JP2013134978A - Sample support for transmission electron microscope, transmission electron microscope and three-dimensional structure observation method of sample - Google Patents
Sample support for transmission electron microscope, transmission electron microscope and three-dimensional structure observation method of sample Download PDFInfo
- Publication number
- JP2013134978A JP2013134978A JP2011286799A JP2011286799A JP2013134978A JP 2013134978 A JP2013134978 A JP 2013134978A JP 2011286799 A JP2011286799 A JP 2011286799A JP 2011286799 A JP2011286799 A JP 2011286799A JP 2013134978 A JP2013134978 A JP 2013134978A
- Authority
- JP
- Japan
- Prior art keywords
- sample
- support
- electron microscope
- transmission electron
- orientation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Abstract
Description
本発明は、透過電子顕微鏡用の試料支持体、透過電子顕微鏡および試料の3次元構造観察方法に関する。特に透過電子顕微鏡を用いて、3次元構造観察のための連続試料傾斜像を取得する際に、情報欠落領域となる高傾斜の試料傾斜像を簡便に取得し、さらに試料傾斜角を精確に特定することができる試料支持体に関する。 The present invention relates to a sample support for a transmission electron microscope, a transmission electron microscope, and a method for observing a three-dimensional structure of a sample. Especially when acquiring continuous sample tilt images for three-dimensional structure observation using a transmission electron microscope, it is possible to easily acquire a high tilt sample tilt image that becomes an information-deficient area and to accurately specify the sample tilt angle. It relates to a sample support that can be used.
近年、透過電子顕微鏡や走査型透過電子顕微鏡を用いて、微小な試料の3次元構造を観察する必要性が高まってきている。しかし、基本的に透過電子顕微鏡では試料の2次元の投影像しか得られない。そこで、3次元構造の観察のために、まず、装置内で試料を連続的に傾斜させ、多数の方位からの投影像を撮影する。その後、その投影像群をコンピュータで処理することにより3次元像を再構成する手法がとられる。この一連の観察手法を電子線トモグラフィ観察という。この手法において、2次元投影像群から3次元像を正確に再構成するためには、全ての方位からの投影像をできるだけ細かい角度間隔で撮影することと、各投影像相互間の位置・方位合わせを精確に行うことが必要とされる。 In recent years, there has been an increasing need to observe a three-dimensional structure of a minute sample using a transmission electron microscope or a scanning transmission electron microscope. However, basically, a transmission electron microscope can only obtain a two-dimensional projection image of a sample. Therefore, in order to observe the three-dimensional structure, first, the sample is continuously tilted in the apparatus, and projection images from many directions are taken. Thereafter, a method of reconstructing a three-dimensional image by processing the projection image group with a computer is employed. This series of observation techniques is called electron beam tomography observation. In this method, in order to accurately reconstruct a three-dimensional image from a group of two-dimensional projection images, the projection images from all directions are photographed at as fine an angular interval as possible, and the positions and orientations between the respective projection images. Accurate alignment is required.
さらに、従来、上記の連続試料傾斜像を撮影するため、一般に市販されている切り欠きメッシュ(半月状の金属板)や格子状の金属メッシュを加工した試料台の端部に薄片化・細柱化した観察試料を固定していた。これを、標準的な透過電子顕微鏡用試料ホルダに搭載し、電子顕微鏡の試料傾斜機構を利用し、多数の方位からの投影像を撮影していた。しかし、一般的な電子顕微鏡では装置上の制約から試料傾斜角は制約され(一般的に±60°〜±70°が上限)、観察できない試料傾斜角度領域(情報欠落領域)が生じる。この情報欠落領域は、再構成された3次元像に歪みをもたらし、異方的に空間分解能を低下させることが知られている。 Furthermore, in order to take the above-mentioned continuous sample tilt image, the thinned and thin pillars are formed at the end of the sample stage where a notch mesh (a half-moon shaped metal plate) or a grid-like metal mesh is processed. The observed sample was fixed. This was mounted on a standard sample holder for a transmission electron microscope, and projected images from many directions were taken using the sample tilt mechanism of the electron microscope. However, in a general electron microscope, the sample tilt angle is limited due to restrictions on the apparatus (generally ± 60 ° to ± 70 ° is the upper limit), and a sample tilt angle region (information missing region) that cannot be observed is generated. This information missing region is known to cause distortion in the reconstructed three-dimensional image and to anisotropically reduce the spatial resolution.
これに対し、特許文献1では、試料ホルダ先端の、試料を固定する試料台部分を、電子顕微鏡内で360°回転させることのできる機構を備えた特殊な試料ホルダを用い、さらに試料台部分に目印を形成することで試料台の向いている方向を確認できる試料台が提案されている。これにより、試料の加工中および観察中に方向を確認しながら、全方向からの試料観察を可能としている。 On the other hand, in Patent Document 1, a special sample holder provided with a mechanism capable of rotating the sample stage portion, which fixes the sample at the tip of the sample holder, by 360 ° in the electron microscope is used. There has been proposed a sample stage in which the direction of the sample stage can be confirmed by forming a mark. This makes it possible to observe the sample from all directions while confirming the direction during processing and observation of the sample.
また、特許文献2では、薄板リング状のベースと、ベースに対して自在に回転・固定できる試料固定用の試料支持部材と、試料支持部材を囲むように回転角を示す分度器を備えた試料支持台が提案されている。これを標準的な透過電子顕微鏡用試料ホルダに搭載し、試料支持部材の回転角度と電子顕微鏡の試料ステージ傾斜機構の傾斜角度を組み合わせることにより、結果として全方向からの試料観察を可能としている。 Further, in Patent Document 2, a sample support provided with a thin plate-shaped base, a sample support member for fixing a sample that can be freely rotated and fixed with respect to the base, and a protractor showing a rotation angle so as to surround the sample support member. A stand has been proposed. This is mounted on a standard transmission electron microscope sample holder, and by combining the rotation angle of the sample support member and the tilt angle of the sample stage tilt mechanism of the electron microscope, the sample can be observed from all directions.
特許文献1では、ピラー状の試料台を360°回転させるための機構を備えているため、情報欠落領域のない観察が可能となっている。しかし、そのための特殊な試料ホルダを用いなければならず、使用できる装置にも制約が生じるため、汎用性のある観察法とは言い難い。 In Patent Document 1, since a mechanism for rotating a pillar-shaped sample stage by 360 ° is provided, observation without an information missing region is possible. However, a special sample holder for that purpose must be used, and the apparatus that can be used is also limited, so it is difficult to say that it is a versatile observation method.
これに対し、特許文献2では、情報欠落領域もなく、試料支持台が標準的な試料ホルダに搭載可能な形状になっているため、汎用性が高くなっている。しかし、試料支持部材の回転角度を分度器の目盛りで読み取る構造のため、読み取り精度と再現性の点に問題がある。 On the other hand, in Patent Document 2, versatility is enhanced because there is no information missing region and the sample support base has a shape that can be mounted on a standard sample holder. However, since the structure is such that the rotation angle of the sample support member is read by the scale of the protractor, there is a problem in terms of reading accuracy and reproducibility.
本発明は、この様な背景技術に鑑みてなされたものであり、透過電子顕微鏡を用いた3次元構造観察において、360°全方向からの試料観察が可能な試料支持体、それを用いた透過電子顕微鏡および試料の3次元構造観察方法を提供するものである。 The present invention has been made in view of such background art, and in a three-dimensional structure observation using a transmission electron microscope, a sample support capable of observing a sample from all directions of 360 °, and a transmission using the same An electron microscope and a three-dimensional structure observation method for a sample are provided.
上記の課題を解決する透過電子顕微鏡用の試料支持体は、先端部分に少なくとも一部分が単結晶である結晶性試料台座を備えている試料台と、前記試料台が着脱可能に嵌着される支持基体とを有する試料支持体であって、前記試料台は回転軸を中心に回転しても支持基体に着脱可能であることを特徴とする。 A sample support for a transmission electron microscope that solves the above problems includes a sample stage having a crystalline sample pedestal at least a part of which is a single crystal at a tip portion, and a support on which the sample stage is detachably fitted. A sample support including a substrate, wherein the sample stage is detachable from the support substrate even when the sample stage rotates about a rotation axis.
上記の課題を解決する透過電子顕微鏡は、試料を搭載する試料ホルダと、前記試料ホルダの位置および傾斜角を調整する試料移動機構を備えている透過電子顕微鏡であって、前記試料ホルダに上記の試料支持体を備えていることを特徴とする。 A transmission electron microscope that solves the above problems is a transmission electron microscope that includes a sample holder on which a sample is mounted, and a sample moving mechanism that adjusts the position and inclination angle of the sample holder. A sample support is provided.
上記の課題を解決する試料の3次元構造観察方法は、上記の試料ホルダと試料移動機構を備えている透過電子顕微鏡を用いて試料の3次元構造を観察する方法において、前記透過電子顕微鏡の試料ホルダに備えている試料支持体に試料を搭載し、前記試料支持体の結晶性試料台座の一つの結晶方位をもとに第一の試料方位を決定した後、試料移動機構を利用し第一の連続傾斜像群を取得する工程、前記試料支持体の試料台を回転し、前記結晶性試料台座の別の結晶方位をもとに第二の試料方位を決定した後、試料移動機構を利用し第二の連続傾斜像群を取得する工程、前記第一の試料方位と前記第二の試料方位からそれぞれの連続傾斜像群の方位を推定することにより連続傾斜像の試料方位を特定して3次元像を再構成する工程を有することを特徴とする。 A method for observing a three-dimensional structure of a sample that solves the above problem is a method of observing the three-dimensional structure of a sample using a transmission electron microscope having the sample holder and a sample moving mechanism. The sample is mounted on the sample support provided in the holder, and the first sample orientation is determined based on one crystal orientation of the crystalline sample pedestal of the sample support. Obtaining a continuous tilt image group, rotating the sample stage of the sample support, determining the second sample direction based on another crystal direction of the crystalline sample base, and then using the sample moving mechanism A step of acquiring a second continuous tilt image group, specifying a sample orientation of the continuous tilt image by estimating the orientation of each continuous tilt image group from the first sample orientation and the second sample orientation; Having a step of reconstructing a three-dimensional image And features.
本発明は、透過電子顕微鏡を用いた3次元構造観察において、360°全方向からの試料観察が可能な試料支持体、それを用いた透過電子顕微鏡および試料の3次元構造観察方法を提供することができる。 The present invention provides a sample support capable of observing a sample from all 360 ° directions in a three-dimensional structure observation using a transmission electron microscope, a transmission electron microscope using the sample support, and a three-dimensional structure observation method of the sample. Can do.
本発明に係る透過電子顕微鏡用の試料支持体は、先端部分に少なくとも一部分が単結晶である結晶性試料台座を備えている試料台と、前記試料台が着脱可能に嵌着される支持基体とを有する試料支持体であって、前記試料台は回転軸を中心に回転しても支持基体に着脱可能であることを特徴とする。 A sample support for a transmission electron microscope according to the present invention includes a sample stage provided with a crystalline sample pedestal at least a part of which is a single crystal at a tip portion, and a support base on which the sample stage is detachably fitted. The sample support is characterized in that it can be attached to and detached from the support base even if the sample stage rotates about the rotation axis.
本発明の試料支持体は、試料支持体の一部分である試料台が、着脱または回転可能な機構をもつ透過電子顕微鏡用の試料支持体である。このような機構を備えた試料台は、試料台を複数の回転角度で固定することで、さまざまな方位からの試料観察が可能となる。とくに、一軸傾斜ホルダあるいは二軸傾斜ホルダ等に搭載し、前記試料台の回転機構と電子顕微鏡本体の試料移動機構における試料傾斜を組み合わせることにより、360°全方位からの試料観察が可能となる。また、その試料台の先端部分に一部分あるいは全体が単結晶である結晶性試料台座を備えていると、その単結晶部分の透過電子顕微鏡による電子回折図形を基準に、試料台が向いている方向を精確かつ再現性良く決定することができる。 The sample support of the present invention is a sample support for a transmission electron microscope having a mechanism in which a sample stage, which is a part of the sample support, can be attached or detached. The sample stage provided with such a mechanism can observe the sample from various directions by fixing the sample stage at a plurality of rotation angles. In particular, by mounting on a uniaxial tilt holder or a biaxial tilt holder and combining the sample stage rotation mechanism with the sample tilt in the sample moving mechanism of the electron microscope main body, it is possible to observe the sample from all 360 ° directions. In addition, if the tip of the sample stage is equipped with a crystalline sample pedestal that is partially or entirely single crystal, the direction in which the sample stage is facing, based on the electron diffraction pattern of the single crystal part by a transmission electron microscope Can be determined accurately and with good reproducibility.
また、この単結晶部分の一つの結晶軸が、試料台の回転軸方向とほぼ一致しており、さらに別の二つの結晶軸が試料台の回転軸方向と直交しているような構成であると、試料台の着脱・回転による電子線の入射方向の変化も、試料台の回転軸方向と直交している面内に制限される。したがって、電子回折図形の変化も予測しやすく、試料台が向いている方向の決定をさらに容易に行うことができる。 In addition, one crystal axis of this single crystal portion is substantially coincident with the rotation axis direction of the sample stage, and another two crystal axes are orthogonal to the rotation axis direction of the sample stage. And the change in the incident direction of the electron beam due to the attachment / detachment / rotation of the sample stage is also limited to a plane orthogonal to the rotation axis direction of the sample stage. Therefore, the change of the electron diffraction pattern can be easily predicted, and the direction in which the sample stage is facing can be determined more easily.
本発明に係る透過電子顕微鏡は、試料を搭載する試料ホルダと、前記試料ホルダの位置および傾斜角を調整する試料移動機構を備えている透過電子顕微鏡であって、前記試料ホルダに上記の試料支持体を備えていることを特徴とする。 A transmission electron microscope according to the present invention is a transmission electron microscope including a sample holder on which a sample is mounted and a sample moving mechanism that adjusts a position and an inclination angle of the sample holder, wherein the sample holder supports the sample. It is characterized by having a body.
また、本発明に係る試料の3次元構造観察方法は、上記の試料ホルダと試料移動機構を備えている透過電子顕微鏡を用いて試料の3次元構造を観察する方法において、前記透過電子顕微鏡の試料ホルダに備えている試料支持体に試料を搭載し、前記試料支持体の結晶性試料台座の一つの結晶方位をもとに第一の試料方位を決定した後、試料移動機構を利用し第一の連続傾斜像群を取得する工程、前記試料支持体の試料台を回転し、前記結晶性試料台座の別の結晶方位をもとに第二の試料方位を決定した後、試料移動機構を利用し第二の連続傾斜像群を取得する工程、前記第一の試料方位と前記第二の試料方位からそれぞれの連続傾斜像群の方位を推定することにより連続傾斜像の試料方位を精確に特定し、その情報をもとに3次元像を再構成する工程を有することを特徴とする。 According to another aspect of the present invention, there is provided a method for observing a three-dimensional structure of a sample using a transmission electron microscope having the sample holder and the sample moving mechanism. The sample is mounted on the sample support provided in the holder, and the first sample orientation is determined based on one crystal orientation of the crystalline sample pedestal of the sample support. Obtaining a continuous tilt image group, rotating the sample stage of the sample support, determining the second sample direction based on another crystal direction of the crystalline sample base, and then using the sample moving mechanism And acquiring the second continuous tilt image group, accurately identifying the sample orientation of the continuous tilt image by estimating the orientation of each continuous tilt image group from the first sample orientation and the second sample orientation. And reconstruct a 3D image based on that information It characterized by having a that process.
本発明においては、上述のような電子回折図形による試料方位決定手順を、試料台を着脱・回転する前後に行うことで、着脱・回転による試料方位の変化を補正できる。これにより、着脱・回転前後でのそれぞれの連続傾斜像を一つの連続傾斜像データとして扱い、3次元構造像を再構成できるようになる。主な手順としては、まず、試料を結晶性試料台座に固定し、その試料台を支持基体に装着し、試料支持体とする。試料支持体を一軸以上の試料傾斜が可能な電子顕微鏡の試料ホルダに搭載し、結晶性試料台座の一つの結晶方位をもとに第一の試料方位を決定後、試料移動機構を利用し第一の連続傾斜像群を取得する。次に、前記試料台を回転し、結晶性試料台座の別の結晶方位をもとに第二の試料方位を決定後、試料移動機構を利用し第二の連続傾斜像群を取得する。次に、第一の試料方位と第二の試料方位からそれぞれの連続傾斜像群の方位を推定することで、連続傾斜像の試料方位を精確に特定する。最後に、その情報をもとに3次元構造像を再構成する手順である。 In the present invention, the change in the sample orientation due to the attachment / detachment / rotation can be corrected by performing the sample orientation determination procedure by the electron diffraction pattern as described above before and after the attachment / detachment / rotation of the sample stage. Thereby, each continuous tilt image before and after attachment / detachment / rotation is treated as one continuous tilt image data, and a three-dimensional structure image can be reconstructed. As a main procedure, first, a sample is fixed to a crystalline sample pedestal, and the sample pedestal is attached to a support base to obtain a sample support. Mount the sample support on the sample holder of an electron microscope that can tilt the sample more than one axis, determine the first sample orientation based on one crystal orientation of the crystalline sample base, and then use the sample moving mechanism One continuous tilt image group is acquired. Next, the sample stage is rotated, and after determining the second sample orientation based on another crystal orientation of the crystalline sample base, a second continuous tilt image group is acquired using the sample moving mechanism. Next, the sample orientation of the continuous tilt image is accurately specified by estimating the orientation of each continuous tilt image group from the first sample orientation and the second sample orientation. Finally, it is a procedure for reconstructing a three-dimensional structure image based on the information.
以下に図面を参照しながら、本発明の実施の形態を説明する。ただし、この実施の形態に記載されている寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、本発明の範囲をそれらのみに限定する趣旨のものではない。 Embodiments of the present invention will be described below with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like described in this embodiment are not intended to limit the scope of the present invention only to those unless otherwise specified.
本発明に係る透過電子顕微鏡は、試料を搭載する試料ホルダと、前記試料ホルダの位置および傾斜角を調整する試料移動機構を備えている透過電子顕微鏡であって、前記試料ホルダに上記の試料支持体を備えていることを特徴とする。 A transmission electron microscope according to the present invention is a transmission electron microscope including a sample holder on which a sample is mounted and a sample moving mechanism that adjusts a position and an inclination angle of the sample holder, wherein the sample holder supports the sample. It is characterized by having a body.
図2(a)に本発明の試料支持体および3次元構造観察法に用いられる透過電子顕微鏡の一般的な構成図を示す。図2(b)は試料ホルダの先端部の概観図である。透過電子顕微鏡は、電子銃12と収束レンズ13と対物レンズ14と投影レンズ15と蛍光板16と記録装置17を有する。収束レンズ13と対物レンズ14との間には、試料8を搭載した試料ホルダ19が挿入することができる。電子銃12から放出された電子線20は収束レンズ13により点状に収束され、試料ホルダ19の先端に搭載された試料に照射される。試料を透過・散乱した電子線は対物レンズ14により結像され、さらに投影レンズ15により拡大され蛍光板16に投影される。また、記録等が必要な場合には、蛍光板16を電子線光路上から外すことで、さらに下方に設置された記録装置17に電子線20を投影させ撮像することもできる。 FIG. 2A shows a general configuration diagram of a transmission electron microscope used for the sample support and the three-dimensional structure observation method of the present invention. FIG. 2B is a schematic view of the tip of the sample holder. The transmission electron microscope includes an electron gun 12, a converging lens 13, an objective lens 14, a projection lens 15, a fluorescent plate 16, and a recording device 17. A sample holder 19 carrying the sample 8 can be inserted between the converging lens 13 and the objective lens 14. The electron beam 20 emitted from the electron gun 12 is converged in a dot shape by the converging lens 13 and is irradiated to the sample mounted on the tip of the sample holder 19. The electron beam transmitted and scattered through the sample is imaged by the objective lens 14, further magnified by the projection lens 15, and projected onto the fluorescent plate 16. Further, when recording or the like is necessary, the fluorescent plate 16 can be removed from the electron beam optical path, and the electron beam 20 can be projected onto the recording device 17 installed further below to take an image.
試料ホルダ19は試料移動機構18により、位置・傾斜角等を調整することができる。これにより搭載された試料を任意の場所、種々の角度からの観察が可能となる。ただし、試料ホルダ19の挿入スペースは非常に狭いのが一般的であり、とくに試料傾斜に関しては、試料ホルダ19とレンズの衝突を避けるため、試料傾斜角が制限される。図2(b)には試料ホルダ19の先端部分の一般的な概観図を示す。一般的な試料ホルダは円柱状のロッドであり、先端には試料を固定した試料支持体1を搭載・固定するための試料支持体搭載部21と電子線光路22にあたる部分に電子線を通すための空間25が設けられている。試料支持体搭載部21に試料支持体1を保持するための機構には様々な形状のものがあるが、空間25に一般的には直径が3mm、厚さが数10μmから数100μmの円板状のものが保持できるようになっている。試料ホルダには、さまざまな機能を持ったものが存在するが、一般的には一軸あるいは二軸方向に試料を傾斜して観察できる試料ホルダが頻繁に用いられる。 The sample holder 19 can be adjusted in position, tilt angle and the like by the sample moving mechanism 18. As a result, the mounted sample can be observed from an arbitrary place and from various angles. However, the insertion space for the sample holder 19 is generally very narrow. In particular, regarding the sample tilt, the sample tilt angle is limited in order to avoid collision between the sample holder 19 and the lens. FIG. 2B shows a general overview of the tip portion of the sample holder 19. A general sample holder is a cylindrical rod for passing an electron beam through a portion corresponding to a sample support mounting portion 21 and an electron beam optical path 22 for mounting and fixing a sample support 1 having a sample fixed at the tip. Space 25 is provided. There are various shapes of mechanisms for holding the sample support 1 on the sample support mounting portion 21. The space 25 generally has a disk with a diameter of 3 mm and a thickness of several tens to several hundreds of μm. The shape can be held. Some sample holders have various functions. In general, a sample holder that can observe a sample tilted in a uniaxial or biaxial direction is frequently used.
なお、ここでは走査型透過電子顕微鏡については特に説明していないが、透過電子顕微鏡とは装置構成・使用目的・観察方法において類似点も多く、本発明についても同様に効果を発揮する。以下では、走査型透過電子顕微鏡も含め、透過電子顕微鏡と呼ぶこととする。 Although the scanning transmission electron microscope is not particularly described here, the transmission electron microscope has many similarities in the apparatus configuration, the purpose of use, and the observation method, and the present invention also exhibits the same effect. Hereinafter, it will be called a transmission electron microscope including a scanning transmission electron microscope.
図1(a)に、本発明の試料支持体1の構成図を示す。また、図1(b)には、実際に試料を搭載して使用する際の概観図を示す。本発明の試料支持体1は、先端部分に少なくとも一部分が単結晶である結晶性試料台座5を備えている試料台3と、前記試料台3が着脱可能に嵌着される支持基体2とを有する試料支持体であって、前記試料台3は回転軸を中心に回転しても支持基体2に着脱可能であることを特徴とする。試料支持体1は、支持基体2と試料台3から構成され、さらに試料台3は着脱支持体4とその先端部分に備えられた結晶性試料台座5から構成されている。図1(b)において、結晶性試料台座5の先端には試料8が固定されている。なお、結晶性試料台座5の試料8が設けられる位置は、特に先端に限定されることはなく、他の位置でもよい。 FIG. 1A shows a configuration diagram of the sample support 1 of the present invention. Further, FIG. 1B shows an overview when the sample is actually mounted and used. The sample support 1 of the present invention comprises a sample stage 3 provided with a crystalline sample base 5 at least a part of which is a single crystal at a tip portion, and a support base 2 on which the sample stage 3 is detachably fitted. The sample support 3 is characterized in that the sample stage 3 can be attached to and detached from the support base 2 even if it rotates about a rotation axis. The sample support 1 is composed of a support base 2 and a sample base 3, and the sample base 3 is composed of a detachable support 4 and a crystalline sample pedestal 5 provided at the tip portion thereof. In FIG. 1B, a sample 8 is fixed to the tip of the crystalline sample base 5. The position where the sample 8 of the crystalline sample base 5 is provided is not particularly limited to the tip, and may be another position.
支持基体2は円板の一部を切り落としたような、ほぼ半月板状の形状であり、弦面7中央には、試料台3が挿入できるような溝6が切ってある。試料支持体1が一般的な透過電子顕微鏡用試料ホルダ19に搭載できるためには、支持基体2の直径が3mm、厚さが300μm程度の半月板状部材であることが望ましい。 The support base 2 has a substantially meniscus shape as if a part of a disk is cut off, and a groove 6 into which the sample table 3 can be inserted is cut in the center of the chord surface 7. In order for the sample support 1 to be mounted on a general transmission electron microscope sample holder 19, it is desirable that the support base 2 is a meniscus member having a diameter of 3 mm and a thickness of about 300 μm.
試料台3は、支持基体2に設けられた溝6に着脱可能に嵌着され、前記試料台の断面形状23と、支持基体の溝の断面形状24とは同じであることが好ましい。図1(b)においては、両者の断面形状23,24はいずれも正方形である。前記試料台の断面形状と、支持基体の溝の断面形状は、正多角形または円形であることが好ましい。溝6の弦面7に交わる断面形状24は四角形や六角形などの多角形または楕円形などが考えられるが、試料台3が回転自在で着脱可能であるためには、正方形や正六角形などの正多角形または円形が望ましい。円形の場合には任意の回転角で回転できる自由度があり、正多角形の場合は回転角に制限がかかってしまうという面がある。しかし、後述するように着脱・回転前後に電子回折図形から試料方位を決定する手順において、着脱・回転による電子回折図形の変化が予測しやすいというメリットとなるため、正多角形も望ましい形状である。また、支持基体2の材料は非磁性であり、機械的強度が十分で、加工が容易なものであれば良く、銅、モリブデン、金、白金、SUS、シリコンなどが挙げられる。 The sample table 3 is detachably fitted in the groove 6 provided in the support base 2, and the cross-sectional shape 23 of the sample base and the cross-sectional shape 24 of the groove of the support base are preferably the same. In FIG. 1B, both the cross-sectional shapes 23 and 24 are square. The cross-sectional shape of the sample stage and the cross-sectional shape of the groove of the support base are preferably regular polygons or circles. The cross-sectional shape 24 intersecting the chord surface 7 of the groove 6 may be a polygon or an ellipse such as a quadrangle or a hexagon, but in order for the sample table 3 to be freely rotatable and removable, it may be a square or a regular hexagon. A regular polygon or a circle is desirable. In the case of a circular shape, there is a degree of freedom to rotate at an arbitrary rotation angle, and in the case of a regular polygon, the rotation angle is limited. However, as will be described later, in the procedure of determining the sample orientation from the electron diffraction pattern before and after the attachment / detachment / rotation, it becomes a merit that the change of the electron diffraction pattern due to the attachment / detachment / rotation can be easily predicted, so the regular polygon is also a desirable shape. . The material of the support base 2 may be any material that is non-magnetic, has sufficient mechanical strength, and can be easily processed. Examples thereof include copper, molybdenum, gold, platinum, SUS, and silicon.
着脱支持体4は柱状の部材であり、断面形状は支持基体2に切られた溝6に挿入・固定できるように溝の断面形状と同一の形状である。長さは支持基体2に挿入した際に、着脱支持体4の端部が弦面7と一致するか少し飛び出る程度が良い。これは着脱支持体4の端部が弦面7よりも窪んでいる場合には、試料を傾斜した際に、電子線通過経路上で試料が支持基体2の陰になり、観察できなる恐れがあるからである。材料は支持基体と同様のものが挙げられるが、支持基体と同一材料である必要はない。 The removable support 4 is a columnar member, and the cross-sectional shape is the same as the cross-sectional shape of the groove so that it can be inserted into and fixed to the groove 6 cut in the support base 2. When inserted into the support base 2, the length should be such that the end of the detachable support 4 coincides with the chord surface 7 or slightly protrudes. This is because when the end of the detachable support 4 is recessed from the chord surface 7, the sample may be hidden behind the support base 2 on the electron beam passage path when the sample is tilted and may not be observed. Because there is. The material may be the same as that of the support substrate, but need not be the same material as the support substrate.
結晶性試料台座5はこの部分の電子回折図形から試料方位を決定するため、単結晶からなることが望ましい。もちろん試料方位が決定可能である程度に電子回折像が明瞭であれば問題はなく、一つの単結晶粒が大きな体積比を占めているような部材であれば、多結晶でもよい。以下では、この電子回折図形に主に寄与する単結晶部分を、単に単結晶部分と呼ぶこととする。 The crystalline sample base 5 is preferably made of a single crystal in order to determine the sample orientation from the electron diffraction pattern of this portion. Of course, there is no problem as long as the orientation of the sample can be determined and the electron diffraction image is clear to some extent, and any member may be used as long as one single crystal grain occupies a large volume ratio. Hereinafter, the single crystal portion that mainly contributes to the electron diffraction pattern is simply referred to as a single crystal portion.
この結晶性試料台座5の単結晶部分の結晶軸は、試料台3の着脱・回転に伴い、さまざまな方向をとる。電子回折図形をもとに試料方位を合わせる際には、単結晶部分の一つの結晶軸が試料台3の回転軸方向とほぼ一致し、さらに別の二つの結晶軸が試料台の回転軸方向と直交しているほうが都合がよい。試料台3の着脱・回転による電子線の入射方向の変化が、試料台3の回転軸9方向と直交している面内に制限され、電子回折図形の変化が予測しやすく、試料台が向いている方向の決定をさらに容易にできるためである。これらのことを考慮すると、この結晶性試料台座5の単結晶部分は、立方晶、正方晶、斜方晶、六方晶の結晶系であることが望ましい。また、着脱支持体4の断面形状と単結晶部分の結晶系を考慮した構成にするとさらに効果的である。 The crystal axis of the single crystal portion of the crystalline sample base 5 takes various directions as the sample stage 3 is attached and detached and rotated. When aligning the sample orientation based on the electron diffraction pattern, one crystal axis of the single crystal portion substantially coincides with the rotation axis direction of the sample stage 3, and the other two crystal axes are the rotation axis direction of the sample stage. It is more convenient to be orthogonal. The change in the incident direction of the electron beam due to the attachment / detachment / rotation of the sample stage 3 is limited to a plane orthogonal to the direction of the rotation axis 9 of the sample stage 3, and the change of the electron diffraction pattern can be easily predicted, and the sample stage is oriented. This is because it is possible to more easily determine the direction in which the camera is located. Considering these, it is desirable that the single crystal portion of the crystalline sample base 5 is a cubic, tetragonal, orthorhombic or hexagonal crystal system. In addition, it is more effective to adopt a configuration that takes into account the cross-sectional shape of the removable support 4 and the crystal system of the single crystal portion.
図3は、本発明における結晶性試料台座の結晶軸方向を示す概略図である。図3は、図1(b)の矢印のように試料台の回転軸9方向から試料台を眺めた図である。着脱支持体4の断面形状が正方形である場合、単結晶部分を立方晶、正方晶、斜方晶のいずれかであるような材料を選択し、c軸を試料台3の回転軸9方向に、a軸を支持基体法線10方向になるように着脱支持体4端部に結晶性試料台座5を配する(図3(a))。すると、試料移動機構18で傾斜をかけない状態では、[100]入射の電子回折図形を基準に用いることができる。次に試料台3を取り外し、回転軸方向に90°回転させ、再び装着すると(図3(b))、[010]入射の電子回折図形を基準に用いることができる。もちろん、c軸を試料台3の回転軸9方向に、a軸とb軸を支持基体法線10方向と45°をなすように結晶性試料台座5を配すれば、試料台3の回転前(図3(c))には[110]、回転後(図3(d))には[−110]入射の電子回折図形を基準に用いることができる。あるいは、着脱支持体4の断面形状が正六角形である場合、単結晶部分を六方晶であるような材料を選択すれば、同様に単純な電子回折図形を基準に用いることができる。このように、着脱支持体4の断面形状と結晶性試料台座5の単結晶部分の結晶系選択と軸方向の配置をうまく組み合わせることにより、より単純な電子回折図形を用いて試料方位を決定できる。 FIG. 3 is a schematic view showing the crystal axis direction of the crystalline sample base in the present invention. FIG. 3 is a view of the sample table viewed from the direction of the rotation axis 9 of the sample table as indicated by the arrow in FIG. When the cross-sectional shape of the detachable support 4 is a square, a material whose single crystal portion is any one of cubic, tetragonal and orthorhombic is selected, and the c-axis is directed in the direction of the rotation axis 9 of the sample stage 3. The crystalline sample pedestal 5 is disposed at the end of the detachable support 4 so that the a-axis is in the direction of the normal 10 of the support base (FIG. 3A). Then, in a state where the sample moving mechanism 18 is not inclined, the [100] incident electron diffraction pattern can be used as a reference. Next, when the sample stage 3 is removed, rotated by 90 ° in the direction of the rotation axis, and mounted again (FIG. 3B), the electron diffraction pattern of [010] incidence can be used as a reference. Of course, if the crystalline sample pedestal 5 is arranged at 45 ° with the c-axis in the direction of the rotation axis 9 of the sample table 3 and the a-axis and b-axis in the direction of the support base normal 10, [110] can be used as a reference (FIG. 3C) and [−110] incident electron diffraction patterns can be used as a reference after rotation (FIG. 3D). Alternatively, when the cross-sectional shape of the detachable support 4 is a regular hexagon, a simple electron diffraction pattern can be used as a reference if a material whose single crystal portion is hexagonal is selected. In this way, the sample orientation can be determined using a simpler electron diffraction pattern by successfully combining the cross-sectional shape of the detachable support 4 and the crystal system selection of the single crystal portion of the crystalline sample base 5 and the arrangement in the axial direction. .
結晶性試料台座5の材料としては、上述の結晶系のものであれば利用できるが、入手しやすさや加工のしやすさ、安定性を考慮すると、シリコンや銅、モリブデン、金などの金属が適している。特にシリコンは入手性・加工性から好適である。 As a material for the crystalline sample base 5, any material of the above-described crystal type can be used. However, considering availability, ease of processing, and stability, metals such as silicon, copper, molybdenum, and gold are used. Is suitable. In particular, silicon is preferable from the viewpoint of availability and workability.
この結晶性試料台座5の単結晶部分は透過電子顕微鏡による電子回折図形の観察に利用するため、電線入射方向の厚みは電子線が透過する程度でなければならない。一般的な透過電子顕微鏡で利用することを想定すると、シリコンで電子線入射方向の厚みが300nm程度になるような形状であることが望ましい。そのため、結晶性試料台座5の形状は、径が300nm程度の角柱状あるいは円柱状が望ましい。また、その先端には試料8を固定しやすいように、平坦である方が望ましい。もちろん、試料8の固定は結晶性試料台座5の先端に限られないが、結晶性試料台座5と試料8が近接することで、方位精度と再現性を向上することができるため、結晶性試料台座5の先端は試料8を固定しやすい形状が望ましい。 Since the single crystal portion of the crystalline sample base 5 is used for observing an electron diffraction pattern with a transmission electron microscope, the thickness in the direction of incidence of the electric wire must be such that the electron beam is transmitted. Assuming that it is used in a general transmission electron microscope, it is desirable that the silicon has a shape such that the thickness in the electron beam incident direction is about 300 nm. Therefore, the shape of the crystalline sample base 5 is preferably a prismatic shape or a cylindrical shape with a diameter of about 300 nm. Further, it is desirable that the tip 8 be flat so that the sample 8 can be easily fixed to the tip. Of course, the fixing of the sample 8 is not limited to the tip of the crystalline sample pedestal 5, but since the crystalline sample pedestal 5 and the sample 8 can be close to each other, orientation accuracy and reproducibility can be improved. The tip of the pedestal 5 preferably has a shape that can easily fix the sample 8.
このような試料台3はさまざまな方法で作成することができる。例えば、角柱状に加工した銅製の着脱支持体4の先端に、シリコンウェハから集束イオンビーム加工装置でリフトアウトした小片を固定し、さらに集束イオンビーム加工装置で角柱状あるいは円柱状に成型する方法。あるいは、シリコンウェハにフォトリソグラフィ工程で結晶性試料台座5の部分となる突起を形成し、そのシリコンウェハと銅板を接着後、ダイシングソーで切断することにより作成する方法。あるいは、結晶性試料台座5の部分となる突起を形成したシリコンウェハをダイシングソーで切断することにより、着脱支持体4と結晶性試料台座5がシリコンで一体成形された形状の試料台3とする方法、などがある。 Such a sample stage 3 can be produced by various methods. For example, a method of fixing a small piece lifted out from a silicon wafer by a focused ion beam processing device to the tip of a copper detachable support 4 processed into a rectangular column shape, and further forming the small piece into a prismatic shape or a cylindrical shape by the focused ion beam processing device. . Alternatively, a method for forming a silicon wafer by forming a projection that becomes a portion of the crystalline sample base 5 in a photolithography process, bonding the silicon wafer and a copper plate, and then cutting the wafer with a dicing saw. Alternatively, by cutting a silicon wafer on which a projection serving as a portion of the crystalline sample pedestal 5 is cut with a dicing saw, the detachable support 4 and the crystalline sample pedestal 5 are formed into a sample table 3 having a shape integrally formed with silicon. There are methods.
このような試料支持体1は、構成が簡便であり小型にできるため、さまざまな試料ホルダに搭載することが可能である。たとえば、一つの軸あるいは独立な二つの軸のまわりに試料を傾斜できるような一軸傾斜ホルダあるいは二軸傾斜ホルダや、一軸傾斜とその傾斜軸を含む面内で試料を回転できるような回転ホルダ等である。これらのうち、一軸傾斜ホルダや二軸傾斜ホルダは標準的に良く使われる試料ホルダであり、これらの試料ホルダで使用できることは汎用性を高めることになる。このような少なくとも一つの軸のまわりに試料を傾斜できるような試料ホルダ19に搭載し、試料台3の回転機構と試料ホルダ19の傾斜機構を組み合わせることで、360°全方位からの試料観察が可能となる。すなわち、試料台3が90°毎の回転が可能であれば、試料ホルダ19を±45°の範囲で傾斜した観察を2回行えばよい。試料台3が60°毎の回転が可能であれば、試料ホルダ19を±30°の範囲で傾斜した観察を3回行えばよい。もちろん試料台3の回転ステップが他の角度でもで同様に全方位から観察できる。 Since such a sample support 1 has a simple configuration and can be reduced in size, it can be mounted on various sample holders. For example, a uniaxial tilt holder or a biaxial tilt holder that can tilt the sample around one axis or two independent axes, a rotating holder that can rotate the sample in a plane that includes the uniaxial tilt and the tilt axis, etc. It is. Among these, the uniaxial tilt holder and the biaxial tilt holder are standard sample holders that are frequently used as standard, and the fact that they can be used with these sample holders increases versatility. By mounting the sample holder 19 that can tilt the sample around at least one axis and combining the rotation mechanism of the sample stage 3 and the tilt mechanism of the sample holder 19, the sample can be observed from all 360 ° directions. It becomes possible. That is, if the sample stage 3 can be rotated every 90 °, the observation with the sample holder 19 tilted in a range of ± 45 ° may be performed twice. If the sample stage 3 can be rotated every 60 °, observation with the sample holder 19 tilted in a range of ± 30 ° may be performed three times. Of course, the sample table 3 can be observed from all directions in the same way even when the rotation step of the sample stage 3 is at other angles.
次に本発明を用いた3次元観察法の工程について図4を参照しながら説明する。(1)試料8を固定した試料台3を支持基体2に装着する(図4(a))。(2)試料支持体1を搭載した試料ホルダ19を透過電子顕微鏡11に挿入し、第一の観察開始の位置・方位を決める。(3)結晶性試料台座5の一つの結晶方位の電子回折図形をもとに試料ホルダ19を傾斜する。(4)(2)で決めた第一の観察開始方位が、結晶性試料台座5の単結晶部分のどの結晶方位にあたるかを求める。これを第一の試料方位とする。(5)第一の観察開始の位置・方位に戻し、透過電子顕微鏡11の試料移動機構18を用いて一定の傾斜角度までの第一の連続傾斜像を撮影する。(6)いったん試料ホルダ19を透過電子顕微鏡11から取り出し、試料支持体1を試料ホルダ19から取り外す。(7)試料台3を支持基体2から取り外し、試料台3の回転軸9を中心に試料台3を回転する(図4(b))。その後、再び試料台3を支持基体2に装着する(図4(c))。(8)試料支持体1を搭載した試料ホルダ19を透過電子顕微鏡11に挿入し、第二の観察開始の位置・方位を決める。(9)結晶性試料台座5の別の結晶方位の電子回折図形をもとに試料ホルダ19を傾斜する。(10)(8)で決めた第二の観察開始方位が結晶性試料台座5の結晶のどの結晶方位にあたるかを求める。これを第二の試料方位とする。(11)第二の観察開始の位置・方位に戻し、透過電子顕微鏡11の試料移動機構18を用いて一定の傾斜角度までの第二の連続傾斜像を撮影する。(12)結晶性試料台座5の単結晶に対する第一の試料方位・第二の試料方位の情報をもとに、第一の連続傾斜像と第二の連続傾斜像の傾斜角度を補正する。(13)第一の連続傾斜像と第二の連続傾斜像から3次元像を再構成する。 Next, the process of the three-dimensional observation method using the present invention will be described with reference to FIG. (1) The sample stage 3 on which the sample 8 is fixed is mounted on the support base 2 (FIG. 4A). (2) The sample holder 19 on which the sample support 1 is mounted is inserted into the transmission electron microscope 11 and the first observation start position and orientation are determined. (3) The sample holder 19 is tilted based on the electron diffraction pattern of one crystal orientation of the crystalline sample base 5. (4) Determine which crystal orientation of the single crystal portion of the crystalline sample base 5 corresponds to the first observation start orientation determined in (2). This is the first sample orientation. (5) Return to the first observation start position / orientation, and use the sample moving mechanism 18 of the transmission electron microscope 11 to capture a first continuous tilt image up to a certain tilt angle. (6) Once the sample holder 19 is removed from the transmission electron microscope 11, the sample support 1 is removed from the sample holder 19. (7) The sample stage 3 is removed from the support base 2, and the sample stage 3 is rotated around the rotation axis 9 of the sample stage 3 (FIG. 4B). Thereafter, the sample stage 3 is mounted on the support base 2 again (FIG. 4C). (8) The sample holder 19 on which the sample support 1 is mounted is inserted into the transmission electron microscope 11 and the second observation start position and orientation are determined. (9) The sample holder 19 is tilted based on the electron diffraction pattern of another crystal orientation of the crystalline sample base 5. (10) Determine which crystal orientation of the crystal of the crystalline sample base 5 is the second observation start orientation determined in (8). This is the second sample orientation. (11) Return to the second observation start position and orientation, and use the sample moving mechanism 18 of the transmission electron microscope 11 to capture a second continuous tilt image up to a certain tilt angle. (12) The tilt angles of the first continuous tilt image and the second continuous tilt image are corrected based on the information on the first sample orientation and the second sample orientation with respect to the single crystal of the crystalline sample base 5. (13) A three-dimensional image is reconstructed from the first continuous tilt image and the second continuous tilt image.
この時、結晶性試料台座5の単結晶部分の一つの結晶軸が前記試料台3の回転軸9方向とほぼ一致し、別の二つの結晶軸が試料台の回転軸9方向と直交しているような構成にすれば、上述の(4)あるいは(10)の工程での試料方位と結晶方位との関係が単純になり、(12)での補正の工程が簡便化する利点がある。 At this time, one crystal axis of the single crystal portion of the crystalline sample base 5 substantially coincides with the direction of the rotation axis 9 of the sample stage 3, and the other two crystal axes are orthogonal to the direction of the rotation axis 9 of the sample stage. With such a configuration, there is an advantage that the relationship between the sample orientation and the crystal orientation in the step (4) or (10) is simplified, and the correction step in (12) is simplified.
本発明に試料支持体は、簡便かつ精確に360°全方向からの試料観察が可能なので透過電子顕微鏡を用いた3次元構造観察に利用することができる。 The sample support according to the present invention can be used for three-dimensional structure observation using a transmission electron microscope because sample observation from 360 ° in all directions can be performed easily and accurately.
1 試料支持体
2 支持基体
3 試料台
4 着脱支持体
5 結晶性試料台座
6 溝
7 弦面
8 試料
9 回転軸
10 支持基体法線
11 透過電子顕微鏡
12 電子銃
13 収束レンズ
14 対物レンズ
15 投影レンズ
16 蛍光板
17 記録装置
18 試料移動機構
19 試料ホルダ
20 電子線
21 試料支持体搭載部
22 電子線光路
23 試料台の断面形状
24 溝の断面形状
25 空間
DESCRIPTION OF SYMBOLS 1 Sample support body 2 Support base body 3 Sample base 4 Removable support body 5 Crystalline sample base 6 Groove 7 Chord surface 8 Sample 9 Rotating shaft 10 Support base normal 11 Transmission electron microscope 12 Electron gun 13 Converging lens 14 Objective lens 15 Projection lens DESCRIPTION OF SYMBOLS 16 Fluorescent screen 17 Recording apparatus 18 Sample moving mechanism 19 Sample holder 20 Electron beam 21 Sample support mounting part 22 Electron beam optical path 23 Cross-sectional shape of sample stand 24 Cross-sectional shape of groove | channel 25 Space
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011286799A JP2013134978A (en) | 2011-12-27 | 2011-12-27 | Sample support for transmission electron microscope, transmission electron microscope and three-dimensional structure observation method of sample |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011286799A JP2013134978A (en) | 2011-12-27 | 2011-12-27 | Sample support for transmission electron microscope, transmission electron microscope and three-dimensional structure observation method of sample |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013134978A true JP2013134978A (en) | 2013-07-08 |
Family
ID=48911519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011286799A Pending JP2013134978A (en) | 2011-12-27 | 2011-12-27 | Sample support for transmission electron microscope, transmission electron microscope and three-dimensional structure observation method of sample |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013134978A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104392884A (en) * | 2014-11-03 | 2015-03-04 | 武汉新芯集成电路制造有限公司 | Bearing device and preparation method thereof |
JP2016103387A (en) * | 2014-11-28 | 2016-06-02 | 株式会社日立ハイテクノロジーズ | Charged particle beam device |
CN105810543A (en) * | 2016-05-07 | 2016-07-27 | 南京理工大学 | Transmission electron microscope sample table for observing three-dimensional atom probe test sample |
WO2024024108A1 (en) * | 2022-07-29 | 2024-02-01 | 株式会社日立ハイテク | Charged particle beam device and method for controlling charged particle beam device |
-
2011
- 2011-12-27 JP JP2011286799A patent/JP2013134978A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104392884A (en) * | 2014-11-03 | 2015-03-04 | 武汉新芯集成电路制造有限公司 | Bearing device and preparation method thereof |
CN104392884B (en) * | 2014-11-03 | 2017-08-04 | 武汉新芯集成电路制造有限公司 | A kind of bogey and preparation method thereof |
JP2016103387A (en) * | 2014-11-28 | 2016-06-02 | 株式会社日立ハイテクノロジーズ | Charged particle beam device |
CN107004555A (en) * | 2014-11-28 | 2017-08-01 | 株式会社日立高新技术 | Charged particle beam apparatus |
US10134564B2 (en) | 2014-11-28 | 2018-11-20 | Hitachi High-Technologies Corporation | Charged particle beam device |
CN105810543A (en) * | 2016-05-07 | 2016-07-27 | 南京理工大学 | Transmission electron microscope sample table for observing three-dimensional atom probe test sample |
WO2024024108A1 (en) * | 2022-07-29 | 2024-02-01 | 株式会社日立ハイテク | Charged particle beam device and method for controlling charged particle beam device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5927380B2 (en) | TEM flake, manufacturing process thereof, and apparatus for executing the process | |
CN107526156B (en) | Light sheet microscope and method for operating a light sheet microscope | |
US7319915B1 (en) | High speed and repeatability serial sectioning device for 3-D reconstruction of microstructures | |
EP2402976A1 (en) | Method of electron diffraction tomography | |
WO2019096062A1 (en) | Light-sheet illumination microsection imaging system and imaging result processing method | |
JP2010003617A (en) | Sample stand, sample rotating holder, construction method of sample stand, and sample stand construction method, and test piece analyzing method | |
JP2013134978A (en) | Sample support for transmission electron microscope, transmission electron microscope and three-dimensional structure observation method of sample | |
JP4898355B2 (en) | Sample holder | |
US20150022807A1 (en) | Universal sample holder | |
JP4654216B2 (en) | Sample holder for charged particle beam equipment | |
JP4433092B2 (en) | Three-dimensional structure observation method | |
JP2009025488A (en) | Microscope and observation method therefor | |
JP2004354371A (en) | Micro sample taking-out device and method | |
JP3677895B2 (en) | Sample preparation apparatus for three-dimensional structure observation, electron microscope and method thereof | |
JP5211904B2 (en) | Single crystal material plane alignment apparatus and plane alignment method | |
JP5851318B2 (en) | Sample holding device and sample analyzing device | |
JP2012078330A (en) | Method for adjusting movement of camera unit in lens inspection apparatus and focus check tool | |
WO2014195998A1 (en) | Charged particle microscope, sample holder for charged particle microscope and charged particle microscopy method | |
US10748308B2 (en) | Three-dimensional image reconstruction method | |
JP2007017276A (en) | Method and device for inspecting cutting edge | |
JP2006194743A (en) | Crystal orientation measuring method and sample holder used therefor | |
JP4988175B2 (en) | Sample table for charged particle equipment | |
JP4393352B2 (en) | electronic microscope | |
JP2013080605A (en) | Sample holder tip, sample holder, and manufacturing method of sample holder tip | |
JP4232848B2 (en) | Sample preparation apparatus for three-dimensional structure observation, electron microscope and method thereof |