JP2012164836A - 太陽電池モジュールおよび取付方法 - Google Patents

太陽電池モジュールおよび取付方法 Download PDF

Info

Publication number
JP2012164836A
JP2012164836A JP2011024539A JP2011024539A JP2012164836A JP 2012164836 A JP2012164836 A JP 2012164836A JP 2011024539 A JP2011024539 A JP 2011024539A JP 2011024539 A JP2011024539 A JP 2011024539A JP 2012164836 A JP2012164836 A JP 2012164836A
Authority
JP
Japan
Prior art keywords
solar cell
cell module
fixing band
cylinder
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011024539A
Other languages
English (en)
Other versions
JP5633412B2 (ja
Inventor
Ryosuke Ogata
亮介 尾形
Satoshi Sato
聡 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2011024539A priority Critical patent/JP5633412B2/ja
Publication of JP2012164836A publication Critical patent/JP2012164836A/ja
Application granted granted Critical
Publication of JP5633412B2 publication Critical patent/JP5633412B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

【課題】円柱状の構造物に対して太陽電池を好適に取付可能な技術を提供する。
【解決手段】表面10eと裏面10fとを有し、裏面10fを円柱の周面に接触させた状態で表面10eの上側から固定用バンドを円柱に巻き付けることによって円柱に取り付けられる太陽電池モジュール10であって、円柱の軸方向に配置される第1の方向と、軸方向に直交する円柱の周方向に配置される第2の方向とを備える矩形平板状の樹脂製基板上に設けられた可撓性を有する薄膜太陽電池モジュールと、薄膜太陽電池モジュールの表面10eにおいて第2の方向に平行に形成された、固定用バンドの巻き付け位置を規定する少なくとも2つの凹部(1a、1b)とを含む。
【選択図】図2

Description

本発明は、太陽電池モジュールと、太陽電池モジュールの取付方法に関する。
太陽電池(太陽電池モジュール、又は、複数の太陽電池モジュールを組合せたもの)は、地球温暖化の原因となる二酸化炭素や有害な排気ガスを出さないクリーンな発電装置である。
太陽電池としては、光電変換層に無機系の材料、例えば単結晶シリコンや多結晶シリコンを用いたものが広く知られている。結晶シリコンを用いた太陽電池においては、シリコンが露出した状態では化学的変化によって発電特性の低下を招くことがあり、また物理的な衝撃によって損傷することもあるので、シリコンを透明な強化ガラスなどで保護した太陽電池モジュールが利用されている。
また、太陽電池として、光電変換層に無機系材料(例えば、アモルファスシリコン)を用いた薄膜太陽電池が知られている。さらに、アモルファスシリコンのような無機系の光電変換層を有機半導体層とした有機太陽電池も知られている。
特開2008−201819号公報
薄膜太陽電池(無機系、有機系)は、単結晶又は多結晶シリコンを用いた太陽電池よりも軽量で且つ薄く製造することができる。さらに、薄膜太陽電池はフレキシブル性(可撓性)を有する構造を持つ。このため、薄膜太陽電池は、単結晶又は多結晶シリコンを用いた太陽電池では設置できない、或いは設置が困難な箇所での利用が期待されている。
本発明は、上記実情に鑑みてなされたものであり、円柱状の構造物に対して太陽電池を好適に取付可能な技術を提供することを目的とする。
本発明では、上述した課題を解決するために、以下の手段を採用している。すなわち、本発明は、表面と裏面とを有し、前記裏面を円柱の周面に接触させた状態で前記表面の上側から固定用バンドを前記円柱に巻き付けることによって前記円柱に取り付けられる太陽電池モジュールであって、前記円柱の軸方向に配置される第1の方向と、前記軸方向に直交する前記円柱の周方向に配置される第2の方向とを備える矩形平板状の樹脂製基板上に設けられた可撓性を有する薄膜太陽電池モジュールと、前記薄膜太陽電池モジュールの表面において前記第2の方向に平行に形成された、前記固定用バンドの巻き付け位置を規定する少なくとも2つの凹部とを含む太陽電池モジュールである。これによれば、円柱状の構造物の湾曲した壁面に密着させて巻き付けられる太陽電池モジュールが提供できる。構造物への取付は、表面に形成された凹部に合わせて固定用バンドを巻き付けて固定できるので、接着剤を使用せずに固定できる。構造物の壁面に施された耐候塗装や防錆処理に影響を与えずに取付固定が行える。取付作業時において、円柱状の構造物に視野が遮られていても、太陽電池モジュールの表面に固定バンドの巻き付け位置を規定する凹部が形成されているので、位置決めの目安となり、作業性が向上する。
本発明における固定に使用するための凹部の深さは、0.1mm以上であり、且つ1.5mm以下であっても良い。また、凹部の深さは太陽電池モジュールの厚みの50パーセント以下であるものでも良い。
本発明の好適な形態では、前記裏面に、前記円柱の軸方向に隣接配置された他の太陽電池モジュールが有する前記少なくとも2つの凹部の一方に挿入される少なくとも一つの凸部をさらに含むように太陽電池モジュールを構成することができる。
また、本発明は、円柱の軸方向に配置される第1の方向と、前記軸方向に直交する前記円柱の周方向に配置される第2の方向とを備える矩形平板状の可撓性を有する樹脂製基板と、前記樹脂基板上に設けられた薄膜太陽電池と、前記表面において前記第2の方向に平行に形成された、前記固定用バンドの巻き付け位置を規定する少なくとも2つの凹部とを含む太陽電池モジュールを、前記円柱に巻き付け、固定用バンドを前記各凹部に挿入する状態で巻き付け、前記固定用バンドを締め付けることによって、前記太陽電池モジュールを前記円柱に固定することを含む太陽電池モジュールの取付方法である。
上記太陽電池モジュールの取付方法では、前記太陽電池モジュールの第2の方向の長さが前記円柱の周長さより短い場合に、前記円柱に巻き付けた状態における前記太陽電池モジュールの短手方向の両端部を、板状の連結材を介して連結し、前記連結材によって円筒状をなす前記太陽電池モジュールを前記固定用バンドで固定するように構成されていても良い。
本発明によれば、円柱状の構造物に対して太陽電池を好適に取付可能な技術を提供できる。
図1は、本実施形態の太陽電池モジュールの取り付け固定を説明する図である。 図2は、本実施形態に係る太陽電池モジュール本体を説明するための平面図である。 図3は、本実施形態に適用可能な可撓性を有する太陽電池モジュールの断面構造を模式的に示す図である。 図4は、図2中、X−Xで示された、凹部(1a、1b)を説明するための模式的な断面図である。 図5は、太陽電池モジュールが備える寸法関係の説明図である。 図6は、円柱状の構造物5の湾曲した壁面に太陽電池モジュールを巻き付けた状態を模式した断面図であり、軸方向上側から観た径方向の断面図である。 図7Aは、太陽電池モジュールを構造物に巻き付けた模式図である。 図7Bは、太陽電池モジュールを構造物に巻き付けた模式図である。 図7Cは、太陽電池モジュールを構造物に巻き付けた模式図である。 図8は、変形例に関する、図2中、X−Xで示す箇所での模式的な断面図である。 図9は、変形例の断面構造を備える太陽電池モジュールを構造物に巻き付けた模式図である。 図10は、変形例の断面構造を備える太陽電池モジュールを構造物に巻き付けた模式図である。 図11Aは、凹部(1a、1b)の形成のための型材(13a、13b)を使用した説明図である。 図11Bは、凸部(1c、1d)形成のための型材(13c、13d、13e)を使用した説明図である。
以下、図面を参照して、本発明の実施形態を説明する。以下の実施形態の構成は例示であり、本発明は実施の形態に限定されない。
<概要>
本願発明者は、郊外に建てられた鉄塔や携帯基地局などの、円柱状の構造物を取付対象として、本実施形態の太陽電池モジュールを想起するに到った。郊外に建てられた鉄塔や携帯基地局などは、見通しが良く、周囲に太陽光を遮る遮蔽物体が少ないため、太陽電池モジュールを使用した発電環境には好適であるからである。また、このような構造物の設置場所は主に、電源を配設することが困難な場所や電源を敷設するための費用が掛かるような場所であるため、太陽電池の有する独立電源性の応用に期待が高まっているからである。
しかしながら、このような構造物の壁面(周面)に太陽電池モジュールを取り付けるためには様々な制限が課せられる。まず、鉄塔や携帯基地局などに施された耐候塗装や防錆処理への損傷等を考慮し、接着剤の使用が制限されるので、太陽電池モジュールの固定方法が限定(例えばステンレス製の固定バンドによる固定など)されてしまう。
また、鉄塔や携帯基地局の支柱などの円柱状の構造物は、設置場所での耐環境性や設置強度を確保するために1000mmを超える直径を有する場合が少なくない。このため、構造物に近接して太陽電池モジュールの取り付け作業を行う際には、作業員の視野が構造物によって遮られてしまうので、取り付け固定の位置決めに手間が掛かることとなる。さらに、太陽電池モジュールの取り付け位置が数十mの高さの場合、取り付け作業は足場や手順が制限される高所作業となってしまう。作業のための足場などが制限された上、視野が制限された状態では、例えば壁面に巻き付けて固定する太陽電池モジュールの取り付け位置が斜めにずれて固定されてしまう虞がある。この固定状態では構造物の湾曲する壁面と、太陽電池モジュールの裏面との間に隙間等が生じてしまい、耐候性が確保できないという虞があった。
<太陽電池モジュール10の構成>
図1は、本実施形態の太陽電池モジュールの取り付け固定を説明する図である。図1に示すように、構造物(円柱)5は円柱状でありその壁面は円筒周面に形成されている。太陽電池モジュール10は、可撓性を有する矩形平板状の薄膜太陽電池モジュールであり、構造物5の円周面を有する壁面に密着して巻き付けられる。太陽電池モジュール10の平面中央部には、複数の太陽電池ユニット11が並設され、発電のための受光領域を形成している。太陽電池モジュール10の表面10eには、固定用バンドB1の固定位置を規定する凹部1aと固定用バンドB2の固定位置を規定する凹部1bが形成されている。端部10a側に形成された凹部1aと端部10b側に形成された凹部1bとは、平行を成している。
構造物5に巻き付けた太陽電池モジュール10の固定は、汎用又は専用の固定用バンド(B1、B2)を使用する。固定用バンド(B1、B2)は、例えば塩化ビニルで被覆されたステンレス製のバンドであり、その端部には留め具が設けられている。壁面に巻き付けた太陽電池モジュール10の上から凹部(1a、1b)が形成された位置に合わせ、固定バンド(B1,B2)が凹部(1a,1b)の底面に接触する状態で、太陽電池モジュール10の上から固定用バンド(B1、B2)をさらに巻き付ける。巻き付けた固定用バンド(B1、B2)は、その端部に設けられた留め具により太陽電池モジュール10と共
に構造物5の壁面に締め付けられて固定される。
太陽電池モジュール10が構造物(円柱)5の周方向に湾曲する壁面(周面)に巻き付けられた状態において、太陽電池モジュール10の長手方向の長さが円柱5の周長さより短い場合には、太陽電池モジュール10の端部10cおよび10dが対向することとなる。対向する端部(10c、10d)の表面10eに形成された凹部1aと凹部1bとの上下位置を確認しながら両者の高さが一致するように両端部の高さを合わせることにより、取り付け固定時の位置決めが行える。すなわち、各凹部(1a,1b)が円柱5の軸方向に対して直交する方向で、太陽電池モジュール10を円柱に密着配置することができる。
特に、構造物が1000mmを超える口径(直径)を有する場合には、取付作業者は、首を伸ばして円柱の裏側を見ることはできず、円柱5に巻き付けた太陽電池モジュール10の端部がずれていないかを確認することは難しい。これに対し、太陽電池モジュール10に凹部(1a,1b)が設けられていることで、構造物(円柱)5で視野が遮られた状態であっても対向する端部(10c、10d)の表面10eに形成された凹部1aと凹部1bとの上下位置を確認しながら端部10cの凹部1aと端部10dの凹部1bとが同一直線上に配置されるように高さを合わせることにより、位置ずれを起こさずに裏面10fを壁面に密着させて取り付けることが可能となる。この状態で、さらに固定用バンドB1を表面10e側から凹部1aおよび1bの形成位置に合わせて巻き付けることにより、接着材を使用しない取り付け作業が実現できる。表面10eに平行に形成された凹部1aおよび1bの形成位置に合わせて固定用バンドが巻き付けられるため、太陽電池モジュール10に係る締結力はむらがなく均等となる。
尚、図1に示す補助部材6は、後述するように、太陽電池モジュール10の長手方向を連結して太陽電池モジュール10の外形を円筒状にするための部材であり、当て板として使用される。図1に示すように、補助部材6は、例えば、矩形板状に形成することができる。図7C、図10に例示するように、補助部材6は、複数枚の太陽電池モジュール10を巻き付けて固定する際には、上下に連なる太陽電池モジュール10の連結材として機能する。
《太陽電池モジュール10本体の構成》
次に、太陽電池モジュール10本体の構成について説明する。図2は、本実施形態に係る太陽電池モジュール10本体を説明するための平面図である。図2に例示するように、太陽電池モジュール10は矩形状の平面形状を有している。長手方向には、略平行な端部(10a、10b)を備え、短手方向には略平行な端部(10c、10d)を備えている。この長手方向の端部(10a、10b)と、短手方向の端部(10c、10d)とで囲まれる領域には、固定バンドの固定位置を規定する凹部(1a、1b)、複数の太陽電池ユニット11、ジャンクションボックス12などが備えられている。尚、端部(10a、10b)は、構造物(円柱)5の壁面に太陽電池モジュール10が巻き付けられた状態において、軸方向に上下に位置する関係となる。図2の例では、軸方向上側に端部10aが、軸方向下側に端部10bが配置される。
固定バンドの固定位置を規定する凹部(1a、1b)は、太陽電池モジュール10の長手方向に設けられている。凹部1aは太陽電池モジュール10の上部(端部10a側)形成されており、凹部1bは太陽電池モジュール10の下部(端部(10b側)に形成されており、両者は平行に延伸する。凹部1aと端部10aとの間、凹部1bと端部10bとの間の夫々には、所定幅の帯状の余白領域が形成されている。凹部(1a、1b)は、短手方向に幅を有する溝部(2a、2b)を形成している。溝部2aと溝部2bとは一対の平行溝を形成する。凹部1aと凹部1bとの間には、複数の太陽電池ユニット11及びジャンクションボックス12が配設されている。
円柱状の構造物(円柱)5(図1)が有する壁面(円柱周面)への敷設(取付)作業においては、固定用バンドを平行な溝部(2a、2b)に収容される状態で上側から巻き付けることにより、接着剤を使用しない太陽電池モジュール10の取付固定が可能となる。太陽電池モジュール10を壁面へ密着させて巻き付ける際には、表面10eに形成された平行する溝部(2a、2b)位置が湾曲した壁面へ固定する位置決めの目安となり、作業性が向上する。凹部(1a、1b)の詳細については後述する。
《太陽電池ユニット11》
太陽電池モジュール10は、複数の太陽電池ユニット11を備えている。太陽電池ユニット11の夫々は、長手方向と短手方向とを有している。各太陽電池ユニット11は、その短手方向が、太陽電池モジュール10の長手方向に配置され、長手方向が太陽電池モジュール10の短手方向に配置されている。図2に示す太陽電池モジュール10では、その長手方向に18枚の太陽電池ユニット11が並列配置されている。但し、一つの太陽電池モジュール10に備えられる太陽電池ユニット11の総数、長手方向及び短手方向における夫々の配置数は、太陽電池モジュール10に要求される発電力に応じて適宜設定可能である。
各太陽電池ユニット11は、図示しない正極端子及び負極端子を有しており、正極端子及び負極端子の夫々はジャンクションボックス12に電気的に接続されている。図2に示す例における太陽電池ユニット11は、例えば、各太陽電池ユニット11が並列接続された状態となっている。太陽電池ユニット11の各組は、ユニット間で共通な正側の電極取り出し部(図示せず)と、負側の電極取り出し部(図示せず)とに接続され、各電極取り出し部11がジャンクションボックス12に配線を通じて接続されている。
各太陽電池ユニット11は、1組の出力端子(正極端子及び負極端子)を有する複数個の太陽電池素子(太陽電池セル)から構成される。本実施形態では、複数個の太陽電池素子が有する出力端子を電気的に直列接続してなるユニットである。太陽電池ユニット11の長手方向には、複数個の太陽電池素子を直列接続させた太陽電池素子の配列構造を有する。
《ジャンクションボックス12》
ジャンクションボックス12は、太陽電池ユニット11と重ならない位置で、且つ凹部(1a,1b)間に設けられている。ジャンクションボックス12は、太陽電池モジュール10で発電された電力を、例えば電源供給を受ける各種機器へ受け渡すための接続インターフェースであり、太陽電池モジュール10から電力を取り出すための電気的な接続箱として機能する。
図2に例示するように、ジャンクションボックス12の配設位置は、太陽電池モジュール10に並設された太陽電池ユニット11に近接して配置されることが好ましく、端部(10c、10d)方向に沿って2段に並設された太陽電池ユニット11の段間の延長上に配置されることが好ましい。ジャンクションボックス12と複数の太陽電池ユニット11とを電気的に接続する配線長が短縮できる。
《太陽電池モジュール10の詳細構成》
上記構成を備えるものであれば、太陽電池モジュール10として、具体的な構成の異なる様々なものが使用できる。図3は、本実施形態に適用可能な可撓性を有する太陽電池モジュール10の断面構造を模式的に示す図である。
図3に例示するように、耐候性保護フィルム14、封止材15a、複数の太陽電池ユニ
ット11、封止材15b、耐候性保護フィルム14を積層させた太陽電池モジュールが使用できる。また、必要に応じてガスバリア層、ゲッター材層、紫外線カット層など他の層を任意の場所に設けてもよい。さらに、太陽電池モジュール10の端部等をフッ素系樹脂、シリコーン樹脂、アクリル樹脂等のポリマー材料からなるシール材を使用して保護してもよい。
[太陽電池モジュール10の厚み]
太陽電池モジュール10の厚みは通常0.5mm以上、好ましくは1mm以上、また、通常5mm以下、好ましくは4mm以下、より好ましくは2mm以下、さらに好ましくは1.5mm以下である。製造コストや重量の観点からは、太陽電池モジュール10の厚みは薄い方が良いが、薄すぎると太陽電池モジュール10の強度が下がり損傷しやすくなる。本実施形態では、2mm以下の厚みを採用した。1000mmを超える大口径に応ずる場合、太陽電池モジュール10の長手方向の長さは3000mmを超えてしまうため、総重量の軽減を図るためである。
[太陽電池ユニット11]
太陽電池ユニット11を構成する太陽電池素子は、一対の正電極、負電極で発電層(光電変換層)を挟んで構成されている。発電層の種類に制限はないが、薄膜単結晶シリコン、薄膜多結晶シリコン、アモルファスシリコン、無機半導体材料、色素及び、有機半導体材料などが使用できる。これらは発電効率が比較的高く、薄膜軽量化できるため好ましい。特に、有機半導体材料を用いた有機太陽電池(有機薄膜太陽電池)を用いた太陽電池ユニット11は、円柱状の構造物の湾曲する壁面に沿って曲げることができるので、その湾曲面に沿って密着するように取り付けることが可能である。そして、少々曲げても割れたりクラックが入ったりしないことから大きく軽量化できる点でより好ましい。
有機半導体材料はp型半導体とn型半導体から構成される。p型半導体は特に限定されず、低分子材料と高分子材料が挙げられる。低分子系材料としては例えば、ナフタセン、ペンタセン、ピレン、フラーレン等の縮合芳香族炭化水素;α−セキシチオフェン等のチオフェン環を4個以上含むオリゴチオフェン類;チオフェン環、ベンゼン環、フルオレン環、ナフタレン環、アントラセン環、チアゾール環、チアジアゾール環、ベンゾチアゾール環を合計4個以上連結したもの;銅フタロシアニン、亜鉛フタロシアニン、パーフルオロ銅フタロシアニン等のフタロシアニン化合物、テトラベンゾポルフィリンやその金属錯体等のポルフィリン化合物及びその金属塩等の大環状化合物などが挙げられる。
高分子材料としては例えば、ポリチオフェン、ポリフルオレン、ポリチエニレンビニレン、ポリアセチレン、ポリアニリン等の共役高分子;アルキル置換されたオリゴチオフェン等の高分子半導体が挙げられる。
n型半導体としては、特に限定されないが例えば、フラーレン誘導体、キノリノール誘導体金属錯体、縮合環テトラカルボン酸ジイミド類、ターピリジン金属錯体、トロポロン金属錯体、フラボノール金属錯体、ペリノン誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、アルダジン誘導体、ビススチリル誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、ベンゾキノリン誘導体、ビピリジン誘導体、縮合多環芳香族の全フッ化物、単層カーボンナノチューブなどが挙げられる。
発電層を挟む正電極および負電極は、導電性を有する任意の材料を1種又は2種以上用いて形成できる。例えば、白金、金、銀、アルミニウム、クロム、ニッケル、銅、チタン、マグネシウム、カルシウム、バリウム、ナトリウム等の金属あるいはそれらの合金;酸化インジウムや酸化錫等の金属酸化物、あるいはその合金(ITO);ポリアニリン、ポ
リピロール、ポリチオフェン、ポリアセチレン等の導電性高分子;前記導電性高分子に、塩酸、硫酸、スルホン酸等の酸、FeCl3等のルイス酸、ヨウ素等のハロゲン原子、ナ
トリウム、カリウム等の金属原子などのドーパントを含有させたもの;金属粒子、カーボンブラック、フラーレン、カーボンナノチューブ等の導電性粒子をポリマーバインダー等のマトリクスに分散した導電性の複合材料などが挙げられる。
正電極には、電子を捕集するのに適した材料を用いることが好ましく、例えばAlのような低い仕事関数を有する電極材料である。一方、負電極には、正孔及び電子を捕集するのに適した材料を用いることが好ましく、例えばAu、ITO等の高い仕事関数を有する電極材料である。これらの電極は、2層以上積層してもよく、例えば表面処理によって電気特性やぬれ特性等を改良してもよい。電極の形成方法は特段の制限はなく、例えば、真空蒸着、スパッタ等のドライプロセスや導電性インク等を用いたウェットプロセスにより形成することもできる。導電性インクとしては任意のものを使用することができ、例えば導電性高分子、金属粒子分散液等を用いることができる。
尚、少なくとも太陽電池素子の受光面側の電極は、発電に用いる光を透過させるため、透明であることが好ましい。発電層の面積に比べて電極41aの面積が小さいなど、電極41aが透明でなくても発電性能に著しく悪影響を与えない場合は必ずしも透明でなくてもよい。透明な電極材料として、例えば、ITO、酸化インジウム亜鉛(IZO)等の酸化物;金属薄膜などを用いることができる。また、光の透過率の具体的範囲に制限は無いが、太陽電池素子の発電効率を考慮すると80%以上が好ましい。
発電層として薄膜多結晶シリコンを用いる場合、薄膜多結晶シリコン太陽電池素子は間接光学遷移を利用したタイプの太陽電池素子である。このため、薄膜多結晶シリコン太陽電池素子では基板又は表面に凸凹構造を形成するなど十分な光閉じ込め構造を設けて光吸収を増加させるのが好ましい。薄膜多結晶シリコンはCVD法などの常法により基板上に成膜し形成することができる。
また、発電層としてアモルファスシリコンを用いる場合、アモルファスシリコン系太陽電池素子は、結晶シリコンにおける間接光学遷移が構造乱れのために直接遷移となったものである。可視域での光学吸収係数が大きく、厚さ1μm程度の薄膜でも太陽光を十分に吸収できる長所を有する。このため、太陽電池素子としてアモルファスシリコン系太陽電池素子を用いても、軽量な太陽電池パネルを実現することができる。また、アモルファスシリコンは非結晶質の材料であるため、変形にも耐性を有しフレキシブル化しうる。
発電層として無機半導体材料(化合物半導体)を用いる化合物半導体系太陽電池素子は発電効率が高く好ましい。なかでもS、Se、Teなどカルコゲン元素を含むカルコゲナイド系発電層が好ましく、更にI−III−VI2族半導体系(カルコパイライト系)発電層が好ましく、特にI族元素としてCuを用いたCu−III−VI2族半導体系発電層は理論的に極めて高い光電変換効率を有し好ましい。中でも特にCIS系半導体及びCIGS系半導体が好ましい。CIS系半導体はCuIn(Se1-ySy)2(0≦y≦1)を指し、CI
GS系半導はCu(In1-xGax)(Se1-ySy)2を指す(0<x<1、0≦y≦1)
。発電層として例えば酸化チタン層及び電解質層などからなる色素増感型発電層も、発電効率が高く好ましい。色素増感型太陽電池は電解質が液体の場合には特にガラス基板を用いない場合は封止が難しく耐久性が十分では無い場合がある。
[耐候性保護フィルム14]
耐候性保護フィルム14は、天候変化から太陽電池ユニット11を保護するためのフィルムである。太陽電池ユニット11の構成要素のなかには、温度変化、湿度変化、自然光、風雨による侵食などにより劣化するものがある。そのため、耐候性保護フィルム14で
太陽電池ユニット11を覆うことにより、天候変化などから保護し、発電能力が劣化しないようにしておくことが望ましい。
耐候性保護フィルム14は、太陽電池モジュール10の最表層に位置するため、耐候性、耐熱性、透明性、撥水性、耐汚染性、機械強度などの、太陽電池モジュール10(太陽電池ユニット11)の表面被覆材として好適な性能を備え、しかもそれを屋外暴露において長期間維持する性質を有することが好ましい。
また、取り付け作業時に長手方向に巻いて丸められる可撓性を確保するために、耐候性保護フィルム14は薄いものが好ましい。通常10μm以上、好ましくは15μm以上、より好ましくは20μm以上であり、また、通常200μm以下、好ましくは180μm以下、より好ましくは150μm以下、さらに好ましくは100μm以下である。耐候性保護フィルム14を薄くすると柔軟性が高まるため巻取り易くなる。ただし、耐候性保護フィルム14が薄過ぎるのは好ましくない。何故ならば、耐候性保護フィルム14が薄過ぎると、耐候性が確保されないことになるからである。
また、耐候性保護フィルム14は、太陽電池ユニット11の光吸収を妨げないという観点から、可視光を透過させるものが好ましい。例えば、耐候性保護フィルム14の可視光(波長360〜830nm)の光の透過率は、80%以上であることが好ましく、90%以上であることがより好ましく、特に好ましくは95%である。
さらに、太陽電池モジュール10は光を受けて熱せられることが多いため、耐候性保護フィルム14も熱に対する耐性を有することが好ましい。この観点から、耐候性保護フィルム14の構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上であり、また、通常350℃以下、好ましくは320℃以下、より好ましくは300℃以下である。融点を高くすることで太陽電池モジュール10の使用時に耐候性保護フィルム14が融解・劣化する可能性を低減できる。
耐候性保護フィルム14を構成する材料は、天候変化から太陽電池ユニット11を保護することができるものであれば任意である。その材料の例を挙げると、ポリエチレン樹脂、ポリプロピレン樹脂、環状ポリオレフィン樹脂、AS(アクリロニトリル−スチレン)樹脂、ABS(アクリロニトリル−ブタジエン−スチレン)樹脂、ポリ塩化ビニル樹脂、フッ素系樹脂、ポリエチレンテレフタラート、ポリエチレンナフタレート等のポリエステル樹脂、フェノール樹脂、ポリアクリル系樹脂、各種ナイロン等のポリアミド樹脂、ポリイミド樹脂、ポリアミド−イミド樹脂、ポリウレタン樹脂、セルロース系樹脂、シリコーン系樹脂、ポリカーボネート樹脂などが挙げられる。
中でも好ましくはフッ素系樹脂が挙げられ、その具体例を挙げるとポリテトラフルオロエチレン(PTFE)、4−フッ化エチレン−パークロロアルコキシ共重合体(PFA)、4−フッ化エチレン−6−フッ化プロピレン共重合体(FEP)、2−エチレン−4−フッ化エチレン共重合体(ETFE)、ポリ3−フッ化塩化エチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)及びポリフッ化ビニル(PVF)等が挙げられる。
また、耐候性層に、紫外線遮断、熱線遮断、防汚性、防曇性、耐擦性、導電性、反射防止、防眩性、光拡散、光散乱、波長変換、ガスバリア性等の機能を付与してもよい。特に、太陽電池モジュール10は太陽光からの強い紫外線にさらされるので、耐候性層に、紫外線遮断機能を持たせてもよい。紫外線遮断機能を有する層を塗工製膜等により耐候性層上に積層したり、紫外線遮断機能を発現する材料を溶解・分散させるなどして耐候性層に含有させることにより、紫外線遮断機能を耐候性層に付与できる。
なお、耐候性保護フィルム14は1種の材料で形成されていてもよく、2種以上の材料で形成されていても良い。また、耐候性保護フィルム12は単層フィルムにより形成されていても良いが、2層以上のフィルムを備えた積層フィルムであってもよい。さらに、他のフィルムとの接着性の改良のために、コロナ処理、プラズマ処理等の表面処理を行なってもよい。
耐候性保護フィルム14は、太陽電池モジュール10においてできるだけ外側に設けることが好ましい。太陽電池モジュール10の構成部材のうちより多くのものを保護できるようにするためである。したがって耐候性保護フィルム14は太陽電池モジュール10の最表面に設けておくことが好ましい。
さらに、長手方向に巻いて丸めた状態で太陽電池モジュール10の表面10eと裏面10fとが接着する可能性を無くするために、耐候性保護フィルム14の表面にエンボス加工を施してもよい。また、この太陽電池モジュール10表面10eのエンボス加工は、太陽電池モジュール10を、外から見てまぶしくないものとするためにも、有効である。
[封止材15a]
封止材15aは、太陽電池ユニット11を補強するフィルムである。太陽電池ユニット11は薄いため通常は強度が弱く、ひいては太陽電池モジュール10の強度が弱くなる傾向があるが、封止材15aにより強度を高く維持することが可能である。
太陽電池モジュール10を長手方向に巻いて丸められるために、封止材15aは薄いものが好ましい。通常50μm以上、好ましくは100μm以上、より好ましくは150μm以上であり、また、通常500μm以下、好ましくは450μm以下、より好ましくは400μm以下である。薄くすることで柔軟性が高まり巻取り易くなるが、薄すぎると強度が確保されないことになり好ましくない。
また、封止材15aは、太陽電池モジュール10の強度保持の観点から強度が高いことが好ましい。具体的強度については、封止材15a以外の耐候性保護フィルム14の強度とも関係することになり一概には規定しにくいが、封止材15aは、太陽電池モジュール10を丸めたり、取り付け固定作業時に伸ばしたりしても、太陽電池モジュール10の各部で剥離や変形を生じないような接着性と強度を有していることが望ましい。
また、封止材15aは、太陽電池ユニット11の光吸収を妨げない観点から可視光を透過させるものが好ましい。例えば、封止材15aの可視光(波長360〜830nm)の光の透過率は、通常60%以上、好ましくは70%以上、より好ましくは75%以上、更に好ましくは80%以上、中でも好ましくは85%以上、とりわけ好ましくは90%以上、特に好ましくは95%以上、その中でも特に好ましくは97%以上である。太陽光をより多く電気エネルギーに変換し、発電効率を向上させるためである。
さらに、太陽電池モジュール10は光を受けて熱せられることが多いため、封止材15aも熱に対する耐性を有することが好ましい。この観点から、封止材15aの構成材料の融点は、通常100℃以上、好ましくは120℃以上、より好ましくは130℃以上であり、また、通常350℃以下、好ましくは320℃以下、より好ましくは300℃以下である。融点を高くすることで太陽電池モジュール10の運用時に、封止材15aが融解・劣化する可能性を低減できる。
封止材15aを構成する材料としては、例えば、エチレン−酢酸ビニル共重合体(EVA)、エチレン−アクリル酸エチル共重合体(EEA)や、エチレン−アクリル酸メチル共重合体(EMA)、エチレン−メチルメタクリレート共重合体(EMMA)、エチレン
−メタクリル酸共重合体(EMAA)、プロピレン・エチレン・α−オレフィン共重合体、エチレン・α−オレフィン共重合体、ウレタン樹脂、ブチラール樹脂、アイオノマー樹脂、あるいはシリコーン樹脂などが挙げられる。
また、テトラフルオロエチレン(TFE)、ヘキサフルオロプロピレン(HFP)、ビニリデンフロライド(VdF)もしくは、テトラフルオロエチレン(TFE)、ビニリデンフロライド(VdF)を主成分とするフッ素ポリマーも挙げられる。ここで、曲げ応力による、太陽電池素子へのダメージを低下させる観点からは、架橋性封止材が好ましい。
[封止材15b]
封止材15bは、上述した封止材15aと同様のフィルムであり、配設位置が異なる他は封止材15aと同様のものを同様に用いることができる。厚みも封止材15aと同様である。また、構造物5の壁面に密着する裏面10f側の構成部材は必ずしも可視光を透過させる必要が無いため、封止材15bとしては、可視光を透過させないものを用いることもできる。
[凹部(1a、1b)]
図4は、図2中、X−Xで示された、凹部(1a、1b)を説明するための模式的な断面図である。凹部(1a、1b)は、固定用バンド(B1、B2)の巻き付け位置を規定する構造である。図4に例示するように、固定用バンドが当接する凹部(1a、1b)は、太陽電池モジュール10の表面10e側に形成される。凹部1aは、端部10a側に隣接して、凹部1bは、端部10b側に隣接して形成される。この構造により、太陽電池モジュール10は、構造物5の軸方向に上下する2か所の固定が可能となる。
凹部(1a、1b)は、それぞれ共通に太陽電池モジュール10の表面10eから裏面10fに向かう厚み方向に深さL1の溝部(2a、2b)を有する。溝部2aは、端部10a方向に幅L2の平坦部を有し、溝部2bは、端部10b方向に幅L2の平坦部をそれぞれ有する。ここで、溝部(2a、2b)が有する平坦部の幅L2は、少なくとも固定用バンドの有する幅が収まるものであれば良い。本実施形態では、24mm〜26mmの平坦部を有する。尚、この平坦部の幅L2は、溝部(2a、2b)に共通する幅値を有するように形成されるが、例えば端部10a側方向に形成される溝部2aの幅L2と異なる幅L2´を、端部10b側方向に形成される溝部2bが有するようにしても良い。設置環境や取り付け固定時の作業環境などに応じた凹部(1a、1b)を備えた太陽電池モジュール10が提供できる。
凹部(1a、1b)の深さL1は、耐候性保護フィルム14や封止材(15a、15b)の強度に合わせて形成されることが好ましい。本実施形態においては、太陽電池モジュール10厚さとの強度関係から、0.1mm ≦ L1(mm) ≦ 1.5mm の範囲とするのが好ましい。また、太陽電池モジュール10厚さに比して、大きくても50パーセント以下の深さL1を有するように形成するのか好ましい。
凹部(1a、1b)は、溝部(2a、2b)から、表面10e方向への立ち上がりである壁部(3a、3b)を有する。壁部(3a、3b)は、太陽電池モジュール10の端部10a方向側の溝壁面である。この壁部(3a、3b)と溝部(2a、2b)がなす角度iは、90度≦ i ≦100度であることが好ましい。取り付け作業時の固定用バンドによる装着感を残した状態で、太陽光によって蓄熱された固定用バンドの熱逃がしのためである。
[寸法関係]
太陽電池モジュール10が備える寸法関係を図5を用いて説明する。図5は、太陽電池
モジュール10が備える寸法関係の説明図である。図5において、複数の太陽電池ユニットが並設される長手方向の長さG(mm)は、円柱状の構造物5に巻き付けられた状態で、受光領域を広く確保するために、以下の関係を有する。
(π×φ)/2 ≦ G ≦ (π×φ)×2/3 (1)
φ:管材径(mm)
π:定数
G:太陽電池ユニットの並設長さ(mm)
尚、受光領域については、太陽電池モジュールの取付方法で後述する。
太陽電池モジュール10の長手方向の長さF(mm)は、少なくとも太陽電池ユニットの並設長さGを確保できる長さであれば良い。本実施形態においては、太陽電池モジュール10の可撓性や取り付け時の作業性、巻き付けられる構造物の口径等を考慮し、端部(10c、10d)方向にそれぞれ、500mm〜600mm程度のマージン長さ(E1、E2)を設けている。従って、長手方向長さFは、太陽電池ユニットの並設長さGにマージン長さE1及びE2を加えた長さとなる。このマージン長さ(E1、E2)は、太陽電池モジュール10の取付環境に合わせて調整可能である。尚、本実施形態では、ジャンクションボックス12の配設位置を調整するために、E2<E1としている。
太陽電池モジュール10の短手方向の長さH(mm)についても同様であり、少なくとも太陽電池ユニット11が配設できる長さであれば良い。本実施形態では、端部(10a、10b)と並設して配設された複数の太陽電池ユニット11との間に凹部(1a、1b)が形成されるため、50mm〜60mm程度のマージン長さ(K1、K2)を設けている。従って、短手方向長さHは、太陽電池ユニット11の長手方向長さにマージン長さK1及びK2を加えた長さとなる。尚、短手方向長さHは、配設される太陽電池ユニット11の大きさによるが、巻き付け固定時の作業性を考慮すれば作業員の肩幅程度の長さである550mm〜650mm程度の長さが好ましい。
本実施形態において、マージン長さ(K1、K2)は、K2<K1としている。構造物5に巻き付けられて固定された設置環境を考慮したためである。具体的には、凹部1aと端部10a側に並設された太陽電池ユニット11との間の離間距離K3と、凹部1bと端部10b側に並設された太陽電池ユニット11との間の離間距離K4とは、K4<K3としている。固定用バンド(B1、B2)による太陽光の遮蔽を避けるためである。また端部10aと凹部1aとの間の離間距離K5と、端部10bと凹部1bとの間の離間距離K6とは、K6<K5としている。構造物5の壁面に付着した霧や靄などの流滴を防ぐためである。
<太陽電池モジュール10の取付方法>
まず、太陽電池モジュール10の受光領域を、図6を用いて説明する。図6は、円柱状の構造物5の湾曲した壁面に太陽電池モジュールを巻き付けた状態を模式した断面図であり、軸方向上側から観た径方向の断面図である。図6に示すように、可撓性を有する本実施形態の太陽電池モジュール10は、裏面10fを円柱状の湾曲した壁面に密着させて巻き付けられる。太陽光の入射範囲は、経日変化、経年変化によって、概ね南方位を中心にして東側から西側に扇状に展開する。この入射範囲に合わせて調整した太陽電池ユニット11の配設領域が、受光領域である。受光領域は、上記した経日変化や経年変化に伴う日照変動から生ずる発電電力の電力変動を極力抑えるように調整される。
図6において、扇状の角度Dで示される領域範囲が受光領域であり、複数の太陽電池ユニット11が並設して配設される領域となる。図5における、太陽電池モジュール10の長手方向の太陽電池ユニットの並設長さGを形成する。角度Dは、180度≦D≦240度であることが好ましい。この角度範囲であれば、経日変化や経年変化に伴う日照変動か
ら生ずる発電電力の電力変動を極力抑えることができる。
例えば、経日変化で説明すると、日の出に合わせて入射される太陽光の入射範囲は、東方位を中心に南側及び北側に展開される粗180度の範囲である。この状態で南中を迎え、南方位を中心に東側及び西側に展開される粗180度の範囲が太陽光の入射範囲となる。そして、日の入りでは、西方位を中心に南側及び北側に展開される粗180度の範囲が太陽光の入射範囲である。従って、受光領域を太陽が南中する南方位を中心に東側から西側に扇状に展開すれば、少なくとも日射が存在する時間帯では継続した発電電力を得ることが可能である。
図7A、7B、7Cは、太陽電池モジュール10を構造物5に巻き付けた模式図である。図7Aに示すように、構造物5の北方位方向には、巻き付けた太陽電池モジュール10の端部10cと端部10dとが対向する。この対向する端部(10c、10d)の、表面10eに形成された凹部(1a、1b)の溝(2a、2b)位置を互いに水平となるように合わせることにより、太陽電池モジュール10の斜め巻き付けを防止することができる。また、巻き付けた太陽電池モジュール10の部分的な撓みや歪み等に起因する微細な位置ずれを調整することができる。従って、斜め巻き付け等による壁面と太陽電池モジュール10の裏面10fとの間に生ずる隙間を抑止できるので、取り付け固定時の密着性が向上する。
凹部1aと凹部1bとは、平面状の太陽電池モジュール10の表面10eに平行を成すように形成されているため、巻き付けた状態で端部(10c、10d)の溝(2a、2b)位置を合わせることにより、構造物5の壁面に沿って軸方向に平行な一対の溝となる。この状態で、固定用バンド(B1、B2)を凹部(1a、1b)の溝(2a、2b)位置に合わせて上から巻き付ける。巻き付けた固定用バンド(B1、B2)は、太陽電池モジュール10と共に壁面に締め付けられて留め具により固定される。
図7Aに示す模式図では、構造物5に巻き付けた太陽電池モジュール10の長手方向長さFが、構造物5の周方向の長さと粗同じ長さの場合であるが、壁面上に塗布された耐候塗装や口径の誤差などから、図7B(1)に示す模式図のようなケースが多い。構造物5に巻き付けて対向する端部10cと10dとの間に離間距離を生じるケースである。このケースでは、例えば、当て板として使用される補助部材6を用いて固定することができる。補助部材6は、例えば太陽電池モジュールに使用した耐候性保護フィルム14等が使用できる。
太陽電池モジュール10は、その長手方向、端部(10c、10d)側に既述したマージン長さ(E1、E2)を設けている。補助部材6は、端部10cと10dとの間の離間距離を覆い、且つ、太陽電池ユニット11が配設されていない領域の表面10e側に当接させて固定することが可能である。補助部材6を用いた固定では、例えば、補助部材6に当接して重なる領域(6a、6b)に接着剤を塗布し、補助部材6を表面10e側から接着させることが可能である。接着剤の使用は、構造物5には及ばないからである。尚、この状態で上下に平行対をなす凹部(1a、1b)に合わせて固定バンド(B1、B2)を巻き付けて固定を行うことは、言うまでもない。
図7Cに示す模式図は、例えば図7Aに示す太陽電池モジュール10を複数枚使用した場合の模式図であり、構造物5の軸方向に沿って上下に2段の太陽電池モジュール(#1−10、#2−10)を巻き付けている。このように複数枚の太陽電池モジュールを使用した場合、複数枚の太陽電池モジュールからなる太陽電池モジュールシステム20の形成が可能である。電力供給を受ける受電側装置や受電側システムの給電要求に合わせた、太陽電池モジュールによる電力供給システムが提供できる。
図7Cにおいて、下側の太陽電池モジュール#2−10は、その端部#2−10cと#2−10dを合わせた状態で構造物5に巻き付けられている。端部#2−10cと#2−10dを合わせた状態では、表面#2−10eに形成された凹部#2−1aは、一本の連続した溝となる。同様に、凹部#2−1bも一本の連続した溝となり、凹部#2−1aにより形成された溝と平行な対を成す。
上側に配設される太陽電池モジュール#1−10は、下側に配設された太陽電池モジュール#2−10の、凹部#2−10aが形成した溝位置を目安として、凹部#1−1bを凹部#2−10aの位置に重ね合わせて太陽電池モジュール#2−10の表面側から巻き付ける。このように、下側に巻き付けた太陽電池モジュール#2−10にその一部を重ね、上側に太陽電池モジュール#1−10を巻き付けて固定することにより、重ね合わせた箇所へのゴミの滞留を防止できる。また、例えば雨天時では、各太陽電池モジュール表面を流れる雨などの流れを良くすることができ、太陽電池モジュールシステム20の耐候性を高めることができる。
構造物5の法線方向に上側に巻き付けられた太陽電池モジュール#1−10は、その端部#1−10cと#1−10dとの間に若干の隙間が生じてしまうため、図7B(2)に示すように補助部材6を用いて固定することが好ましい。この場合の補助部材6は、図7Cに示すように、上側に巻き付けられた太陽電池モジュール#1−10の端部(#1−10c、#1−10d)と下側に巻き付けられた太陽電池モジュール#2−10の端部(#2−10c、#2−10d)とを一体的に覆って連結する板状の形状が好ましい。太陽電池モジュールシステム20の耐候性を高めることができる。
補助部材6を使用した固定形態については既述したように、補助部材6に当接して重なる太陽電池モジュール#1−10、#2−10の領域に接着剤を塗布し、補助部材6を表面#1−10e、#2−10e側から接着させることが可能である。この状態で、凹部#1−1aに規定される位置に合わせて固定バンド#1−B1を巻き付けて固定する。そして、凹部#1−1bに規定される位置に合わせて固定バンド#2−B1(または#1−B2)を、凹部#2−1bに規定される位置に合わせて固定バンド#2−B2を巻き付けることにより、太陽電池モジュール10を複数枚使用して連結した太陽電池モジュールシステム20が実現できる。
なお、図7Cでは、長手方向(周方向)の長さが等しい太陽電池モジュール#1−10及び#2−10を円柱の軸方向に並べて設置する例を示しているが、太陽電池モジュール#1−10については、太陽電池モジュール#2−10に重ねられた結果、太陽電池モジュール#2−10の厚みの影響を受けて、両端部#1−10c,1−10d間に隙間ができた状態を誇張表現したものである。当然、長手方向長さの異なる複数の太陽電池モジュール10を用いても良い。特に、他の太陽電池モジュール10に重ねる太陽電池モジュール10(例えば#1−10)の長手方向長さを、重ねられる他の太陽電池モジュール10(例えば#2−10)の長手方向長さより、#2−10の厚みを考慮して長くしても良い。後述する図10(a)も同様である。
また、取り付けを行うための太陽電池モジュール10の変形例として、図8に示す断面構造を備えることが可能である。図8は、図2中、X−Xで示す箇所での模式的な断面図である。図4に例示される模式的な断面図との相違は、太陽電池モジュール10の裏面10f側に突出する凸部(1c、1d)を備えることである。この凸部(1c、1d)は、太陽電池モジュールの表面10eに形成された凹部(1a、1b)と重ね合わすことが可能な突起構造である。
凸部(1c、1d)は、表面10e側に形成された凹部(1a、1b)の形成位置と対向する裏面10f側に形成される。凹部1aと凸部1cは対向し、凹部1bと凸部1dは対向している。凸部1cは、太陽モジュール10の表面10fから厚み方向、表面10eから裏面10fに向かって突出する高さL3の、断面矩形状の突起構造である。凸部1cはさらに、溝部2aに略平行な平坦部2cを有するように形成される。凸部1dも凸部1cと同様に、表面10eから裏面10fに向かって突出する高さL3の、断面矩形状の突起構造であり、溝部2aに略平行な平坦部2cを有するように形成される。尚、この突出する高さL3は、凸部(1c、1d)に共通して形成されているが、例えば、凸部1cの突出する高さL3が、凸部1dの有する高さL3´と相違する高さに形成されても良い。この凸部(1c、1d)の突出する高さL3は、対向する位置に形成された凹部(1a、1b)が有する深さL1との関係において、L3<L1となる関係を有することが好ましい。凸部(1c、1d)と凹部(1a、1b)の重ね合わせが容易となる。
溝部2aに略平行な平坦部2cは、端部10a方向に幅L4を有し、溝部2bに略平行な平坦部2dの同様に端部10a方向に幅L4を有するように形成される。この凸部(1c、1d)が有する平坦部(2c、2d)の幅L4は、対向する位置に形成された凹部(1a、1b)が有する溝部(2a、2b)の幅L2との関係において、L4<L2となる関係を有することが好ましい。凸部(1c、1d)と凹部(1a、1b)の重ね合わせをスムーズにするからである。尚、凸部(1c、1d)が有する共通の幅L4についても、例えば、凸部1cの幅L4が、凸部1dの有する幅L4´と相違する幅となるように形成されても良い。図に示すように、凸部1c、1dの夫々は、太陽電池モジュール10の裏面において、凹部1a、1bと対応する位置に設けられているが、凸部は1つであっても良い。また、凸部は、裏面において、太陽電池モジュール10の長手方向に亘って連続して形成されている必要はなく、間欠的に形成されていても良い。また、凸部の太陽電池モジュール10における短手方向の形成位置は、表面に形成される凹部の短手方向位置とずれていても良い。
図9及び図10は、変形例の断面構造を備える太陽電池モジュール10を構造物(円柱)5に巻き付けた模式図である。図9に模式的に示すように、太陽電池モジュール10のマージン長さ(E1、E2)の箇所を互いに重ね合わせた構造物5への取り付け方法が提供できる。図9(1)に示すように、構造物5の壁面に巻き付けた太陽電池モジュール10は、端部10d側を上側に、端部10c側を下側にして、重ね合わせられて巻き付けられている。そして、図9(2)の模式的な取り付け断面図に示すように、この巻き付け状態では、上側の凸部(1c、1d)が下側の凹部(1a、1d)とその形成位置を重なり合わせられて取り付けられている。重なり合った太陽電池モジュール10のマージン長さ(E1、E2)の部分では、下側の表面10eと上側の裏面10fが当接した状態である。この状態で上下に平行対をなす凹部(1a、1b)に合わせて固定バンド(B1、B2)を巻き付けて固定を行うことにより、図7Bに示す補助部材6を用いずに太陽電池モジュール10の取り付け固定を行うことが可能となる。また、図7Bと同様に、重なり合ったマージン長さ(E1、E2)の当接面を接着剤で接着させることも可能である。
図10は、太陽電池モジュールシステム20の模式図である。図10(a)において、太陽電池モジュールシステム20は、上下に2段に太陽電池モジュール#1−10と太陽電池モジュール#2−10とを重ね合わせたものである。下側の太陽電池モジュール#2−10は、表面#2−10eに形成された#2凹部(1a、1b)を備え、上側の太陽電池モジュール#1−10は、表面#1−10eに形成された#1凹部(1a、1b)と裏面#1−10fに形成された#1凸部(1c、1d)を備えている。図10(a)においては、下側の太陽電池モジュール#2−10の表面#2−10eに形成された端部#2−10a側の凹部#2−1aと、上側の太陽電池モジュール#1−10の裏面#1−10fに形成された凸部#1−1cが重ね合せられて巻き付けられている。図10(b)の模式
的な取り付け断面図に示すように、この巻き付け状態では、下側の凹部#2−1aが法線方向に下側となり、上側の凸部#1−1cが法線方向に上側となって形成位置を重ね合せて巻き付けられる。この状態で上下に平行をなす凹部#1−1a、#1−1b、#2−1bの形成位置に合わせて3本の固定バンド#1−B1、#2−B1(または#1−B2)、#2−B2を巻き付けて固定を行うことにより、軸方向に上下に2段に太陽電池モジュール10を配設させた太陽電池モジュールシステム20が固定できる。
尚、図10(a)に示すように、構造物5の軸方向において上側へ配設される太陽電池モジュール#1−10は、軸方向において下側へ配設される太陽電池モジュール#2−10の法線方向に上側に配設される。このため、各太陽電池モジュール10が備える長手方向の長さFを等しくすると、法線方向に上側に配設される太陽電池モジュール#1−10の端部#1−10cと#1−10dとの間に若干の隙間が生じてしまう。従って、図7Bに例示されるように補助部材6を使用した固定方法や、図9に例示されるようにマージン長さ(E1、E2)の一部分を相互に重ね合わせる固定方法が好ましい。複数枚の太陽電池モジュール10を上下に連結させた太陽電池モジュールシステム20の耐候性が向上する。
[太陽電池モジュール10の製造方法]
太陽電池モジュール10は、さまざまな方法により製造することが出来る。例えば、図3に示したタイプの太陽電池部は、耐候性保護フィルム14間に、1個又は2個以上の太陽電池ユニット11を直列または並列接続したものを、封止材15a、15bと共に一般的な真空ラミネート装置でラミネートすることにより製造することができる。また、図3に示したタイプの太陽電池部は、上記のようなラミネート時に、紫外線カット層、ガスバリア層、ゲッター材層などを同時にラミネートすることや、幾つかのフィルムを別途ラミネートすることなどにより製造することが出来る。
この際、加熱温度は通常130℃以上、好ましくは140℃以上であり、通常180℃以下、好ましくは170℃以下である。また、加熱時間は通常10分以上、好ましくは20分以上であり、通常100分以下、好ましくは90分以下である。圧力は通常0.001MPa以上、好ましくは0.01MPa以上であり、通常0.2MPa以下、好ましくは0.1MPa以下である。圧力をこの範囲とすることで封止を確実に行い、かつ、端部からの封止材15a,15bがはみ出しや過加圧による膜厚低減を抑え、寸法安定性を確保しうる。
[凹部(1a、1b)、凸部(1c、1d)の形成方法]
図11Aに、凹部(1a、1b)の形成方法を例示する。図11Aは、凹部(1a、1b)の形成のための型材(13a、13b)を使用した説明図である。凹部(1a、1b)の形成は、上述した太陽電池モジュール10のラミネート時に行われる。図11Aに例示するように、溝部(2a、2b)を形成できる型材(13a、13b)を、表面10e側に当接させて形成する。型材(13a、13b)の当接位置については既に説明してきたように、図2、図4、図5等に例示した形成位置関係を満たすものであれば良い(図11A(1))。表面10eに当接させた型材(13a、13b)は、ラミネート工程の経過に伴い押圧されて、表面10e上に型材(13a、13b)の形状に合わせた押し型を形成しつつ、太陽電池モジュール10と共にラミネートされる(図11A(2)〜(3))。このラミネート工程の経過後に、押圧されて太陽電池モジュール10内に埋設した型材(13a、13b)を剥離する(図11A(4))。この過程により、太陽電池モジュール10の表面10eに、平行する一対の凹部(1a、1b)が形成される。尚、図4及び図8で示す、壁部(3a、3b)は既述した範囲で傾斜角度を備えることが好ましい。また、型材(13a、13b)の剥離処理のため、表面10eから溝部(2a、2b)にかけてテーパ状となる傾斜をつけても良い。
型材(13a、13b)は、凹部(1a、1b)の形成過程で、太陽電池モジュール10の表面10eに溝部(2a、2b)を形成できる材質であれば良く、ラミネート後の剥離過程において、太陽電池モジュール10の表層を構成する耐候性保護フィルム14と融着しないものであれば良い。一例としてガラス繊維製の布材であるガラスクロスが使用できる。太陽電池モジュール10の長手方向に延伸して配置することができ、耐候性保護フィルム14に融着することもない。太陽電池モジュール10の表面10eに、融着による損傷を与えずに型材(13a、13b)を剥離することができる。
図11Bは、凸部(1c、1d)形成のための型材(13c、13d、13e)を使用した説明図である。凸部(1c、1d)形成も太陽電池モジュール10のラミネート時に行われる。凹部(1a、1b)形成のための型材(13a、13b)を、表面10e側に当接させた状態で、さらに、型材(13c、13d、13e)を裏面10fに当接させる。型材(13c、13d、13e)の当接位置には既に説明したように、図2、図4、図5、図8等に例示した形成位置関係を満たすものであれば良い(図11B(1))。裏面10fに当接させた型材(13c、13d、13e)は、ラミネート工程の経過に伴い押圧されて、裏面10fに型材(13c、13d、13e)の形状に合わせた押し型を形成しつつ、太陽電池モジュール10と共にラミネートされる(図11B(2)〜(3))。このラミネート工程の経過後に、押圧されて太陽電池モジュール10内に埋設した型材(13c、13d、13e)を剥離する(図11B(4))。この過程により、太陽電池モジュール10の裏面10fに、平行する一対の凹部(1a、1b)に対向する凸部(1c、1d)が形成される。裏面10fから突出する凸部(1c、1d)の立ち上がりは、型材(13c、13d、13e)の剥離処理のため、裏面10fから平坦部(2c、2d)にかけてテーパ状となる傾斜をつけても良い。
型材(13c、13d、13e)は、凹部(1a、1b)を形成するための型材(13a、13b)と同一素材であるガラスクロスが使用できる。太陽電池モジュール10の裏面10fに、融着による損傷を与えずに型材(13c、13d、13e)を剥離することができる。
1a、1b.凹部、 1c、1d.凸部、 2a、2b.溝部、
3a、3b.壁部、 5.円柱状構造物、 6.補助部材(連結材)、
10.太陽電池モジュール、 10a、10b、10c、10d.端部、
10e.表面、 10f.裏面、
11.太陽電池ユニット、 12.ジャンクションボックス、
13a、13b、13c、13d、13e.型材、 14.耐候性保護フィルム、
15a、15b.封止材、
20.太陽電池モジュールシステム、
L1.深さ、 L2.幅、 L3.突出高さ、 L4.幅

Claims (6)

  1. 表面と裏面とを有し、前記裏面を円柱の周面に接触させた状態で前記表面の上側から固定用バンドを前記円柱に巻き付けることによって前記円柱に取り付けられる太陽電池モジュールであって、
    前記円柱の軸方向に配置される第1の方向と、前記軸方向に直交する前記円柱の周方向に配置される第2の方向とを備える矩形平板状の可撓性を有する樹脂製基板と、
    前記樹脂基板上に設けられた薄膜太陽電池と、
    前記表面において前記第2の方向に平行に形成された、前記固定用バンドの巻き付け位置を規定する少なくとも2つの凹部と
    を含む太陽電池モジュール。
  2. 前記凹部の深さが、0.1mm以上であり、且つ1.5mm以下である
    請求項1に記載の太陽電池モジュール。
  3. 前記凹部の深さが太陽電池モジュールの厚みの50パーセント以下である
    請求項1又は2に記載の太陽電池モジュール。
  4. 前記裏面に、前記円柱の軸方向に隣接配置された他の太陽電池モジュールが有する前記少なくとも2つの凹部の一方に挿入される少なくとも一つの凸部をさらに含む
    請求項1から3のいずれか1項に記載の太陽電池モジュール。
  5. 円柱の軸方向に配置される第1の方向と、前記軸方向に直交する前記円柱の周方向に配置される第2の方向とを備える矩形平板状の可撓性を有する樹脂製基板と、前記樹脂基板上に設けられた薄膜太陽電池と、前記表面において前記第2の方向に平行に形成された、前記固定用バンドの巻き付け位置を規定する少なくとも2つの凹部とを含む太陽電池モジュールを、前記円柱に巻き付け、
    固定用バンドを前記各凹部に挿入する状態で巻き付け、
    前記固定用バンドを締め付けることによって、前記太陽電池モジュールを前記円柱に固定する
    ことを含む太陽電池モジュールの取付方法。
  6. 前記太陽電池モジュールの第2の方向の長さが前記円柱の周長さより短い場合に、前記円柱に巻き付けた状態における前記太陽電池モジュールの短手方向の両端部を、板状の連結材を介して連結し、
    前記連結材によって円筒状をなす前記太陽電池モジュールを前記固定用バンドで固定する
    請求項5に記載の太陽電池モジュールの取付方法。
JP2011024539A 2011-02-08 2011-02-08 太陽電池モジュールおよび取付方法 Active JP5633412B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011024539A JP5633412B2 (ja) 2011-02-08 2011-02-08 太陽電池モジュールおよび取付方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011024539A JP5633412B2 (ja) 2011-02-08 2011-02-08 太陽電池モジュールおよび取付方法

Publications (2)

Publication Number Publication Date
JP2012164836A true JP2012164836A (ja) 2012-08-30
JP5633412B2 JP5633412B2 (ja) 2014-12-03

Family

ID=46843930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011024539A Active JP5633412B2 (ja) 2011-02-08 2011-02-08 太陽電池モジュールおよび取付方法

Country Status (1)

Country Link
JP (1) JP5633412B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101970958B1 (ko) * 2018-10-16 2019-04-22 밸프 주식회사 태양광패널 부착 설치용 파이프 브라켓
WO2023176123A1 (ja) * 2022-03-17 2023-09-21 株式会社村田製作所 太陽電池装置および発電装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843186U (ja) * 1971-09-23 1973-06-04
US5605769A (en) * 1995-07-03 1997-02-25 Toms; Dennis J. Method and apparatus for supplying electrical energy to battery powered equipment
JPH10184101A (ja) * 1996-12-27 1998-07-14 Nippon Denki Ido Tsushin Kk 太陽電池取付システム
JP2002173098A (ja) * 2000-12-05 2002-06-18 Sharp Corp 宇宙用ソーラーパネルおよびその製造方法
JP2003168813A (ja) * 2001-12-03 2003-06-13 Sony Corp 光充電式二次電池
JP2003179246A (ja) * 2001-12-12 2003-06-27 Sony Corp 光発電器具、付属具および電気または電子機器
JP2007180065A (ja) * 2005-12-26 2007-07-12 Kyocera Corp 太陽電池アレイ
JP2010098271A (ja) * 2008-10-20 2010-04-30 Yutaka Watanabe 核廃棄物の放射線を利用した光電池
JP2011012709A (ja) * 2009-06-30 2011-01-20 Honda Motor Co Ltd ダイナミックダンパ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4843186U (ja) * 1971-09-23 1973-06-04
US5605769A (en) * 1995-07-03 1997-02-25 Toms; Dennis J. Method and apparatus for supplying electrical energy to battery powered equipment
JPH10184101A (ja) * 1996-12-27 1998-07-14 Nippon Denki Ido Tsushin Kk 太陽電池取付システム
JP2002173098A (ja) * 2000-12-05 2002-06-18 Sharp Corp 宇宙用ソーラーパネルおよびその製造方法
JP2003168813A (ja) * 2001-12-03 2003-06-13 Sony Corp 光充電式二次電池
JP2003179246A (ja) * 2001-12-12 2003-06-27 Sony Corp 光発電器具、付属具および電気または電子機器
JP2007180065A (ja) * 2005-12-26 2007-07-12 Kyocera Corp 太陽電池アレイ
JP2010098271A (ja) * 2008-10-20 2010-04-30 Yutaka Watanabe 核廃棄物の放射線を利用した光電池
JP2011012709A (ja) * 2009-06-30 2011-01-20 Honda Motor Co Ltd ダイナミックダンパ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101970958B1 (ko) * 2018-10-16 2019-04-22 밸프 주식회사 태양광패널 부착 설치용 파이프 브라켓
WO2023176123A1 (ja) * 2022-03-17 2023-09-21 株式会社村田製作所 太陽電池装置および発電装置

Also Published As

Publication number Publication date
JP5633412B2 (ja) 2014-12-03

Similar Documents

Publication Publication Date Title
JP3618802B2 (ja) 太陽電池モジュール
RU2529659C2 (ru) Способ изготовления мультипереходных и многоэлектродных фотогальванических элементов
EP3754729B1 (en) Solar cell module comprising perovskite solar cell and manufacturing method thereof
US20110139225A1 (en) Shaped photovoltaic module
EP2581944A1 (en) Solar cell module
TWI539613B (zh) 高功率太陽能電池模組
US20120305080A1 (en) Solar cell module and method of manufacturing solar cell module
JP6094572B2 (ja) 有機薄膜太陽電池モジュールの製造方法、及び有機薄膜太陽電池モジュール
JP2015195417A (ja) 光起電モジュール製造方法およびトップシート構造製造方法
GB2570493A (en) Solar panel arrangement
JP2016186156A (ja) 太陽電池一体型壁材
JP5633412B2 (ja) 太陽電池モジュールおよび取付方法
WO2014003187A1 (ja) 有機薄膜太陽電池モジュール
US20120305079A1 (en) Solar cell module and method of manufacturing solar cell module
JP2015194072A (ja) 薄膜太陽電池モジュール
KR102085935B1 (ko) 다중접합 태양전지 및 이의 제조방법
KR20190143743A (ko) 태양전지 및 이의 제조방법
JP2015154049A (ja) 薄膜太陽電池モジュール
US20140150851A1 (en) Photovoltaic module
JPH11214734A (ja) 太陽電池モジュールおよびその製造方法およびその施工方法および太陽電池発電システム
JP6458591B2 (ja) 太陽電池装置
JP2015154050A (ja) 薄膜太陽電池モジュール
JP2014011320A (ja) 太陽電池モジュール
WO2023037885A1 (ja) 太陽電池デバイスおよび太陽電池モジュール
WO2024071284A1 (ja) 太陽電池モジュールの製造方法、および、太陽電池モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140929

R150 Certificate of patent or registration of utility model

Ref document number: 5633412

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350