおよびAl23の粉末を用いることができる。これらの粉末は、サブミクロンの平均粒径、例えば0.5〜1.0μmの平均粒径を有することが好ましい。銅化合物およびアルミニウム化合物は、酸化物の粉末で用いる以外に、例えば銅、アルミニウムの金属塩の形態で用いることができる。この場合、各金属塩は水に溶解して混合され、さらに焼成前に乾燥処理が施される。銅塩としては、例えば硝酸銅、硫酸銅、塩化銅を用いることができる。アルミニウム塩としては、例えば硝酸アルミニウム、硫酸アルミニウム、塩化アルミニウムを用いることができる。取り扱いの点から、硝酸銅および硝酸アルミニウムを使用することが好ましい。 As the copper compound and the aluminum compound, for example, CuO and Al 2 O 3 powders can be used. These powders preferably have an average particle size of submicron, for example an average particle size of 0.5 to 1.0 μm. The copper compound and the aluminum compound can be used in the form of a metal salt of copper or aluminum, for example, in addition to the oxide powder. In this case, each metal salt is dissolved and mixed in water and further subjected to a drying treatment before firing. As the copper salt, for example, copper nitrate, copper sulfate, or copper chloride can be used. As the aluminum salt, for example, aluminum nitrate, aluminum sulfate, or aluminum chloride can be used. From the viewpoint of handling, it is preferable to use copper nitrate and aluminum nitrate.

銅化合物およびアルミニウム化合物の混合時のCu/Alのモル比が1〜4にすることによって、組織の均一な複合酸化物を得ることが可能になり、後述する還元処理により良好な性能を有する触媒を製造することが可能になる。Cu/Alのモル比を1未満にすると、得られた複合酸化物中に固溶されるCu量が不足してCuAlO2相の生成が低下し、Al23のみの相が多く混在する。その結果、後述する還元処理により得られた触媒の性能が低下する虞がある。一方、Cu/Alのモル比が4を超えると、得られた複合酸化物中にCuOが残留し、その後の還元処理において低温度でCuの析出が生じ、これより高い温度(正規の還元温度)で析出したCuと凝集して局所的に粗大Cu粒子の凝集体を生成する。その結果、後述する還元処理により得られた触媒の性能が低下する虞がある。より好ましいCu/Alのモル比は、2〜3である。 By setting the Cu / Al molar ratio at the time of mixing the copper compound and the aluminum compound to 1 to 4, it becomes possible to obtain a complex oxide having a uniform structure, and a catalyst having good performance by the reduction treatment described later Can be manufactured. When the molar ratio of Cu / Al is less than 1, the amount of Cu dissolved in the obtained composite oxide is insufficient, the production of the CuAlO 2 phase is reduced, and many phases containing only Al 2 O 3 are mixed. . As a result, there is a possibility that the performance of the catalyst obtained by the reduction treatment described later is deteriorated. On the other hand, when the molar ratio of Cu / Al exceeds 4, CuO remains in the obtained composite oxide, Cu is precipitated at a low temperature in the subsequent reduction treatment, and a higher temperature (normal reduction temperature) And agglomerate with the precipitated Cu to locally produce aggregates of coarse Cu particles. As a result, there is a possibility that the performance of the catalyst obtained by the reduction treatment described later is deteriorated. A more preferable Cu / Al molar ratio is 2-3.

焼成は、アルゴン、窒素のような非酸化性ガスの雰囲気中、900〜1300℃、より好ましくは1000〜1200℃の温度で行う。このような焼成により薄青色を呈し、CuAlO2単独、またはCuAlO2とAl23の混合相からなる複合酸化物を合成される。なお、同焼成を大気中(酸化性雰囲気中)で行うと、赤茶色を呈する主成分がスピネル型複合酸化物(CuAl24)になる。 Firing is performed at a temperature of 900 to 1300 ° C., more preferably 1000 to 1200 ° C., in an atmosphere of a non-oxidizing gas such as argon or nitrogen. By such firing, a light blue color is obtained, and a composite oxide composed of CuAlO 2 alone or a mixed phase of CuAlO 2 and Al 2 O 3 is synthesized. When the firing is performed in the air (in an oxidizing atmosphere), the main component exhibiting a reddish brown color becomes a spinel-type composite oxide (CuAl 2 O 4 ).

(還元処理工程)
得られた複合酸化物を還元性雰囲気中で加熱する還元処理を行う。このとき、複合酸化物のCuAlO2から実質的に全てのCu成分が金属Cu粒子として析出される。同時に、基材はα−Al23に変換される。析出した金属Cu粒子は、α−Al23の基材の内部および表面部に存在される。
(Reduction treatment process)
A reduction treatment is performed by heating the obtained composite oxide in a reducing atmosphere. At this time, substantially all of the Cu components are deposited as metal Cu particles from the CuAlO 2 composite oxide. At the same time, the substrate is converted to α-Al 2 O 3 . The deposited metal Cu particles are present inside and on the surface of the α-Al 2 O 3 base material.

還元雰囲気は、水素単独または水素を含む不活性ガス(例えば窒素ガス、アルゴンガス等)が挙げられる。また、前記混合物を炭素の詰め粉に埋め込んで還元雰囲気にすることも可能である。   The reducing atmosphere includes hydrogen alone or an inert gas containing hydrogen (for example, nitrogen gas, argon gas, etc.). It is also possible to embed the mixture in carbon packing powder to create a reducing atmosphere.

複合酸化物の還元処理において、金属Cu粒子の析出は600℃を超えるあたりから起こり始め、700℃付近でほぼ完了する。したがって、還元処理時の加熱は600℃以上の温度で行うことが好ましい。加熱温度の上限は析出した金属Cu粒子の凝集を回避するために1000℃にすることが好ましい。より好ましい還元処理時の加熱温度は、650〜800℃である。このような還元処理時の加熱温度は、水蒸気改質反応での改質触媒またはCOシフト反応触媒として使用するときの温度(300℃前後)より高いため、前記各反応での熱的な安定性を確保することが可能になる。   In the reduction treatment of the composite oxide, the precipitation of the metal Cu particles starts from around 600 ° C. and is almost completed at around 700 ° C. Therefore, it is preferable to perform the heating during the reduction treatment at a temperature of 600 ° C. or higher. The upper limit of the heating temperature is preferably set to 1000 ° C. in order to avoid aggregation of the precipitated metal Cu particles. The heating temperature at the time of a more preferable reduction process is 650-800 degreeC. Since the heating temperature at the time of such reduction treatment is higher than the temperature (about 300 ° C.) when used as a reforming catalyst or CO shift reaction catalyst in a steam reforming reaction, thermal stability in each of the above reactions Can be secured.

析出した金属Cu粒子は、5〜500nmの平均粒径を有する。金属Cu粒子の平均粒径は、例えば電子顕微鏡により撮影された画像をもとに特定の視野内に存在する粒子の数を数えることにより測定することができる。金属Cu粒子の平均粒径が500nmを超えると、金属Cu粒子を含む触媒表面の比表面積が低下して、触媒活性が低下する虞がある。より好ましい金属Cu粒子の平均粒径は、10〜100nmである。   The deposited metal Cu particles have an average particle size of 5 to 500 nm. The average particle diameter of the metal Cu particles can be measured, for example, by counting the number of particles present in a specific field of view based on an image taken with an electron microscope. If the average particle diameter of the metal Cu particles exceeds 500 nm, the specific surface area of the catalyst surface containing the metal Cu particles may decrease, and the catalytic activity may decrease. A more preferable average particle diameter of the metal Cu particles is 10 to 100 nm.

このような還元処理によりα−Al23の基材の少なくとも表面部に金属Cu粒子が析出された複合材料である水素製造用触媒が得られる。 By such a reduction treatment, a catalyst for hydrogen production, which is a composite material in which metal Cu particles are deposited on at least the surface portion of the α-Al 2 O 3 base material, is obtained.

実施形態に係る水素製造用触媒は、以下の酸化処理をさらに施すことが好ましい。   The hydrogen production catalyst according to the embodiment is preferably further subjected to the following oxidation treatment.

前記複合材料を酸化性雰囲気中で加熱して酸化処理を施す。このとき、金属Cu粒子が酸化されて若干の発熱が生じる。ただし、金属Cu粒子の径が5〜500nmと比較的大きいために、急激な発熱→溶解は起こり難い。酸化処理の時間は、例えば15分間程度であれば十分である。   The composite material is heated in an oxidizing atmosphere to be oxidized. At this time, the metal Cu particles are oxidized and a slight amount of heat is generated. However, since the metal Cu particles have a relatively large diameter of 5 to 500 nm, rapid exothermic → dissolution hardly occurs. The time for the oxidation treatment is sufficient if it is about 15 minutes, for example.

酸化処理においては、金属Cu粒子が酸化されてCuOが生成される。CuOの生成は、金属Cu粒子の一部であることが好ましい。CuOは、金属Cu粒子表面を覆うように生成されることが最も好ましい。   In the oxidation treatment, metal Cu particles are oxidized to produce CuO. It is preferable that the production | generation of CuO is a part of metal Cu particle | grains. Most preferably, CuO is produced so as to cover the surface of the metal Cu particles.

前記酸化処理での酸化性雰囲気は、酸素を含む雰囲気であればよく、例えば空気(大気)または酸素を5体積%以下含む窒素ガスのようなフォーミングガス等を挙げることができる。   The oxidizing atmosphere in the oxidation treatment may be an atmosphere containing oxygen, and examples thereof include air (atmosphere) or forming gas such as nitrogen gas containing 5% by volume or less of oxygen.

酸化処理は、150〜350℃の温度で行うことが好ましい。150℃未満では、金属Cu粒子の酸化が十分になされない虞がある。一方、350℃を超えると、隣接する金属Cu粒子同士が合体して肥大化したCuO粒子等に変化し、触媒活性が低下する虞がる。より好ましい酸化処理の温度は、150〜300℃である。   The oxidation treatment is preferably performed at a temperature of 150 to 350 ° C. If it is less than 150 degreeC, there exists a possibility that oxidation of metal Cu particle | grains may not fully be made | formed. On the other hand, when it exceeds 350 degreeC, it changes to CuO particle | grains etc. which the adjacent metal Cu particle | grains united and enlarged and there exists a possibility that catalyst activity may fall. A more preferable temperature for the oxidation treatment is 150 to 300 ° C.

このような水素製造用触媒の製造において、複合酸化物の粉末を還元処理し、好ましくはさらに酸化処理する方法が採用される。このような方法の他に、複雑な形状の触媒を製造する場合、複合酸化物粉末を成形した固形化物もしくはハニカムを還元処理し、好ましくはさらに酸化処理する方法を採用してもよい。   In the production of such a catalyst for hydrogen production, a method is adopted in which the composite oxide powder is subjected to reduction treatment, preferably further oxidation treatment. In addition to such a method, when a catalyst having a complicated shape is manufactured, a method of reducing the solidified material or honeycomb formed with the composite oxide powder, preferably further oxidizing may be employed.

実施形態に係る水素製造用触媒は、例えば300℃程度の低温廃熱を利用して炭化水素系燃料と水蒸気を反応させて水素を取り出す改質触媒、または例えば改質反応で副生されるCOと水蒸気を反応させてCOを除去すると共に水素を取り出すシフト触媒として用いることができる。   The catalyst for hydrogen production according to the embodiment is, for example, a reforming catalyst that takes out hydrogen by reacting a hydrocarbon fuel with water vapor using low-temperature waste heat of about 300 ° C., or CO that is by-produced in the reforming reaction, for example. It can be used as a shift catalyst that reacts with water vapor to remove CO and extract hydrogen.

炭化水素系燃料としては、例えばメタノール、エタノール、ジメチルエーテル(DME)等の液体燃料が挙げられる。メタノール、エタノールを原料とする水蒸気改質反応は、下記式(1)、式(2)で表される。   Examples of the hydrocarbon fuel include liquid fuels such as methanol, ethanol, dimethyl ether (DME) and the like. The steam reforming reaction using methanol and ethanol as raw materials is represented by the following formulas (1) and (2).

CH3OH+H2O ⇔ 3H2+CO2 …(1)
25OH+3H2O ⇔ 6H2+2CO2 …(2)
COシフト反応は、下記式(3)で表される。
CH 3 OH + H 2 O 3H 2 + CO 2 (1)
C 2 H 5 OH + 3H 2 O⇔6H 2 + 2CO 2 (2)
The CO shift reaction is represented by the following formula (3).

CO+H2O⇔ H2+CO2 …(3)
なお、メタノールの水蒸気改質反応で生成される改質ガスの組成は、例えば図1に示す試験装置を用いて分析することができる。図1の試験装置において、メタノールおよび水の混合液が収容されたシリンジポンプ1は配管2を通して気化器3に連結されている。窒素ガスの供給管4は、配管2に連結され、シリンジポンプ1から供給される前記混合液と共に窒素ガスを気化器3に供給する。気化器3は、配管5を通して改質器6に連結されている。改質器6内には、前述した水素製造用触媒が充填されている。改質器6内の改質ガスは、配管7および水冷トラップ8を経由して配管9から排出される。この配管9の途中には、ガスクロマトグラフィー10が連結されている。ガスクロマトグラフィー10は、管9を流通する改質ガスをサンプリングしてそのガス組成を検出する。
CO + H 2 O⇔H 2 + CO 2 (3)
The composition of the reformed gas produced by the steam reforming reaction of methanol can be analyzed using, for example, a test apparatus shown in FIG. In the test apparatus of FIG. 1, a syringe pump 1 containing a mixed liquid of methanol and water is connected to a vaporizer 3 through a pipe 2. The supply pipe 4 for nitrogen gas is connected to the pipe 2 and supplies nitrogen gas to the vaporizer 3 together with the mixed liquid supplied from the syringe pump 1. The vaporizer 3 is connected to the reformer 6 through a pipe 5. The reformer 6 is filled with the aforementioned hydrogen production catalyst. The reformed gas in the reformer 6 is discharged from the pipe 9 via the pipe 7 and the water cooling trap 8. A gas chromatography 10 is connected in the middle of the pipe 9. The gas chromatography 10 samples the reformed gas flowing through the tube 9 and detects its gas composition.

本発明者らは、高性能なCu系触媒を得るにあたり、銅化合物およびアルミニウム化合物を特定のCu/Alモル比で混合し、非酸化性雰囲気中、特定の温度で焼成して触媒前駆体としてのCuAlO2、またはCuAlO2とAl23の混合相からなる複合酸化物を生成し、この複合酸化物を用いて還元処理すると、安定性に優れ、かつ低温活性の高い改質触媒が得られることを見出した。CuAlO2相は、非酸化性雰囲気で焼成したときに生成する相である。CuAlO2の複合酸化物を還元すると、実質的に全てのCu成分が金属Cu粒子(径;5〜500nm)として析出すると同時に、基材がα−Al23に変換されて触媒であるCu微粒子担持複合材料が得られる。得られた複合材料は、基材であるα−Al23表面に微細なCu粒子が一部埋め込まれるような形で分散して存在し、Cu粒子と基材との密着性(結合性)が高いCu微粒子/基材一体型の構造となる。このような複合材料(触媒)は、金属Cu粒子による低温での高い触媒活性を示し、かつ耐酸化性に加えて、優れた耐シンタリング性(焼結による粒子の成長や合体の耐性)を有する。実際に酸化処理を施すと、Cu粒子の表面性状が変化してCuOが形成されるが、粒子の基材からの剥離や隣接粒子同士の合体や成長は殆ど認められない。すなわち、従来のCu系触媒のように使用直前での還元処理の必要がなく、合成後、大気中でも搬送、運搬が可能な極めて取り扱い易い触媒を得ることができる。 In order to obtain a high-performance Cu-based catalyst, the present inventors mixed a copper compound and an aluminum compound at a specific Cu / Al molar ratio, and calcined at a specific temperature in a non-oxidizing atmosphere as a catalyst precursor. When a composite oxide composed of CuAlO 2 or a mixed phase of CuAlO 2 and Al 2 O 3 is produced and reduced using this composite oxide, a reforming catalyst having excellent stability and high low-temperature activity is obtained. I found out that The CuAlO 2 phase is a phase generated when baked in a non-oxidizing atmosphere. When the composite oxide of CuAlO 2 is reduced, substantially all of the Cu component is precipitated as metal Cu particles (diameter: 5 to 500 nm), and at the same time, the base material is converted to α-Al 2 O 3 to form Cu as a catalyst. A fine particle-supported composite material is obtained. The obtained composite material is dispersed and present in such a manner that fine Cu particles are partially embedded on the surface of the base α-Al 2 O 3 , and adhesion between the Cu particles and the base material (bonding property). ) Having a high Cu fine particle / base material integrated structure. Such a composite material (catalyst) exhibits high catalytic activity at low temperatures due to metal Cu particles, and in addition to oxidation resistance, has excellent sintering resistance (particle growth and coalescence resistance due to sintering). Have. When the oxidation treatment is actually performed, the surface properties of the Cu particles are changed to form CuO, but the separation of the particles from the substrate and the coalescence and growth of adjacent particles are hardly observed. That is, unlike the conventional Cu-based catalyst, there is no need for a reduction treatment immediately before use, and a catalyst that can be transported and transported in the air after synthesis can be obtained.

また、本発明者らは前記複合材料をさらに酸化処理することによって、改質性能がより低温側で高い活性を示す水素製造用触媒を見出した。   In addition, the present inventors have found a catalyst for producing hydrogen, in which reforming performance shows high activity on a lower temperature side by further oxidizing the composite material.

本発明を以下の実施例によってさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

(実施例1〜4および比較例1〜2)
Al23粉末に対してCuO粉末をCu/Alのモル比で0.8〜4.4の割合で混合し、プレス成形した後、2L/分のAr気流中、1150℃で2時間焼結を行った。
(Examples 1-4 and Comparative Examples 1-2)
CuO powder was mixed with Al 2 O 3 powder at a Cu / Al molar ratio of 0.8 to 4.4, press-molded, and then fired at 1150 ° C. for 2 hours in an Ar stream of 2 L / min. Yui was done.

得られた焼結体の組成をX線回折装置にて同定した。その結果を下記表1に示す。   The composition of the obtained sintered body was identified with an X-ray diffractometer. The results are shown in Table 1 below.

次いで、各焼結体を粗く粉砕し、200μmメッシュ篩いを用いて篩に掛け、篩に残った粉砕片を水素中700℃で5分間還元処理を行って6種の触媒を製造した。このときの還元減量を下記表1に示す。   Next, each sintered body was coarsely pulverized, sieved using a 200 μm mesh sieve, and the crushed pieces remaining on the sieve were subjected to reduction treatment at 700 ° C. for 5 minutes in hydrogen to produce 6 types of catalysts. The reduction in weight at this time is shown in Table 1 below.

得られた各触媒の表面に析出した金属Cu粒子の平均粒径を前述した方法により測定した。各触媒の比表面積を水素ガスによる化学吸着法にて測定した。その結果を下記表1に示す。   The average particle diameter of the metal Cu particles deposited on the surface of each obtained catalyst was measured by the method described above. The specific surface area of each catalyst was measured by a chemical adsorption method using hydrogen gas. The results are shown in Table 1 below.

(比較例3)
Al23粉末に対してCuO粉末をCu/Alのモル比で2.0の割合で混合し、プレス成形した後、大気中(酸化雰囲気中)、1150℃で2時間焼結を行った。
(Comparative Example 3)
After CuO powder was mixed with Al 2 O 3 powder at a Cu / Al molar ratio of 2.0 and press-molded, it was sintered in air (in an oxidizing atmosphere) at 1150 ° C. for 2 hours. .

得られた焼結体の組成をX線回折装置にて同定した。その結果を下記表1に示す。   The composition of the obtained sintered body was identified with an X-ray diffractometer. The results are shown in Table 1 below.

次いで、焼結体を粗く粉砕し、200μmメッシュ篩いを用いて篩に掛け、篩に残った粉砕片を水素中700℃で5分間還元処理を行って触媒を製造した。このときの還元減量を下記表1に示す。   Next, the sintered body was coarsely pulverized, sieved using a 200 μm mesh sieve, and the crushed pieces remaining on the sieve were subjected to reduction treatment at 700 ° C. for 5 minutes in hydrogen to produce a catalyst. The reduction in weight at this time is shown in Table 1 below.

得られた触媒の表面に析出した金属Cu粒子の平均粒径を前述した方法により測定した。触媒の比表面積を水素ガスによる化学吸着法にて測定した。その結果を下記表1に示す。   The average particle diameter of the metal Cu particles deposited on the surface of the obtained catalyst was measured by the method described above. The specific surface area of the catalyst was measured by a chemical adsorption method using hydrogen gas. The results are shown in Table 1 below.

また、Al23粉末とCuO粉末を混合するときのCu/Alモル比が2.0と同じである実施例2および比較例3で得られた焼結体について、前述した粉砕片を用いて100mL/分の水素気流中、TGによる熱重量変化を測定した。その結果を図2に示す。

Figure 2008207070
In addition, the above-mentioned crushed pieces were used for the sintered bodies obtained in Example 2 and Comparative Example 3 in which the Cu / Al molar ratio when mixing Al 2 O 3 powder and CuO powder was the same as 2.0. The thermogravimetric change due to TG was measured in a hydrogen stream of 100 mL / min. The result is shown in FIG.
Figure 2008207070

前記表1から明らかなように実施例1〜4の触媒製造の前駆体である焼結体は、CuAlO2、またはCuAlO2とAl23の混合相からなる複合酸化物であり、かつ製造された各触媒は比表面積がたかだか1m2/g程度であることがわかる。 As is clear from Table 1, the sintered body that is a precursor of catalyst production in Examples 1 to 4 is CuAlO 2 , or a complex oxide composed of a mixed phase of CuAlO 2 and Al 2 O 3 , and production. It can be seen that each of the catalysts produced has a specific surface area of at most about 1 m 2 / g.

これに対し、焼結体を生成する際のCu/Alモル比が本発明の下限(1.0)未満である比較例1では、CuAlO2よりAl23量が多い複合酸化物になる。焼結体を生成する際のCu/Alモル比が本発明の上限(4.0)を超える比較例2では、CuAlO2と共にCuOも存在する複合酸化物になる。 On the other hand, in Comparative Example 1 in which the Cu / Al molar ratio at the time of forming the sintered body is less than the lower limit (1.0) of the present invention, the composite oxide has a larger amount of Al 2 O 3 than CuAlO 2. . In Comparative Example 2 in which the Cu / Al molar ratio at the time of forming the sintered body exceeds the upper limit (4.0) of the present invention, a composite oxide in which CuO is present together with CuAlO 2 is obtained.

また、焼結体を生成する際の雰囲気が酸化性雰囲気である比較例3ではスピネル型複合酸化物(CuAl24)を主成分とするものになる。 Further, in Comparative Example 3 in which the atmosphere at the time of forming the sintered body is an oxidizing atmosphere, the main component is a spinel type composite oxide (CuAl 2 O 4 ).

さらに、図2から明らかなように実施例2で用いるCuAlO2を含む複合酸化物は還元が600℃付近の1段階のみになっている。その結果、析出した金属Cu粒子は径および分散状態が均一になった。このような還元時の熱重量変化は実施例2以外の実施例1,3,4で用いる複合酸化物でも同様である。これに対し、比較例3で用いるスピネル型複合酸化物(CuAl24)を含む複合酸化物は還元が350℃付近と600℃付近の2段階で大きく進んでいる。このため、析出した金属Cu粒子が肥大化し、その分散状態も不均一になった。 Further, as is apparent from FIG. 2, the composite oxide containing CuAlO 2 used in Example 2 has only one reduction near 600 ° C. As a result, the precipitated metal Cu particles became uniform in diameter and dispersion state. Such thermogravimetric change during reduction is the same for the composite oxides used in Examples 1, 3, and 4 other than Example 2. On the other hand, the reduction of the composite oxide containing the spinel type composite oxide (CuAl 2 O 4 ) used in Comparative Example 3 is greatly advanced in two stages, around 350 ° C. and around 600 ° C. For this reason, the deposited metal Cu particles were enlarged, and the dispersion state thereof became non-uniform.

次に、実施例1〜4および比較例1〜3の触媒および前述した図1の試験装置を用いてメタノール改質反応試験を行った。   Next, a methanol reforming reaction test was performed using the catalysts of Examples 1 to 4 and Comparative Examples 1 to 3 and the test apparatus of FIG. 1 described above.

図1に示す全ての反応器および配管はステンレス製である。最初に、実施例2で得られた触媒、この触媒をさらに酸化処理した触媒、比較例3で得られた触媒および市販のCu−Zn系触媒(比較例4)を改質器6内に約2g(約1.8cc)充填した。   All reactors and piping shown in FIG. 1 are made of stainless steel. First, the catalyst obtained in Example 2, the catalyst obtained by further oxidizing this catalyst, the catalyst obtained in Comparative Example 3 and the commercially available Cu—Zn-based catalyst (Comparative Example 4) were introduced into the reformer 6 in about 2 g (about 1.8 cc) was charged.

なお、実施例2で得られた触媒の酸化処理は250℃の酸素−窒素混合(酸素流量:窒素流量=1:4)による擬似大気中で15分間加熱することにより行った。酸化処理した後の触媒の表面をXPSにより分析した結果、CuOとともにCuの存在が認められた。また、酸化処理後の触媒の比表面積を水素ガスによる化学吸着法にて測定した結果、酸化処理前に比べて比表面積が3〜5倍ほどに大きくなっているのが確認された。   The oxidation treatment of the catalyst obtained in Example 2 was performed by heating for 15 minutes in a simulated atmosphere using an oxygen-nitrogen mixture (oxygen flow rate: nitrogen flow rate = 1: 4) at 250 ° C. As a result of analyzing the surface of the catalyst after the oxidation treatment by XPS, the presence of Cu together with CuO was recognized. Moreover, as a result of measuring the specific surface area of the catalyst after the oxidation treatment by the chemical adsorption method using hydrogen gas, it was confirmed that the specific surface area was about 3 to 5 times larger than that before the oxidation treatment.

比較例4のCu−Zn系触媒は、改質器6内に充填した後、100%水素ガスを導入しながら、250℃で30分間還元を行い、一度も大気中に曝すことはしなかった。   The Cu—Zn-based catalyst of Comparative Example 4 was charged in the reformer 6, then reduced at 250 ° C. for 30 minutes while introducing 100% hydrogen gas, and never exposed to the atmosphere. .

次いで、気化後にモル比1:2となるようにメタノールと水を混合し、シリンジポンプ1により一定量にて送液した。送液の速度は、気化した時の流量で、メタノール50mL/分、水蒸気100mL/分となるようにした。気化器3の温度は140℃とし、出口ガス濃度を定量するために標準ガスとして50mL/分の窒素ガスを供給管4から供給した。改質器6の温度をヒータ(図示せず)にて250および300℃にそれぞれ設定し、各温度にて出口ガス組成が安定するまで約1時間保持した後にガスクロマトグラフィー10で配管9を流通するに改質ガスをサンプリングし、その改質ガス組成の分析を行った。   Next, methanol and water were mixed so that the molar ratio was 1: 2 after vaporization, and the solution was sent in a fixed amount by the syringe pump 1. The liquid feeding speed was 50 mL / min of methanol and 100 mL / min of water vapor at the flow rate when vaporized. The temperature of the vaporizer 3 was 140 ° C., and 50 mL / min of nitrogen gas was supplied from the supply pipe 4 as a standard gas in order to quantify the outlet gas concentration. The temperature of the reformer 6 is set to 250 and 300 ° C. with a heater (not shown), held at each temperature for about 1 hour until the outlet gas composition is stabilized, and then the gas chromatograph 10 is used to circulate the pipe 9 Then, the reformed gas was sampled, and the reformed gas composition was analyzed.

改質ガス組成の分析から各触媒による250℃および300℃でのメタノール転化率およびCO生成率を求めた。その結果を下記表2に示す。

Figure 2008207070
From the analysis of the reformed gas composition, the methanol conversion rate and CO production rate at 250 ° C. and 300 ° C. for each catalyst were determined. The results are shown in Table 2 below.
Figure 2008207070

前記表2から明らかなように実施例2の触媒(還元処理後)は、複合酸化物の生成時のCu/Alモル比が2.0と同じである比較例3の触媒に比べてメタノールの改質反応時において低温側で高い触媒活性を示すことがわかる。また、実施例2の触媒さらに酸化処理することにより、還元処理のみに比べてメタノールの改質反応時において低温側で一層高い触媒活性を示すことがわかる。   As apparent from Table 2, the catalyst of Example 2 (after the reduction treatment) had methanol as compared with the catalyst of Comparative Example 3 in which the Cu / Al molar ratio during the formation of the composite oxide was the same as 2.0. It can be seen that high catalytic activity is exhibited on the low temperature side during the reforming reaction. It can also be seen that further oxidation treatment of the catalyst of Example 2 shows higher catalytic activity on the low temperature side during the methanol reforming reaction than in the reduction treatment alone.

なお、比較例4のCu−Zn系触媒はメタノールの改質反応時において低温側で極めて高い触媒活性を示すものの、改質反応前に還元処理が必要であるばかりか、大気中に曝さないようにする等、改質反応操作および取り扱い上の煩雑さがある。   The Cu—Zn-based catalyst of Comparative Example 4 shows a very high catalytic activity on the low temperature side during the methanol reforming reaction, but not only requires a reduction treatment before the reforming reaction, but is not exposed to the atmosphere. There are complicated reforming reaction operations and handling.

また、実施例1,3,4で得られた触媒、これらの触媒をさらに前述した実施例2と同様な条件でそれぞれ酸化処理した触媒、比較例1,2で得られた触媒を図1の試験装置の改質器6内に約2g(約1.8cc)充填した以外、前述したのと同様な条件でメタノールの水蒸気改質反応を行い、さらにガスクロマトグラフィー10で改質ガス組成の分析行って、250℃および300℃でのメタノール転化率およびCO生成率を求めた。その結果を下記表3に示す。

Figure 2008207070
Further, the catalysts obtained in Examples 1, 3 and 4, the catalysts obtained by oxidizing these catalysts under the same conditions as in Example 2 described above, and the catalysts obtained in Comparative Examples 1 and 2 are shown in FIG. A methanol steam reforming reaction is performed under the same conditions as described above except that about 2 g (about 1.8 cc) is charged in the reformer 6 of the test apparatus, and the reformed gas composition is analyzed by the gas chromatography 10. And methanol conversion and CO production at 250 ° C. and 300 ° C. were determined. The results are shown in Table 3 below.
Figure 2008207070

前記表3から明らかなように実施例1,3,4の触媒(還元処理後)は、焼結体を生成する際のCu/Alモル比が本発明の範囲(1〜4)を外れる比較例1,2の触媒(還元処理後)に比べてメタノールの改質反応時において低温側で高い触媒活性を示すことがわかる。これは、焼結体を生成する際のCu/Alモル比が1未満の比較例1の触媒は活性が低く、焼結体を生成する際のCu/Alモル比が4を超える比較例2の触媒は隣接する金属Cu粒子の凝集等により実効比表面積が小さくなったためと考えられる。   As is apparent from Table 3, the catalysts of Examples 1, 3 and 4 (after reduction treatment) were compared in which the Cu / Al molar ratio when producing the sintered body was outside the range (1 to 4) of the present invention. Compared to the catalysts of Examples 1 and 2 (after reduction treatment), it can be seen that the catalyst activity is higher on the low temperature side during the reforming reaction of methanol. This is because the catalyst of Comparative Example 1 having a Cu / Al molar ratio of less than 1 in producing a sintered body has low activity, and Comparative Example 2 in which the Cu / Al molar ratio in producing a sintered body exceeds 4 This catalyst is considered to be because the effective specific surface area was reduced due to aggregation of adjacent metal Cu particles.

また、実施例2の触媒をさらに酸化処理することにより、還元処理のみに比べてメタノールの改質反応時において低温側で一層高い触媒活性を示すことがわかる。   It can also be seen that further oxidation treatment of the catalyst of Example 2 shows higher catalytic activity on the low temperature side during the methanol reforming reaction than in the reduction treatment alone.

メタノール改質試験装置を示す模式図。The schematic diagram which shows a methanol reforming test apparatus. 本発明の実施例2および比較例3の複合酸化物の還元時の熱重量分析の結果を示す図。The figure which shows the result of the thermogravimetric analysis at the time of the reduction | restoration of the complex oxide of Example 2 and Comparative Example 3 of this invention.

符号の説明Explanation of symbols

1…シリンジポンプ、3…気化器、6…改質器、10…ガスクロマトグラフィー。   DESCRIPTION OF SYMBOLS 1 ... Syringe pump, 3 ... Vaporizer, 6 ... Reformer, 10 ... Gas chromatography.

Claims (5)

Cu化合物およびアルミニウム化合物をCu/Alのモル比が1〜4になるように混合した後、この混合物を非酸化性雰囲気中、900〜1300℃の温度で焼成してCuAlO2、またはCuAlO2とAl23の混合相からなる複合酸化物を生成する工程と、
前記複合酸化物を還元性雰囲気中で加熱して還元処理することによりα型Al23の基材の少なくとも表面部に5〜500nmの平均粒径を有する金属Cu粒子を析出させる工程と
を含むことを特徴とする水素製造用触媒の製造方法。
After mixing the Cu compound and the aluminum compound so that the molar ratio of Cu / Al is 1 to 4, this mixture is fired at a temperature of 900 to 1300 ° C. in a non-oxidizing atmosphere to obtain CuAlO 2 or CuAlO 2 . Producing a composite oxide composed of a mixed phase of Al 2 O 3 ;
Precipitating metal Cu particles having an average particle diameter of 5 to 500 nm on at least the surface portion of the base material of α-type Al 2 O 3 by heating and reducing the composite oxide in a reducing atmosphere. A method for producing a hydrogen production catalyst, comprising:
前記複合酸化物の生成は、Al23粉末とCuO粉末とをCu/Alのモル比が1〜4になるように混合した後、この混合物を非酸化性雰囲気中、900〜1300℃の温度で焼成する方法によりなされることを特徴とする請求項1記載の水素製造用触媒の製造方法。 The composite oxide is produced by mixing Al 2 O 3 powder and CuO powder so that the molar ratio of Cu / Al is 1 to 4, and then mixing the mixture in a non-oxidizing atmosphere at 900 to 1300 ° C. The method for producing a catalyst for hydrogen production according to claim 1, wherein the method is carried out by a method of calcining at a temperature. 前記複合酸化物の還元処理は、還元性雰囲気中、600℃〜1000℃の温度でなされることを特徴とする請求項1記載の水素製造用触媒の製造方法。   The method for producing a catalyst for hydrogen production according to claim 1, wherein the reduction treatment of the composite oxide is performed at a temperature of 600 ° C to 1000 ° C in a reducing atmosphere. 前記金属Cu粒子を有する基材をさらに酸化性雰囲気中で加熱して酸化処理することを特徴とする請求項1記載の水素製造用触媒の製造方法。   2. The method for producing a catalyst for hydrogen production according to claim 1, wherein the base material having the metal Cu particles is further heated in an oxidizing atmosphere to be oxidized. 前記酸化処理は酸素含有雰囲気中、150〜350℃の温度でなされることを特徴とする請求項4記載の水素製造用触媒の製造方法。   The method for producing a catalyst for hydrogen production according to claim 4, wherein the oxidation treatment is performed at a temperature of 150 to 350 ° C. in an oxygen-containing atmosphere.
JP2007044146A 2007-02-23 2007-02-23 Method for producing catalyst for producing hydrogen Pending JP2008207070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007044146A JP2008207070A (en) 2007-02-23 2007-02-23 Method for producing catalyst for producing hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007044146A JP2008207070A (en) 2007-02-23 2007-02-23 Method for producing catalyst for producing hydrogen

Publications (1)

Publication Number Publication Date
JP2008207070A true JP2008207070A (en) 2008-09-11

Family

ID=39783844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007044146A Pending JP2008207070A (en) 2007-02-23 2007-02-23 Method for producing catalyst for producing hydrogen

Country Status (1)

Country Link
JP (1) JP2008207070A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010051864A (en) * 2008-08-27 2010-03-11 Toshiba Corp Zinc-added, reduced and deposited copper catalyst, and method for manufacturing the same
JP2011200853A (en) * 2010-03-26 2011-10-13 Toshiba Corp Catalyst, method for producing the same, and method for producing hydrogen using the catalyst
JP2012530329A (en) * 2008-06-27 2012-11-29 コミシリア ア レネルジ アトミック エ オ エナジーズ オルタネティヴズ Discharge head for fuel cell
CN108745363A (en) * 2018-05-14 2018-11-06 中国科学院山西煤炭化学研究所 It is a kind of for the copper-based catalysts and preparation method of hydrogen from methyl alcohol and application
CN113198471A (en) * 2021-05-21 2021-08-03 晋中学院 Copper-aluminum spinel catalyst for hydrogen production by methanol reforming, preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012530329A (en) * 2008-06-27 2012-11-29 コミシリア ア レネルジ アトミック エ オ エナジーズ オルタネティヴズ Discharge head for fuel cell
JP2010051864A (en) * 2008-08-27 2010-03-11 Toshiba Corp Zinc-added, reduced and deposited copper catalyst, and method for manufacturing the same
JP2011200853A (en) * 2010-03-26 2011-10-13 Toshiba Corp Catalyst, method for producing the same, and method for producing hydrogen using the catalyst
CN108745363A (en) * 2018-05-14 2018-11-06 中国科学院山西煤炭化学研究所 It is a kind of for the copper-based catalysts and preparation method of hydrogen from methyl alcohol and application
CN113198471A (en) * 2021-05-21 2021-08-03 晋中学院 Copper-aluminum spinel catalyst for hydrogen production by methanol reforming, preparation method and application thereof

Similar Documents

Publication Publication Date Title
WO2017111028A1 (en) Transition-metal-supporting intermetallic compound, supported metallic catalyst, and ammonia producing method
JPWO2008084785A1 (en) Carbon dioxide reforming catalyst and method for producing the same
JP6626023B2 (en) Fuel synthesis catalyst and fuel synthesis system
JP5327323B2 (en) Hydrocarbon gas reforming catalyst, method for producing the same, and method for producing synthesis gas
KR20120024841A (en) Methanol steam reforming catalysts
JP4607715B2 (en) Catalyst and method for producing catalyst
JP2008207070A (en) Method for producing catalyst for producing hydrogen
WO2005094988A1 (en) Carbon monoxide removal catalyst and method for preparation thereof, and apparatus for removing carbon monoxide
JP6940002B2 (en) Hydrocarbon reforming catalyst and hydrocarbon reforming equipment
JP2019155227A (en) Co2 methanation catalyst and carbon dioxide reduction method using the same
Tao et al. Sol–gel auto-combustion synthesis of Ni–Ce x Zr 1− x O 2 catalysts for carbon dioxide reforming of methane
JP5531462B2 (en) Carbon dioxide reforming catalyst, method for producing the same, carrier for carbon dioxide reforming catalyst, reformer, and method for producing synthesis gas
CN108514872A (en) A kind of preparation method for carbon nanotube base metal catalysts
Sastre et al. Effect of low-loading of Ni on the activity of La0. 9Sr0. 1FeO3 perovskites for chemical looping dry reforming of methane
JP4772561B2 (en) Methanol reforming catalyst, shift catalyst, method for producing methanol reforming catalyst, and method for producing shift catalyst
JP4665044B2 (en) Fuel reforming catalyst, reformer, and fuel cell system
JP7318734B2 (en) Hydrocarbon reforming catalyst and hydrocarbon reformer
CN114100649B (en) High-heat-conductivity Fe-based catalyst, preparation method thereof and application thereof in Fischer-Tropsch synthesis reaction
JP3950099B2 (en) Metal particle-supported composite oxide, method for producing the same, and fuel reformer using the same
CN114377673A (en) Ammonia synthesis catalyst, method for producing ammonia synthesis catalyst, and method for synthesizing ammonia
JP2021115508A (en) Modification catalyst and manufacturing method thereof
WO2013187436A1 (en) Reforming catalyst, method for preparing same, and process for manufacturing synthesis gas
JP7347541B2 (en) Hydrocarbon reforming catalyst, hydrocarbon reformer, and method for recovering sulfur deterioration of hydrocarbon reforming catalyst
CN114080273A (en) Hydrocarbon reforming catalyst and hydrocarbon reforming apparatus
WO2001078892A1 (en) Method for preparing catalyst for reforming methanol