JP2006274297A - Dual phase alloy for hydrogen separation and refining - Google Patents

Dual phase alloy for hydrogen separation and refining Download PDF

Info

Publication number
JP2006274297A
JP2006274297A JP2005091367A JP2005091367A JP2006274297A JP 2006274297 A JP2006274297 A JP 2006274297A JP 2005091367 A JP2005091367 A JP 2005091367A JP 2005091367 A JP2005091367 A JP 2005091367A JP 2006274297 A JP2006274297 A JP 2006274297A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
phase
hydrogen separation
dual phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005091367A
Other languages
Japanese (ja)
Other versions
JP4953337B2 (en
Inventor
Kiyoshi Aoki
清 青木
Kazuhiro Ishikawa
和宏 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitami Institute of Technology NUC
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Kitami Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Kitami Institute of Technology NUC filed Critical Hitachi Metals Ltd
Priority to JP2005091367A priority Critical patent/JP4953337B2/en
Publication of JP2006274297A publication Critical patent/JP2006274297A/en
Application granted granted Critical
Publication of JP4953337B2 publication Critical patent/JP4953337B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dual phase alloy for hydrogen separation and refining having high rolling workability and also having a high hydrogen permeation coefficient. <P>SOLUTION: The dual phase alloy for hydrogen separation and refining is composed of a composite phase of a phase having hydrogen permeability and a phase having hydrogen embrittlement resistance. The dual phase alloy has the alloy composition of, by mol%, Ni<SB>x</SB>Ti<SB>y</SB>Nb<SB>100-x-y</SB>(wherein, x=10 to <25%, and y=10 to 40%). The dual phase alloy has excellent ductility, and its thickness can be controlled to 0.05 to 3 mm by plastic working. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高純度水素を製造するために用いられる、水素分離・精製用複相合金の製造方法に関し、特にNi−Ti―Nb系の新規な合金組成からなる水素分離・精製用複相合金に関する。   The present invention relates to a method for producing a hydrogen separation / purification double-phase alloy used for producing high-purity hydrogen, and in particular, a hydrogen-separation / purification double-phase alloy having a novel Ni-Ti-Nb alloy composition. About.

燃料電池用の燃料である水素は、自然界では単独に存在しないため、人工的に製造する必要がある。太陽熱等の再生可能な自然エネルギーを用いて作った電気で水を分解して水素を製造するのが理想であるが、現状の技術レベルではコストが高く、適用困難である。 当面は天然ガス(メタン)等を水蒸気改質して水素を製造するのが現実的と考えられる。水蒸気改質は以下のような化学反応を用いて水素を得るものである。この反応でH2のみを取り除けば、ル・シャトリエの法則に従って平衡は右側にずれ、より高い転換率を得ることができ、また反応温度を下げることでエネルギーロスを抑えることができ、水素製造コストの低減化が図れる。水素を選択的に取り除くために利用されるのが水素透過合金膜である。水素透過合金膜は水素のみが透過する。 Since hydrogen, which is a fuel for fuel cells, does not exist in nature alone, it must be artificially produced. Ideally, hydrogen is produced by decomposing water using electricity made from renewable natural energy such as solar heat, but the current technical level is expensive and difficult to apply. For the time being, it is considered realistic to produce hydrogen by steam reforming natural gas (methane) or the like. Steam reforming is to obtain hydrogen using the following chemical reaction. If only H 2 is removed in this reaction, the equilibrium shifts to the right side according to Le Chatelier's law, a higher conversion can be obtained, and energy loss can be suppressed by lowering the reaction temperature, resulting in hydrogen production costs. Can be reduced. A hydrogen permeable alloy membrane is used to selectively remove hydrogen. Only hydrogen passes through the hydrogen permeable alloy membrane.

水素は金属の結晶格子内に侵入型不純物の形で侵入し、窒素や炭素および酸素に比べて拡散速度が十数桁大きい特徴がある。水素透過合金膜はこのような水素の特性を利用したものである。不純水素を分離・精製するには、水素透過合金膜を挟んで供給側の不純水素を高圧にし、一方、純水素を収集する側を低圧にして圧力差を発生させる。高圧側の水素分子は合金膜表面で原子状水素に解離し、金属内に固溶する。圧力差によって生じる金属膜内の水素濃度勾配を駆動力として水素原子は高圧側から低圧側へ拡散し、低圧側で再結合して水素分子となり低圧側に流れる。この際、水素以外の不純物気体は高圧側で原子状に解離できず、また金属内での拡散速度も水素原子に比べて遙かに遅いため低圧側へ透過することはできない。金属膜を用いた方法によれば、理論的には純度100%の水素を得ることができ、実際に99.999999%純度の水素を得ることができる。現在、実用化されている水素透過合金膜はPdをベースとした合金であるがPdは非常に希少で高価な金属であるため、それに代わる安価な合金の開発が求められている。   Hydrogen penetrates into the metal crystal lattice in the form of interstitial impurities, and has a feature that its diffusion rate is ten orders of magnitude higher than that of nitrogen, carbon and oxygen. The hydrogen permeable alloy film utilizes such characteristics of hydrogen. In order to separate and purify the impure hydrogen, the impure hydrogen on the supply side is set to a high pressure across the hydrogen permeable alloy membrane, while the pressure collecting side is set to a low pressure to generate a pressure difference. Hydrogen molecules on the high pressure side dissociate into atomic hydrogen on the surface of the alloy film and dissolve in the metal. Hydrogen atoms are diffused from the high pressure side to the low pressure side using the hydrogen concentration gradient in the metal film caused by the pressure difference as a driving force, recombine on the low pressure side and become hydrogen molecules and flow to the low pressure side. At this time, impurity gases other than hydrogen cannot be dissociated in an atomic form on the high pressure side, and cannot be transmitted to the low pressure side because the diffusion speed in the metal is much slower than that of hydrogen atoms. According to the method using a metal film, theoretically, hydrogen having a purity of 100% can be obtained, and hydrogen having a purity of 99.999999% can be actually obtained. Currently, the hydrogen permeable alloy film in practical use is an alloy based on Pd, but since Pd is a very rare and expensive metal, development of an inexpensive alloy to replace it is required.

また、別の系として、例えば特許文献1に記載されるようなNb−Ni系、特許文献2に記載されるようなNb−(Ni,Co,Mo)-(V,Ti,Zr,Ta,Hf)系の水素透過合金が検討されている。
特開2001−170460号公報(0026) 特開2004−42017号公報(0007〜0011、表1)
As another system, for example, Nb-Ni system as described in Patent Document 1, Nb- (Ni, Co, Mo)-(V, Ti, Zr, Ta, Hf) based hydrogen permeable alloys have been studied.
JP 2001-170460 A (0026) JP 2004-42017 A (0007 to 0011, Table 1)

水素透過合金には大きい水素透過係数と高い耐水素脆化性が求められる。ここで、水素を多く固溶すると水素透過係数が向上するが、同時に水素脆化が顕著になる。つまり、水素透過係数の増大と耐水素脆化性は相反しており、単相(固溶体)合金で両立させることは、一般に極めて困難であり、組成の組合せについては未だ検討の余地が残る。   Hydrogen permeable alloys are required to have a large hydrogen permeability coefficient and high hydrogen embrittlement resistance. Here, when a large amount of hydrogen is dissolved, the hydrogen permeability coefficient is improved, but at the same time, hydrogen embrittlement becomes remarkable. That is, the increase in the hydrogen permeability coefficient and the hydrogen embrittlement resistance are contradictory, and it is generally very difficult to achieve both with a single phase (solid solution) alloy, and there is still room for studying the combination of the compositions.

また、水素透過合金は薄板(膜)で使用すると、より多くの水素を効率よく製造でき、低コスト化が図れる。薄板を作製する方法としては(1)合金を薄くスライスする。(2)液体急冷によるアモルファス膜の作製。(3)圧延、などが考えられる。このうちスライスは時間やコストがかかり、さらに広面積の膜を作製すことは容易ではない。液体急冷は薄膜を一気に短時間で作ることができるものの、幅の広い膜、および厚さを変えた薄板を作製することが技術的に難しい。一方、圧延は単純、簡単、低コストで広面積の膜を作ることができ、工業的にも広く用いられ、技術的にも発達している。もし圧延という簡易な方法で薄板を作製できれば安価で優れた水素透過特性を有する合金膜を大量生産することができると期待される。よって水素透過合金の圧延加工性は重要な項目と言える。水素透過膜をより薄くすることができれば原材料費を安価にでき工業的に重要な意味がある。   Further, when the hydrogen permeable alloy is used as a thin plate (membrane), more hydrogen can be produced efficiently, and the cost can be reduced. As a method for producing a thin plate, (1) an alloy is sliced thinly. (2) Preparation of an amorphous film by liquid quenching. (3) Rolling can be considered. Of these, slicing takes time and costs, and it is not easy to produce a film with a larger area. Although liquid quenching can form a thin film in a short period of time, it is technically difficult to produce a wide film and a thin plate having a different thickness. On the other hand, rolling is simple, easy, low cost, can produce a film with a large area, is widely used industrially, and has developed technically. If a thin plate can be produced by a simple method called rolling, it is expected that an alloy film having excellent hydrogen permeation characteristics can be mass-produced at a low cost. Therefore, it can be said that the rolling workability of the hydrogen permeable alloy is an important item. If the hydrogen permeable membrane can be made thinner, the cost of raw materials can be reduced, which is industrially important.

よって本発明では、従来の非Pd系合金を用いた水素透過膜より大きな圧延加工性を有し、かつ水素透過係数が大きい水素分離・精製用複相合金の製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for producing a multiphase alloy for hydrogen separation / purification, which has a higher rolling processability than a hydrogen permeable membrane using a conventional non-Pd alloy and has a large hydrogen permeability coefficient. To do.

本発明者は、Ni−Ti−Nb系の水素分離・精製用複相合金を用い、mol%でNixTiyNb100-x-y(ただし、x=10%以上25%未満、y=10%以上40以下である)の範囲にすることにより、上記の目的である水素透過係数が高く、かつ優れた冷間加工性を有する水素分離・精製用複相合金が得られることを知見した。 The present inventor uses a Ni—Ti—Nb-based double phase alloy for hydrogen separation / purification, and in mol%, Ni x Ti y Nb 100-xy (where x = 10% or more and less than 25%, y = 10% It was found that a hydrogen separation / purification double-phase alloy having a high hydrogen permeability coefficient and excellent cold workability can be obtained by setting the range to 40 or less.

本発明では、Ni−Ti−Nb系の合金を用いるため、薄膜化する塑性加工手段として圧延加工を採用できる。圧延率は10%以上、さらには70%以上とすることも可能である。これにより、Ni−Ti−Nb系の水素分離・精製用複相合金の厚さを0.02〜3mmにすることができ、高い水素透過性能を得ることができる。   In the present invention, since a Ni—Ti—Nb alloy is used, rolling can be adopted as a plastic working means for thinning. The rolling rate can be 10% or more, and further 70% or more. Thereby, the thickness of the Ni—Ti—Nb-based hydrogen separation / purification dual phase alloy can be 0.02 to 3 mm, and high hydrogen permeation performance can be obtained.

前記Ni−Ti−Nb系合金は、例えば、不活性ガス雰囲気中のアーク溶解法、不活性ガス雰囲気中若しくは真空中の高周波誘導加熱溶解法、真空中の電子ビーム溶解法、又はレーザ加熱溶解法などにより溶解して作製することができる。水素分離・精製用複相合金の表面の被処理原料を流す側と精製水素を取り出す側との両側にPd膜またはPd合金膜を形成して、最終形態とすることも可能である。   The Ni—Ti—Nb-based alloy is, for example, an arc melting method in an inert gas atmosphere, a high-frequency induction heating melting method in an inert gas atmosphere or in a vacuum, an electron beam melting method in a vacuum, or a laser heating melting method. It can be prepared by dissolving by, for example. It is also possible to form a Pd film or a Pd alloy film on both sides of the surface of the multiphase alloy for hydrogen separation / purification on the side where the raw material to be treated is flowed and on the side where the purified hydrogen is taken out to obtain a final form.

本発明で使用するNi−Ti−Nb系合金の組成は、原子%で、NixTiyNb100-x-y(ただしx=10%以上25%未満、y=10%以上40%以下)からなることを特徴とする。Ni量が10%未満では圧延などの塑性加工が難しく、また25%以上だと水素透過係数が低くなる。Tiが40%超、または10%未満では水素脆性が大きくなり、実用上長時間の使用に耐えることができない。Ni元素の一部を、Ni元素に対して上限を30%として、Ag,Al,Fe,Mn,Cr,Cu,Ga,Zn等の元素で置換することも可能である。また、Tiの一部をTi量に対して上限を10%として他の4A族の元素と置換することも可能である。また、Nbの一部をNb量に対して上限を10%として他の5A族の元素と置換することも可能である。他、不可避不純物は5%以下とすることが好ましい。 The composition of the Ni-Ti-Nb-based alloy used in the present invention is atomic%, and consists of Ni x Ti y Nb 100-xy (where x = 10% or more and less than 25%, y = 10% or more and 40% or less). It is characterized by that. When the amount of Ni is less than 10%, plastic working such as rolling is difficult, and when it is 25% or more, the hydrogen permeability coefficient is low. If Ti is more than 40% or less than 10%, hydrogen embrittlement becomes large, and it cannot be used for a long time in practical use. It is also possible to replace a part of the Ni element with an element such as Ag, Al, Fe, Mn, Cr, Cu, Ga, Zn, etc. with an upper limit of 30% with respect to the Ni element. It is also possible to replace a part of Ti with another 4A group element with an upper limit of 10% with respect to the amount of Ti. It is also possible to replace part of Nb with another 5A group element with an upper limit of 10% with respect to the amount of Nb. In addition, the inevitable impurities are preferably 5% or less.

この合金はbcc-(Nb,Ti)固溶体とB2-NiTi化合物の2相から主に成る。Nb-Ti相は水素を固溶し、拡散させることで水素透過特性を担う。一方、NiTi相は水素脆化しにくく、水素中での機械的性質を担う。つまり役割分担により優れた水素透過特性と耐水素脆性を併せ持つ新合金が実現した。さらにNi−Ti−Nb複相合金はPd基合金に比べて遙かに安価なことも魅力である。   This alloy mainly consists of two phases: bcc- (Nb, Ti) solid solution and B2-NiTi compound. The Nb-Ti phase is responsible for hydrogen permeation properties by dissolving and diffusing hydrogen. On the other hand, the NiTi phase is difficult to be hydrogen embrittled and bears mechanical properties in hydrogen. In other words, a new alloy that has both excellent hydrogen permeation characteristics and resistance to hydrogen embrittlement has been realized. Furthermore, it is attractive that Ni—Ti—Nb double phase alloys are much cheaper than Pd based alloys.

Ni−Ti−Nb系複相水素透過合金を用いたため、優れた塑性加工性能を有し、熱処理を組み合わせたプロセスによって水素分離・精製用複相合金として高特性の薄板を作製できる。この方法により厚さ20μm以下の薄板を作製することも可能である。   Since the Ni—Ti—Nb double phase hydrogen permeable alloy is used, it has excellent plastic working performance, and a high characteristic thin plate can be produced as a double phase alloy for hydrogen separation and purification by a process combined with heat treatment. A thin plate having a thickness of 20 μm or less can be produced by this method.

水素透過試験の方法を述べる。まず、酸化防止と水素の解離と再結合を容易にすることを目的として、本発明の合金組成の合金試料から作製したディスクにANELVA製RF,DC高周波マグネトロンスパッタ装置(SPF-430H)を用いてPdを被覆した。炉内をロータリーポンプおよびクライオポンプを用いて4.0×10-3Paまで真空引きしたあと、逆スパッタをRFパワー50Wで10分間行い、その後基盤を523Kまで加熱し、DCパワー0.05Wで本スパッタを5分間行い、Pdを約190nm被覆した。次に、Pd被覆したディスクを銅ガスケットの間に挟み透過装置にセットした。パイプ内をAr置換した後2.7×10-3Pa以下になるまで油拡散ポンプで真空引きし、炉を673Kまで加熱して40分間保持した。その後水素を導入して供給側水素圧を0.20MPa、透過側圧力を0.10MPaに調整して60分保持後に水素透過の測定を開始した。測定には純度7Nの高純度水素を用いて供給側の水素圧を0.20MPaから0.8MPaの範囲で行った。この操作を623K、573K、523Kでも同様に行った。測定は流量法を用いた。流量計はKOFLOK製MODEL3300を使用した。透過面積は2.46×10-5m2(直径5.6mmの真円形)である。 The hydrogen permeation test method is described. First, for the purpose of facilitating oxidation prevention and dissociation and recombination of hydrogen, an ANELVA RF, DC high frequency magnetron sputtering device (SPF-430H) was used on a disk made from an alloy sample of the alloy composition of the present invention. Pd was coated. The furnace is evacuated to 4.0 × 10 −3 Pa using a rotary pump and cryopump, and then reverse sputtering is performed for 10 minutes at an RF power of 50 W, then the substrate is heated to 523 K, and this sputtering is performed at a DC power of 0.05 W. It was performed for 5 minutes, and Pd was coated about 190 nm. Next, the Pd-coated disc was sandwiched between copper gaskets and set in a transmission device. After replacing the inside of the pipe with Ar, vacuuming was performed with an oil diffusion pump until the pressure became 2.7 × 10 −3 Pa or less, and the furnace was heated to 673 K and held for 40 minutes. Thereafter, hydrogen was introduced, the supply-side hydrogen pressure was adjusted to 0.20 MPa, the permeation-side pressure was adjusted to 0.10 MPa, and the hydrogen permeation measurement was started after holding for 60 minutes. For the measurement, high-purity hydrogen having a purity of 7N was used and the hydrogen pressure on the supply side was in the range of 0.20 MPa to 0.8 MPa. This operation was similarly performed at 623K, 573K, and 523K. The flow rate method was used for measurement. The flowmeter used was MODEL3300 manufactured by KOFLOK. The transmission area is 2.46 × 10 −5 m 2 (true circle with a diameter of 5.6 mm).

本発明における組成分析はオックスフォード・インスツルメンツ製エネルギー分散型X線分光器(EDS)を用いてX線スペクトル収集によって行った。   The composition analysis in the present invention was performed by X-ray spectrum collection using an energy dispersive X-ray spectrometer (EDS) manufactured by Oxford Instruments.

金属膜を用いた水素透過では、水素流量JはJ=Φ(ΔP0.5)/Lより求めることができる。しかし、この式はフィックの第一法則およびジーベルツ則から導き出しているため、試料がジーベルツ則を満たしていなければならない。そこでJ×L vs ΔP0.5をグラフにプロットし、その直線性からジーベルツ則を満たすか検証した。また、この直線の傾きから水素透過係数(Φ)を求めた。 In hydrogen permeation using a metal film, the hydrogen flow rate J can be obtained from J = Φ (ΔP 0.5 ) / L. However, since this equation is derived from Fick's first law and the Siebels law, the sample must satisfy the Siebels law. Therefore, J × L vs ΔP 0.5 was plotted on a graph, and it was verified from the linearity whether the Siebelz rule was satisfied. Further, the hydrogen permeation coefficient (Φ) was determined from the slope of this straight line.

以下本発明を実施例により説明するが、これら実施例により本発明が限定されるものではない。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

(実施例1〜6、比較例1〜7)
本実験で用いた金属の純度(mass%)はNb=99.9%、Ti=99.5%、Ni=99.9%である。各金属を目的の組成が得られるように秤量した後、大亜真空製アーク溶解炉(ACM-DS-01S)を用いてAr雰囲気中で溶解してインゴットを作製した。合金作製手順は次の通りである。炉内をAr置換後に油拡散ポンプを用いて2.7×10-3Pa以下になるまで真空引きした後、Arガス(純度99.99%)を5×104Pa程度まで導入し、タングステン電極棒を用いてアーク放電した。Arガス中の不純物ガスを除去するため、試料溶解前にゲッターTiを約2分間溶解した。次いで合金試料をアーク電流400A以上で約2分間溶解した。その後、組成を均一にするために合金インゴットを裏返し約2分間溶解する作業を約10回行った。なお本実験で示す合金組成は全てmol%である。
アーク溶解で作製した合金からBROTHER製のHS-300ワイヤー放電加工機を用いて2.65×2.65×7mmの直方体状の圧延用試験片を切り出した。作製した試料をビューラメット製の耐水研磨紙を用いて研磨し、日本クロス圧延製の冷間2段圧延機(100Φ×100W)を用いて室温において徐々にロール間隔を狭め、わずかに割れが発生するまで冷間圧延を行った。
(Examples 1-6, Comparative Examples 1-7)
The purity (mass%) of the metal used in this experiment is Nb = 99.9%, Ti = 99.5%, and Ni = 99.9%. Each metal was weighed so as to obtain the desired composition, and then melted in an Ar atmosphere using an arc melting furnace (ACM-DS-01S) manufactured by Daiya Vacuum to produce an ingot. The alloy production procedure is as follows. After substituting the inside of the furnace with vacuum using an oil diffusion pump to 2.7 × 10 −3 Pa or less, Ar gas (purity 99.99%) was introduced to about 5 × 10 4 Pa, and a tungsten electrode rod was used. Arc discharge. In order to remove the impurity gas in the Ar gas, getter Ti was dissolved for about 2 minutes before the sample was dissolved. The alloy sample was then melted at an arc current of 400 A or more for about 2 minutes. Thereafter, in order to make the composition uniform, the operation of melting the alloy ingot upside down for about 2 minutes was performed about 10 times. The alloy compositions shown in this experiment are all mol%.
A 2.65 × 2.65 × 7 mm rectangular parallelepiped rolling test piece was cut out from an alloy produced by arc melting using a BROTHER HS-300 wire electric discharge machine. The prepared sample is polished with water-resistant abrasive paper made by Buramet, and the roll interval is gradually narrowed at room temperature using a cold two-high rolling mill (100Φ x 100W) made by Nihon Cross Rolling. Until cold rolling.

対水素脆性は、400℃で100時間水素を透過させたときに水素脆性が起きて水素透過膜として作用しているかどうかで判断した。   Anti-hydrogen embrittlement was judged by whether hydrogen embrittlement occurred when hydrogen permeated at 400 ° C. for 100 hours, acting as a hydrogen permeable membrane.

図1と表1にNb=56 mol%の合金を50%に圧延して作製した試料の673Kにおける水素透過係数(Φ)を示す。表1の結果から明らかなように、実施例1〜6の試験片は従来報告されている比較例1のNi-Ti-Nb合金よりも優れた水素透過能を示し、かつ耐水素脆性に優れていることがわかる。また比較例2〜7に示した例では水素透過能が報告されている比較例1のNi-Ti-Nb合金よりも高い場合もあるが、水耐水素脆性で劣っているか、溶解後機械的に脆く水素透過能が測定できないことがわかる。図1にこれらの組成図を示したが、これから水素透過率が高く、耐水素脆性に優れる組成範囲はmol%で、NixTiyNb100-x-y(ただし、x=10%以上25%未満、y=10%以上40%以下)であることがわかる。 FIG. 1 and Table 1 show the hydrogen permeation coefficient (Φ) at 673 K of a sample prepared by rolling an alloy with Nb = 56 mol% to 50%. As is apparent from the results in Table 1, the test pieces of Examples 1 to 6 show a hydrogen permeability superior to that of the conventionally reported Ni—Ti—Nb alloy of Comparative Example 1 and are excellent in hydrogen brittleness resistance. You can see that In the examples shown in Comparative Examples 2 to 7, the hydrogen permeability may be higher than that of the Ni-Ti-Nb alloy of Comparative Example 1, which is reported, but it is inferior in water hydrogen brittleness or mechanical after dissolution. It can be seen that the hydrogen permeability is not measurable because it is brittle. These composition diagrams are shown in FIG. 1. From now on, the composition range with high hydrogen permeability and excellent resistance to hydrogen embrittlement is mol%, Ni x Ti y Nb 100-xy (where x = 10% or more and less than 25%) Y = 10% to 40%).

組成と水素透過係数Φとの関係を示す図である。It is a figure which shows the relationship between a composition and hydrogen permeability coefficient (PHI).

Claims (5)

水素透過性を担う相と耐水素脆化性を担う相との複合相からなる水素分離・精製用複相合金であり、前記複相合金の合金組成は、mol%で、NixTiyNb100-x-y(ただし、x=10%以上25%未満、y=10%以上40%以下である)からなることを特徴とする水素分離・精製用複相合金。 This is a double phase alloy for hydrogen separation / purification composed of a composite phase of a phase responsible for hydrogen permeability and a phase responsible for hydrogen embrittlement resistance, and the alloy composition of the double phase alloy is mol%, Ni x Ti y Nb 100-xy (however, x = 10% or more and less than 25%, y = 10% or more and 40% or less) 前記複合相が、水素透過性を担うNiを固溶したNbTi相と耐水素脆化性を担うNbを固溶したNiTi相との共晶(NbTi+NiTi)、或いはこの共晶と初相NbTiとの相からなることを特徴とする請求項1に記載の水素分離・精製用複相合金。 The composite phase is a eutectic (NbTi + NiTi) of a NbTi phase in which Ni is responsible for hydrogen permeability and a NiTi phase in which Nb is responsible for hydrogen embrittlement resistance, or the eutectic and the initial phase NbTi. The multiphase alloy for hydrogen separation / purification according to claim 1, comprising a phase. 前記初相NbTiが共晶に囲まれていることを特徴とする請求項1又は2に記載の水素分離・精製用複相合金。 The multiphase alloy for hydrogen separation and purification according to claim 1 or 2, wherein the primary phase NbTi is surrounded by a eutectic. 前記Ni−Ti−Nb系合金が大気中室温で延性を有することを特徴とする請求項1乃至3に記載の水素分離・精製用複相合金。 4. The multiphase alloy for hydrogen separation and purification according to claim 1, wherein the Ni-Ti-Nb alloy has ductility at room temperature in the atmosphere. 前記塑性加工により厚さを0.05〜3mmにしたことを特徴とする請求項1乃至4に記載の水素分離・精製用複相合金の製造方法。
5. The method for producing a dual phase alloy for hydrogen separation / purification according to claim 1, wherein the thickness is 0.05 to 3 mm by the plastic working.
JP2005091367A 2005-03-28 2005-03-28 Double phase alloy for hydrogen separation and purification Expired - Fee Related JP4953337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005091367A JP4953337B2 (en) 2005-03-28 2005-03-28 Double phase alloy for hydrogen separation and purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005091367A JP4953337B2 (en) 2005-03-28 2005-03-28 Double phase alloy for hydrogen separation and purification

Publications (2)

Publication Number Publication Date
JP2006274297A true JP2006274297A (en) 2006-10-12
JP4953337B2 JP4953337B2 (en) 2012-06-13

Family

ID=37209330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005091367A Expired - Fee Related JP4953337B2 (en) 2005-03-28 2005-03-28 Double phase alloy for hydrogen separation and purification

Country Status (1)

Country Link
JP (1) JP4953337B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274298A (en) * 2005-03-28 2006-10-12 Hitachi Metals Ltd Diplophase alloy for separating/refining hydrogen and manufacturing method therefor
JP2009291742A (en) * 2008-06-06 2009-12-17 Hitachi Ltd Hydrogen permeation member and hydrogen generating reactor using the same
WO2013039092A1 (en) * 2011-09-13 2013-03-21 日立金属株式会社 Hydrogen separation device and method for operating same
KR101281576B1 (en) 2010-10-28 2013-07-03 한국에너지기술연구원 A hydrogen permeation alloy with dual phase and manufacturing method of hydrogen separation membrane using the same
US9266071B2 (en) 2010-05-31 2016-02-23 Hitachi Metals, Ltd. Hydrogen separation alloy and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240629A (en) * 1988-03-18 1989-09-26 Sanyo Electric Co Ltd Hydrogen storage alloy thin film body and its manufacture
JPH04187735A (en) * 1990-11-20 1992-07-06 Sanyo Electric Co Ltd Hydrogen storage alloy electrode
JPH09259876A (en) * 1996-03-26 1997-10-03 Aisin Seiki Co Ltd Hydrogen absorbing alloy, and hydrogen absorbing alloy electrode
JP2000159503A (en) * 1998-11-20 2000-06-13 Mitsubishi Heavy Ind Ltd Hydrogen separating film of niobium alloy
JP2005232491A (en) * 2004-02-17 2005-09-02 Ulvac Japan Ltd Dual-phase alloy for hydrogen separation and purification and its manufacturing method, and metal film for hydrogen separation and purification and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01240629A (en) * 1988-03-18 1989-09-26 Sanyo Electric Co Ltd Hydrogen storage alloy thin film body and its manufacture
JPH04187735A (en) * 1990-11-20 1992-07-06 Sanyo Electric Co Ltd Hydrogen storage alloy electrode
JPH09259876A (en) * 1996-03-26 1997-10-03 Aisin Seiki Co Ltd Hydrogen absorbing alloy, and hydrogen absorbing alloy electrode
JP2000159503A (en) * 1998-11-20 2000-06-13 Mitsubishi Heavy Ind Ltd Hydrogen separating film of niobium alloy
JP2005232491A (en) * 2004-02-17 2005-09-02 Ulvac Japan Ltd Dual-phase alloy for hydrogen separation and purification and its manufacturing method, and metal film for hydrogen separation and purification and its manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274298A (en) * 2005-03-28 2006-10-12 Hitachi Metals Ltd Diplophase alloy for separating/refining hydrogen and manufacturing method therefor
JP4577775B2 (en) * 2005-03-28 2010-11-10 日立金属株式会社 Method for producing double phase alloy for hydrogen separation and purification
JP2009291742A (en) * 2008-06-06 2009-12-17 Hitachi Ltd Hydrogen permeation member and hydrogen generating reactor using the same
US9266071B2 (en) 2010-05-31 2016-02-23 Hitachi Metals, Ltd. Hydrogen separation alloy and method for producing same
KR101281576B1 (en) 2010-10-28 2013-07-03 한국에너지기술연구원 A hydrogen permeation alloy with dual phase and manufacturing method of hydrogen separation membrane using the same
WO2013039092A1 (en) * 2011-09-13 2013-03-21 日立金属株式会社 Hydrogen separation device and method for operating same
US20140271450A1 (en) * 2011-09-13 2014-09-18 Takao Ishikawa Hydrogen separation device and method for operating same
JPWO2013039092A1 (en) * 2011-09-13 2015-03-26 日立金属株式会社 Hydrogen separator and method for operating the same
EP2746219A4 (en) * 2011-09-13 2015-05-06 Hitachi Metals Ltd Hydrogen separation device and method for operating same
US9260304B2 (en) 2011-09-13 2016-02-16 Hitachi Metals, Ltd. Hydrogen separation device and method for operating same

Also Published As

Publication number Publication date
JP4953337B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
KR101290942B1 (en) Multiple phase alloys for hydrogen separation-purification and method for preparing the alloys, and metal membranes for hydrogen separation-purification and method for preparing the metal membranes
Ozaki et al. Hydrogen permeation characteristics of V–Ni–Al alloys
JP4756450B2 (en) Double phase alloy for hydrogen separation and purification
JP5152433B2 (en) Hydrogen separation alloy and manufacturing method thereof
Ishikawa et al. Microstructure and hydrogen permeation of cold rolled and annealed Nb40Ti30Ni30 alloy
JP3749952B1 (en) Crystalline double-phase hydrogen permeable alloy membrane and crystalline double-phase hydrogen permeable alloy membrane
JP4953337B2 (en) Double phase alloy for hydrogen separation and purification
JP3749953B1 (en) Double phase hydrogen permeable alloy and hydrogen permeable alloy membrane
JP5185035B2 (en) Pd-Cu alloy with excellent hydrogen permeation performance
JP4860969B2 (en) Hydrogen permeable alloy and method for producing the same
JP4577775B2 (en) Method for producing double phase alloy for hydrogen separation and purification
JP4742269B2 (en) Method for producing double-phase hydrogen permeable alloy and double-phase hydrogen permeable alloy
JP2004074070A (en) Hydrogen-permeable membrane
JP3882089B1 (en) Crystalline double phase hydrogen permeable alloy and hydrogen permeable alloy membrane
JP2006000722A (en) Hydrogen-permeable alloy membrane and its manufacturing method
JP5039968B2 (en) Crystalline double phase hydrogen permeable alloy and hydrogen permeable alloy membrane
JP2006283076A (en) Dual phase alloy for separating/refining hydrogen
JP2010018836A (en) Hydrogen permeation/separation thin membrane exhibiting excellent properties for hydrogen permeation/separation
JP4860961B2 (en) Hydrogen permeable alloy
JP2008063628A (en) Dual-phase hydrogen permeable alloy, and its production method
CN115652160B (en) Vanadium alloy membrane material for separating and purifying ammonia decomposition hydrogen and preparation method thereof
JP2009291742A (en) Hydrogen permeation member and hydrogen generating reactor using the same
JP4747737B2 (en) Hydrogen permeable alloy membrane and method for producing the same
JP2008194629A (en) Hydrogen-permeable alloy membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees