JP4227907B2 - Pd alloy hydrogen separation membrane material - Google Patents

Pd alloy hydrogen separation membrane material Download PDF

Info

Publication number
JP4227907B2
JP4227907B2 JP2004042439A JP2004042439A JP4227907B2 JP 4227907 B2 JP4227907 B2 JP 4227907B2 JP 2004042439 A JP2004042439 A JP 2004042439A JP 2004042439 A JP2004042439 A JP 2004042439A JP 4227907 B2 JP4227907 B2 JP 4227907B2
Authority
JP
Japan
Prior art keywords
alloy
solid solution
concentration
temperature
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004042439A
Other languages
Japanese (ja)
Other versions
JP2005232533A (en
Inventor
真 小川
英明 高谷
将樹 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004042439A priority Critical patent/JP4227907B2/en
Publication of JP2005232533A publication Critical patent/JP2005232533A/en
Application granted granted Critical
Publication of JP4227907B2 publication Critical patent/JP4227907B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、Pd合金水素分離膜材料に関する。本発明は、特には、従来の限界を超える高い水素透過性能を有し、長期間安定なPd合金水素分離膜材料に関する。   The present invention relates to a Pd alloy hydrogen separation membrane material. In particular, the present invention relates to a Pd alloy hydrogen separation membrane material that has high hydrogen permeation performance that exceeds conventional limits and is stable for a long period of time.

従来から、ある種の金属膜が他の気体成分に比較して水素の透過速度が圧倒的に大きい事を利用して、水素を含有する混合ガスから、水素を選択的に透過させ、高純度水素を得る水素製造方法が研究開発され、一部実用化されている。   Conventionally, by utilizing the fact that a certain kind of metal film has an overwhelmingly high hydrogen permeation rate compared to other gas components, hydrogen is selectively permeated from a mixed gas containing hydrogen, and high purity is achieved. Hydrogen production methods for obtaining hydrogen have been researched and developed, and some have been put into practical use.

金属膜材料としては、Pd合金が実用化されている。これは、Pd合金は選択的に水素を固溶、透過する性質を有するとともに、水素脆化(水素化物を形成して脆化する)を起こしにくく、また耐酸化、浸炭、窒化性に優れ、安定して長期間使用できる特長を有するためである。いっぽう、Pdは貴金属でありかつ戦略的物質である。そのため、Pdはすでに高価である上、大量の消費が見込まれれば、高騰する可能性がある。そこで、Pdを他の元素で代替えすることと、Pd合金の水素透過性能を向上させてPdの使用量を低減することを目的に、添加元素を添加する方法が提案されている。   As the metal film material, a Pd alloy has been put into practical use. This is because the Pd alloy has the property of selectively dissolving and permeating hydrogen, and is less prone to hydrogen embrittlement (formation of hydride and embrittlement), and is excellent in oxidation resistance, carburization, and nitridation, This is because it has a feature that it can be used stably for a long time. On the other hand, Pd is a noble metal and a strategic substance. Therefore, Pd is already expensive, and if a large amount of consumption is expected, there is a possibility that it will rise. Therefore, a method of adding an additive element has been proposed for the purpose of substituting Pd with another element and reducing the amount of Pd used by improving the hydrogen permeation performance of the Pd alloy.

特許文献1では、PdにAgとY、Gd、Lu等を添加した3元合金膜が優れた透過性能を有することを提案している。また、特許文献2および特許文献3では、PdにSm、Ce、Yb、Tb、Dy、Ho、Erの中の1種類の添加元素を添加することで、水素透過性能が4〜8倍に向上することを提案している。   Patent Document 1 proposes that a ternary alloy film in which Ag, Y, Gd, Lu, or the like is added to Pd has excellent permeation performance. Moreover, in patent document 2 and patent document 3, hydrogen permeation performance improves 4 to 8 times by adding one kind of additive element in Sm, Ce, Yb, Tb, Dy, Ho, and Er to Pd. Propose to do.

いっぽう、PdにSc、Y、Eu、Ho、Yb、Lu等の3A族元素および希土類元素を添加することで、Pd合金固溶体の格子定数が増加することが明らかになっている。さらに、非特許文献1では、合金を添加したPdの格子定数と水素透過性能がほぼリニアな関係にあって、格子定数の増大につれて水素透過性能が増大することを報告している。   On the other hand, it has been clarified that the addition of 3A group elements such as Sc, Y, Eu, Ho, Yb, and Lu and rare earth elements to Pd increases the lattice constant of the Pd alloy solid solution. Furthermore, Non-Patent Document 1 reports that the lattice constant of Pd to which an alloy is added and the hydrogen permeation performance are in a substantially linear relationship, and the hydrogen permeation performance increases as the lattice constant increases.

以上を総合すると、Pdに3A族元素および希土類元素を添加することで、Pd合金の格子定数が増大し、水素透過性能が向上すると整理できる。これら特許文献における実施例および非特許文献では、合金の添加量の上限は、添加元素の種類によって若干異なるが、多くとも8原子%以下である。これは、それ以上に添加元素を添加すると、Pdが固溶できる限界を超え、第二相であるPdxy(Mは添加元素)金属間化合物が析出し、水素透過性能がそれ以上向上しないためとされている。上記特許文献における実施例および非特許文献から、添加元素によるPd合金の水素透過性能向上は合金を添加しないPdの4倍以内であり、これが本手法の限界であると言える。
特開平11−99323号公報 特開2001−46845号公報 特開2001−131653号公報 関他、日本金属学会春季大会公演概要(2001)、p147
In summary, it can be arranged that the addition of a 3A group element and a rare earth element to Pd increases the lattice constant of the Pd alloy and improves the hydrogen permeation performance. In the examples and non-patent documents in these patent documents, the upper limit of the amount of alloy added is slightly different depending on the kind of the additive element, but is at most 8 atomic%. This improves the addition of additive element more than that, beyond the limits Pd can solute, Pd x M y (M is additive element) is the second phase intermetallic compound is precipitated, the hydrogen permeability is higher It is said not to. From the examples in the above-mentioned patent documents and non-patent documents, the hydrogen permeation performance improvement of the Pd alloy by the additive element is within 4 times that of Pd to which no alloy is added, which can be said to be the limit of this method.
JP-A-11-99323 JP 2001-46845 A JP 2001-131653 A Seki et al., The Japan Institute of Metals Spring Meeting Performance Overview (2001), p147

本発明は、水素混合ガスから水素のみを透過させて高純度水素を得るPd合金水素分離膜材料において、Pd合金の水素透過性能を向上させ、その安定性を高めてPdの使用量を低減することを目的とする   The present invention improves the hydrogen permeation performance of a Pd alloy and increases its stability and reduces the amount of Pd used in a Pd alloy hydrogen separation membrane material that obtains high purity hydrogen by permeating only hydrogen from a hydrogen mixed gas. Aimed at

本発明は、水素混合ガスから水素を選択的に透過して高純度水素を得る水素分離膜材料において、Pdをベース金属とし、周期律表3a族元素および希土類元素から選択される1種類以上の元素を添加元素Mとし、該添加元素Mの濃度が5〜20原子%であり、少なくとも母相であるPd合金固溶体が、添加元素Mを300℃〜700℃の温度領域で過飽和となる濃度で固溶しているPd合金水素分離膜材料であって、前記添加元素Mの濃度がPd固溶体の最大固溶限界濃度以上の場合は、Pd固溶体とPd濃度が最も高いPdxy金属間化合物との共晶温度TE℃未満であって、(TE−450)℃以上の範囲内の温度で加熱処理を行い、前記添加元素Mの濃度がPd固溶体の最大固溶限界濃度以下の場合には、Pd固溶体の固相線温度未満であって、(TE−450)℃以上の範囲内の温度で加熱処理を行い、その後、急冷することにより得られるPd合金水素分離膜材料を提供する。なお、前記添加元素Mの最大固溶限界濃度(Msmax)は、5≦Msmax≦20(単位は原子%)を満たす。「急冷する」とは、固溶化処理温度にある合金を、常温の水に接触させるなどして、10秒間程度以内に20℃程度にまで冷却させることをいう。 The present invention provides a hydrogen separation membrane material that selectively permeates hydrogen from a hydrogen mixed gas to obtain high-purity hydrogen, wherein Pd is a base metal, and one or more types selected from group 3a elements and rare earth elements in the periodic table The element is an additive element M, the concentration of the additive element M is 5 to 20 atomic%, and at least the Pd alloy solid solution as the parent phase is supersaturated in a temperature range of 300 ° C. to 700 ° C. a Pd alloy hydrogen separation membrane material formed as a solid solution, wherein if the concentration of the additive element M is greater than or equal to the maximum solid solubility limit concentration of Pd solid solution, Pd solid solution Pd concentration is highest Pd x M y intermetallics a eutectic temperature T lower than E ° C. with, (T E -450) subjected to a heat treatment at a temperature within the range of more than ° C., when the concentration of the additive element M is less than or equal to the maximum solid solubility limit concentration of Pd solid solution Includes the solidus temperature of the Pd solid solution A full, (T E -450) subjected to a heat treatment at a temperature within the range of more than ° C., then provides Pd alloy hydrogen separation membrane material obtained by quenching. The maximum solid solution limit concentration (Ms max ) of the additive element M satisfies 5 ≦ Ms max ≦ 20 (unit: atomic%). “Rapid cooling” means that an alloy at a solution treatment temperature is cooled to about 20 ° C. within about 10 seconds, for example, by contacting with water at room temperature.

前記Pd合金水素分離膜材料が、Pd合金固溶体の単相組織であることが好ましい。   It is preferable that the Pd alloy hydrogen separation membrane material has a single phase structure of a Pd alloy solid solution.

あるいは、前記Pd合金水素分離膜材料が、Pd合金固溶体の母相と金属間化合物とからなる多相組織であっても良い。   Alternatively, the Pd alloy hydrogen separation membrane material may be a multiphase structure composed of a parent phase of a Pd alloy solid solution and an intermetallic compound.

前記周期律表3a族元素および希土類元素から選択される1種類以上の元素Mが、Y、Ce、Sm、Gd、Dy、Yb、Luであることが好ましい。   The one or more elements M selected from the group 3a elements and rare earth elements in the periodic table are preferably Y, Ce, Sm, Gd, Dy, Yb, and Lu.

本発明はさらに別の側面によれば、Pd合金水素分離膜材料の製造方法であって、ベース金属となるPdと、周期律表3a族元素、および希土類元素から選択される1種類以上の添加元素Mとを、該添加元素Mの濃度が5〜20原子%となるように混合するステップと、混合された金属を前記M濃度がPd固溶体の最大固溶限界濃度以上である場合においては、Pd固溶体と、Pd濃度が最も高いPdxy金属間化合物との共晶温度TE℃未満であって、(TE−450)℃以上の範囲内の温度で、前記M濃度がPd固溶体の最大固溶限界濃度以下の場合には、Pd固溶体の固相線温度未満であって、(TE−450)℃以上の範囲内の温度で加熱処理するステップと、該加熱処理された金属を急冷するステップとを含む。 According to still another aspect of the present invention, there is provided a method for producing a Pd alloy hydrogen separation membrane material, wherein one or more kinds of additions selected from Pd as a base metal, a group 3a element in the periodic table, and a rare earth element are added. In the step of mixing the element M so that the concentration of the additive element M is 5 to 20 atomic%, and when the mixed metal has the M concentration equal to or higher than the maximum solid solution limit concentration of the Pd solid solution, and Pd solid solution, a eutectic temperature T lower than E ° C. with Pd concentration is highest Pd x M y intermetallic compound, (T E -450) at a temperature in the range of more than ° C., the M concentration Pd solid solution In the case where the concentration is less than the maximum solid solution limit concentration, the heat treatment is performed at a temperature lower than the solidus temperature of the Pd solid solution and in the range of (T E -450) ° C. or more, and the heat treated metal Quenching.

本発明に係るにPd合金水素分離膜材料およびその製造方法により、母相であるPd合金固溶体の単相組織を得ることができ、水素透過性能は従来のものよりもさらに向上した。また、固溶限界以上に添加濃度を高めた材料は、Pd合金固溶体の母相と金属間化合物とからなる多相組織を有し、燃料電池装置等における使用温度では過飽和状態であるものの、さらに水素透過性能が向上している。過飽和状態のPd合金水素分離膜材料においても金属間化合物の析出、成長には時間を要し、実質的に過飽和固溶体として、高い水素透過性能を長時間にわたって維持することができた。   According to the present invention, a single-phase structure of a Pd alloy solid solution as a parent phase can be obtained by the Pd alloy hydrogen separation membrane material and the manufacturing method thereof, and the hydrogen permeation performance is further improved as compared with the conventional one. In addition, the material whose additive concentration is higher than the solid solution limit has a multiphase structure composed of a matrix and an intermetallic compound of a Pd alloy solid solution, and is supersaturated at the operating temperature in a fuel cell device or the like. Hydrogen permeation performance is improved. Even in the supersaturated Pd alloy hydrogen separation membrane material, it took time to deposit and grow an intermetallic compound, and as a supersaturated solid solution, high hydrogen permeation performance could be maintained for a long time.

本発明の効果として、固溶化処理温度を高くして合金添加元素の固溶量を増大させることと、あるいは固溶限界以上に合金を添加することにより、従来の限界を超える高い水素透過性能を得ることが可能となった。   As an effect of the present invention, by increasing the solution treatment temperature to increase the amount of alloy added elements, or by adding an alloy beyond the solid solution limit, high hydrogen permeation performance exceeding the conventional limit can be achieved. It became possible to get.

本発明の実施の形態によるPd合金水素分離膜材料は、ベース金属Pdと、添加元素Mとを含んでなる。添加元素MとしてはSc、Y等の3a族元素と、希土類元素の中から選ばれる1種類以上の元素とすることができる。特に、添加元素Mとしては、Y、Ce、Sm、Gd、Dy、Yb、Luを用いることが好ましい。基本的に水素透過性能を向上させる効果は3a族、希土類元素で同等であるが、水素透過性能の向上効果がやや優れているからである。添加元素Mが二種類以上の場合には、Y、Ce、Sm、Gd、Dy、Yb、Luから選ばれる二種類以上の元素を組み合わせて用いることが好ましい。Pd−M 2元系合金と同様の効果が得られるためだからである。   The Pd alloy hydrogen separation membrane material according to the embodiment of the present invention includes the base metal Pd and the additive element M. The additive element M can be one or more elements selected from the group 3a elements such as Sc and Y and rare earth elements. In particular, it is preferable to use Y, Ce, Sm, Gd, Dy, Yb, or Lu as the additive element M. This is because the effect of improving the hydrogen permeation performance is basically the same for the group 3a and rare earth elements, but the effect of improving the hydrogen permeation performance is somewhat superior. When the additive element M is two or more, it is preferable to use a combination of two or more elements selected from Y, Ce, Sm, Gd, Dy, Yb, and Lu. This is because the same effect as the Pd-M binary alloy can be obtained.

添加元素の添加濃度は、元素によってPdの固溶限界が異なるため一定ではないが、5〜20原子%の範囲とすることがこのましい。5原子%未満では、水素透過性能向上効果が十分でなく、20原子%より多いと、金属間化合物の生成が著しく、加工成形性に問題を招くからである。添加元素Mの添加濃度は、以下に詳細に述べる固溶化処理温度における添加元素Mのベース金属Pdへの固溶限界濃度(原子%)から決定することができる。具体的には、添加元素Mの添加濃度は、Pd合金水素分離膜材料の固溶化処理温度における、添加元素Mのベース金属Pdへの固溶限界濃度(原子%)と同一の濃度から、それより1〜8原子%高い濃度の範囲内とすることができる。   The addition concentration of the additive element is not constant because the solid solubility limit of Pd varies depending on the element, but it is preferable to set it within the range of 5 to 20 atomic%. If the amount is less than 5 atomic%, the effect of improving the hydrogen permeation performance is not sufficient. If the amount is more than 20 atomic%, the formation of an intermetallic compound is remarkable, which causes a problem in workability. The addition concentration of the additive element M can be determined from the solid solution limit concentration (atomic%) of the additive element M in the base metal Pd at the solution treatment temperature described in detail below. Specifically, the addition concentration of the additive element M is the same as the concentration limit (atomic%) of the additive element M in the base metal Pd at the solution treatment temperature of the Pd alloy hydrogen separation membrane material. It can be within a concentration range of 1 to 8 atomic% higher.

Pd合金水素分離膜材料には、上記のベース金属Pdと、添加元素Mとに加え、通常不可避的に混入する元素を含む。   In addition to the base metal Pd and the additive element M, the Pd alloy hydrogen separation membrane material usually contains an element inevitably mixed.

かかるPd合金水素分離膜材料の組織は、マトリックスであるPd合金固溶体の単相組織であってよい。このようなPd合金固溶体の単相組織に加えて、第2相であるPdxyが析出しているものでも良い。ここで、Pdxyは、Pd−M合金の状態図上で最もPd濃度が高い側のPdxy金属間化合物を表す。上述のような3a族元素または希土類元素を添加元素Mとして用いる場合には、Pdxy金属間化合物は、Pd31であることが多いが、これには限定されない。 The structure of the Pd alloy hydrogen separation membrane material may be a single phase structure of a Pd alloy solid solution as a matrix. In addition to the single phase structure of such a Pd alloy solid solution, may be one Pd x M y is a second phase is precipitated. Here, Pd x M y represents a Pd x M y intermetallic compounds most Pd concentration higher side on the diagram a state of Pd-M alloy. In the case of using the Group 3a element or rare earth element as described above as an additive element M is Pd x M y intermetallic compound is often the Pd 3 M 1, which are not limited.

本実施形態によるPd合金水素分離膜材料は、水素分離膜として使用する一般的な使用温度である700〜300℃の範囲では過飽和固溶体状態となっている。   The Pd alloy hydrogen separation membrane material according to the present embodiment is in a supersaturated solid solution state in the range of 700 to 300 ° C., which is a general use temperature used as a hydrogen separation membrane.

次に、本発明に係るPd合金水素分離膜材料を、製造方法の局面から説明する。本実施形態に係るPd合金水素分離膜材料は、ベース金属であるPdと、上記添加元素Mとを、所定の濃度で混合し、固溶化処理をし、急冷することにより得られる。   Next, the Pd alloy hydrogen separation membrane material according to the present invention will be described from the aspect of the production method. The Pd alloy hydrogen separation membrane material according to the present embodiment is obtained by mixing Pd, which is a base metal, and the additive element M at a predetermined concentration, performing a solid solution treatment, and rapidly cooling.

ベース金属Pdと添加元素Mとは、ともに純度が99.9%以上のものを用いることが好ましい。添加元素Mは一種類でも、二種類以上を混合して用いてもよい。   Both the base metal Pd and the additive element M preferably have a purity of 99.9% or more. The additive element M may be used alone or in combination of two or more.

一般的に「固溶化処理」とは、ベース金属に固溶限界内の濃度の添加元素を添加して、ベース金属マトリックス相のみの単相組織を得ることで定義される。しかし、本発明においては、添加元素Mの濃度は固溶限界濃度以上であってよく、かつ、金属間化合物である第2相が析出していてもこのような加熱処理を固溶化処理と表すこととする。   In general, “solid solution treatment” is defined by adding an additive element having a concentration within the solid solution limit to a base metal to obtain a single phase structure of only the base metal matrix phase. However, in the present invention, the concentration of the additive element M may be equal to or higher than the solid solution limit concentration, and such a heat treatment is represented as a solid solution treatment even if the second phase which is an intermetallic compound is precipitated. I will do it.

固溶化処理温度は以下のように設定する。Pd−M合金において、M濃度がPd固溶体の最大固溶限界濃度Msmax以上である場合においては、Pd固溶体とPd濃度が最も高いPdxy金属間化合物との共晶温度TE未満であって、TEよりも450℃低い温度である(TE−450)℃以上の範囲内の温度を固溶化処理温度とする。いっぽう、M濃度がPd固溶体の最大固溶限界濃度Msmax以下の場合には、Pd固溶体の固相線温度未満であって、Pd固溶体とPd濃度が最も高いPdxy金属間化合物との共晶温度TEよりも450℃低い温度である(TE−450)℃以上の範囲内の温度を固溶化処理温度とする。 The solution treatment temperature is set as follows. In Pd-M alloy, when M concentration is maximum solubility limit concentration Ms max over Pd solid solution is less than the eutectic temperature T E of Pd solid solution Pd concentration is highest Pd x M y intermetallics Thus, a temperature in the range of (T E −450) ° C. or higher, which is 450 ° C. lower than T E , is set as a solution treatment temperature. On the other hand, M concentration in the case of less than the maximum solid solubility limit concentration Ms max of Pd solid solution is a solidus temperature below the Pd solid solution, Pd solid solution Pd concentration is the highest Pd x M y intermetallics A temperature in the range of (T E -450) ° C. or higher which is 450 ° C. lower than the eutectic temperature T E is defined as a solution treatment temperature.

Pd−M合金状態図のPdリッチ側は、詳細にはMの種類によって組成、温度は変化するものの、一般的には図1のようなものとなる。Pd固溶体で最も添加元素を多く固溶する温度は、Pd固溶体とPd濃度が最も高いPdxy金属間化合物との共晶温度TEにおいてである。したがって高い濃度の添加元素Mを添加したPd固溶体を得るためには、TEに近い温度で固溶化処理を行うことが望ましい。しかしながら図1中、斜線部より高い温度では、一部融解が生じ、合金素材が大きく変形してしまう可能性があるため、図中斜線部の範囲の温度で固溶化処理を行うことが望ましい。また、(TE−450)℃よりも低い温度で固溶化処理を行うと、マトリックスであるPd合金固溶体中の添加元素Mの濃度が低くなるため、狙いとする十分な水素透過性能向上効果が得られないといった問題がある。したがって、(TE−450)℃よりも高い温度で固溶化処理を行うことが望ましい。斜線部の温度範囲中でも、特に(TE−20)℃〜(TE−100)℃の温度範囲が好ましい。これはマトリックスであるPd合金固溶体中の添加元素Mの濃度が最も高くなるため、水素透過性能が最も優れるからである。 The Pd-rich side of the Pd-M alloy phase diagram is generally as shown in FIG. 1, although the composition and temperature vary depending on the type of M. Temperature to increase solid solubility the most additive element in Pd solid solution, Pd solid solution Pd concentration is at eutectic temperature T E of the highest Pd x M y intermetallic compound. Therefore, in order to obtain a Pd solid solution to which a high concentration of the additive element M is added, it is desirable to perform the solution treatment at a temperature close to T E. However, in FIG. 1, at a temperature higher than the shaded area, partial melting may occur and the alloy material may be greatly deformed. Therefore, it is desirable to perform the solution treatment at a temperature in the shaded area in the drawing. In addition, when the solution treatment is performed at a temperature lower than (T E −450) ° C., the concentration of the additive element M in the matrix Pd alloy solid solution is lowered, so that a sufficient hydrogen permeation performance improvement effect can be achieved. There is a problem that it cannot be obtained. Therefore, it is desirable to perform the solution treatment at a temperature higher than (T E −450) ° C. Among the shaded temperature range, a temperature range of (T E −20) ° C. to (T E −100) ° C. is particularly preferable. This is because the hydrogen permeation performance is the best because the concentration of the additive element M in the Pd alloy solid solution as the matrix is the highest.

本実施形態においてはPd−M2元合金の状態図を用いて固溶化処理温度を決定する方法について説明したが、二種類以上の添加元素Mを含む実施形態においても同様にして多元系合金の状態図から固溶化処理温度を決定することができる。本願に開示する添加元素Mから二種類以上の元素を選択して、状態図を作成し、固溶化処理温度を決定することは当業者が適宜なしうることであり、本発明の範囲内に含まれる。   In the present embodiment, the method for determining the solution treatment temperature using the phase diagram of the Pd-M binary alloy has been described. However, in the embodiment including two or more kinds of additive elements M, the state of the multi-component alloy is similarly described. The solution treatment temperature can be determined from the figure. It is within the scope of the present invention that a person skilled in the art can appropriately select two or more elements from the additive element M disclosed in the present application, create a phase diagram, and determine the solution treatment temperature. It is.

本発明のPd合金水素分離膜材料の固溶化処理時間は、10分〜1時間とすることができる。このような固溶化処理は、当業者であれば通常用いられる装置を用いて実施することができる。上述の温度、時間条件で固溶化処理を行った後、水冷することによりPd合金水素分離膜材料を得ることができる。得られたPd合金水素分離膜材料は通常、インゴット材であり、これから板材を切り出し、所望の厚さに圧延することで、Pd合金水素分離膜を製造することができる。   The solution treatment time of the Pd alloy hydrogen separation membrane material of the present invention can be 10 minutes to 1 hour. Such a solution treatment can be carried out by a person skilled in the art using an apparatus that is usually used. A Pd alloy hydrogen separation membrane material can be obtained by performing a solution treatment under the temperature and time conditions described above and then cooling with water. The obtained Pd alloy hydrogen separation membrane material is usually an ingot material, and a Pd alloy hydrogen separation membrane can be produced by cutting a plate material from this and rolling it to a desired thickness.

本発明者らは、合金添加によるPd格子定数の拡張および水素透過性能向上の限界を打破するため検討を行い、実験的考察を行った結果、上述の更なる水素透過性能向上方法を見出したものである。すなわち、本発明者らは、Pdの添加元素固溶限界が温度とともに増大することに着目した。その合金組成に最も近い状態図での共晶温度TEに相当する温度直下の高温で、その温度での固溶限界濃度の添加元素を添加して、その温度で固溶化処理を行ったPd合金は、添加元素を最も高濃度に固溶させることができる。そして、そのようにして製造されたPd合金固溶体の格子定数は最も大きくなる。これにより、水素透過性能も最大となる。 The present inventors have studied to overcome the limitations of Pd lattice constant expansion and hydrogen permeation performance improvement by adding alloys, and as a result of experimental considerations, have found the above-described further method for improving hydrogen permeation performance It is. That is, the present inventors paid attention to the fact that the additive element solid solution limit of Pd increases with temperature. Pd subjected to solution treatment at a high temperature just below the temperature corresponding to the eutectic temperature T E in the phase diagram closest to the alloy composition, with the addition of an additive element having a solid solution limit concentration at that temperature. The alloy can dissolve the additive element at the highest concentration. And the lattice constant of the Pd alloy solid solution manufactured in this way becomes the largest. This maximizes the hydrogen permeation performance.

いっぽう、高純度水素を効率良く製造するための、例えばメタンガスの水蒸気改質などによる水素混合ガス雰囲気から水素のみを分離抽出する水素分離膜として使用する一般的な使用温度は700〜300℃の範囲である。上記のように共晶温度直下で固溶化処理を行ったPd合金固溶体は、使用温度範囲では固溶限界が減少するため、過飽和固溶体状態となる。しかしながら、使用温度範囲では、金属間化合物が析出し格子定数が縮小するまでには相当に時間を要し、実用上は過飽和固溶体として高い水素透過性能を長期間維持し有ることが明らかになった。   On the other hand, in order to efficiently produce high-purity hydrogen, for example, a general operating temperature used as a hydrogen separation membrane for separating and extracting only hydrogen from a hydrogen mixed gas atmosphere by, for example, steam reforming of methane gas is in the range of 700 to 300 ° C. It is. As described above, the Pd alloy solid solution subjected to the solid solution treatment immediately below the eutectic temperature is in a supersaturated solid solution state because the solid solution limit decreases in the operating temperature range. However, in the operating temperature range, it took a considerable amount of time for the intermetallic compound to precipitate and the lattice constant to decrease, and in practice it was revealed that high hydrogen permeation performance was maintained for a long time as a supersaturated solid solution. .

本発明はPdベース金属が添加元素を固溶し、合金組織として、固溶体Pdの単相組織を示す範囲内で固溶化処理を高い温度で行って、添加元素濃度を最大に高め、最大の水素透過性能を得ようとするものである。いっぽう、さらに添加元素濃度を高めて、固溶限界以上の濃度の元素を添加し、固溶化処理の後も金属間化合物である第2相が残存しているが、マトリックス相(母相)は固溶限界の濃度の合金を固溶している状態のPd合金においても、同様に高い水素透過性能を示すことが明らかになった。   In the present invention, the Pd base metal dissolves the additive element, and the alloy solution is subjected to a solution treatment at a high temperature within the range showing the single-phase structure of the solid solution Pd. The transmission performance is to be obtained. On the other hand, the concentration of the added element is further increased, an element having a concentration higher than the solid solution limit is added, and the second phase which is an intermetallic compound remains after the solution treatment, but the matrix phase (parent phase) is It has also been clarified that a Pd alloy in a state where an alloy having a solid solution limit concentration is in a solid solution exhibits high hydrogen permeation performance as well.

以下に、実施例を挙げて本発明をさらに詳細に説明する。しかし、以下の実施例は本発明を限定するものではない。
[実施例1]
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples do not limit the present invention.
[Example 1]

本発明の実施例1では、添加元素Mとして、Yと、希土類元素の中からCe、Gd、Luを選定した。合金状態図などを参考に事前検討した結果、Pd−M2元合金系において、Pd濃度が最も高い金属間化合物Pdxy(選定された合金系ではすべてPd31)とPdとが作る共晶温度TE、Pd中への各添加元素の固溶限界濃度は、以下のように推定された。なお、合金の組成は、「Pd−x%M」と表記した。ここで、「x%」は合金中に占める添加元素Mの原子%を意味する。 In Example 1 of the present invention, Ce, Gd, and Lu were selected from Y and rare earth elements as the additive element M. As a result of pre-examined alloy phase diagram and send the Pd-M2 binary alloy system, Pd concentration (all Pd 3 M 1 is selected alloys based) and formed by the meeting of a Pd highest intermetallic Pd x M y The eutectic temperature T E and the solid solution limit concentration of each additive element in Pd were estimated as follows. The composition of the alloy was expressed as “Pd−x% M”. Here, “x%” means atomic% of the additive element M in the alloy.

Figure 0004227907
Figure 0004227907

そこで、純度99.95%以上のPd粉末と、純度99.9%以上のY、Ce、GdまたはLu粉末を使用して、Pd合金インゴットをArガス中でのアーク溶解により溶製した。Pd合金は、Pd−12%Y、Pd−14%Y、Pd−13%Ce、Pd−15%Ce、Pd−12%Gd、Pd−14%GdおよびPd−14%Lu、Pd−16%Luの組成を有するものを製造した。ただし、本実施例において、これらの合金は、Pdと添加元素以外にも不可避に混入する不純物元素を含んでいる。これらの合金の組成は、添加元素Mのそれぞれについて、固溶化処理温度である1150℃での固溶限界濃度に当たる組成と、固溶限界濃度に対し添加元素Mが2原子%多い組成になるように選定した。   Therefore, a Pd alloy ingot was melted by arc melting in Ar gas using Pd powder having a purity of 99.95% or more and Y, Ce, Gd or Lu powder having a purity of 99.9% or more. Pd alloys are Pd-12% Y, Pd-14% Y, Pd-13% Ce, Pd-15% Ce, Pd-12% Gd, Pd-14% Gd and Pd-14% Lu, Pd-16% A product having the composition of Lu was produced. However, in this embodiment, these alloys contain impurity elements inevitably mixed in addition to Pd and additive elements. The composition of these alloys is such that each additive element M has a composition corresponding to the solid solution limit concentration at a solution treatment temperature of 1150 ° C. and a composition in which the additive element M is 2 atomic% higher than the solid solution limit concentration. Selected.

次にこれらのPd合金インゴット試料を用い、Ar雰囲気炉により固溶化処理を行った。固溶化処理温度は1150℃とした。この温度は、各合金系のPd固溶体とPd3M金属間化合物との共晶温度TEより20〜80℃低い温度である。各Pd合金インゴットを、Ar雰囲気で60分加熱後、水冷して、Pd合金水素分離膜材料を得た。 Next, using these Pd alloy ingot samples, solution treatment was performed in an Ar atmosphere furnace. The solution treatment temperature was 1150 ° C. This temperature is the eutectic temperature T 20 to 80 ° C. lower temperature than E between the Pd solid solution and Pd 3 M intermetallic compounds each alloy system. Each Pd alloy ingot was heated in an Ar atmosphere for 60 minutes and then cooled with water to obtain a Pd alloy hydrogen separation membrane material.

[比較例]
次に比較試験として、Pd、Pd−10%Y、Pd−11%Ce、Pd−10%Gd、Pd−12%Lu合金を同様に溶製し、500℃で固溶化処理を行ってPd合金水素分離膜材料を得た。
[Comparative example]
Next, as a comparative test, Pd, Pd-10% Y, Pd-11% Ce, Pd-10% Gd, and Pd-12% Lu alloy were similarly melted and subjected to solid solution treatment at 500 ° C. to obtain a Pd alloy. A hydrogen separation membrane material was obtained.

[水素透過性能の評価・組織観察]
得られた実施例と比較例のPd合金水素分離膜材料(元はインゴット材)から板材を切り出し、厚さ0.5mmに圧延して、さらに直径30mmのディスク状のサンプルを製造し、水素透過性能評価試験を行った。水素透過性能は、純度が99.999%水素ガスを使用し、温度500℃、一次側圧力0.3MPa、2次側圧力0.1MPaの条件で水素透過流量を測定し、透過膜面積、膜厚、表裏水素圧力を考慮して規格化した水素透過係数を算出することにより評価した。その際、同圧力差のHeガスを導入して、漏れのないことを確認した。また、光学顕微鏡を用いて圧延材の組織観察を行った。実施例と比較例のサンプルについての水素透過性能と組織観察結果を表2にまとめて示す。
[Evaluation and structure observation of hydrogen permeation performance]
A plate material was cut out from the obtained Pd alloy hydrogen separation membrane material (originally an ingot material) of the example and the comparative example, rolled to a thickness of 0.5 mm, and a disk-shaped sample having a diameter of 30 mm was manufactured, and hydrogen permeation was performed. A performance evaluation test was conducted. The hydrogen permeation performance was measured using hydrogen gas with a purity of 99.999%, temperature of 500 ° C., primary side pressure of 0.3 MPa, and secondary side pressure of 0.1 MPa. Evaluation was performed by calculating a normalized hydrogen permeation coefficient in consideration of thickness and front and back hydrogen pressure. At that time, He gas having the same pressure difference was introduced to confirm that there was no leakage. Moreover, the structure of the rolled material was observed using an optical microscope. Table 2 summarizes the hydrogen permeation performance and the structure observation results for the samples of Examples and Comparative Examples.

Figure 0004227907
Figure 0004227907

表2で示されるように、1150℃で固溶化処理を行った上記8種類の組成のPd合金材は、いずれも従来の限界であった合金を添加しないPd材の4倍を超える水素透過性能を示した。特に、固溶限界を超える組成のPd−14%Y、Pd−15%Ce、Pd−14%Gd、Pd−16%Lu合金圧材の水素透過性能は、それぞれの添加元素の1150℃における固溶限界濃度の組成のPd合金材と比べても高い水素透過性能を有していた。   As shown in Table 2, the Pd alloy materials having the above-mentioned eight kinds of compositions subjected to the solid solution treatment at 1150 ° C. have a hydrogen permeation performance that is more than four times that of the Pd material to which no alloy is added, which is a conventional limit. showed that. In particular, the hydrogen permeation performance of Pd-14% Y, Pd-15% Ce, Pd-14% Gd, and Pd-16% Lu alloy pressurized material having a composition exceeding the solid solution limit is the solid solution at 1150 ° C. of each additive element. The hydrogen permeation performance was higher than that of the Pd alloy material having the composition of the solubility limit concentration.

組織観察の結果、固溶限界組成であるPd−12%Y、Pd−13%Ce、Pd−12%GdおよびPd−14%Lu合金材は、単相組織を示した。いっぽう、固溶限界を超える組成のPd−14%Y、Pd−15%Ce、Pd−14%GdおよびPd−16%Lu合金材は、若干のPd31(MはY、Ce、Gd、Lu)金属間化合物の析出が見られる2相組織を呈していた。後者のグループは前者のグループよりも水素透過性能が優れていることから、第2相析出が水素透過性能に影響したものと推定される。 As a result of structural observation, the solid solution limit compositions Pd-12% Y, Pd-13% Ce, Pd-12% Gd and Pd-14% Lu alloy materials showed a single-phase structure. On the other hand, Pd-14% Y, Pd-15% Ce, Pd-14% Gd, and Pd-16% Lu alloy materials having compositions exceeding the solid solution limit have some Pd 3 M 1 (M is Y, Ce, Gd). Lu) It exhibited a two-phase structure in which precipitation of intermetallic compounds was observed. Since the latter group has better hydrogen permeation performance than the former group, it is presumed that the second phase precipitation has influenced the hydrogen permeation performance.

[水素透過性能の熱的安定性評価]
次に、特に優れた水素透過性能を示したPd−14%Y、Pd−15%Ce、Pd−14%GdおよびPd−16%Luの4種類の合金圧延材サンプルについて、水素透過性能の熱的安定性を評価した。上述のように製造したサンプルを、Ar雰囲気炉を用いて、700℃で500時間、または600℃で2000時間の加熱処理を行い、水素透過性能の変化を調査した。水素透過性能の測定は前述の方法で行った。その結果を表3に示す。
[Thermal stability evaluation of hydrogen permeation performance]
Next, the heat of hydrogen permeation performance was measured for four types of rolled alloy samples of Pd-14% Y, Pd-15% Ce, Pd-14% Gd and Pd-16% Lu that showed particularly excellent hydrogen permeation performance. Stability was evaluated. The sample manufactured as described above was subjected to heat treatment at 700 ° C. for 500 hours or 600 ° C. for 2000 hours using an Ar atmosphere furnace, and changes in hydrogen permeation performance were investigated. The hydrogen permeation performance was measured by the method described above. The results are shown in Table 3.

Figure 0004227907
Figure 0004227907

いずれの材料も、700℃で500時間加熱後の水素透過性能は、加熱前の98%以上を示し、性能低下は2%以内であった。また、600℃で2000時間加熱後の水素透過性能は、加熱前の99%以上を示し、水素透過性能の低下は1%以内であった。   All the materials exhibited 98% or more of hydrogen permeation performance after heating at 700 ° C. for 500 hours, and the performance degradation was within 2%. Moreover, the hydrogen permeation performance after heating at 600 ° C. for 2000 hours showed 99% or more before heating, and the decrease in hydrogen permeation performance was within 1%.

以上から、Pd合金を水素分離膜として使用する際の一般的な温度である700℃以下の使用温度では、過飽和な組成であるPd−M合金膜材料が、優れた水素透過性能を示すとともに、水素透過性能が安定して、十分実用的な長期間にわたって使用できることが明らかになった。これは、700℃以下では、Pdおよび添加元素の拡散が遅く、金属間化合物の析出、成長に時間がかかるため、および局所的な金属間化合物の析出、成長は全体的な水素透過性能にすぐに大きい影響を与えないためと考えられる。   From the above, at a use temperature of 700 ° C. or less, which is a general temperature when using a Pd alloy as a hydrogen separation membrane, the Pd-M alloy membrane material having a supersaturated composition exhibits excellent hydrogen permeation performance, It has become clear that the hydrogen permeation performance is stable and can be used for a sufficiently long period of time. This is because, at 700 ° C. or lower, diffusion of Pd and additive elements is slow, and it takes time for precipitation and growth of intermetallic compounds, and local precipitation and growth of intermetallic compounds is immediately related to the overall hydrogen permeation performance. It is thought that it does not have a big influence on

[実施例2]
実施例1と同様の方法で、合金組成および固溶化処理温度の異なる試料を作成し、水素透過性能の評価を行った。ここでは、固溶化処理温度を、各合金系でPd固溶体とPd3M金属間化合物との共晶温度TEより430〜370℃低い温度である800℃で実施した。
[Example 2]
Samples having different alloy compositions and solution treatment temperatures were prepared in the same manner as in Example 1, and the hydrogen permeation performance was evaluated. Here, the solution treatment temperature was carried out at 800 ° C. four hundred thirty to three hundred and seventy a ° C. lower temperature than the eutectic temperature T E between the Pd solid solution and Pd 3 M intermetallic compound in the alloy system.

添加元素Mは実施例1と同じとし、純度99.95%以上のPd粉末と、99.9%以上のY、Ce、GdおよびLu粉末を使用して、Pd合金インゴットをArガス中でのアーク溶解により溶製した。製造したPd合金インゴットの組成は、Pd−11%Y、Pd−13%Y、Pd−12%Ce、Pd−14%Ce、Pd−11%Gd、Pd−13%GdおよびPd−13%Lu、Pd−15%Luであった。ただし、これらの合金は、Pdと添加元素以外にも不可避に混入する不純物元素を含んでいる。これらの合金の組成は、添加元素Mのそれぞれについて、800℃での固溶限界濃度に当たる組成と、固溶限界濃度に対し添加元素Mが2原子%多い組成になるように選定した。次にこれらのインゴット試料を用い、Ar雰囲気炉で温度800℃、維持時間60分の固溶化処理を行い水冷して、Pd合金水素分離膜材料を得た。   The additive element M is the same as that in Example 1, and a Pd powder having a purity of 99.95% or more and Y, Ce, Gd, and Lu powders having a purity of 99.9% or more are used in an Ar gas. It was melted by arc melting. The composition of the manufactured Pd alloy ingot was Pd-11% Y, Pd-13% Y, Pd-12% Ce, Pd-14% Ce, Pd-11% Gd, Pd-13% Gd and Pd-13% Lu. , Pd-15% Lu. However, these alloys contain impurity elements inevitably mixed in addition to Pd and additive elements. The compositions of these alloys were selected so that the additive element M had a composition corresponding to the solid solution limit concentration at 800 ° C. and a composition in which the additive element M was 2 atomic% higher than the solid solution limit concentration. Next, using these ingot samples, a solid solution treatment was performed in an Ar atmosphere furnace at a temperature of 800 ° C. and a maintenance time of 60 minutes, followed by water cooling to obtain a Pd alloy hydrogen separation membrane material.

[水素透過性能の評価・組織観察]
得られたPd合金水素分離膜材料をディスク状に加工し、サンプルを製造して、実施例1と同様に水素透過性能を評価した。また、光学顕微鏡を用いて加工材の組織観察を行った。結果を表4にまとめて示す。800℃で固溶化処理を行った上記8種類の組成のPd合金材は、表1中に示した比較材と比べて高い水素透過性能を示した。
[Evaluation and structure observation of hydrogen permeation performance]
The obtained Pd alloy hydrogen separation membrane material was processed into a disk shape, a sample was produced, and the hydrogen permeation performance was evaluated in the same manner as in Example 1. Moreover, the structure | tissue observation of the processed material was performed using the optical microscope. The results are summarized in Table 4. The Pd alloy materials having the above eight compositions subjected to the solution treatment at 800 ° C. showed higher hydrogen permeation performance than the comparative materials shown in Table 1.

Figure 0004227907
Figure 0004227907

[水素透過性能の熱的安定性評価]
Pd−13%Y、Pd−14%Ce、Pd−13%GdおよびPd−15%Luの4種類の合金圧延材サンプルについて、水素透過性能の熱的安定性を評価した。実施例1の場合と同様に、Ar雰囲気炉を用いて、サンプルを700℃で500時間、または600℃で2000時間にわたって加熱処理し、水素透過性能の変化を調査した。その結果を表5に示す。水素透過性能の測定は前記と同様とした。
[Thermal stability evaluation of hydrogen permeation performance]
Thermal stability of hydrogen permeation performance was evaluated for four types of rolled alloy samples of Pd-13% Y, Pd-14% Ce, Pd-13% Gd, and Pd-15% Lu. In the same manner as in Example 1, using an Ar atmosphere furnace, the sample was heat-treated at 700 ° C. for 500 hours or 600 ° C. for 2000 hours, and the change in hydrogen permeation performance was investigated. The results are shown in Table 5. The hydrogen permeation performance was measured as described above.

Figure 0004227907
Figure 0004227907

いずれの材料も、700℃で500時間加熱後の水素透過性能は、加熱前の99%以上を示し、性能低下は1%以内であった。また600℃で2000時間加熱後の水素透過性能も、加熱前の99%以上を示し、水素透過性能低下は1%以内であった。以上から、水素分離膜として使用する一般的な温度である700℃以下の使用温度では、過飽和な組成であるPd−M合金膜材料が、優れた水素透過性能を示すとともに、性能が安定して、十分実用的な長期間にわたって使用できることが明らかになった。   All the materials exhibited 99% or more of hydrogen permeation performance after heating at 700 ° C. for 500 hours, and the performance degradation was within 1%. Further, the hydrogen permeation performance after heating at 600 ° C. for 2000 hours also showed 99% or more before the heating, and the hydrogen permeation performance decreased within 1%. From the above, at a use temperature of 700 ° C. or less, which is a general temperature used as a hydrogen separation membrane, the Pd-M alloy membrane material having a supersaturated composition exhibits excellent hydrogen permeation performance and stable performance. It was revealed that it can be used for a long time, sufficiently practical.

Pd合金膜など、水素を選択的に透過する金属膜を用い、メタンガスの水蒸気改質等から純水素を製造する方法は、一般的に700℃〜300℃の温度で行われる。従来から、Pdに3a族および希土類元素から選ばれる元素を添加することにより、水素透過性能が向上することが明らかになっていた。しかしながらその合金添加量は実質的には、添加元素により若干異なるが、8原子%以下であった。これは、使用温度での固溶限界以下とするためであった。いっぽう、Pdへの添加元素の固溶限界は温度とともに増加する傾向があり、高温で固溶化処理を行うことにより、より高い濃度の添加元素を添加することができる。ここでは、添加元素として、Y、Ce、Gd、Luを選び、12〜14原子%の高濃度の添加元素を添加した合金を溶製した。これらの合金インゴットを各Pd−M2元系合金の最もPd濃度が高いPdxy金属間化合物と固溶体Pdとの共晶温度に対し20〜80℃低い1150℃で固溶化処理を行った。このことにより、固溶体Pd単相組織を得るとともに、水素透過性能は従来のものよりもさらに向上した。 A method for producing pure hydrogen from steam reforming of methane gas or the like using a metal film that selectively permeates hydrogen, such as a Pd alloy film, is generally performed at a temperature of 700 ° C. to 300 ° C. Conventionally, it has been clarified that hydrogen permeation performance is improved by adding an element selected from Group 3a and rare earth elements to Pd. However, the amount of the alloy added was substantially 8 atomic% or less, although it was slightly different depending on the added element. This was to keep the solid solution limit or less at the use temperature. On the other hand, the solid solution limit of the additive element to Pd tends to increase with temperature, and a higher concentration additive element can be added by performing the solution treatment at a high temperature. Here, Y, Ce, Gd, and Lu were selected as additive elements, and an alloy to which a high concentration additive element of 12 to 14 atomic% was added was melted. These alloy ingots were subjected to solution treatment at 20 to 80 ° C. lower 1150 ° C. Nitaishi eutectic temperature of the most Pd concentration is high Pd x M y intermetallic compound and solid solution Pd of each Pd-M2 binary alloy. As a result, a solid solution Pd single phase structure was obtained, and the hydrogen permeation performance was further improved as compared with the conventional one.

また、固溶限界以上に添加濃度を高めた場合には、さらに水素透過性能が向上することが明らかになった。ここでは上記4種類の添加元素を14〜16原子%添加し、1150℃で固溶化処理を行った。どの合金系においても、固溶限界濃度を超えているため、完全に固溶した単相組織は得られず、金属間化合物が析出した2相組織を呈していた。これらの固溶限界を超えて合金を添加したPd合金が、固溶限界濃度を添加したPd合金よりも水素透過性能が優れている結果が得られたのは、異相の析出が水素透過性能に影響を与えたためと推定される。いっぽう、このような高濃度に添加元素を添加した材料は、使用温度では過飽和状態であるものの、金属間化合物の析出、成長には時間を要し、実質的に過飽和固溶体として、実用的には高い水素透過性能を長時間維持できた。   It was also found that the hydrogen permeation performance was further improved when the addition concentration was increased beyond the solid solution limit. Here, 14 to 16 atomic% of the above four types of additive elements were added, and a solution treatment was performed at 1150 ° C. In any alloy system, since the solid solution limit concentration was exceeded, a completely solid solution single-phase structure was not obtained, and a two-phase structure in which an intermetallic compound was precipitated was exhibited. The Pd alloy with the alloy added exceeding the solid solution limit has a better hydrogen permeation performance than the Pd alloy with the solid solution limit concentration added. This is presumed to have been affected. On the other hand, although the material added with the additive element at such a high concentration is supersaturated at the use temperature, it takes time to precipitate and grow an intermetallic compound, and practically as a supersaturated solid solution. High hydrogen permeation performance was maintained for a long time.

さらに、上記と同じPd−Y、Pd−Ce、Pd−Gd、Pd−Luの4種類の2元合金系で、合金添加濃度を11〜15原子%の範囲とし、固溶化処理温度を800℃とした場合でも同様の試験を行い、高い水素透過性能と長時間安定性が得られることを確認した。   Further, the same four types of binary alloys as Pd—Y, Pd—Ce, Pd—Gd, and Pd—Lu as described above, the alloy addition concentration is in the range of 11 to 15 atomic%, and the solution treatment temperature is 800 ° C. The same test was carried out even in the case of, and it was confirmed that high hydrogen permeation performance and long-term stability were obtained.

本発明のPd合金水素分離膜材料の活用例として、純度の高い水素のみを選択的に取り出すことを利用し、燃料電池に原料水素を供給する水素供給装置、燃料電池車に水素を供給する地上設備である水素ステーション、半導体工場で使用する高純度水素を製造するための水素精製装置等が挙げられる。   As examples of utilization of the Pd alloy hydrogen separation membrane material of the present invention, a hydrogen supply device that supplies raw hydrogen to a fuel cell by selectively extracting only high-purity hydrogen, and a ground that supplies hydrogen to a fuel cell vehicle Examples include a hydrogen station as equipment, a hydrogen purifier for producing high-purity hydrogen used in a semiconductor factory, and the like.

Pd合金水素分離膜材料の製造における固溶化処理温度範囲を示す図である。It is a figure which shows the solution treatment temperature range in manufacture of Pd alloy hydrogen separation membrane material.

Claims (4)

水素混合ガスから水素を選択的に透過して高純度水素を得る水素分離膜材料において、
Pdをベース金属とし、周期律表3a族元素および希土類元素から選択される1種類以上の元素を添加元素Mとし、該添加元素Mの濃度が5〜20原子%であり、少なくとも母相であるPd合金固溶体が、添加元素Mを300℃〜700℃の温度領域で過飽和となる濃度で固溶しているPd合金からなるPd合金水素分離膜材料であって、
前記添加元素Mの濃度がPd固溶体の最大固溶限界濃度以上の場合は、Pd固溶体とPd濃度が最も高いPd金属間化合物との共晶温度T℃未満であって、(T−450)℃以上の範囲内の温度で加熱処理を行い、前記添加元素Mの濃度がPd固溶体の最大固溶限界濃度以下の場合には、Pd固溶体の固相線温度未満であって、(T−450)℃以上の範囲内の温度で加熱処理を行い、その後水冷することにより得られるPd合金水素分離膜材料。
In a hydrogen separation membrane material that selectively permeates hydrogen from a hydrogen mixed gas to obtain high purity hydrogen,
Pd is a base metal, one or more elements selected from Group 3a elements and rare earth elements of the periodic table are added elements M, and the concentration of the added elements M is 5 to 20 atomic%, and is at least a parent phase The Pd alloy solid solution is a Pd alloy hydrogen separation membrane material made of a Pd alloy in which the additive element M is dissolved in a supersaturated concentration in a temperature range of 300 ° C. to 700 ° C.
Wherein when the concentration of the additive element M is greater than or equal to the maximum solid solubility limit concentration of Pd solid solution, a eutectic temperature T lower than E ° C. with Pd solid solution Pd concentration is highest Pd x M y intermetallic compound, (T E- 450) When heat treatment is performed at a temperature in the range of at least C, and when the concentration of the additive element M is less than or equal to the maximum solid solution limit concentration of the Pd solid solution, it is less than the solidus temperature of the Pd solid solution, (T E -450) A Pd alloy hydrogen separation membrane material obtained by performing a heat treatment at a temperature in the range of not lower than ° C and then cooling with water .
前記Pd合金水素分離膜材料が、Pd合金固溶体の単相組織である請求項1に記載のPd合金水素分離膜材料。   The Pd alloy hydrogen separation membrane material according to claim 1, wherein the Pd alloy hydrogen separation membrane material has a single-phase structure of a Pd alloy solid solution. 前記Pd合金水素分離膜材料が、Pd合金固溶体の母相と金属間化合物とからなる多相組織である請求項1に記載のPd合金水素分離膜材料。   2. The Pd alloy hydrogen separation membrane material according to claim 1, wherein the Pd alloy hydrogen separation membrane material has a multiphase structure composed of a parent phase of a Pd alloy solid solution and an intermetallic compound. ベース金属となるPdと、周期律表3a族元素および希土類元素から選択される1種類以上の添加元素Mとを、該添加元素Mの濃度が5〜20原子%となるように混合するステップと、
混合された金属を、
前記M濃度がPd固溶体の最大固溶限界濃度以上である場合においては、Pd固溶体と、Pd濃度が最も高いPd金属間化合物との共晶温度T℃未満であって、(T−450)℃以上の範囲内の温度で、
前記M濃度がPd固溶体の最大固溶限界濃度以下の場合には、Pd固溶体の固相線温度未満であって、(T−450)℃以上の範囲内の温度で、
加熱処理するステップと、
該加熱処理した金属を水冷するステップと
を含むPd合金からなるPd合金水素分離膜材料の製造方法。
Mixing Pd serving as a base metal with one or more additive elements M selected from Group 3a elements and rare earth elements of the periodic table so that the concentration of the additive element M is 5 to 20 atomic%; ,
Mixed metal,
Wherein when M concentration is greater than or equal to the maximum solid solubility limit concentration of Pd solid solution, and Pd solid solution, a eutectic temperature T lower than E ° C. with Pd concentration is highest Pd x M y intermetallic compound, (T E- 450) at a temperature in the range of not less than ° C,
Wherein when M concentration is less than or equal to the maximum solid solubility limit concentration of Pd solid solution is a solidus temperature below the Pd solid solution, at a temperature in the range of (T E -450) ℃ or higher,
A heat treatment step;
A method for producing a Pd alloy hydrogen separation membrane material comprising a Pd alloy, comprising the step of water-cooling the heat-treated metal.
JP2004042439A 2004-02-19 2004-02-19 Pd alloy hydrogen separation membrane material Expired - Lifetime JP4227907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004042439A JP4227907B2 (en) 2004-02-19 2004-02-19 Pd alloy hydrogen separation membrane material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004042439A JP4227907B2 (en) 2004-02-19 2004-02-19 Pd alloy hydrogen separation membrane material

Publications (2)

Publication Number Publication Date
JP2005232533A JP2005232533A (en) 2005-09-02
JP4227907B2 true JP4227907B2 (en) 2009-02-18

Family

ID=35015789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004042439A Expired - Lifetime JP4227907B2 (en) 2004-02-19 2004-02-19 Pd alloy hydrogen separation membrane material

Country Status (1)

Country Link
JP (1) JP4227907B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055295A (en) * 2006-08-30 2008-03-13 Ihi Corp Hydrogen separation membrane
WO2023074881A1 (en) 2021-10-28 2023-05-04 国立研究開発法人物質・材料研究機構 Hydrogen production method and hydrogen production device

Also Published As

Publication number Publication date
JP2005232533A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
Knipling et al. Criteria for developing castable, creep-resistant aluminum-based alloys–A review
JP4756450B2 (en) Double phase alloy for hydrogen separation and purification
JP5152433B2 (en) Hydrogen separation alloy and manufacturing method thereof
JP5123386B2 (en) Zr-Ti-Ni (Cu) -based low melting point brazing filler metal alloy composition for titanium brazing
JP4363633B2 (en) Double phase alloy for hydrogen separation / purification and production method thereof, metal membrane for hydrogen separation / purification and production method thereof
EP3318648B1 (en) Copper alloy and method for producing same
JP3749952B1 (en) Crystalline double-phase hydrogen permeable alloy membrane and crystalline double-phase hydrogen permeable alloy membrane
US7514036B2 (en) Hydrogen permeable alloy and method for producing the same
JP2010070818A (en) Pd-Cu BASED ALLOY SUPERIOR IN HYDROGEN PERMEABILITY
JP5310541B2 (en) Hydrogen permeable alloy and method for producing the same
JP2006265638A (en) Compound phase hydrogen permeation alloy and hydrogen permeation alloy membrane
JP4227907B2 (en) Pd alloy hydrogen separation membrane material
JP4953337B2 (en) Double phase alloy for hydrogen separation and purification
JP4577775B2 (en) Method for producing double phase alloy for hydrogen separation and purification
JP5199760B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
JP3882089B1 (en) Crystalline double phase hydrogen permeable alloy and hydrogen permeable alloy membrane
JP2006283076A (en) Dual phase alloy for separating/refining hydrogen
JP2010084232A (en) Stock for hydrogen permeable alloy having excellent plastic workability, hydrogen permeable alloy membrane, and their production method
JP2003306736A (en) Niobium silicide based composite material and production method thereof
JP4953279B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
JP2007056313A (en) Hydrogen permeable alloy
JP2008075106A (en) Crystalline dual-phase hydrogen permeation alloy and hydrogen permeation alloy film
JP2021031733A (en) Hydrogen separation alloy
JP2009072685A (en) Hydrogen permeation/separation thin film having excellent mechanical property and hydrogen permeation/separation performance
JP2014074211A (en) Hydrogen permeation membrane alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081107

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4227907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350