JP2006274298A - Diplophase alloy for separating/refining hydrogen and manufacturing method therefor - Google Patents

Diplophase alloy for separating/refining hydrogen and manufacturing method therefor Download PDF

Info

Publication number
JP2006274298A
JP2006274298A JP2005091368A JP2005091368A JP2006274298A JP 2006274298 A JP2006274298 A JP 2006274298A JP 2005091368 A JP2005091368 A JP 2005091368A JP 2005091368 A JP2005091368 A JP 2005091368A JP 2006274298 A JP2006274298 A JP 2006274298A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen
phase
rolling
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005091368A
Other languages
Japanese (ja)
Other versions
JP4577775B2 (en
Inventor
Kiyoshi Aoki
清 青木
Kazuhiro Ishikawa
和宏 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitami Institute of Technology NUC
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Kitami Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd, Kitami Institute of Technology NUC filed Critical Hitachi Metals Ltd
Priority to JP2005091368A priority Critical patent/JP4577775B2/en
Publication of JP2006274298A publication Critical patent/JP2006274298A/en
Application granted granted Critical
Publication of JP4577775B2 publication Critical patent/JP4577775B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing such a diplophase alloy for separating/refining hydrogen as to have high rolling-formability and a high hydrogen-permeation coefficient. <P>SOLUTION: This diplophase alloy is a Nb-Ti-Ni alloy formed of a diplophase comprising a phase having hydrogen permeability and a phase having hydrogen embrittlement resistance. The method for manufacturing the diplophase alloy includes heat-treating the Nb-Ti-Ni alloy at a temperature higher than 1,000°C for 100 hours or longer. The manufacturing method also includes plastic-working the Nb-Ti-Ni alloy and subsequently heat-treating it at a temperature higher than 1,000°C. Thus manufactured diplophase alloy can obtain the hydrogen permeation coefficient almost equal to that of the as-cast alloy. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高純度水素を製造するために用いられる、水素分離・精製用複相合金の製造方法に関し、特にNb−Ti―Ni系の新規な合金組成からなる水素分離・精製用複相合金の製造方法に関する。   The present invention relates to a method for producing a hydrogen separation / purification double-phase alloy used for producing high-purity hydrogen, and particularly to a hydrogen separation / purification double-phase alloy comprising a novel alloy composition of Nb-Ti-Ni system. It relates to the manufacturing method.

燃料電池用の燃料である水素は、自然界では単独に存在しないため、人工的に製造する必要がある。太陽熱等の再生可能な自然エネルギーを用いて作った電気で水を分解して水素を製造するのが理想であるが、現状の技術レベルではコストが高く、適用困難である。 当面は天然ガス(メタン)等を水蒸気改質して水素を製造するのが現実的と考えられる。水蒸気改質は以下のような化学反応を用いて水素を得るものである。この反応でH2のみを取り除けば、ル・シャトリエの法則に従って平衡は右側にずれ、より高い転換率を得ることができ、また反応温度を下げることでエネルギーロスを抑えることができ、水素製造コストの低減化が図れる。水素を選択的に取り除くために利用されるのが水素透過合金膜である。水素透過合金膜は水素のみが透過する。 Since hydrogen, which is a fuel for fuel cells, does not exist in nature alone, it must be artificially produced. Ideally, hydrogen is produced by decomposing water using electricity made from renewable natural energy such as solar heat, but the current technical level is expensive and difficult to apply. For the time being, it is considered realistic to produce hydrogen by steam reforming natural gas (methane) or the like. Steam reforming is to obtain hydrogen using the following chemical reaction. If only H 2 is removed in this reaction, the equilibrium shifts to the right side according to Le Chatelier's law, a higher conversion can be obtained, and energy loss can be suppressed by lowering the reaction temperature, resulting in hydrogen production costs. Can be reduced. A hydrogen permeable alloy membrane is used to selectively remove hydrogen. Only hydrogen passes through the hydrogen permeable alloy membrane.

水素は金属の結晶格子内に侵入型不純物の形で侵入し、窒素や炭素および酸素に比べて拡散速度が十数桁大きい特徴がある。水素透過合金膜はこのような水素の特性を利用したものである。不純水素を分離・精製するには、水素透過合金膜を挟んで供給側の不純水素を高圧にし、一方、純水素を収集する側を低圧にして圧力差を発生させる。高圧側の水素分子は合金膜表面で原子状水素に解離し、金属内に固溶する。圧力差によって生じる金属膜内の水素濃度勾配を駆動力として水素原子は高圧側から低圧側へ拡散し、低圧側で再結合して水素分子となり低圧側に流れる。この際、水素以外の不純物気体は高圧側で原子状に解離できず、また金属内での拡散速度も水素原子に比べて遙かに遅いため低圧側へ透過することはできない。金属膜を用いた方法によれば、理論的には純度100%の水素を得ることができ、実際に99.999999%純度の水素を得ることができる。現在、実用化されている水素透過合金膜はPdをベースとした合金であるがPdは非常に希少で高価な金属であるため、それに代わる安価な合金の開発が求められている。   Hydrogen penetrates into the metal crystal lattice in the form of interstitial impurities, and has a feature that its diffusion rate is ten orders of magnitude higher than that of nitrogen, carbon and oxygen. The hydrogen permeable alloy film utilizes such characteristics of hydrogen. In order to separate and purify the impure hydrogen, the impure hydrogen on the supply side is set to a high pressure across the hydrogen permeable alloy membrane, while the pressure collecting side is set to a low pressure to generate a pressure difference. Hydrogen molecules on the high pressure side dissociate into atomic hydrogen on the surface of the alloy film and dissolve in the metal. Hydrogen atoms are diffused from the high pressure side to the low pressure side using the hydrogen concentration gradient in the metal film caused by the pressure difference as a driving force, recombine on the low pressure side and become hydrogen molecules and flow to the low pressure side. At this time, impurity gases other than hydrogen cannot be dissociated in an atomic form on the high pressure side, and cannot be transmitted to the low pressure side because the diffusion speed in the metal is much slower than that of hydrogen atoms. According to the method using a metal film, theoretically, hydrogen having a purity of 100% can be obtained, and hydrogen having a purity of 99.999999% can be actually obtained. Currently, the hydrogen permeable alloy film in practical use is an alloy based on Pd. However, since Pd is a very rare and expensive metal, development of an inexpensive alloy to replace it is required.

また、別の系として、例えば特許文献1に記載されるようなNb−Ni系、特許文献2に記載されるようなNb−(Ni,Co,Mo)-(V,Ti,Zr,Ta,Hf)系の水素透過合金が検討されている。
特開2001−170460号公報(0026) 特開2004−42017号公報(0007〜0011、表1)
As another system, for example, Nb-Ni system as described in Patent Document 1, Nb- (Ni, Co, Mo)-(V, Ti, Zr, Ta, Hf) based hydrogen permeable alloys have been studied.
JP 2001-170460 A (0026) JP 2004-42017 A (0007 to 0011, Table 1)

水素透過合金には大きい水素透過係数と高い耐水素脆化性が求められる。ここで、水素を多く固溶すると水素透過係数が向上するが、同時に水素脆化が顕著になる。つまり、水素透過係数の増大と耐水素脆化性は相反しており、単相(固溶体)合金で両立させることは、一般に極めて困難であり、組成の組合せについては未だ検討の余地が残る。   Hydrogen permeable alloys are required to have a large hydrogen permeability coefficient and high hydrogen embrittlement resistance. Here, when a large amount of hydrogen is dissolved, the hydrogen permeability coefficient is improved, but at the same time, hydrogen embrittlement becomes remarkable. That is, the increase in the hydrogen permeability coefficient and the hydrogen embrittlement resistance are contradictory, and it is generally very difficult to achieve both with a single-phase (solid solution) alloy, and there is still room for studying the combination of compositions.

また、水素透過合金は薄板(膜)で使用すると、より多くの水素を効率よく製造でき、低コスト化が図れる。薄板を作製する方法としては(1)合金を薄くスライスする。(2)液体急冷によるアモルファス膜の作製。(3)圧延、などが考えられる。このうちスライスは時間やコストがかかり、さらに広面積の膜を作製すことは容易ではない。液体急冷は薄膜を一気に短時間で作ることができるものの、幅の広い膜、および厚さを変えた薄板を作製することが技術的に難しい。一方、圧延は単純、簡単、低コストで広面積の膜を作ることができ、工業的にも広く用いられ、技術的にも発達している。もし圧延という簡易な方法で薄板を作製できれば安価で優れた水素透過特性を有する合金膜を大量生産することができると期待される。よって水素透過合金の圧延加工性は重要な項目と言える。   Further, when the hydrogen permeable alloy is used as a thin plate (membrane), more hydrogen can be produced efficiently, and the cost can be reduced. As a method for producing a thin plate, (1) an alloy is sliced thinly. (2) Preparation of an amorphous film by liquid quenching. (3) Rolling can be considered. Of these, slicing takes time and costs, and it is not easy to produce a film with a larger area. Although liquid quenching can form a thin film in a short time, it is technically difficult to produce a wide film and a thin plate having a different thickness. On the other hand, rolling is simple, easy, low cost, can produce a film with a large area, is widely used industrially, and has developed technically. If a thin plate can be produced by a simple method of rolling, it is expected that an alloy film having excellent hydrogen permeation characteristics can be mass-produced at a low cost. Therefore, it can be said that the rolling workability of the hydrogen permeable alloy is an important item.

よって本発明では、大きな圧延加工性を有し、かつ水素透過係数が大きい水素分離・精製用複相合金の製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for producing a hydrogen separation / purification double phase alloy having a large rolling workability and a large hydrogen permeability coefficient.

本発明者は、合金組成として、Nb-Ti-Ni系の水素分離・精製用複相合金を用い、この合金を1000℃超で100時間以上熱処理することで、上記の目的である水素透過係数が高く、かつ優れた冷間加工性を有する水素分離・精製用複相合金が得られることを知見した。また、塑性加工を施したものであっても1100℃超で熱処理すれば、後述するようにTiNi相の組織だけでなく、Nb−Ti相の組織の再結晶化がなされ、鋳造ままのNb-Ti-Ni系の水素分離・精製用複相合金とほぼ同等の水素透過係数が得られる。これにより得られる水素分離・精製用複相合金は、水素透過性を担う相と耐水素脆化性を担う相との複合相からなることを特徴とするNb−Ti−Ni系合金であって、水素透過能を主に担うNbを主成分とする相(初晶)の平均結晶粒径(dc)が10〜30μmであることを特徴とする。   The present inventor uses an Nb-Ti-Ni-based multiphase alloy for hydrogen separation / purification as the alloy composition, and heat-treats the alloy at a temperature exceeding 1000 ° C for 100 hours or more, thereby achieving the above-described hydrogen permeability coefficient. It has been found that a hydrogen separation / purification double phase alloy is obtained which has a high temperature and excellent cold workability. Even if plastic processing is performed, if heat treatment is performed at a temperature exceeding 1100 ° C., not only the TiNi phase structure but also the Nb—Ti phase structure is recrystallized as described later, and the as-cast Nb— Almost the same hydrogen permeability coefficient as Ti-Ni based hydrogen separation / purification double phase alloy is obtained. The resulting hydrogen separation / purification dual phase alloy is an Nb-Ti-Ni alloy characterized by comprising a composite phase of a phase responsible for hydrogen permeability and a phase responsible for hydrogen embrittlement resistance. The average crystal grain size (dc) of the phase (primary crystal) mainly composed of Nb mainly responsible for hydrogen permeability is 10 to 30 μm.

本発明では、Nb-Ti-Ni系の合金を用いるため、薄膜化する塑性加工手段として圧延加工を採用できる。圧延率は10%以上、さらには30%以上とすることも可能である。これにより、Nb-Ti-Ni系の水素分離・精製用複相合金の厚さを0.05〜3mmにすることができ、高い水素透過性能を得ることができる。   In the present invention, since an Nb—Ti—Ni-based alloy is used, rolling can be adopted as a plastic working means for forming a thin film. The rolling rate can be 10% or more, and further 30% or more. Thereby, the thickness of the Nb—Ti—Ni-based double phase alloy for hydrogen separation / purification can be made 0.05 to 3 mm, and high hydrogen permeation performance can be obtained.

前記Nb−Ti−Ni系合金は、例えば、不活性ガス雰囲気中のアーク溶解法、不活性ガス雰囲気中若しくは真空中の高周波誘導加熱溶解法、真空中の電子ビーム溶解法、又はレーザ加熱溶解法などにより溶解して作製することができる。水素分離・精製用複相合金の表面の被処理原料を流す側と精製水素を取り出す側との両側にPd膜またはPd合金膜を形成して、最終形態とすることも可能である。   The Nb—Ti—Ni-based alloy is, for example, an arc melting method in an inert gas atmosphere, a high-frequency induction heating melting method in an inert gas atmosphere or in a vacuum, an electron beam melting method in a vacuum, or a laser heating melting method. It can be prepared by dissolving by, for example. It is also possible to form a Pd film or a Pd alloy film on both sides of the surface of the multiphase alloy for hydrogen separation / purification on the side where the raw material to be treated is flowed and on the side where the purified hydrogen is taken out to obtain a final form.

本発明で使用するNb−Ti−Ni系合金の組成は、原子%で、Nb100-x-yTiyNix(ただし、x=5〜45、y=15〜55であり、Nbは10〜75)からなることを特徴とする。Ni量が5%未満では水素透過係数が低く、また45%を超えると脆くなり、圧延などの塑性加工が難しくなる。Tiが55%を超えると水素透過係数が低く、また15%未満では脆くなり、圧延などの塑性加工が難しくなる。Ni元素の一部を、Ni元素に対して上限を50%として、Ag,Al,Cr,Cu,Ga,Zn,Fe,Mn等の元素で置換することも可能である。好ましくは20%以下とする。また、Tiの一部を、Ti元素に対して上限を10%として、他の4A族の元素と置換することも可能である。また、Nbの一部を、Nb元素に対して上限を10%として、他の5A族の元素と置換することも可能である。この合金はbcc-(Nb,Ti)固溶体とB2-NiTi化合物の2相から主に成る。Nb-Ti相は水素を固溶し、拡散させることで水素透過特性を担う。一方、NiTi相は水素脆化しにくく、水素中での機械的性質を担う。つまり役割分担により優れた水素透過特性と耐水素脆性を併せ持つ新合金が実現した。さらにNb-Ti-Ni複相合金はPd基合金に比べて遙かに安価なことも魅力である。 The composition of the Nb-Ti-Ni alloy for use in the present invention, in atomic%, Nb 100-xy Ti y Ni x ( however, x = 5 to 45, a y = 15 to 55, Nb 10 to 75 ). If the amount of Ni is less than 5%, the hydrogen permeation coefficient is low, and if it exceeds 45%, it becomes brittle and plastic processing such as rolling becomes difficult. When Ti exceeds 55%, the hydrogen permeation coefficient is low, and when Ti is less than 15%, the material becomes brittle and plastic processing such as rolling becomes difficult. It is also possible to replace part of the Ni element with an element such as Ag, Al, Cr, Cu, Ga, Zn, Fe, Mn, etc. with an upper limit of 50% with respect to the Ni element. Preferably it is 20% or less. It is also possible to replace a part of Ti with another 4A group element with an upper limit of 10% with respect to the Ti element. It is also possible to replace a part of Nb with another 5A group element with an upper limit of 10% with respect to the Nb element. This alloy mainly consists of two phases of bcc- (Nb, Ti) solid solution and B 2 -NiTi compound. The Nb-Ti phase is responsible for hydrogen permeation properties by dissolving and diffusing hydrogen. On the other hand, the NiTi phase is difficult to be hydrogen embrittled and bears mechanical properties in hydrogen. In other words, a new alloy that has both excellent hydrogen permeation characteristics and resistance to hydrogen embrittlement has been realized. It is also attractive that Nb-Ti-Ni double phase alloys are much cheaper than Pd based alloys.

冷間圧延などの塑性加工により薄肉化しても、本発明を適用することで、水素透過係数(Φ)が鋳造材とほぼ同じ水素分離・精製用複相合金が得られる。また、Nb-Ti-Ni系複相水素透過合金を用いたため、優れた塑性加工性能を有し、熱処理を組み合わせたプロセスによって水素分離・精製用複相合金として高特性の薄板を作製できる。この方法により厚さ150μm以下の薄板を作製することも可能であり、さらに、厚さ120μmでも0.7MPa以上の圧力差に耐えられるという非常に優れた耐水素脆性の水素分離・精製用複相合金を提供できる。   Even if the thickness is reduced by plastic working such as cold rolling, a hydrogen separation / purification double phase alloy having the same hydrogen permeability coefficient (Φ) as that of the cast material can be obtained by applying the present invention. In addition, since the Nb-Ti-Ni double-phase hydrogen permeable alloy is used, it has excellent plastic working performance, and a high-performance thin plate can be produced as a double-phase alloy for hydrogen separation and purification by a process that combines heat treatment. It is possible to produce a thin plate with a thickness of 150 μm or less by this method, and furthermore, an extremely excellent hydrogen embrittlement-resistant double phase alloy that can withstand a pressure difference of 0.7 MPa or more even at a thickness of 120 μm. Can provide.

実施例で行った再結晶温度の調査方法について延べる。合金試料を圧延率測定と同じ条件で、r=50%まで冷間強加工を加え、不透明石英管内に入れ、Ar置換後に石英管内を約6×10-3Paまで真空引きして封入した。石英管を電気炉内で573K〜1373Kで1時間焼きなました後に水焼入れした。表面を研磨し、微小ビッカース硬度計を用いて硬度を、また圧延機を用いて割れが発生するまで圧延加工を加えることによって再結晶温度を測定した。 The investigation method for the recrystallization temperature performed in the examples will be extended. The alloy sample was cold worked to r = 50% under the same conditions as the rolling rate measurement, placed in an opaque quartz tube, and after replacing with Ar, the quartz tube was evacuated to about 6 × 10 −3 Pa and sealed. The quartz tube was annealed in an electric furnace at 573 K to 1373 K for 1 hour and then water quenched. The surface was polished, and the recrystallization temperature was measured by applying a rolling process using a micro Vickers hardness tester and using a rolling mill until cracking occurred.

水素透過試験の方法を述べる。まず、酸化防止と水素の解離と再結合を容易にすることを目的として、作製したディスクにANELVA製RF,DC高周波マグネトロンスパッタ装置(SPF-430H)を用いてPdを被覆した。炉内をロータリーポンプおよびクライオポンプを用いて4.0×10-3Paまで真空引きしたあと、逆スパッタをRFパワー50Wで10分間行い、その後基盤を523Kまで加熱し、DCパワー0.05Wで本スパッタを5分間行い、Pdを約190nm被覆した。次に、Pd被覆したディスクを銅ガスケットの間に挟み透過装置にセットした。パイプ内をAr置換した後2.7×10-3Pa以下になるまで油拡散ポンプで真空引きし、炉を673Kまで加熱して40分間保持した。その後水素を導入して供給側水素圧を0.20MPa、透過側圧力を0.10MPaに調整して60分保持後に水素透過の測定を開始した。測定には純度7Nの高純度水素を用いて供給側の水素圧を0.20MPaから0.8MPaの範囲で行った。この操作を623K、573K、523Kでも同様に行った。測定は流量法を用いた。流量計はKOFLOK製MODEL3300を使用した。透過面積は2.46×10-5m2(直径5.6mmの真円形)である。 The hydrogen permeation test method is described. First, for the purpose of preventing oxidation and facilitating dissociation and recombination of hydrogen, the produced disk was coated with Pd using an RF / DC radio frequency magnetron sputtering apparatus (SPF-430H) manufactured by ANELVA. The furnace is evacuated to 4.0 × 10 −3 Pa using a rotary pump and cryopump, and then reverse sputtering is performed for 10 minutes at an RF power of 50 W, then the substrate is heated to 523 K, and this sputtering is performed at a DC power of 0.05 W. It was performed for 5 minutes, and Pd was coated about 190 nm. Next, the Pd-coated disc was sandwiched between copper gaskets and set in a transmission device. After replacing the inside of the pipe with Ar, vacuuming was performed with an oil diffusion pump until the pressure became 2.7 × 10 −3 Pa or less, and the furnace was heated to 673 K and held for 40 minutes. Thereafter, hydrogen was introduced, the supply-side hydrogen pressure was adjusted to 0.20 MPa, the permeation-side pressure was adjusted to 0.10 MPa, and the hydrogen permeation measurement was started after holding for 60 minutes. For the measurement, high-purity hydrogen having a purity of 7N was used and the hydrogen pressure on the supply side was in the range of 0.20 MPa to 0.8 MPa. This operation was similarly performed at 623K, 573K, and 523K. The flow rate method was used for measurement. The flowmeter used was MODEL3300 manufactured by KOFLOK. The transmission area is 2.46 × 10 −5 m 2 (true circle with a diameter of 5.6 mm).

本発明における組織観察および組成分析の方法を述べる。作製した試料の小片をアクリル製の圧力成型樹脂に埋め込み、研磨して鏡面仕上げにし、日本電子(株)製走査型電子顕微鏡(SEM,JSM5300)を用いて二次電子像および反射電子像を観察した。組成分析はオックスフォード・インスツルメンツ製エネルギー分散型X線分光器(EDS)を用いてX線スペクトル収集によって行った。   The method of tissue observation and composition analysis in the present invention will be described. A small piece of the prepared sample was embedded in acrylic pressure molding resin, polished to a mirror finish, and observed with a scanning electron microscope (SEM, JSM5300) manufactured by JEOL Ltd. did. The composition analysis was performed by X-ray spectrum collection using an energy dispersive X-ray spectrometer (EDS) manufactured by Oxford Instruments.

金属膜を用いた水素透過では、水素流量JはJ=Φ(ΔP0.5)/Lより求めることができる。しかし、この式はフィックの第一法則およびジーベルツ則から導き出しているため、試料がジーベルツ則を満たしていなければならない。そこでJ×L vs ΔP0.5をグラフにプロットし、その直線性からジーベルツ則を満たすか検証した。また、この直線の傾きから水素透過係数(Φ)を求めた。 In hydrogen permeation using a metal film, the hydrogen flow rate J can be obtained from J = Φ (ΔP 0.5 ) / L. However, since this equation is derived from Fick's first law and the Siebels law, the sample must satisfy the Siebels law. Therefore, J × L vs ΔP 0.5 was plotted on a graph, and it was verified from the linearity whether the Siebelz rule was satisfied. Further, the hydrogen permeation coefficient (Φ) was determined from the slope of this straight line.

以下本発明を実施例により説明するが、これら実施例により本発明が限定されるものではない。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

(実施例1)
本実験で用いた金属の純度(mass%)はNb=99.9%、Ti=99.5%、Ni=99.9%である。各金属を目的の組成が得られるように秤量した後、大亜真空製アーク溶解炉(ACM-DS-01S)を用いてAr雰囲気中で溶解してインゴットを作製した。合金作製手順は次の通りである。炉内をAr置換後に油拡散ポンプを用いて2.7×10-3Pa以下になるまで真空引きした後、Arガス(純度99.99%)を5×104Pa程度まで導入し、タングステン電極棒を用いてアーク放電した。Arガス中の不純物ガスを除去するため、試料溶解前にゲッターTiを約2分間溶解した。次いで合金試料をアーク電流400A以上で約2分間溶解した。その後、組成を均一にするために合金インゴットを裏返し約2分間溶解する作業を約10回行った。なお本実験で示す合金組成は全てmol%である。
アーク溶解で作製した合金からBROTHER製のHS-300ワイヤー放電加工機を用いて2.65×2.65×7mmの直方体状の圧延用試験片を切り出した。作製した試料をビューラメット製の耐水研磨紙を用いて研磨し、日本クロス圧延製の冷間2段圧延機(100Φ×100W)を用いて室温において徐々にロール間隔を狭め、わずかに割れが発生するまで冷間圧延を行った。圧延前の試料の厚さをT0、圧延後の試料の厚さをTとすると圧延率r(%)は以下の式で求めた。
Example 1
The purity (mass%) of the metal used in this experiment is Nb = 99.9%, Ti = 99.5%, and Ni = 99.9%. Each metal was weighed so as to obtain the desired composition, and then melted in an Ar atmosphere using an arc melting furnace (ACM-DS-01S) manufactured by Daiya Vacuum to produce an ingot. The alloy production procedure is as follows. After substituting the inside of the furnace with vacuum using an oil diffusion pump to 2.7 × 10 −3 Pa or less, Ar gas (purity 99.99%) was introduced to about 5 × 10 4 Pa, and a tungsten electrode rod was used. Arc discharge. In order to remove the impurity gas in the Ar gas, getter Ti was dissolved for about 2 minutes before the sample was dissolved. The alloy sample was then melted at an arc current of 400 A or more for about 2 minutes. Thereafter, in order to make the composition uniform, the operation of melting the alloy ingot upside down for about 2 minutes was performed about 10 times. The alloy compositions shown in this experiment are all mol%.
A 2.65 × 2.65 × 7 mm rectangular parallelepiped rolling test piece was cut out from an alloy produced by arc melting using a BROTHER HS-300 wire electric discharge machine. The prepared sample is polished with water-resistant abrasive paper made by Buramet, and the roll interval is gradually narrowed at room temperature using a cold two-high rolling mill (100Φ x 100W) made by Nihon Cross Rolling. Until cold rolling. When the thickness of the sample before rolling was T 0 and the thickness of the sample after rolling was T, the rolling rate r (%) was obtained by the following equation.

まず、Nb-Ti-Ni合金の圧延率の合金組成依存性を調査した。表1に実験を行った各種組成(公称組成)と(Nb-Ti-Ni)合金の冷間圧延率(r)を示す。図1はそれを図示したものである。金属間化合物TiNiと純Nbを結ぶ直線近傍で、ややTi過剰側の組成の合金が高い圧延率を持つことが分かる。この組成の合金はbcc-(Nb,Ti)固溶体相とB2-TiNi化合物の2相から成り、脆い金属間化合物を含まない。
Ti/Ni比が1/1から離れるほど圧延率が低下し脆くなる傾向にある。
First, the alloy composition dependency of the rolling rate of Nb-Ti-Ni alloy was investigated. Table 1 shows the various compositions (nominal composition) and the cold rolling rate (r) of the (Nb-Ti-Ni) alloy. FIG. 1 illustrates this. It can be seen that an alloy having a composition slightly on the Ti excess side has a high rolling reduction in the vicinity of the straight line connecting the intermetallic compound TiNi and pure Nb. The alloy of this composition consists of two phases of bcc- (Nb, Ti) solid solution phase and B2-TiNi compound, and does not contain brittle intermetallic compounds.
As the Ti / Ni ratio departs from 1/1, the rolling rate tends to decrease and become brittle.

図2にTi/Ni比が1/1である(a)Nb40Ti30Ni30合金、それよりもTi過剰な(b)Nb40Ti40Ni20と(c)Nb40Ti50Ni10、およびNi過剰な(d)Nb40Ti25Ni35と(e)Nb40Ti20Ni40のXRD回折図形を示す。図3にそれぞれの合金のSEM写真を示す。XRD図形とSEM写真からわかるようにNb40Ti40Ni20やNb40Ti50Ni10などのTi過剰で、しかも脆い組成の合金は脆いTi2Ni金属間化合物を含む。他方、Ni過剰のNb40Ti25Ni35やNb40Ti20Ni40はNb8Ti3Ni9などの脆い金属間化合物を含む。金属間化合物は一般に延性に乏いが、脆い金属間化合物を第3相として含むと延性の低下が起こり、圧延率も低下すると考えられる。ここで、Hashiらが報告した水素透過能力に優れるNb40Ti30Ni30合金は冷間圧延によって70%以上の圧延が可能であり、非常に優れた冷間加工性を有すると言える。 Fig. 2 shows that (a) Nb 40 Ti 30 Ni 30 alloy with a Ti / Ni ratio of 1/1, (b) Nb 40 Ti 40 Ni 20 and (c) Nb 40 Ti 50 Ni 10 with a Ti excess. And XRD diffraction patterns of (d) Nb 40 Ti 25 Ni 35 and (e) Nb 40 Ti 20 Ni 40 with an excess of Ni. FIG. 3 shows SEM photographs of the respective alloys. As can be seen from XRD patterns and SEM photographs, alloys with a Ti-rich and brittle composition such as Nb 40 Ti 40 Ni 20 and Nb 40 Ti 50 Ni 10 contain brittle Ti 2 Ni intermetallic compounds. On the other hand, Ni-rich Nb 40 Ti 25 Ni 35 and Nb 40 Ti 20 Ni 40 contain brittle intermetallic compounds such as Nb 8 Ti 3 Ni 9 . Intermetallic compounds are generally poor in ductility, but if a brittle intermetallic compound is included as the third phase, it is considered that the ductility is lowered and the rolling rate is also lowered. Here, it can be said that the Nb 40 Ti 30 Ni 30 alloy excellent in hydrogen permeation ability reported by Hashi et al. Can be rolled by 70% or more by cold rolling, and has very good cold workability.

表2にNb=40 mol%の合金の圧延率と鋳造状態での673Kにおける水素透過係数(Φ)を示す。Nb40Ti30Ni30の圧延率が約70%であるのに対して、Nb40Ti31Ni29、Nb40Ti32Ni28、Nb40Ti33Ni27の圧延率は80%を超える。このことはNb量が多くなるほど顕著に現れる。図4は圧延試験に用いた元の試料片および延性の乏しい合金と優れた延性の合金を圧延した後の写真である。表2に示すようにNb40Ti28Ni32とNb40Ti36Ni24はNb40Ti30Ni30、Nb40Ti32Ni28、およびNb40Ti34Ni26に比べて圧延率がやや低いが、図5に示すXRD図形からの同定は難しいものの、TiNi相以外の金属間化合物を第3相として微量に含んでいると推測される。鋳造状態での水素透過係数もNb40Ti28Ni32合金と Nb40Ti36Ni24合金はNb40Ti30Ni30合金、Nb40Ti32Ni28合金およびNb40Ti34Ni26合金に比べて低い。このことからNb-Ti-Ni複相合金においてはNb-Ti相、TiNi相以外の金属間化合物相がXRD図形からの同定が難しいほど僅かしか存在しなくても、機械的性質や水素透過係数に悪影響を及ぼすと考えられる。 Table 2 shows the rolling rate of the alloy with Nb = 40 mol% and the hydrogen permeability coefficient (Φ) at 673K in the cast state. The rolling rate of Nb 40 Ti 30 Ni 30 is about 70%, while that of Nb 40 Ti 31 Ni 29 , Nb 40 Ti 32 Ni 28 , and Nb 40 Ti 33 Ni 27 exceeds 80%. This becomes more noticeable as the Nb content increases. FIG. 4 is a photograph after rolling the original sample piece used in the rolling test and an alloy with poor ductility and an excellent ductility alloy. As shown in Table 2, Nb 40 Ti 28 Ni 32 and Nb 40 Ti 36 Ni 24 have a slightly lower rolling ratio than Nb 40 Ti 30 Ni 30 , Nb 40 Ti 32 Ni 28 , and Nb 40 Ti 34 Ni 26 Although it is difficult to identify from the XRD pattern shown in FIG. 5, it is presumed that a trace amount of intermetallic compounds other than TiNi phase is contained as the third phase. The hydrogen permeability coefficient in the cast state is also higher in Nb 40 Ti 28 Ni 32 alloy and Nb 40 Ti 36 Ni 24 alloy than in Nb 40 Ti 30 Ni 30 alloy, Nb 40 Ti 32 Ni 28 alloy and Nb 40 Ti 34 Ni 26 alloy. Low. This means that in Nb-Ti-Ni multiphase alloys, the mechanical properties and hydrogen permeation coefficient are low even if there are so few intermetallic compound phases other than Nb-Ti and TiNi phases that are difficult to identify from XRD patterns. It is considered to have an adverse effect on

(実施例2)
冷間圧延がNb40Ti30Ni30合金の水素透過係数(Φ)に及ぼす影響を調べた。図6に圧延加工率と水素透過係数の関係を、図7に各圧延率の合金の水素透過係数(Φ)の温度依存性を、それぞれ示す。なお、加工後のディスクの厚さは0.5~0.8mmである。図に見られるように、加工度が大きくなるほど水素透過係数が低下する。673Kの水素透過係数Φ673は鋳造状態ではΦ673=1.78×10-8[mol H2 m-1 s-1 Pa-0.5]であるが、圧延率(r)50%の試料はΦ673=5.66×10-9[mol H2 m-1 s-1 Pa-0.5]まで低下する。
図8のSEM写真が示すように、Nb-Ti初晶が圧延によって押しつぶされており、この組織の歪み、さらに加工によって増殖した空孔や転位などの欠陥が水素の拡散や固溶に影響を与え、結果として圧延によりΦが低下したと推測される。なお、圧延後の試料も水素透過試験中に割れが発生することはなかった。よって圧延後の試料も鋳造状態の試料と同じく、耐水素脆性に優れていると言える。
(Example 2)
The effect of cold rolling on the hydrogen permeability coefficient (Φ) of Nb 40 Ti 30 Ni 30 alloy was investigated. FIG. 6 shows the relationship between the rolling rate and the hydrogen permeability coefficient, and FIG. 7 shows the temperature dependence of the hydrogen permeability coefficient (Φ) of the alloy at each rolling rate. The disc thickness after processing is 0.5 to 0.8 mm. As can be seen in the figure, the hydrogen permeability coefficient decreases as the degree of processing increases. The hydrogen permeability coefficient Φ 673 of 673K is Φ 673 = 1.78 × 10 -8 [mol H 2 m -1 s -1 Pa -0.5 ] in the cast state, but the sample with a rolling rate (r) of 50% is Φ 673 = It decreases to 5.66 × 10 -9 [mol H 2 m -1 s -1 Pa -0.5 ].
As shown in the SEM picture of Fig. 8, the Nb-Ti primary crystal is crushed by rolling, and the distortion of this structure, and defects such as vacancies and dislocations grown by processing, affect the diffusion and solid solution of hydrogen. As a result, it is presumed that Φ was lowered by rolling. In addition, the sample after rolling did not generate cracks during the hydrogen permeation test. Therefore, it can be said that the sample after rolling is excellent in resistance to hydrogen embrittlement as the sample in the cast state.

(実施例3)
Nb40Ti30Ni30合金の再結晶温度を測定した。図9および図10に圧延率(r)50%まで圧延した後、573K〜1373Kで1時間焼きなまし処理したNb40Ti30Ni30合金の硬度と圧延率の変化をそれぞれ示す。硬度は873K以上の焼きなましで急速に低下する。また、圧延率は1073K以上の焼きなましで向上することとも一致し、1073K付近以上で再結晶が起こり、再加工が可能になった。厚さ0.8mmのNb40Ti30Ni30合金を0.3mmまで圧延した後に、1273Kで1時間熱処理し、その後さらに圧延して、厚さ150μm以下のディスクを作製することに成功した。
図11は(a)圧延前のNb40Ti30Ni30合金、(b)圧延率70%まで圧延を加えたNb40Ti30Ni30合金および(c)70%まで圧延を加えた後、1273Kで1時間焼きなましてからさらに圧延機の限界まで圧延したNb40Ti30Ni30合金の写真である。
(Example 3)
The recrystallization temperature of the Nb 40 Ti 30 Ni 30 alloy was measured. FIGS. 9 and 10 show the changes in hardness and rolling rate of Nb 40 Ti 30 Ni 30 alloy that was rolled to 573 K to 1373 K for 1 hour after rolling to a rolling rate (r) of 50%. Hardness decreases rapidly with annealing above 873K. In addition, the rolling rate was consistent with the improvement of annealing at 1073K or higher, and recrystallization occurred near 1073K or higher, and reworking became possible. A 0.8 mm thick Nb 40 Ti 30 Ni 30 alloy was rolled to 0.3 mm, heat treated at 1273 K for 1 hour, and then further rolled to successfully produce a disk having a thickness of 150 μm or less.
FIG. 11 shows (a) Nb 40 Ti 30 Ni 30 alloy before rolling, (b) Nb 40 Ti 30 Ni 30 alloy rolled to a rolling rate of 70%, and (c) 1273K after rolling to 70%. This is a photograph of Nb 40 Ti 30 Ni 30 alloy that was annealed for 1 hour and then rolled to the limit of the rolling mill.

(実施例4)
熱処理による組織の変化を調べた。図12、13および図14は、それぞれ1073K、1273K、および1373Kで熱処理した試料のSEM写真である。組織変化に着目すると、熱処理時間の経過により徐々にNb-TiとTiNiの共晶組織が失われていることがわかる。1073K、1273Kで熱処理した試料はNb-Ti初晶、粒径1μm程度の細かいNb-Ti相、およびTiNi相から成る。一方、1373Kで熱処理した試料は1時間熱処理した時点では1073K、1273Kと同じくNb-Ti初晶、粒径の小さいNb-Ti相、TiNi相から成っている。しかし、時間の経過とともにNb-Ti相の粒径が成長し168時間熱処理した時点で粒径が10〜30μm程度まで大きくなる。水素透過合金の初晶の平均結晶粒径(dc)の測定例については、図12〜14と同様にSEM写真による断面の写真を異なる任意の視野で合計5枚撮影し、各々に対角線を引いて、各対角線上に存在する結晶粒の占める線分長さをその結晶粒の数で除して平均結晶粒径(dc)を求めた。
粒成長および拡散に必要な温度はおよそTm/2(Tm:融点)程度以上であると言われ、Nbの融点が2742KであるのでNb-Ti相がTiNi相を隔てた長い距離を拡散するにはおよそ1371K必要と推測できる。Tm/2以下である1073K、1273Kでは原子の拡散距離が短く、粒成長にも不十分な温度であるために細かいNb-Ti相を形成し、一方1373Kで熱処理した試料は原子の長距離拡散、および粒成長が可能なため小さなNb-Ti相が互いを食いあうような形で大きく成長し、粒形の大きなNb-Ti相とTiNi相からなる組織となったと考えられる。
Example 4
The change of the structure by heat treatment was investigated. 12, 13 and 14 are SEM photographs of samples heat-treated at 1073K, 1273K, and 1373K, respectively. Focusing on the structural change, it can be seen that the eutectic structure of Nb-Ti and TiNi is gradually lost as the heat treatment time elapses. The samples heat-treated at 1073K and 1273K consist of Nb-Ti primary crystals, fine Nb-Ti phase with a grain size of about 1 μm, and TiNi phase. On the other hand, the sample heat-treated at 1373K is composed of an Nb—Ti primary crystal, an Nb—Ti phase having a small particle size, and a TiNi phase at the time when heat-treated for 1 hour. However, the grain size of the Nb—Ti phase grows as time passes, and the grain size increases to about 10 to 30 μm at the time of heat treatment for 168 hours. For the measurement example of the average crystal grain size (dc) of the primary crystal of the hydrogen permeable alloy, a total of five cross-sectional photographs taken with SEM photographs were taken in different fields of view as in FIGS. 12 to 14, and a diagonal line was drawn for each. Thus, the average crystal grain size (dc) was determined by dividing the line segment length occupied by the crystal grains present on each diagonal line by the number of the crystal grains.
The temperature required for grain growth and diffusion is said to be about Tm / 2 ( Tm : melting point) or higher, and since the melting point of Nb is 2742K, the Nb-Ti phase diffuses a long distance separating the TiNi phase. It can be estimated that about 1371K is necessary to do this. At 1073K and 1273K with T m / 2 or less, the atomic diffusion distance is short and the temperature is insufficient for grain growth, so a fine Nb-Ti phase is formed, while the sample heat-treated at 1373K has a long atomic distance. Since diffusion and grain growth are possible, the small Nb-Ti phase grows large in a form that bites each other, and it is thought that the structure is composed of a large grain-shaped Nb-Ti phase and TiNi phase.

(実施例5)
熱処理が透過係数Φに及ぼす影響を調べた。図15、図16および図17にそれぞれ1073K、1273Kおよび1373Kで熱処理した試料の熱処理時間と水素透過係数の関係を示す。1073K、1273Kで熱処理した試料の水素透過係数は共晶組織が失われるとともに低下し、Φ673=1.0×10-8[mol H2 m-1 s-1 Pa-0.5]まで低下した。その後、長時間熱処理を続けても水素透過係数はほぼ一定で変化はなかった。他方、1373Kで熱処理した試料の組織は1073Kと1273Kで熱処理した試料と同様に共晶組織は消失した。しかし、1373Kで100時間熱処理すると水素透過係数(Φ)は低下するが、1週間(168時間)熱処理をすると水素透過係数(Φ)は673Kにおいて熱処理前の共晶組織を持つ合金に近い値まで回復した。したがって、必ずしも共晶組織が耐水素脆化性に不可欠ではないと言える。なお、図18、図19および図20に1073K,1273Kおよび1373Kで熱処理した試料の水素透過係数(Φ)のアレニウスプロットを示す。
(Example 5)
The effect of heat treatment on the permeability coefficient Φ was investigated. FIGS. 15, 16, and 17 show the relationship between the heat treatment time and the hydrogen permeation coefficient of samples heat treated at 1073K, 1273K, and 1373K, respectively. The hydrogen permeation coefficient of the samples heat treated at 1073K and 1273K decreased as the eutectic structure was lost, and decreased to Φ 673 = 1.0 × 10 -8 [mol H 2 m -1 s -1 Pa -0.5 ]. Thereafter, the hydrogen permeation coefficient was almost constant even when heat treatment was continued for a long time. On the other hand, the eutectic structure disappeared in the samples heat-treated at 1373K as in the samples heat-treated at 1073K and 1273K. However, the hydrogen permeation coefficient (Φ) decreases after heat treatment at 1373K for 100 hours, but the hydrogen permeation coefficient (Φ) reaches a value close to that of an alloy with a eutectic structure before heat treatment at 673K. Recovered. Therefore, it can be said that the eutectic structure is not necessarily essential for hydrogen embrittlement resistance. 18, 19, and 20 show Arrhenius plots of the hydrogen permeation coefficient (Φ) of the samples heat treated at 1073K, 1273K, and 1373K.

各組織の合金の673Kにおける水素透過係数を表3に示す。実験結果から考察すると以下のようなことが推測できる。
(1)Nb6Ti42Ni42合金とNb20Ti40Ni40合金を比較するとNb-TiとTiNiの共晶組織はTiNi単相よりも水素透過に有利である。(2)Nb20Ti40Ni40合金とNb40Ti30Ni30合金を比較することで共晶組織のみよりも初晶Nb-Ti相を持つ方が水素透過係数は向上する。(3)1073K,1272Kで168時間熱処理したNb40Ti30Ni30合金の水素透過係数が低下したことより、共晶組織を失うことで水素拡散係数が低下し、さらに微細Nb-Ti相を持つことでは水素透過係数はあまり向上しないと考えられる。(4)1373Kで168時間熱処理したNb40Ti30Ni30合金の水素透過係数が673Kで鋳造状態とほぼ同じ値を示し、それ以下の温度では鋳造状態より高い値を示したことより、粗大Nb-Ti相を持つことで水素拡散係数Dの温度依存性および水素個溶度Kに何らかの影響があると推測できる。なお、熱処理後の試料も水素透過試験中に割れは発生しなかった。
Table 3 shows the hydrogen permeability coefficient at 673K of the alloys of each structure. From the experimental results, the following can be inferred.
(1) When comparing Nb 6 Ti 42 Ni 42 alloy and Nb 20 Ti 40 Ni 40 alloy, the eutectic structure of Nb-Ti and TiNi is more advantageous for hydrogen permeation than TiNi single phase. (2) By comparing the Nb 20 Ti 40 Ni 40 alloy and the Nb 40 Ti 30 Ni 30 alloy, the hydrogen permeation coefficient is improved when the primary Nb—Ti phase is present rather than the eutectic structure alone. (3) The hydrogen diffusion coefficient of Nb 40 Ti 30 Ni 30 alloy heat-treated at 1073K and 1272K for 168 hours has decreased, so the loss of the eutectic structure has reduced the hydrogen diffusion coefficient, and it has a fine Nb-Ti phase. This suggests that the hydrogen permeation coefficient does not improve much. (4) The hydrogen permeation coefficient of Nb 40 Ti 30 Ni 30 alloy heat treated at 1373 K for 168 hours showed almost the same value as the cast state at 673 K. It can be inferred that the presence of the -Ti phase has some influence on the temperature dependence of the hydrogen diffusion coefficient D and the hydrogen solubility K. Note that no cracking occurred in the sample after the heat treatment during the hydrogen permeation test.

(実施例6)
圧延-熱処理後(r=50%)のNb40Ti30Ni30合金の水素透過係数について調べた。まず、圧延後(r=50%)、1073K,1273Kで熱処理した試料を用いた。図21および図22に圧延率50%まで圧延した後、1073Kで熱処理した試料の熱処理時間と水素透過係数(Φ)の関係および水素透過係数の温度依存性を、図23および図24は圧延率50%まで圧延した後、1273Kで熱処理をした試料の熱処理時間と水素透過係数の関係および水素透過係数の温度依存性である。圧延率50%まで圧延したNb40Ti30Ni30合金の水素透過係数(Φ)は673KにおいてΦ=5.66×10-9[mol H2 m-1 s-1 Pa-0.5]まで低下し、熱処理時間と水素透過係数の関係のグラフからわかるように1073Kと1273Kでの熱処理後も水素透過係数は低下したままであった。図25のSEM写真からわかるように冷間圧延後1073K、1273Kで熱処理した試料の組織は歪んだNb-Ti初晶、微細なNb-Ti相、TiNi相から成っている。これより1073K、1273Kでの熱処理によってTiNi相の組織は回復されるが、Nb-Ti相の組織の再結晶には不十分であると推測できる。
(Example 6)
The hydrogen permeability coefficient of Nb 40 Ti 30 Ni 30 alloy after rolling-heat treatment (r = 50%) was investigated. First, after rolling (r = 50%), samples heat-treated at 1073K and 1273K were used. FIGS. 21 and 22 show the relationship between the heat treatment time and the hydrogen permeation coefficient (Φ) of the sample heat-treated at 1073 K after rolling to a rolling rate of 50%, and the temperature dependence of the hydrogen permeation coefficient. FIGS. This is the relationship between the heat treatment time and the hydrogen permeation coefficient of a sample heat-treated at 1273 K after rolling to 50% and the temperature dependence of the hydrogen permeation coefficient. The hydrogen permeability coefficient (Φ) of Nb 40 Ti 30 Ni 30 alloy rolled to a rolling rate of 50% decreases to Φ = 5.66 × 10 -9 [mol H 2 m -1 s -1 Pa -0.5 ] at 673K , and heat treatment As can be seen from the graph of the relationship between time and hydrogen permeation coefficient, the hydrogen permeation coefficient remained lowered after heat treatment at 1073K and 1273K. As can be seen from the SEM photograph of FIG. 25, the structure of the samples heat-treated at 1073K and 1273K after cold rolling is composed of distorted Nb—Ti primary crystals, fine Nb—Ti phases, and TiNi phases. This suggests that the TiNi phase structure is recovered by heat treatment at 1073K and 1273K, but is insufficient for recrystallization of the Nb-Ti phase structure.

(実施例7)
図26および図27に圧延後(r=50%)に1373Kで熱処理をした試料の水素透過係数と熱処理時間の関係、および水素透過係数の温度依存性を示す。熱処理時間とともに水素透過係数が向上し、1週間熱処理をすると鋳造状態とほぼ同じ水素透過係数(Φ)を示した。
図28の組織のSEM写真を見ると圧延方向に対して異方性を持っているものの、圧延しないで熱処理をした試料と同様に粒径の大きいNb-Ti相とTiNi相から成っている。1073K,1273Kでの熱処理と1373Kでの熱処理で透過係数に及ぼす効果が大きく異なる原因として、Nb40Ti30Ni30合金においては1073K,1273K はTm/2以下であり、1373KはTm/2以上であることが大きく関係していると考えられる。
図29に膜厚と圧力差0.2MPaの時の水素透過流量Jおよび水素透過係数Φの関係を示す。膜厚が薄くなると、Jの式からもわかるようにΦが一定でも1/Lに比例して水素透過流量Jは増える。すなわち膜厚を薄くすることが水素透過係数Φの向上と同じく、水素透過流量Jを増やすことに有効である。なお、加工-熱処理後の試料も水素透過試験中に割れが発生することはなかった。
(Example 7)
FIG. 26 and FIG. 27 show the relationship between the hydrogen permeation coefficient and heat treatment time of a sample heat-treated at 1373 K after rolling (r = 50%), and the temperature dependence of the hydrogen permeation coefficient. The hydrogen permeability coefficient improved with the heat treatment time, and after one week of heat treatment, the hydrogen permeability coefficient (Φ) was almost the same as in the cast state.
Looking at the SEM photograph of the structure in FIG. 28, although it has anisotropy with respect to the rolling direction, it consists of a Nb—Ti phase and a TiNi phase having a large particle size as in the case of heat treatment without rolling. 1073 K, the effect is greatly different due on the transmission coefficient at the heat treatment in the heat treatment and 1373K at 1273K, in Nb 40 Ti 30 Ni 30 alloy 1073 K, 1273K is a T m / 2 or less, 1373K is T m / 2 The above is considered to be greatly related.
FIG. 29 shows the relationship between the hydrogen permeation flow rate J and the hydrogen permeation coefficient Φ when the film thickness and the pressure difference are 0.2 MPa. As the film thickness decreases, the hydrogen permeation flow rate J increases in proportion to 1 / L even when Φ is constant, as can be seen from the equation of J. That is, reducing the film thickness is effective for increasing the hydrogen permeation flow rate J, as is the improvement of the hydrogen permeation coefficient Φ. Note that no cracking occurred during the hydrogen permeation test in the sample after the processing and heat treatment.

組成と圧延率との関係を示す図である。It is a figure which shows the relationship between a composition and a rolling rate. 本発明に用いた水素分離・精製用複相合金のXRD回折図形である。It is an XRD diffraction pattern of the double phase alloy for hydrogen separation / purification used in the present invention. 図2の合金のSEM写真である。It is a SEM photograph of the alloy of FIG. 圧延の状態を示す図である。It is a figure which shows the state of rolling. 図4に示す水素分離・精製用複相合金のXRD回折図形である。5 is an XRD diffraction pattern of the hydrogen separation / purification double phase alloy shown in FIG. Nb40Ti30Ni30合金の圧延加工率と水素透過係数の関係を示す図である。It is a diagram showing a relationship between rolling rate and the hydrogen permeability coefficient of Nb 40 Ti 30 Ni 30 alloy. 各圧延率の合金の水素透過係数(Φ)の温度依存性を示す図である。It is a figure which shows the temperature dependence of the hydrogen permeability coefficient ((PHI)) of the alloy of each rolling rate. 図6のSEM写真である。It is a SEM photograph of FIG. 圧延率(r)50%まで圧延した後、573K〜1373Kで1時間焼きなまし処理したNb40Ti30Ni30合金の硬度を示す図である。After rolled to a rolling ratio (r) 50%, it is a diagram showing a hardness of 1 hour annealing treated Nb 40 Ti 30 Ni 30 alloy 573K~1373K. 圧延率(r)50%まで圧延した後、573K〜1373Kで1時間焼きなまし処理したNb40Ti30Ni30合金の圧延率を示す図である。After rolling to 50% rolling ratio (r), it is a diagram illustrating a 1 hour rolling reduction annealing treated Nb 40 Ti 30 Ni 30 alloy 573K~1373K. 圧延の状態を示す図である。It is a figure which shows the state of rolling. 1073Kで熱処理した試料のSEM写真。SEM photograph of the sample heat-treated at 1073K. 1273Kで熱処理した試料のSEM写真。SEM photograph of the sample heat-treated at 1273K. 1373Kで熱処理した試料のSEM写真。SEM photograph of the sample heat-treated at 1373K. 1073Kで熱処理した試料の熱処理時間と水素透過係数の関係を示す図である。It is a figure which shows the relationship between the heat processing time of the sample heat-processed by 1073K, and a hydrogen permeation coefficient. 1273Kで熱処理した試料の熱処理時間と水素透過係数の関係を示す図である。It is a figure which shows the relationship between the heat processing time of the sample heat-processed at 1273K, and a hydrogen permeation coefficient. 1373Kで熱処理した試料の熱処理時間と水素透過係数の関係を示す図である。It is a figure which shows the relationship between the heat processing time of the sample heat-processed at 1373K, and a hydrogen permeation coefficient. 1073Kで熱処理した試料の水素透過係数(Φ)のアレニウスプロットを示す図である。It is a figure which shows the Arrhenius plot of the hydrogen permeation coefficient ((PHI)) of the sample heat-processed at 1073K. 1273Kで熱処理した試料の水素透過係数(Φ)のアレニウスプロットを示す図である。It is a figure which shows the Arrhenius plot of the hydrogen permeation coefficient ((PHI)) of the sample heat-processed at 1273K. 1373Kで熱処理した試料の水素透過係数(Φ)のアレニウスプロットを示す図である。It is a figure which shows the Arrhenius plot of the hydrogen permeation coefficient ((PHI)) of the sample heat-processed at 1373K. 圧延した後、1073Kで熱処理した試料の熱処理時間と水素透過係数(Φ)の関係を示す図である。It is a figure which shows the relationship between the heat processing time and the hydrogen permeation coefficient ((PHI)) of the sample heat-processed by 1073K after rolling. 圧延した後、1073Kで熱処理した試料の熱処理時間と水素透過係数の温度依存性を示す図である。It is a figure which shows the temperature dependence of the heat processing time and the hydrogen permeation coefficient of the sample heat-processed by 1073K after rolling. 圧延した後、1273Kで熱処理をした試料の熱処理時間と水素透過係数の関係を示す図である。It is a figure which shows the relationship between the heat processing time of the sample heat-processed by 1273K after rolling, and a hydrogen permeation coefficient. 圧延した後、1273Kで熱処理をした試料の熱処理時間と水素透過係数の温度依存性を示す図である。It is a figure which shows the temperature dependence of the heat processing time and the hydrogen permeation coefficient of the sample heat-processed by 1273K after rolling. 図21,22,23で用いた合金のSEM写真である。24 is a SEM photograph of the alloy used in FIGS. 圧延後に1373Kで熱処理をした試料の水素透過係数と熱処理時間の関係を示す図である。It is a figure which shows the relationship between the hydrogen permeation coefficient of the sample heat-processed by 1373K after rolling, and heat processing time. 圧延後(r=50%)に1373Kで熱処理をした試料の水素透過係数とその温度依存性を示す図である。FIG. 6 is a graph showing the hydrogen permeation coefficient and the temperature dependence of a sample heat-treated at 1373 K after rolling (r = 50%). 図26,27のSEM写真である。It is a SEM photograph of FIG. 膜厚と水素透過流量Jおよび水素透過係数Φの関係を示す図であるIt is a figure which shows the relationship between a film thickness, hydrogen permeation | transmission flow rate J, and hydrogen permeation coefficient (PHI).

Claims (8)

水素透過性を担う相と耐水素脆化性を担う相との複合相からなるNb−Ti−Ni系合金に1000℃超、100時間以上の熱処理を施すことを特徴とするNb−Ti−Ni系の水素分離・精製用複相合金の製造方法。 An Nb-Ti-Ni alloy comprising a composite phase of a phase responsible for hydrogen permeability and a phase responsible for hydrogen embrittlement resistance is subjected to heat treatment at over 1000 ° C for 100 hours or more. Of producing a multi-phase alloy for hydrogen separation and purification of the system. 水素透過性を担う相と耐水素脆化性を担う相との複合相からなるNb−Ti−Ni系合金に塑性加工を施し、その後1000℃超の熱処理を施すことを特徴とする水素分離・精製用複相合金の製造方法。 Hydrogen separation, characterized by subjecting an Nb-Ti-Ni-based alloy composed of a composite phase of a phase responsible for hydrogen permeability and a phase responsible for hydrogen embrittlement resistance to plastic processing, followed by heat treatment above 1000 ° C A method for producing a refining double phase alloy. 前記塑性加工は圧延加工であり、圧延率が10%以上であることを特徴とする請求項2に記載の水素分離・精製用複相合金の製造方法。 The method for producing a multiphase alloy for hydrogen separation / purification according to claim 2, wherein the plastic working is rolling, and a rolling rate is 10% or more. 前記塑性加工により厚さを0.05〜3mmにしたことを特徴とする請求項2または3に記載の水素分離・精製用複相合金の製造方法。 The method for producing a multiphase alloy for hydrogen separation / purification according to claim 2 or 3, wherein the plastic working is performed to a thickness of 0.05 to 3 mm. 前記Nb−Ti−Ni系合金を不活性ガス雰囲気中のアーク溶解法、不活性ガス雰囲気中若しくは真空中の高周波誘導加熱溶解法、真空中の電子ビーム溶解法、又はレーザ加熱溶解法により溶解して作製することを特徴とする請求項1〜4のいずれかに記載の水素分離・精製用複相合金の製造方法。 The Nb-Ti-Ni alloy is melted by an arc melting method in an inert gas atmosphere, a high-frequency induction heating melting method in an inert gas atmosphere or in a vacuum, an electron beam melting method in a vacuum, or a laser heating melting method. The method for producing a multiphase alloy for hydrogen separation / purification according to any one of claims 1 to 4, wherein the method is produced. 前記水素分離・精製用複相合金の表面の被処理原料を流す側と精製水素を取り出す側との両側にPd膜またはPd合金膜を形成することを特徴とする請求項1〜5のいずれかに記載の水素分離・精製用複相合金の製造方法。 6. The Pd film or the Pd alloy film is formed on both sides of the surface of the multiphase alloy for hydrogen separation / purification on the side where the raw material to be treated is passed and the side where the purified hydrogen is taken out. 2. A method for producing a double phase alloy for hydrogen separation / purification as described in 1. 前記Nb−Ti−Ni系合金が、原子%で、Nb100-x-yTiyNix(ただし、x=5〜45、y=15〜55である)からなることを特徴とする請求項1〜6のいずれかに記載の水素分離・精製用複相合金の製造方法。 The Nb-Ti-Ni alloy is composed of Nb 100-xy Ti y Ni x (where x = 5 to 45 and y = 15 to 55) in atomic%. 6. A process for producing a multiphase alloy for hydrogen separation / purification according to any one of 6 above. 水素透過性を担う相と耐水素脆化性を担う相との複合相からなることを特徴とするNb−Ti−Ni系合金において、水素透過能を主に担うNbを主成分とする相(初晶)の平均結晶粒径(dc)が10〜30μmであることを特徴とする水素分離合金。
In an Nb-Ti-Ni-based alloy comprising a composite phase of a phase responsible for hydrogen permeability and a phase responsible for hydrogen embrittlement resistance, a phase mainly composed of Nb mainly responsible for hydrogen permeability ( A hydrogen separation alloy having an average crystal grain size (dc) of primary crystal of 10 to 30 μm.
JP2005091368A 2005-03-28 2005-03-28 Method for producing double phase alloy for hydrogen separation and purification Expired - Fee Related JP4577775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005091368A JP4577775B2 (en) 2005-03-28 2005-03-28 Method for producing double phase alloy for hydrogen separation and purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005091368A JP4577775B2 (en) 2005-03-28 2005-03-28 Method for producing double phase alloy for hydrogen separation and purification

Publications (2)

Publication Number Publication Date
JP2006274298A true JP2006274298A (en) 2006-10-12
JP4577775B2 JP4577775B2 (en) 2010-11-10

Family

ID=37209331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005091368A Expired - Fee Related JP4577775B2 (en) 2005-03-28 2005-03-28 Method for producing double phase alloy for hydrogen separation and purification

Country Status (1)

Country Link
JP (1) JP4577775B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111516A1 (en) * 2007-03-09 2008-09-18 Hitachi Metals, Ltd. Hydrogen-permeable alloy, hydrogen-permeable membrane, and method for production thereof
WO2011152369A1 (en) * 2010-05-31 2011-12-08 日立金属株式会社 Hydrogen separation alloy and method for producing same
JP2013215717A (en) * 2012-03-12 2013-10-24 Tokyo Gas Co Ltd Hydrogen separation membrane and hydrogen separation method
CN110592433A (en) * 2019-08-06 2019-12-20 上海交通大学 Semi-solid metal-based hydrolysis hydrogen production material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262924A (en) * 1988-04-12 1989-10-19 Natl Res Inst For Metals Hydrogen separating membrane
JP2000159503A (en) * 1998-11-20 2000-06-13 Mitsubishi Heavy Ind Ltd Hydrogen separating film of niobium alloy
JP2001348635A (en) * 2000-06-05 2001-12-18 Nikkin Material:Kk Titanium alloy excellent in cold workability and work hardening
JP2004042017A (en) * 2002-05-20 2004-02-12 Fukuda Metal Foil & Powder Co Ltd Hydrogen separation membrane and production method therefor
JP2005232491A (en) * 2004-02-17 2005-09-02 Ulvac Japan Ltd Dual-phase alloy for hydrogen separation and purification and its manufacturing method, and metal film for hydrogen separation and purification and its manufacturing method
JP2006274297A (en) * 2005-03-28 2006-10-12 Hitachi Metals Ltd Dual phase alloy for hydrogen separation and refining

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01262924A (en) * 1988-04-12 1989-10-19 Natl Res Inst For Metals Hydrogen separating membrane
JP2000159503A (en) * 1998-11-20 2000-06-13 Mitsubishi Heavy Ind Ltd Hydrogen separating film of niobium alloy
JP2001348635A (en) * 2000-06-05 2001-12-18 Nikkin Material:Kk Titanium alloy excellent in cold workability and work hardening
JP2004042017A (en) * 2002-05-20 2004-02-12 Fukuda Metal Foil & Powder Co Ltd Hydrogen separation membrane and production method therefor
JP2005232491A (en) * 2004-02-17 2005-09-02 Ulvac Japan Ltd Dual-phase alloy for hydrogen separation and purification and its manufacturing method, and metal film for hydrogen separation and purification and its manufacturing method
JP2006274297A (en) * 2005-03-28 2006-10-12 Hitachi Metals Ltd Dual phase alloy for hydrogen separation and refining

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111516A1 (en) * 2007-03-09 2008-09-18 Hitachi Metals, Ltd. Hydrogen-permeable alloy, hydrogen-permeable membrane, and method for production thereof
DE112008000647T5 (en) 2007-03-09 2010-04-15 Hitachi Metals, Ltd. Hydrogen-permeable alloy and hydrogen-permeable foil and manufacturing method therefor
JP5310541B2 (en) * 2007-03-09 2013-10-09 日立金属株式会社 Hydrogen permeable alloy and method for producing the same
WO2011152369A1 (en) * 2010-05-31 2011-12-08 日立金属株式会社 Hydrogen separation alloy and method for producing same
CN102471839A (en) * 2010-05-31 2012-05-23 日立金属株式会社 Hydrogen separation alloy and method for producing same
JP5152433B2 (en) * 2010-05-31 2013-02-27 日立金属株式会社 Hydrogen separation alloy and manufacturing method thereof
KR101391500B1 (en) * 2010-05-31 2014-05-07 히타치 긴조쿠 가부시키가이샤 Hydrogen separation alloy and method for producing same
US9266071B2 (en) 2010-05-31 2016-02-23 Hitachi Metals, Ltd. Hydrogen separation alloy and method for producing same
JP2013215717A (en) * 2012-03-12 2013-10-24 Tokyo Gas Co Ltd Hydrogen separation membrane and hydrogen separation method
CN110592433A (en) * 2019-08-06 2019-12-20 上海交通大学 Semi-solid metal-based hydrolysis hydrogen production material and preparation method thereof
CN110592433B (en) * 2019-08-06 2020-11-20 上海交通大学 Semi-solid metal-based hydrolysis hydrogen production material and preparation method thereof

Also Published As

Publication number Publication date
JP4577775B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
Ozaki et al. Hydrogen permeation characteristics of V–Ni–Al alloys
JP4756450B2 (en) Double phase alloy for hydrogen separation and purification
JP5152433B2 (en) Hydrogen separation alloy and manufacturing method thereof
JP4363633B2 (en) Double phase alloy for hydrogen separation / purification and production method thereof, metal membrane for hydrogen separation / purification and production method thereof
Ishikawa et al. Microstructure and hydrogen permeation of cold rolled and annealed Nb40Ti30Ni30 alloy
JP3749952B1 (en) Crystalline double-phase hydrogen permeable alloy membrane and crystalline double-phase hydrogen permeable alloy membrane
JP4577775B2 (en) Method for producing double phase alloy for hydrogen separation and purification
JP3749953B1 (en) Double phase hydrogen permeable alloy and hydrogen permeable alloy membrane
JP4860969B2 (en) Hydrogen permeable alloy and method for producing the same
JP4953337B2 (en) Double phase alloy for hydrogen separation and purification
JP5310541B2 (en) Hydrogen permeable alloy and method for producing the same
JP5199760B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
JP5463557B2 (en) Dual-phase hydrogen permeable alloy and method for producing the same
US10105657B2 (en) Separation membrane, hydrogen separation membrane including the separation membrane, and method of manufacturing the separation membrane
JP3882089B1 (en) Crystalline double phase hydrogen permeable alloy and hydrogen permeable alloy membrane
KR101227454B1 (en) A hydrogen permeable alloy and the manufacturing method of hydrogen separation membrane using the same
JP5039968B2 (en) Crystalline double phase hydrogen permeable alloy and hydrogen permeable alloy membrane
JP2006283076A (en) Dual phase alloy for separating/refining hydrogen
JP5549205B2 (en) Hydrogen separation alloy, hydrogen separation alloy rolling forming material, method for producing hydrogen separation alloy, and hydrogen separation apparatus
JP4227907B2 (en) Pd alloy hydrogen separation membrane material
JP2010084232A (en) Stock for hydrogen permeable alloy having excellent plastic workability, hydrogen permeable alloy membrane, and their production method
CN111644600A (en) Nb-Zr-Co hydrogen separation material with continuous hydrogen permeation phase and preparation method and application thereof
Tokui et al. Microstructural control by a rolling-annealing technique and hydrogen permeability in the Nb-Ti-Ni alloys
JP2007239021A (en) Thin hydrogen permeation and separation membrane exhibiting excellent hydrogen permeation and separation property
JP2010053379A (en) Hydrogen permeable separating thin film having excellent mechanical property and hydrogen permeable separating performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100819

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees