JP2006283076A - Dual phase alloy for separating/refining hydrogen - Google Patents

Dual phase alloy for separating/refining hydrogen Download PDF

Info

Publication number
JP2006283076A
JP2006283076A JP2005101901A JP2005101901A JP2006283076A JP 2006283076 A JP2006283076 A JP 2006283076A JP 2005101901 A JP2005101901 A JP 2005101901A JP 2005101901 A JP2005101901 A JP 2005101901A JP 2006283076 A JP2006283076 A JP 2006283076A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
atomic
group
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005101901A
Other languages
Japanese (ja)
Inventor
Masahiro Tobise
飛世  正博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005101901A priority Critical patent/JP2006283076A/en
Publication of JP2006283076A publication Critical patent/JP2006283076A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dual phase alloy for separating/refining hydrogen having excellent hydrogen separability and hydrogen embrittlement resistance without using Pd as an expensive noble metal, and usable at high temperature. <P>SOLUTION: The dual phase alloy for separating/refining hydrogen has a composition of, by atomic%, T<SB>100-(α+β+γ+δ)</SB>M<SB>α</SB>X<SB>β</SB>Z<SB>γ</SB>R<SB>δ</SB>(in the formula, T is at least one selected from the group consisting of Ti, Zr and Hf; M is at least one selected from V, Nb and Ta; X is at least one selected from the group consisting of Ag, Al, Cr, Cu, Ga, Zn and Fe; Z is at least one selected from the group consisting of B, C and P; R is at least one selected from rare earth elements including Y and La; α, β, γ and δ satisfy 15≤α≤55, 5≤β≤45, 0.1≤γ≤5 and 0≤δ≤15; and T is 5 to 60 atomic%) with inevitable impurities. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高純度水素を製造するために用いられる、水素分離・精製用複相合金に関し、新規な合金組成からなる水素分離・精製用複相合金に関する。   The present invention relates to a hydrogen separation / purification double phase alloy used for producing high purity hydrogen, and to a hydrogen separation / purification dual phase alloy having a novel alloy composition.

燃料電池等で用いる水素を製造するために天然ガスから改質して水素を得る方法があるが、CO等の不純物ガスを含むため白金触媒を被毒させてしまう問題がある。そのために混合ガスよりCO等の不純物ガスを除くためにPdAg等の合金が水素だけを通す分離膜として用いられている。しかしながらPdは貴金属に属し非常に高価であるため、工業用として普及するためには貴金属を含まない安価な水素分離膜材料が求められている。また繰り返し水素を透過させることによって水素脆化が起こり、水素分離膜が破壊し長時間の使用に耐えられないという問題があった。さらに従来広く用いられているPdAg水素分離膜は低温になるほど水素透過能が低下し、実用的な透過量を得るためには約300℃以上で用いなければならず高温に加熱するの必要があった。   In order to produce hydrogen used in a fuel cell or the like, there is a method of obtaining hydrogen by reforming from natural gas, but there is a problem that a platinum catalyst is poisoned because it contains an impurity gas such as CO. Therefore, an alloy such as PdAg is used as a separation membrane through which only hydrogen passes in order to remove an impurity gas such as CO from the mixed gas. However, since Pd belongs to a noble metal and is very expensive, an inexpensive hydrogen separation membrane material that does not contain a noble metal is required in order to spread it for industrial use. Further, hydrogen embrittlement occurs due to repeated permeation of hydrogen, resulting in a problem that the hydrogen separation membrane is broken and cannot be used for a long time. Furthermore, the PdAg hydrogen separation membrane that has been widely used in the past has a lower hydrogen permeability as the temperature becomes lower. In order to obtain a practical amount of permeation, it must be used at about 300 ° C. or higher, and it must be heated to a high temperature. It was.

このため、Pd系以外で水素透過性能が高いものが求められている。例えば特許文献1に記載されるようなNb−Ni系、特許文献2に記載されるようなNb−(Ni,Co,Mo)-(V,Ti,Zr,Ta,Hf)系の水素透過合金が検討されている。また、特許文献3には、Zr−Ni系のアモルファス合金の開示がある。
特開2001−170460号公報(0026) 特開2004−42017号公報(0007〜0011) 特開2004−167378号公報(0009〜0011)
For this reason, what has high hydrogen permeation performance other than Pd type is required. For example, Nb-Ni system as described in Patent Document 1 and Nb- (Ni, Co, Mo)-(V, Ti, Zr, Ta, Hf) system hydrogen permeable alloy as described in Patent Document 2 Is being considered. Patent Document 3 discloses a Zr—Ni-based amorphous alloy.
JP 2001-170460 A (0026) JP 2004-42017 A (0007 to 0011) JP 2004-167378 A (0009-0011)

水素分離能にすぐれ、生産性も良好な水素塩透過膜として前記のZr−Ni系アモルファス合金が知られているが、300℃以上で長時間用いると結晶化が起こり、透過膜が破壊してしまう問題があり、アモルファス金属の高温での安定性向上が必要であった。よって、本発明の課題は、高価な貴金属であるPdを使うことなく水素分離能に優れ、かつ耐水素脆性に優れ、高温で使用可能な水素分離・精製用複相合金を提供することである。   The above-mentioned Zr-Ni amorphous alloy is known as a hydrogen salt permeable membrane with excellent hydrogen separation performance and good productivity. However, when used for a long time at 300 ° C or higher, crystallization occurs and the permeable membrane breaks down. It was necessary to improve the stability of amorphous metal at high temperatures. Therefore, an object of the present invention is to provide a dual phase alloy for hydrogen separation / purification that is excellent in hydrogen separation ability and excellent in hydrogen embrittlement resistance and can be used at high temperatures without using expensive precious metal Pd. .

上記課題を解決した本発明の水素分離・精製用複相合金は、原子%で、T100−(α+β+γ+δ)αβγδ(Zただし式中、TはTi,Zr、Hfからなる群の1種以上、MはV、Nb、Taからなる群の1種以上、XはAg、Al、Cr、Cu、Ga、Zn、Feからなる群の1種以上、ZはB、C、Pからなる群の1種以上、RはY、Laを含む希土類元素の1種以上であり、式中α、β、γ、δは、15≦α≦55、5≦β≦45、0.1≦γ≦5、0≦δ≦15であり、Tは5〜60原子%)と不可避不純物からなる組成を有する合金で構成したことを特徴とする。すなわちB、P、Cの1種を加えることにより、飛躍的に高温でのアモルファス合金の安定性が増し、長時間の使用に耐えることが可能になった。 The multi-phase alloy for hydrogen separation / purification of the present invention that has solved the above problems is expressed in terms of atomic%, T 100- (α + β + γ + δ) M α X β Z γ R δ (Z, where T is from Ti, Zr, Hf) One or more of the group consisting of M, one or more of the group consisting of V, Nb, Ta, X is one or more of the group consisting of Ag, Al, Cr, Cu, Ga, Zn, Fe, Z is B, C , P, one or more of rare earth elements including Y and La, wherein α, β, γ, and δ are 15 ≦ α ≦ 55, 5 ≦ β ≦ 45, 0 .Ltoreq..gamma..ltoreq.5, 0.ltoreq..delta..ltoreq.15, and T is 5 to 60 atomic%) and an alloy having a composition consisting of inevitable impurities. That is, by adding one of B, P, and C, the stability of the amorphous alloy at a high temperature has been dramatically increased, and it has become possible to withstand long-term use.

M元素はV、Nb、Taの1種以上から選択される。M元素の含有量は15〜55原子%が好ましい。M元素が15原子%未満では水素透過能が大きく低下する。一方、M元素の含有量が55%超では水素透過能は高いものの水素脆化が激しく、水素透過後すぐに膜が破壊してしまう。さらに好ましい範囲は20〜50原子%である。XはAg、Al、Cr、Cu、Ga、Zn、Feの1種以上から選択される。X元素の含有量は5〜45原子%が好ましい。X元素が5原子%未満では水素透過能は高いものの機械的加工性に劣り、板状に加工することが困難である。一方、X元素の含有量が45原子%超では非常に脆くなりこの場合も機械的加工が困難である。さらに好ましい範囲は10〜40原子%である。T元素はTi,ZrまたはHfからなる群の1種以上から選択される。T元素が5原子%未満では水素透過能は高いものの水素脆化が激しく、水素透過後すぐに膜が破壊してしまう。一方、X元素の含有量が65原子%を超えると、水素透過能が低下する。さらに好ましい範囲は10〜60原子%である。   The M element is selected from one or more of V, Nb, and Ta. The content of M element is preferably 15 to 55 atomic%. If the element M is less than 15 atomic%, the hydrogen permeability is greatly reduced. On the other hand, when the content of M element exceeds 55%, hydrogen permeability is high, but hydrogen embrittlement is severe, and the membrane is destroyed immediately after hydrogen permeation. A more preferable range is 20 to 50 atomic%. X is selected from one or more of Ag, Al, Cr, Cu, Ga, Zn, and Fe. The content of the X element is preferably 5 to 45 atomic%. If the element X is less than 5 atomic%, the hydrogen permeability is high, but the mechanical processability is inferior, and it is difficult to process into a plate shape. On the other hand, if the content of the X element exceeds 45 atomic%, it becomes very brittle and in this case, mechanical processing is difficult. A more preferable range is 10 to 40 atomic%. The T element is selected from one or more of the group consisting of Ti, Zr, and Hf. If the element T is less than 5 atomic%, the hydrogen permeability is high, but hydrogen embrittlement is severe, and the membrane breaks immediately after hydrogen permeation. On the other hand, when the content of the X element exceeds 65 atomic%, the hydrogen permeability decreases. A more preferable range is 10 to 60 atomic%.

本発明におけるZ元素は、B、C、Pの1種または2種以上から選択される。Z元素の含有量は0.1〜5原子%が好ましい。Z元素が0.1原子%未満ではアモルファス形成能が低く、超急冷を行っても結晶質合金しか得られない。一方、Z元素の含有量が5原子%超では水素透過能が非常に低くなり実用に供することが困難である。急冷手段として、水アトマイズ、ガスアトマイズ、メルトスパンなどの既知の手法が採用できる。   The Z element in the present invention is selected from one or more of B, C, and P. The content of Z element is preferably 0.1 to 5 atomic%. If the Z element is less than 0.1 atomic%, the amorphous forming ability is low, and only a crystalline alloy can be obtained even if super rapid cooling is performed. On the other hand, when the content of the Z element exceeds 5 atomic%, the hydrogen permeability is very low and it is difficult to put it to practical use. As the rapid cooling means, known methods such as water atomization, gas atomization, and melt span can be employed.

水素透過能を向上させるためにR元素を含有させることが好ましい。R元素はY、Laを含む希土類元素の1種以上から選択される。R元素の含有量は15原子%以下とする。含有量が少ないと水素透過能の向上効果が薄れるが、R元素の含有量が15原子%超では水素透過能は高いものの水素脆化が激しく、水素透過後すぐに膜が破壊してしまう。好ましい含有量は5〜13原子%である。   In order to improve hydrogen permeability, it is preferable to contain R element. The R element is selected from one or more rare earth elements including Y and La. Content of R element shall be 15 atomic% or less. If the content is small, the effect of improving the hydrogen permeability is diminished, but if the content of R element exceeds 15 atomic%, the hydrogen permeability is high but hydrogen embrittlement is severe, and the membrane breaks immediately after hydrogen permeation. A preferable content is 5 to 13 atomic%.

この合金は、例えば、不活性ガス雰囲気中のアーク溶解法、不活性ガス雰囲気中若しくは真空中の高周波誘導加熱溶解法、真空中の電子ビーム溶解法、又はレーザ加熱溶解法などにより溶解して作製することができる。水素分離・精製用複相合金の表面の被処理原料を流す側と精製水素を取り出す側との両側にPd膜またはPd合金膜を形成して、最終形態とすることも可能である。Pd基合金に比べて遙かに安価なことも魅力である。   This alloy is prepared by melting by, for example, an arc melting method in an inert gas atmosphere, a high-frequency induction heating melting method in an inert gas atmosphere or in a vacuum, an electron beam melting method in a vacuum, or a laser heating melting method. can do. It is also possible to form a Pd film or a Pd alloy film on both sides of the surface of the multiphase alloy for hydrogen separation / purification on the side where the raw material to be treated is flowed and on the side where the purified hydrogen is taken out to obtain a final form. It is also attractive that it is much cheaper than Pd-based alloys.

本発明の水素分離・精製用複相合金は、従来のPd系水素分離膜に比べて水素透過能、とくに低温での透過能が良好であり、対水素脆性にも優れ実用性に富むものである。非晶質性能にも優れるため、ロール冷却などによる薄帯化が用意に行え、従来にない薄さの水素分離・精製用膜を量産で得ることが可能である。   The double phase alloy for hydrogen separation / purification of the present invention has good hydrogen permeability, in particular, low temperature permeability as compared with conventional Pd-based hydrogen separation membranes, and is excellent in hydrogen embrittlement and practical. Because of its excellent amorphous performance, it is possible to prepare a thin band by roll cooling or the like, and it is possible to obtain an unprecedented thin film for hydrogen separation / purification in mass production.

次に本発明を実施例によって具体的に説明するが、これら実施例により本発明が限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.

(実施例1)
水素分離・精製用複相合金は表1に示す成分組成の実施例1〜7の合金と比較例1〜7の合金をAr雰囲気中でアーク溶解した後、15m/sの周速で回転するCuロールに0.02MPaのArガスで吹き付けて厚さ100μmの薄帯を作製した。この薄帯より約10mm径を切り出し、水素分離膜用試験片を作製した。試験片は酸化を防ぐため両面にPd膜を約100nmスパッタした。アモルファス化したかどうかの判断はX線回折パターンにより行った。
水素分離膜を、所定の反応管にセットしHeを流し、膜からの漏れがないことを確認後、反応管を所定の温度まで加熱し、所定の温度に達した段階で一方の1次側に水素を流し圧力を印加し、反応側の2次側に流れた水素流量を測定した。温度は300℃で行った。水素透過能をあらわす水素透過係数は次式を用いて求めた。
Example 1
The dual phase alloy for hydrogen separation / purification rotates at a peripheral speed of 15 m / s after arc melting the alloys of Examples 1 to 7 and the alloys of Comparative Examples 1 to 7 having the composition shown in Table 1 in an Ar atmosphere. A thin ribbon having a thickness of 100 μm was prepared by spraying 0.02 MPa Ar gas on a Cu roll. A diameter of about 10 mm was cut out from the ribbon to prepare a hydrogen separation membrane test piece. The test piece was sputtered with a Pd film of about 100 nm on both sides to prevent oxidation. Judgment whether it became amorphous was performed by the X-ray diffraction pattern.
After setting the hydrogen separation membrane in a predetermined reaction tube and flowing He, and confirming that there is no leakage from the membrane, the reaction tube is heated to a predetermined temperature, and when one reaches the predetermined temperature, one primary side Hydrogen was allowed to flow through and pressure was applied, and the flow rate of hydrogen flowing to the secondary side on the reaction side was measured. The temperature was 300 ° C. The hydrogen permeation coefficient representing the hydrogen permeation capacity was determined using the following equation.

耐水素脆性の評価は、水素透過を連続で行い、水素分離膜が破壊する時間によって評価した。   The hydrogen embrittlement resistance was evaluated based on the time during which hydrogen permeation was continuously performed and the hydrogen separation membrane was broken.

表1の結果から明らかなように、実施例1〜7の試験片は従来用いられている比較例1のPdAg合金よりも優れた水素透過能を示し、かつ水素化物生成温度も高く、耐水素脆性に優れていることがわかる。また比較例2〜7に示した例では水素透過能がPdAg合金よりも高い場合もあるが、水素化物生成温度が低く耐水素脆性でPdAgより劣ることがわかる。図1,2にこれらの3元組成図を示したが、これから水素透過率が高く、耐水素脆性に優れる組成範囲は、原子%で、T100−(α+β)αβ(ただし式中、TはTi,ZrまたはHfからなる群の1種以上、MはV、Nb、Taからなる群の1種以上、XはAg、Al、Cr、Cu、Ga、Zn、Feからなる群の1種以上であり、式中α、βは、15≦α≦55、5≦β≦45であり、Tは10〜70原子%)の組成範囲であることがわかる。 As is apparent from the results in Table 1, the test pieces of Examples 1 to 7 showed a hydrogen permeability superior to that of the conventionally used PdAg alloy of Comparative Example 1, and also had a high hydride generation temperature, and were resistant to hydrogen. It turns out that it is excellent in brittleness. In the examples shown in Comparative Examples 2 to 7, the hydrogen permeability may be higher than that of the PdAg alloy, but it can be seen that the hydride generation temperature is low and the hydrogen embrittlement resistance is inferior to PdAg. FIGS. 1 and 2 show these ternary composition diagrams. From now on, the composition range having high hydrogen permeability and excellent resistance to hydrogen embrittlement is atomic%, and T 100− (α + β) M α X β (wherein , T is one or more of the group consisting of Ti, Zr or Hf, M is one or more of the group consisting of V, Nb, Ta, X is a group consisting of Ag, Al, Cr, Cu, Ga, Zn, Fe It is understood that α and β are 15 ≦ α ≦ 55, 5 ≦ β ≦ 45, and T is in the composition range of 10 to 70 atomic%.

(実施例2)
実施例1のLa-Ti-V-Ag-B系以外の系の合金を用い、実施例1と同様に評価を行った。表2の結果から明らかなように、実施例8〜14の試験片は従来用いられている比較例1のPdAg合金よりも優れた水素透過能を示し、かつ水素透過膜が破壊する時間も10000時間以上で耐水素脆性に優れていることがわかる。
(Example 2)
Evaluation was performed in the same manner as in Example 1 using an alloy of a system other than the La-Ti-V-Ag-B system of Example 1. As is apparent from the results in Table 2, the test pieces of Examples 8 to 14 show a hydrogen permeability that is superior to the PdAg alloy of Comparative Example 1 that is conventionally used, and the time required for the hydrogen permeable membrane to break is 10,000. It turns out that it is excellent in hydrogen embrittlement resistance over time.

組成と水素透過係数Φとの関係を示す図である。It is a figure which shows the relationship between a composition and hydrogen permeability coefficient (PHI). 組成と水素透過膜が破壊するまでの時間との関係を示す図である。It is a figure which shows the relationship between a composition and the time until a hydrogen permeable film breaks.

Claims (3)

原子%で、T100−(α+β+γ+δ)αβγδ(Zただし式中、TはTi,Zr、Hfからなる群の1種以上、MはV、Nb、Taからなる群の1種以上、XはAg、Al、Cr、Cu、Ga、Zn、Feからなる群の1種以上、ZはB、C、Pからなる群の1種以上、RはY、Laを含む希土類元素の1種以上であり、式中α、β、γ、δは、15≦α≦55、5≦β≦45、0.1≦γ≦5、0≦δ≦15であり、Tは5〜60原子%)と不可避不純物からなる組成を有する合金で構成したことを特徴とする水素分離・精製用複相合金。 In atomic%, T 100- (α + β + γ + δ) M α X β Z γ R δ (Z However Shikichu, T is Ti, Zr, 1 or more of the group consisting of Hf, M is V, Nb, of the group consisting of Ta One or more, X is one or more of the group consisting of Ag, Al, Cr, Cu, Ga, Zn and Fe, Z is one or more of the group consisting of B, C and P, R is a rare earth containing Y and La 1 or more elements, wherein α, β, γ, δ are 15 ≦ α ≦ 55, 5 ≦ β ≦ 45, 0.1 ≦ γ ≦ 5, 0 ≦ δ ≦ 15, and T is 5 A double phase alloy for hydrogen separation / purification characterized in that it is composed of an alloy having a composition consisting of ˜60 atomic%) and inevitable impurities. 前記合金の組織がアモルファスとなっていることを特徴とする請求項1に記載の水素分離・精製用複相合金。 The multiphase alloy for hydrogen separation / purification according to claim 1, wherein the structure of the alloy is amorphous. 前記合金がロール冷却による薄帯形状であり、厚さが0.01〜1mmであることを特徴とする請求項2に記載の水素分離・精製用複相合金。 The multiphase alloy for hydrogen separation and purification according to claim 2, wherein the alloy has a ribbon-like shape formed by roll cooling and has a thickness of 0.01 to 1 mm.
JP2005101901A 2005-03-31 2005-03-31 Dual phase alloy for separating/refining hydrogen Withdrawn JP2006283076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005101901A JP2006283076A (en) 2005-03-31 2005-03-31 Dual phase alloy for separating/refining hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005101901A JP2006283076A (en) 2005-03-31 2005-03-31 Dual phase alloy for separating/refining hydrogen

Publications (1)

Publication Number Publication Date
JP2006283076A true JP2006283076A (en) 2006-10-19

Family

ID=37405289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005101901A Withdrawn JP2006283076A (en) 2005-03-31 2005-03-31 Dual phase alloy for separating/refining hydrogen

Country Status (1)

Country Link
JP (1) JP2006283076A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156045A (en) * 2008-12-04 2010-07-15 Hitachi Metals Ltd Hydrogen separation alloy, raw material for forming the hydrogen separation alloy through rolling, method for manufacturing hydrogen separation alloy, and hydrogen separator
JP2010264352A (en) * 2009-05-13 2010-11-25 Nissan Motor Co Ltd Method and apparatus for manufacturing hydrogen separation material and substrate equipped with hydrogen separation membrane for formation of membrane
CN106834854A (en) * 2017-02-21 2017-06-13 山东科技大学 Alloy and preparation method are passed through using rear-earth-doped high-performance Nb bases hydrogen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010156045A (en) * 2008-12-04 2010-07-15 Hitachi Metals Ltd Hydrogen separation alloy, raw material for forming the hydrogen separation alloy through rolling, method for manufacturing hydrogen separation alloy, and hydrogen separator
JP2010264352A (en) * 2009-05-13 2010-11-25 Nissan Motor Co Ltd Method and apparatus for manufacturing hydrogen separation material and substrate equipped with hydrogen separation membrane for formation of membrane
CN106834854A (en) * 2017-02-21 2017-06-13 山东科技大学 Alloy and preparation method are passed through using rear-earth-doped high-performance Nb bases hydrogen
CN106834854B (en) * 2017-02-21 2019-02-05 山东科技大学 Alloy and preparation method are penetrated using rear-earth-doped high-performance Nb base hydrogen

Similar Documents

Publication Publication Date Title
JP4756450B2 (en) Double phase alloy for hydrogen separation and purification
JP4363633B2 (en) Double phase alloy for hydrogen separation / purification and production method thereof, metal membrane for hydrogen separation / purification and production method thereof
JP5152433B2 (en) Hydrogen separation alloy and manufacturing method thereof
JP5000115B2 (en) Hydrogen permeable alloy
JP3749952B1 (en) Crystalline double-phase hydrogen permeable alloy membrane and crystalline double-phase hydrogen permeable alloy membrane
JP5185035B2 (en) Pd-Cu alloy with excellent hydrogen permeation performance
JP4860969B2 (en) Hydrogen permeable alloy and method for producing the same
JP2006265638A (en) Compound phase hydrogen permeation alloy and hydrogen permeation alloy membrane
US7708809B2 (en) Hydrogen permeable membrane
JP2006283076A (en) Dual phase alloy for separating/refining hydrogen
AU2007225886B2 (en) Hydrogen-permeable separation thin membranes
JP2008229564A (en) Hydrogen separation membrane and its manufacturing method
JP2006274297A (en) Dual phase alloy for hydrogen separation and refining
JP5199760B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
JP4860961B2 (en) Hydrogen permeable alloy
JP2006274298A (en) Diplophase alloy for separating/refining hydrogen and manufacturing method therefor
JP5039968B2 (en) Crystalline double phase hydrogen permeable alloy and hydrogen permeable alloy membrane
JP5549205B2 (en) Hydrogen separation alloy, hydrogen separation alloy rolling forming material, method for producing hydrogen separation alloy, and hydrogen separation apparatus
JP4250684B2 (en) Hydrogen separation and permeable membrane with excellent hydrogen separation and permeation function and high temperature amorphous stability
JP4953279B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
JP2007254786A (en) Crystalline diplophase hydrogen-permeation alloy and hydrogen-permeation alloy
JP4250679B2 (en) Hydrogen separation and permeable membrane with excellent high temperature amorphous stability
JPH0819500B2 (en) Hydrogen storage alloy thin film body and method for producing the same
JP4250680B2 (en) Hydrogen separation and permeable membrane with excellent high temperature amorphous stability
JP4250683B2 (en) Hydrogen separation and permeable membrane with excellent hydrogen separation and permeation function and high temperature amorphous stability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090722