JP2012167951A - Method for producing needle-like sample for electronic microscope - Google Patents

Method for producing needle-like sample for electronic microscope Download PDF

Info

Publication number
JP2012167951A
JP2012167951A JP2011027390A JP2011027390A JP2012167951A JP 2012167951 A JP2012167951 A JP 2012167951A JP 2011027390 A JP2011027390 A JP 2011027390A JP 2011027390 A JP2011027390 A JP 2011027390A JP 2012167951 A JP2012167951 A JP 2012167951A
Authority
JP
Japan
Prior art keywords
sample
needle
image
target
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011027390A
Other languages
Japanese (ja)
Other versions
JP5492115B2 (en
Inventor
Takeshi Kaneko
武司 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2011027390A priority Critical patent/JP5492115B2/en
Publication of JP2012167951A publication Critical patent/JP2012167951A/en
Application granted granted Critical
Publication of JP5492115B2 publication Critical patent/JP5492115B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a needle-like sample for an electronic microscope which allows the needle-like sample to be simply produced.SOLUTION: The method for producing the needle-like sample to be observed by the electronic microscope includes: a step for placing a target sample on a placing sample; a step for fixing the target sample on the placing sample; a step for applying a converged ion beam to the target sample and the placing sample and producing a thin sample composed of the target sample and the placing sample; a step for soaking the thin sample in a solution and dissolving the placing sample to leave only the target sample; and a step for extracting the left target sample from the solution.

Description

本発明は電子顕微鏡用針状試料の作製方法に関し、更に詳しくは汎用の透過型電子顕微鏡(Transmission electron microscopy:TEM)や、走査透過型電子顕微鏡(Scanning transmission electron microscopy:STEM)を用いてトモグラフィーを行なう際に使用する針状試料を簡単に作製することができるようにした電子顕微鏡用針状試料の作製方法に関する。   The present invention relates to a method for preparing a needle-like sample for an electron microscope, and more specifically, tomography is performed using a general-purpose transmission electron microscope (TEM) or a scanning transmission electron microscope (STEM). The present invention relates to a method for producing a needle-like sample for an electron microscope, which can easily produce a needle-like sample to be used for performing.

産業上及び学術分野で一般的に知られているTEMやSTEMトモグラフィーにおいて、試料の3次元観察及び3次元解析を行なうことがある。物体にX線や電子線等を照射して、物体の内部構造を立体的に知る方法として、CT(Computerized Tomography)法が知られている。X線を用いるX線CT法は医用の分野で広く使用されているが、TEMによる電子線CT法(TEMトモグラフィーや電子線トモグラフィー)は、試料の極微小領域の3次元構造を観察する手法として、材料、医学、生物分野等で使用されるようになってきている。   In TEM and STEM tomography generally known in the industrial and academic fields, there are cases where three-dimensional observation and three-dimensional analysis of a sample are performed. A CT (Computerized Tomography) method is known as a method for irradiating an object with an X-ray, an electron beam or the like to know the internal structure of the object in a three-dimensional manner. The X-ray CT method using X-rays is widely used in the medical field, but the TEM electron beam CT method (TEM tomography or electron beam tomography) is a method for observing the three-dimensional structure of a very small region of a sample. It has been used in the fields of materials, medicine, and biology.

3次元像を構築するためには、物体断面と投影像との関係を求める必要がある。そのため、TEMを用いる電子線CT法では、試料を傾斜させて様々な方位の透過電子顕微鏡像(以下TEM像という)、即ち連続傾斜像を取得する方法がある。   In order to construct a three-dimensional image, it is necessary to obtain the relationship between the object cross section and the projected image. Therefore, in the electron beam CT method using TEM, there is a method of obtaining a transmission electron microscope image (hereinafter referred to as TEM image) of various orientations, that is, a continuous tilt image by tilting the sample.

図5は透過型電子顕微鏡の構成例を示す図である。図5は電子線CTを行なうTEMの構成例を示している。図において、100はTEMの電子光学系、1は電子線源、2は電子線を集束して試料への電子線照射量を調節するための集束レンズ群、3は試料の観察位置の移動と傾斜を行なうゴニオメータステージ、4は試料Sを保持する試料保持台(試料ホルダ)、5は試料を透過した電子線を拡大するための対物レンズ、6は対物レンズの取り込み角を制限するための絞り、7は対物レンズと併用又は独立して使用する対物ミニレンズ、8は対物ミニレンズ7の取り込み角を制限するための絞りである。   FIG. 5 is a diagram illustrating a configuration example of a transmission electron microscope. FIG. 5 shows a configuration example of a TEM that performs electron beam CT. In the figure, 100 is a TEM electron optical system, 1 is an electron beam source, 2 is a focusing lens group for focusing the electron beam and adjusting the amount of electron beam irradiation to the sample, and 3 is a movement of the observation position of the sample. A goniometer stage for tilting, 4 is a sample holder (sample holder) for holding the sample S, 5 is an objective lens for enlarging the electron beam transmitted through the sample, and 6 is an aperture for limiting the capture angle of the objective lens. , 7 is an objective minilens that is used in combination with or independently of the objective lens, and 8 is a stop for limiting the capture angle of the objective minilens 7.

9は対物レンズ5又は対物ミニレンズ7の像面を検出面に拡大結像する中間・投影光学系、10はTEM像観察用のCCDカメラ、11は電子光学系100において加速電圧設定及び各レンズ励磁及びオン/オフ及び各絞り孔径の選択を制御可能な電子光学系制御部、12はCCDカメラ10の出力を画像に変換する画像処理装置、13はTEM全体の制御と演算を行なう制御演算装置である。該制御演算装置13としては、例えばパーソナルコンピュータが用いられる。   9 is an intermediate / projection optical system for enlarging the image surface of the objective lens 5 or the objective mini lens 7 on the detection surface, 10 is a CCD camera for TEM image observation, 11 is an acceleration voltage setting and each lens in the electron optical system 100 An electron optical system control unit capable of controlling excitation, on / off, and selection of each aperture diameter, 12 an image processing device for converting the output of the CCD camera 10 into an image, and 13 a control arithmetic device for controlling and calculating the entire TEM It is. For example, a personal computer is used as the control arithmetic device 13.

14は液晶モニタ等の表示装置、15はマウス、キーボード等の入力装置である。なお、電子光学系100内部の電子線通路は、図示しない真空排気装置により高真空が保持されるようになっている。   Reference numeral 14 denotes a display device such as a liquid crystal monitor, and 15 denotes an input device such as a mouse and a keyboard. The electron beam path inside the electron optical system 100 is maintained at a high vacuum by a vacuum exhaust device (not shown).

このように構成されたTEMにおいて、制御演算装置13からゴニオメータステージ(以下単にゴニオメータと略す)3に制御信号を送り、試料Sを段階的に所定角ずつ傾斜させながら、透過された電子線像を得て、これら得られた複数枚の透過電子線画像を画像処理装置12で画像に変換し、変換された画像を制御演算装置13により複数枚の画像を元に、3次元画像を得るようになっている。得られた3次元画像は表示装置14に表示される。   In the TEM configured as described above, a control signal is sent from the control arithmetic unit 13 to the goniometer stage (hereinafter simply referred to as goniometer) 3, and the transmitted electron beam image is obtained while the sample S is inclined stepwise by a predetermined angle. The obtained plurality of transmission electron beam images are converted into images by the image processing device 12, and the converted image is obtained by the control arithmetic device 13 based on the plurality of images so as to obtain a three-dimensional image. It has become. The obtained three-dimensional image is displayed on the display device 14.

図6はトモグラフィの作成原理図である。この手法は、先ずTEMやSTEMを用いて試料Sをさまざまな角度で傾斜させてTEM像若しくはSTEM像20を取得する。例えば傾斜角度の設定範囲が±60°で1°ずつ傾斜させて同時にTEM像若しくはSTEM像を取得すれば、合計取得傾斜画像の枚数は121枚となる。取得した傾斜像シリーズに対して対してCT法を適用して再構成断面像21を得る。ここで、CT法としては既存の技術を用いる。そして、得られた再構成断面像のシリーズを重ね合わせることで、3次元像22を得る。   FIG. 6 is a diagram illustrating the principle of tomography creation. In this method, first, the TEM image or the STEM image 20 is acquired by inclining the sample S at various angles using TEM or STEM. For example, if the setting range of the tilt angle is tilted by 1 ° at ± 60 ° and the TEM image or STEM image is acquired simultaneously, the total number of acquired tilt images is 121. The reconstructed cross-sectional image 21 is obtained by applying the CT method to the acquired tilt image series. Here, an existing technique is used as the CT method. Then, the three-dimensional image 22 is obtained by superposing the obtained series of reconstructed sectional images.

従来のこの種の装置としては、試料を一定の角度毎に傾斜させて得られる一連の透過像からリファレンス画像との2次元相関処理によって同一視野を切り出して試料の位置ずれを補正する装置が知られている(例えば特許文献1参照)。   As a conventional apparatus of this type, there is known an apparatus that corrects a positional deviation of a sample by cutting out the same field of view by two-dimensional correlation processing with a reference image from a series of transmission images obtained by tilting the sample at a certain angle. (See, for example, Patent Document 1).

特開2005−19218号公報(段落0023〜0027、段落0044〜0050、図1〜図3)JP-A-2005-19218 (paragraphs 0023 to 0027, paragraphs 0044 to 0050, FIGS. 1 to 3)

前述したように、3次元画像を得るためには、全方位の透過像が必要である。しかしながら、試料を傾斜させるためのゴニオメータと、試料の光学系との物理的配置から傾斜角度が制限され、全方位の透過像の取得が困難である。このようにして傾斜角度が制限された傾斜像シリーズからCT法を適用して得た再構成断面像21は、厚み方向に像が伸び、試料厚み方向の空間分解能が低下する原因となる。   As described above, in order to obtain a three-dimensional image, an omnidirectional transmission image is required. However, the tilt angle is limited by the physical arrangement of the goniometer for tilting the sample and the optical system of the sample, and it is difficult to obtain a transmission image in all directions. In this way, the reconstructed cross-sectional image 21 obtained by applying the CT method from the tilt image series in which the tilt angle is limited causes the image to extend in the thickness direction and cause a reduction in spatial resolution in the sample thickness direction.

この問題を解決するためには、傾斜角度の制限を解除する必要があるが、TEMやSTEMを用いた場合、2つの大きな原因により傾斜角度の制限が起きる。
1)試料Sを観察・傾斜するための試料ホルダ4と電磁レンズのポールピースが物理的に干渉するために、全方位傾斜することができない。
2)電子線が試料Sを透過する厚みが高傾斜角度になるにつれて大きくなるために、電子ビームの透過率が低下し、像自体が得られなくなってしまう。
In order to solve this problem, it is necessary to cancel the limitation on the tilt angle. However, when the TEM or STEM is used, the tilt angle is limited due to two major causes.
1) Since the sample holder 4 for observing and tilting the sample S physically interferes with the pole piece of the electromagnetic lens, it cannot tilt in all directions.
2) Since the thickness at which the electron beam passes through the sample S increases as the tilt angle increases, the transmittance of the electron beam decreases and the image itself cannot be obtained.

後者の問題に対して、近年、集束イオンビーム装置(FIB)を用いて試料形状を針状にすることで解決してきた。しかしながら、この針状試料の作成は非常に高度な技術と多くの時間を要するという問題がある。   In recent years, the latter problem has been solved by making the sample shape into a needle shape using a focused ion beam apparatus (FIB). However, there is a problem that the preparation of the needle-shaped sample requires a very advanced technique and a lot of time.

本発明はこのような課題に鑑みてなされたものであって、TEMやSTEMを用いてトモグラフィを行なう際に使用する針状試料を簡単に作製することができる電子顕微鏡用針状試料の作製方法を提供することを目的としている。   The present invention has been made in view of such a problem, and is capable of easily producing a needle-like sample for use in tomography using a TEM or STEM. It aims to provide a method.

上記の課題を解決するために、本発明は以下に示すような構成をとっている。   In order to solve the above-described problems, the present invention has the following configuration.

(1)請求項1記載の発明は、電子顕微鏡で観察するための針状試料を作製する方法であって、目的試料を載置用試料上に載置する工程と、前記目的試料を前記載置用試料上に固定する工程と、前記目的試料と前記載置用試料に集束イオンビームを照射して、前記目的試料と前記載置用試料からなる薄片試料を作製する工程と、前記薄片試料を溶液に入れて、前記載置用試料を溶解せしめて目的試料のみにする工程と、残った目的試料を溶液から取り出す工程とを含んだことを特徴とする。   (1) The invention according to claim 1 is a method for producing a needle-like sample for observation with an electron microscope, the step of placing a target sample on a sample for mounting, and the target sample described above A step of fixing on a mounting sample, a step of irradiating the target sample and the mounting sample with a focused ion beam to produce a thin sample comprising the target sample and the mounting sample, and the thin sample In the solution, the step of dissolving the sample for mounting described above to make only the target sample, and the step of taking out the remaining target sample from the solution.

(2)請求項2記載の発明は、前記薄片試料を試料保持材の上に載置し、該試料保持材を前記溶液中に入れるようにしたことを特徴とする。   (2) The invention described in claim 2 is characterized in that the thin piece sample is placed on a sample holding material, and the sample holding material is placed in the solution.

(3)請求項3記載の発明は、前記試料保持材は電子顕微鏡の試料ホルダに装着されるグリッドであることを特徴とする。   (3) The invention described in claim 3 is characterized in that the sample holding material is a grid attached to a sample holder of an electron microscope.

本発明は以下のような効果を奏する。   The present invention has the following effects.

(1)請求項1記載の発明によれば、針状試料を簡単に作製することができる。   (1) According to the invention described in claim 1, a needle-shaped sample can be easily produced.

(2)請求項2記載の発明によれば、載置用試料を溶かして目的試料のみを取り出すことができる。   (2) According to the invention described in claim 2, only the target sample can be taken out by melting the mounting sample.

(3)請求項3記載の発明によれば、試料保持材としてグリッドを用いることにより、目的試料を確実に保持することができる。   (3) According to the invention described in claim 3, the target sample can be reliably held by using the grid as the sample holding material.

針状試料の作製手順を示す図である。It is a figure which shows the preparation procedure of a needle-shaped sample. 薄片試料から高分子試料B除去の説明図である。It is explanatory drawing of polymer sample B removal from a thin piece sample. 試料の透過率特性を示す図である。It is a figure which shows the transmittance | permeability characteristic of a sample. 薄片試料への電子ビームの透過状態を示す図である。It is a figure which shows the permeation | transmission state of the electron beam to a thin piece sample. 透過型電子顕微鏡の構成例を示す図である。It is a figure which shows the structural example of a transmission electron microscope. トモグラフィーの作成原理図である。It is a creation principle figure of tomography.

以下、本発明の実施例について、図面を参照して詳細に説明する。図1は針状試料の作製手順を示す図である。図では(a)〜(l)の手順よりなっている。以下、各手順について詳細に説明する。なお、図中において灰色の領域は、イオンビームにより試料Sを削る(加工する)領域である。図において、(a)〜(d)はFIB装置内、(e),(f)は大気中、(g)〜(l)はFIB装置内である。
(a)試料をFIBの試料載置部に載置する。ここでは、試料Sとして試料Aを用いる。該試料Aとしては、種々の試料、例えば生体試料等を用いることができる。先ず、試料AのA1部分をイオンビームで削る。
(b)図に示すように二つの穴によって囲まれた部分A5が形成されたので、A5の底部分A2をイオンビームで削る。
(c)試料部分A5の側面A3をイオンビームで削り、薄くする。
(d)試料部分A5が試料Aとつながっている部分A4をイオンビームで削る。
(e)試料Aから取り外せるようになった薄片試料A5を、ピックアップシステムを用いてガラスプローブ30で接着して取り出す。この時、ガラスプローブ30は静電気により薄片試料A5を接着する。これにより薄片試料A5を容易に取り出すことができる。
(f)バルクの高分子試料(載置用試料)Bの上にピックアップされた薄片試料(目的試料)A5を載せる。ここで、試料Bとしては、高分子試料に限るものではなく、その他の溶液に溶ける性質の材料であればよい(詳細後述)。
(g)高分子試料Bの上に載っている薄片試料A5の両端をカーボン蒸着31で固定する。カーボン蒸着は、薄片試料A5を高分子試料Bに固定する方法の一つであって、必ずしもカーボン蒸着である必要はない。その他の固定方法を用いることができる。
(h)B1部分をイオンビームで削る。
(i)図に示すように、二つの穴によって囲まれた部分B5が形成されたので、B5の底部分B2をイオンビームで削る。
(j)試料部分B5の側面B3をイオンビームで削り、薄くする。
(k)試料部分B5が試料Bとつながっている部分B4をイオンビームで削る。
(l)ピックアップシステムのガラスプローブ30を用いて試料部分B5を取り出す。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram showing a procedure for producing a needle-like sample. In the figure, the procedure consists of (a) to (l). Hereinafter, each procedure will be described in detail. In the drawing, the gray region is a region where the sample S is cut (processed) by the ion beam. In the figure, (a) to (d) are in the FIB apparatus, (e) and (f) are in the atmosphere, and (g) to (l) are in the FIB apparatus.
(A) Place the sample on the FIB sample placement section. Here, sample A is used as sample S. As the sample A, various samples such as a biological sample can be used. First, the A1 portion of the sample A is shaved with an ion beam.
(B) Since a portion A5 surrounded by two holes is formed as shown in the figure, the bottom portion A2 of A5 is shaved with an ion beam.
(C) The side surface A3 of the sample portion A5 is shaved with an ion beam to make it thin.
(D) The portion A4 where the sample portion A5 is connected to the sample A is shaved with an ion beam.
(E) The thin piece sample A5 that can be removed from the sample A is taken out by bonding with the glass probe 30 using a pickup system. At this time, the glass probe 30 adheres the thin piece sample A5 by static electricity. Thereby, the thin piece sample A5 can be easily taken out.
(F) A thin sample (target sample) A5 picked up on a bulk polymer sample (mounting sample) B is placed. Here, the sample B is not limited to the polymer sample, but may be any other material that is soluble in the solution (details will be described later).
(G) Both ends of the thin piece sample A5 placed on the polymer sample B are fixed by the carbon vapor deposition 31. Carbon vapor deposition is one of the methods for fixing the thin sample A5 to the polymer sample B, and is not necessarily carbon vapor deposition. Other fixing methods can be used.
(H) The B1 portion is shaved with an ion beam.
(I) As shown in the figure, since the portion B5 surrounded by the two holes is formed, the bottom portion B2 of B5 is shaved with an ion beam.
(J) The side surface B3 of the sample portion B5 is shaved with an ion beam to make it thin.
(K) The portion B4 where the sample portion B5 is connected to the sample B is shaved with an ion beam.
(L) The sample portion B5 is taken out using the glass probe 30 of the pickup system.

以上の手順により、TEMにより観察できる厚さの薄片試料が形成される。この時、取り出される薄片試料B5は両端にカーボン蒸着31が付いた状態で、凸型の薄片試料となっている。この状態では、試料B5に高分子試料が付いているので、高分子試料を除去する必要がある。   By the above procedure, a thin sample having a thickness that can be observed by TEM is formed. At this time, the extracted thin piece sample B5 is a convex thin piece sample with the carbon vapor deposition 31 attached to both ends. In this state, since the polymer sample is attached to the sample B5, it is necessary to remove the polymer sample.

図2は薄片試料B5から高分子試料Bの除去の説明図である。34は電子顕微鏡の試料ホルダに装着されるグリッドで、この上に高分子試料B(32)を付けた試料B5が載っている。グリッド34を用いることで、薄片試料を安定に保持することができる。グリッド34の上に載せているのは高分子試料Bと目的試料A5’である。グリッド34に載せた試料B5を溶液35中に浸す。溶液35は瓶等の容器の中に入っている。この溶液35は、高分子試料Bのみ溶かすような溶液である。該溶液としては、例えばアセトンが用いられる。その後、溶液からグリッド34を引き上げると目的試料A5’のみが残る。目的試料A5’の両端にはカーボン蒸着31が付着したままである。このようにして得られた試料を針状試料という。以上の方法で、非常に簡単に針状試料の作製が可能となる。   FIG. 2 is an explanatory diagram of the removal of the polymer sample B from the thin piece sample B5. Reference numeral 34 denotes a grid attached to a sample holder of an electron microscope, on which a sample B5 with a polymer sample B (32) is placed. By using the grid 34, the thin piece sample can be stably held. The polymer sample B and the target sample A5 'are placed on the grid 34. The sample B5 placed on the grid 34 is immersed in the solution 35. The solution 35 is contained in a container such as a bottle. This solution 35 is a solution in which only the polymer sample B is dissolved. As the solution, for example, acetone is used. Thereafter, when the grid 34 is pulled up from the solution, only the target sample A5 'remains. The carbon vapor deposition 31 remains attached to both ends of the target sample A5 '. The sample thus obtained is called a needle sample. With the above method, a needle-shaped sample can be prepared very easily.

針状試料A5’はトモグラフィーには非常に重宝されている。その理由を以下に示す。図3は針状試料と通常試料の透過率特性を示す図である。横軸は傾斜角度、縦軸は透過率である。図では、試料f1〜f3の3種類の試料の特性を示している。図中の太い実線が針状試料の傾斜角度に対する透過率、細い実線が通常試料の傾斜角度に対する透過率である。ここで、透過率は試料を透過する割合を示し、1.0の場合は全部のビームが透過することを示し、0の場合は全く透過しないことを示している。但し、針状試料は矩形と仮定している。図4は薄片試料への電子ビームの透過状態を示す図である。図のθが試料傾斜角である。図の場合は試料傾斜角が45度の場合を示している。針状試料の場合は、試料傾斜角が45度の時が一番透過率が悪い(後述)。この針状試料の傾斜角θは、ゴニオメータ3により設定され、所定角ずつ変化させながら、透過像を得るようになっている。   The needle sample A5 'is very useful for tomography. The reason is as follows. FIG. 3 is a diagram showing the transmittance characteristics of the needle-shaped sample and the normal sample. The horizontal axis is the tilt angle, and the vertical axis is the transmittance. In the figure, the characteristics of three types of samples f1 to f3 are shown. The thick solid line in the figure represents the transmittance with respect to the inclination angle of the needle-shaped sample, and the thin solid line represents the transmittance with respect to the inclination angle of the normal sample. Here, the transmittance indicates a ratio of transmitting through the sample. When the transmittance is 1.0, it indicates that all the beams are transmitted, and when 0, the transmittance is not transmitted at all. However, the needle-like sample is assumed to be rectangular. FIG. 4 is a diagram showing a transmission state of the electron beam to the thin piece sample. The θ in the figure is the sample tilt angle. In the case of the figure, the sample inclination angle is 45 degrees. In the case of a needle sample, the transmittance is the worst when the sample tilt angle is 45 degrees (described later). The inclination angle θ of the needle-like sample is set by the goniometer 3, and a transmission image is obtained while being changed by a predetermined angle.

通常の試料の場合、傾斜角度が増加するに伴い透過率は低下していく。特に、透過率が0.6の傾斜角度0度の通常試料であっても、傾斜角度80度の場合には透過率はほぼ0となる。この場合には、物理的に傾斜が可能であっても、透過できないので、像を得ることができない。一方、針状試料の場合には、傾斜角度45度の場合の時に透過率が一番低くなり、それ以上の傾斜角度になると透過率が上昇することが分かる。針状試料として四角柱材を用いた場合、傾斜角45度の時が試料厚さが最も厚くなるからである。また、一番低い透過率と一番高い透過率の差も0.1度程度であり、全ての角度で透過率の高い像を得ることが可能となる。このようにして作製された薄片試料を図5に示す透過型電子顕微鏡で3次元像として観察することができる。   In the case of a normal sample, the transmittance decreases as the tilt angle increases. In particular, even with a normal sample having a transmittance of 0.6 and an inclination angle of 0 °, the transmittance is almost 0 when the inclination angle is 80 °. In this case, an image cannot be obtained because it cannot be transmitted even if it can be physically tilted. On the other hand, in the case of a needle-like sample, it can be seen that the transmittance is lowest when the tilt angle is 45 degrees, and the transmittance increases when the tilt angle is more than that. This is because when a quadrangular prism is used as the needle-shaped sample, the sample thickness becomes the largest when the inclination angle is 45 degrees. Also, the difference between the lowest transmittance and the highest transmittance is about 0.1 degree, and an image with a high transmittance can be obtained at all angles. The thin sample prepared as described above can be observed as a three-dimensional image with a transmission electron microscope shown in FIG.

即ち、上述の方法で作製した針状試料A5’を試料ホルダ4に設定した後、ゴニオメータ3で所定角度ずつ傾斜を変えて透過像20を得、得られた透過像20から再構成断面像21を得る。得られた再構成断面像21を重ね合わせて3次元像22を得ることができる。   That is, after setting the needle-like sample A5 ′ produced by the above-described method to the sample holder 4, the transmission image 20 is obtained by changing the inclination by a predetermined angle with the goniometer 3, and the reconstructed cross-sectional image 21 is obtained from the obtained transmission image 20. Get. A three-dimensional image 22 can be obtained by superimposing the obtained reconstruction sectional images 21.

なお、針状試料の形状として四角柱状のものを用いた場合を例にとったが、本発明はこれに限るものではなく、例えば三角柱状や五角柱状のものを用いてもよい。   In addition, although the case where the thing of a quadrangular prism shape was used as an example of the shape of a needle-shaped sample was taken as an example, this invention is not limited to this, For example, a triangular prism shape or a pentagonal prism shape may be used.

以上、詳細に説明したように、本発明によれば、TEMやSTEMを用いてトモグラフィーを行なう際に使用する針状試料を簡単に作製することができ、実用上の効果が大きい。   As described above in detail, according to the present invention, a needle-like sample used for tomography using a TEM or STEM can be easily produced, and a practical effect is great.

30 ガラスプローブ
31 カーボン蒸着
A5 薄片試料
A5’ 薄片試料
B 高分子試料
30 Glass probe 31 Carbon deposition A5 Thin sample A5 'Thin sample B Polymer sample

Claims (3)

電子顕微鏡で観察するための針状試料を作製する方法であって、目的試料を載置用試料上に載置する工程と、
前記目的試料を前記載置用試料上に固定する工程と、
前記目的試料と前記載置用試料に集束イオンビームを照射して、前記目的試料と前記載置用試料からなる薄片試料を作製する工程と、
前記薄片試料を溶液に入れて、前記載置用試料を溶解せしめて目的試料のみにする工程と、
残った目的試料を溶液から取り出す工程とを含んだことを特徴とする電子顕微鏡用針状試料の作製方法。
A method of producing a needle-like sample for observation with an electron microscope, the step of placing a target sample on a sample for placement;
Fixing the target sample on the mounting sample;
Irradiating the target sample and the mounting sample with a focused ion beam to produce a thin sample comprising the target sample and the mounting sample;
Placing the thin piece sample in a solution, dissolving the sample for mounting as described above to make only the target sample; and
And a step of taking out the remaining target sample from the solution.
前記薄片試料を試料保持材の上に載置し、該試料保持材を前記溶液中に入れるようにしたことを特徴とする請求項1記載の電子顕微鏡用針状試料の作製方法。   2. The method for producing a needle-shaped sample for an electron microscope according to claim 1, wherein the thin sample is placed on a sample holding material, and the sample holding material is placed in the solution. 前記試料保持材は電子顕微鏡の試料ホルダに装着されるグリッドであることを特徴とする請求項2記載の電子顕微鏡用針状試料の作製方法。   The method for producing a needle-shaped sample for an electron microscope according to claim 2, wherein the sample holding material is a grid attached to a sample holder of an electron microscope.
JP2011027390A 2011-02-10 2011-02-10 Preparation method of needle-like sample for electron microscope Active JP5492115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011027390A JP5492115B2 (en) 2011-02-10 2011-02-10 Preparation method of needle-like sample for electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011027390A JP5492115B2 (en) 2011-02-10 2011-02-10 Preparation method of needle-like sample for electron microscope

Publications (2)

Publication Number Publication Date
JP2012167951A true JP2012167951A (en) 2012-09-06
JP5492115B2 JP5492115B2 (en) 2014-05-14

Family

ID=46972272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011027390A Active JP5492115B2 (en) 2011-02-10 2011-02-10 Preparation method of needle-like sample for electron microscope

Country Status (1)

Country Link
JP (1) JP5492115B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199735A (en) * 1999-01-05 2000-07-18 Nkk Corp Metal cutting method and method for preparing cross section sample for microscopic observation
JP2001208659A (en) * 2000-01-25 2001-08-03 Nippon Steel Corp Method of fabricating acicular sample for field ion microscopy
JP2002148162A (en) * 2000-11-13 2002-05-22 Seiko Instruments Inc Slice sample fixing method and sample using it
JP2005019218A (en) * 2003-06-26 2005-01-20 Jeol Ltd Electron microscope device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199735A (en) * 1999-01-05 2000-07-18 Nkk Corp Metal cutting method and method for preparing cross section sample for microscopic observation
JP2001208659A (en) * 2000-01-25 2001-08-03 Nippon Steel Corp Method of fabricating acicular sample for field ion microscopy
JP2002148162A (en) * 2000-11-13 2002-05-22 Seiko Instruments Inc Slice sample fixing method and sample using it
JP2005019218A (en) * 2003-06-26 2005-01-20 Jeol Ltd Electron microscope device

Also Published As

Publication number Publication date
JP5492115B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
JP6262453B2 (en) Method for preparation and visualization of flakes in a particle-optical device
US8476588B2 (en) Method of electron diffraction tomography
JP6458920B1 (en) Inclination angle amount calculation device, sample stage, charged particle beam device, and program
JP5048596B2 (en) Sample stand, sample rotating holder, sample stand preparation method, and sample analysis method
JP2008270056A (en) Scanning transmission electron microscope
CN107204268A (en) Focused Ion Beam Apparatus
TW201241425A (en) Apparatus and methods for real-time three-dimensional SEM imaging and viewing of semiconductor wafers
WO2019082976A1 (en) Crystal orientation map generation device, charged particle radiation device, crystal orientation map generation method, and program
CN110441342A (en) A kind of method of accurate Characterization crystal 3 D tropism and crystalline orientation
JP4654216B2 (en) Sample holder for charged particle beam equipment
JP6582314B2 (en) 3D image construction method, image processing apparatus, and electron microscope
US9214316B2 (en) Composite charged particle beam apparatus
JP2013101138A (en) Cross-sectional observation method of cosmetic
JP2013196972A (en) Specimen observation method, specimen preparation method and charged particle beam device
CN109142399A (en) A kind of imaging system and sample detection method
JP5492115B2 (en) Preparation method of needle-like sample for electron microscope
JP2011222426A (en) Composite charged particle beam device
CN208420756U (en) A kind of imaging system
JP2018128307A (en) Observation method and sample production method
US10541108B2 (en) Method and apparatus for transmission electron microscopy
JP2013134978A (en) Sample support for transmission electron microscope, transmission electron microscope and three-dimensional structure observation method of sample
TWI813760B (en) Sample Processing Observation Method
JP2005216645A (en) Transmission electron microscope
Karimi Nejadasl et al. Non-rigid image registration to reduce beam-induced blurring of cryo-electron microscopy images
Lin et al. Correlative single-cell hard X-ray tomography and X-ray fluorescence imaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131018

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140228

R150 Certificate of patent or registration of utility model

Ref document number: 5492115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150