JP2012158784A - High strength steel excellent in toughness at welding heat-affected zone - Google Patents

High strength steel excellent in toughness at welding heat-affected zone Download PDF

Info

Publication number
JP2012158784A
JP2012158784A JP2011017734A JP2011017734A JP2012158784A JP 2012158784 A JP2012158784 A JP 2012158784A JP 2011017734 A JP2011017734 A JP 2011017734A JP 2011017734 A JP2011017734 A JP 2011017734A JP 2012158784 A JP2012158784 A JP 2012158784A
Authority
JP
Japan
Prior art keywords
toughness
steel
less
haz
affected zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011017734A
Other languages
Japanese (ja)
Other versions
JP5685960B2 (en
Inventor
Yukio Shinpo
幸雄 真保
Keiji Ueda
圭治 植田
Shinichi Suzuki
伸一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011017734A priority Critical patent/JP5685960B2/en
Publication of JP2012158784A publication Critical patent/JP2012158784A/en
Application granted granted Critical
Publication of JP5685960B2 publication Critical patent/JP5685960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide high strength steel having a tensile strength of 590 MPa grade or more, which suppresses usage of Ni, Mo and Mn as much as possible, and is excellent in high heat input HAZ toughness.SOLUTION: High strength steel excellent in toughness at a welding heat-affected zone has a composition including, by mass%, 0.025-0.050% of C, 0.3% or less of Si, 1.2-2.0% of Mn, 0.05% or less of P, 0.01% or less of S, 1.5-3.5% of Cr, 0.05% or less of Al, 0.005-0.050% of Ti, 0.5-2.0% of Ni and 0.0015-0.0060% of N, with the remainder being iron and unavoidable impurities, while satisfying the following expression (1). 2.3≤(Mn+0.4Cr)≤2.7 (1). In the expression, Mn and Cr represent the content (mass%) of the respective elements.

Description

本発明は、大入熱溶接熱影響部の靭性に優れた高強度鋼に関するものであり、特に500kJ/cmを超える大入熱溶接を施した場合の、溶接熱影響部の靭性に優れた引張強度590MPa級以上の高強度鋼に関する。   The present invention relates to a high-strength steel excellent in the toughness of the heat-affected zone having a large heat input, and in particular, a tensile having an excellent toughness in the heat-affected zone when subjected to a high heat input exceeding 500 kJ / cm. The present invention relates to a high strength steel having a strength of 590 MPa or higher.

建築構造物のボックス柱の組立て溶接に適用されるサブマージアーク溶接やエレクトロスラグ溶接等では、施工の高能率化のため、500kJ/cmを超える大入熱溶接が施されることがある。一般に、溶接入熱量が大きくなると、溶接熱影響部(以下HAZと呼ぶ)の組織が粗大化し靭性が低下する。これまでにも、上記HAZの靭性を改善する方法が種種、提案されている。   In submerged arc welding, electroslag welding, and the like applied to assembly welding of box columns of building structures, large heat input welding exceeding 500 kJ / cm may be performed in order to improve the efficiency of construction. Generally, when the amount of heat input to welding increases, the structure of the weld heat affected zone (hereinafter referred to as HAZ) becomes coarse and the toughness decreases. Various methods for improving the toughness of the HAZ have been proposed so far.

特許文献1には、極低C化により島状マルテンサイト(以下MAと呼ぶ)の生成を抑制し、焼入性向上元素であるMn、NiおよびCrを適正に含有させることにより、γ粒界でのフェライトの生成を抑え、粒内における変態組織のブロックサイズの微細化を図ることにより590MPa級鋼のHAZ靭性劣化を抑制する技術が開示されている。   In Patent Document 1, the generation of island martensite (hereinafter referred to as MA) is suppressed by extremely low C, and the hardenability improving elements Mn, Ni, and Cr are appropriately contained, so that the γ grain boundary A technique for suppressing the HAZ toughness deterioration of 590 MPa grade steel by suppressing the formation of ferrite in the steel and miniaturizing the block size of the transformed structure in the grains is disclosed.

特許文献2には、780MPa級鋼のHAZ靭性を改善する方法として、MnおよびNi、Cuを積極的に添加し、Mo、Nb、V添加量を制限することでベイニティックフェライトを主体とする組織とし、またTi、N量を適正化してTiNを高温で安定化させてHAZでのオーステナイト結晶粒の粗大化を防止する技術が開示されている。   In Patent Document 2, as a method for improving the HAZ toughness of 780 MPa class steel, Mn, Ni, and Cu are positively added, and the amount of addition of Mo, Nb, and V is limited to mainly contain bainitic ferrite. There is disclosed a technique for preventing the coarsening of austenite crystal grains in the HAZ by making the structure and optimizing the amounts of Ti and N to stabilize TiN at a high temperature.

特開2007−126725号公報JP 2007-126725 A 特開2006−118007号公報JP 2006-118007 A

特許文献1に開示の技術では,590MPa級鋼のHAZ靭性を改善するために約1%のNiの添加を必要とする。Niは高価な元素であり、合金コストが嵩み、590MPa級鋼としてはコスト競争力にかける。またMnを2%程度と多めに添加するため、スラブの板厚中心位置でのMnの凝固偏析が強く、板厚中心部(1/2t)での靭性が損なわれやすい。   The technique disclosed in Patent Document 1 requires the addition of about 1% Ni in order to improve the HAZ toughness of 590 MPa class steel. Ni is an expensive element, and the alloy cost is high, and it is cost competitive as a 590 MPa class steel. Further, since Mn is added in a large amount of about 2%, the solidification segregation of Mn at the center of the slab thickness is strong, and the toughness at the center of the thickness (1 / 2t) tends to be impaired.

特許文献2に開示の技術では780MPa級鋼のHAZ靭性を改善するために約1から2%のNiの添加を必要とし、さらに0.2から0.5%のMoの添加を必要とする。NiおよびMoは高価な元素であるため、合金コストが嵩み、コスト競争力に欠ける。またMnを2%程度と多めに添加するため、特許文献1の技術と同様にスラブの厚さ1/2t位置でのMnの凝固偏析が強く、鋼板での板厚1/2t部の靭性が損なわれやすい。   In the technique disclosed in Patent Document 2, about 1 to 2% of Ni is required to improve the HAZ toughness of the 780 MPa class steel, and further 0.2 to 0.5% of Mo is required. Since Ni and Mo are expensive elements, the alloy cost is high and the cost competitiveness is lacking. Further, since Mn is added in a large amount of about 2%, the solidification segregation of Mn is strong at the slab thickness 1 / 2t as in the technique of Patent Document 1, and the toughness of the 1 / 2t part of the steel plate is high. It is easily damaged.

そこで、本発明は、590MPa級鋼以上の大入熱HAZ靭性を改善するにあたり、高価なNiやMoの使用量を極力抑えて合金コストを削減し、凝固偏析して板厚中央の靭性を損ないやすいMnの添加量も極力押さえた上で、高いHAZ靭性が得られる製造方法を提供することを目的とする。   Therefore, the present invention improves the high heat input HAZ toughness of 590 MPa class steel or more, and suppresses the use amount of expensive Ni and Mo as much as possible to reduce the alloy cost and solidify and segregate to impair the toughness at the center of the plate thickness. An object of the present invention is to provide a production method capable of obtaining high HAZ toughness while suppressing an easy addition amount of Mn as much as possible.

本発明者らは上記課題を解決するために、大入熱溶接を施した場合のHAZ靭性に優れた高強度鋼を得るべく鋭意検討した結果、以下の知見を得た。   In order to solve the above-mentioned problems, the present inventors diligently studied to obtain a high-strength steel excellent in HAZ toughness when subjected to high heat input welding. As a result, the following knowledge was obtained.

熱影響部の高靭性を安定して確保するには、極低C化してMAの生成を抑え、Mn、Cr、Ni、Siなどの焼入れ性を高める元素を添加して、変態温度を低下させ、全体を均一なベイナイト組織とすることが必要である。   In order to stably secure the high toughness of the heat-affected zone, it is possible to reduce the transformation temperature by adding elements that increase the hardenability such as Mn, Cr, Ni, Si, etc. It is necessary to make the whole into a uniform bainite structure.

その上で、オーステナイト生成元素(Mn、Niなど)とフェライト生成元素(Cr、Siなど)の両方を添加し、オーステナイト生成元素量に対してフェライト生成元素量を適正にすることによって、HAZ靱性を良好にできる。   On top of that, by adding both austenite-generating elements (Mn, Ni, etc.) and ferrite-forming elements (Cr, Si, etc.) and making the ferrite-forming element amount appropriate for the austenite-forming element amount, the HAZ toughness can be reduced. Can be good.

Mnは強力なオーステナイト安定化元素であり、変態温度を低下させベイナイト変態を促進するが、Mnを単独で添加しても、ベイナイトラス間にMAが析出してしまい、HAZ靱性は低くなる。   Mn is a strong austenite stabilizing element and promotes bainite transformation by lowering the transformation temperature. However, even if Mn is added alone, MA precipitates between the bainite laths and the HAZ toughness is lowered.

NiもMnに次ぐ、強力なオーステナイト安定化元素であり、変態温度を低下させベイナイト変態を促進するが、その効果はMnよりは小さい。このため、Niを単独で添加しても、多量に添加しなければその効果は十分ではない。Niを単独で多量に添加した場合、HAZは均一なベイナイト組織となり、またMn添加の場合とは異なり、ベイナイトラス間に靭性に有害なMAの生成がほとんどないため、優れたHAZ靭性を得ることができるが、Niが高価である上、多量の添加を必要とするため、鋼材の合金コストは極めて高くなってしまう。   Ni is also a strong austenite stabilizing element after Mn, and lowers the transformation temperature and promotes bainite transformation, but its effect is smaller than that of Mn. For this reason, even if Ni is added alone, the effect is not sufficient unless a large amount is added. When a large amount of Ni is added alone, HAZ has a uniform bainite structure, and unlike Mn addition, there is almost no formation of MA harmful to toughness between bainite laths, so that excellent HAZ toughness is obtained. However, since Ni is expensive and requires a large amount of addition, the alloy cost of the steel material becomes extremely high.

従って、オーステナイト生成元素としてはMnを主とし、それに加えてNiを補助的に用いることが実際的である。   Therefore, it is practical to mainly use Mn as an austenite-generating element, and additionally use Ni in addition to it.

これらのオーステナイト生成元素に加えてフェライト安定化元素を添加すると、Mn添加による過度のオーステナイト安定化が緩和され、ベイナイトラス間のMAは減少し、HAZ靱性の優れた領域が現れる。   When a ferrite stabilizing element is added in addition to these austenite forming elements, excessive austenite stabilization due to the addition of Mn is alleviated, MA between bainite laths is reduced, and a region with excellent HAZ toughness appears.

特にCrは、Mnによる過度のオーステナイト安定化を抑える上で有効である。またSiも強力なフェライト生成元素であるが、Siはセメンタイトの生成を強く抑制するため、過剰に添加するとかえってMAの生成が増えてしまう。   In particular, Cr is effective in suppressing excessive austenite stabilization by Mn. Si is also a strong ferrite-forming element. However, since Si strongly suppresses the formation of cementite, if excessively added, the production of MA increases.

従って、フェライト生成元素としてはCrを主とし、Siは補助的に適量用いることが効果的である。   Therefore, it is effective to mainly use Cr as a ferrite-forming element and use an appropriate amount of Si as a supplement.

本発明は、上記の知見に更に検討を加えてなされたもので、すなわち、本発明の要旨は、以下の通りである。   The present invention has been made by further studying the above findings. That is, the gist of the present invention is as follows.

第一の発明は、成分組成が、質量%で、C:0.025〜0.050%、Si:0.3%以下、Mn:1.2〜2.0%、P:0.05%以下、S:0.01%以下、Cr:1.5〜3.5%、Al:0.05%以下、Ti:0.005〜0.050%、Ni:0.5〜2.0%、N:0.0015〜0.0060%を含有し、更に、下記式(1)を満たし、残部鉄および不可避不純物からなることを特徴とする溶接熱影響部の靱性に優れた高強度鋼である。   In the first invention, the component composition is mass%, C: 0.025 to 0.050%, Si: 0.3% or less, Mn: 1.2 to 2.0%, P: 0.05% Hereinafter, S: 0.01% or less, Cr: 1.5 to 3.5%, Al: 0.05% or less, Ti: 0.005 to 0.050%, Ni: 0.5 to 2.0% N: 0.0015 to 0.0060%, further satisfying the following formula (1), consisting of the remaining iron and unavoidable impurities, is a high strength steel excellent in toughness of the weld heat affected zone is there.

2.3≦(Mn+0.4Cr)≦2.7 ・・・(1)
なお、式中、Mn、Crは、それぞれの元素の含有量(質量%)を示す。
2.3 ≦ (Mn + 0.4Cr) ≦ 2.7 (1)
In the formula, Mn and Cr indicate the content (% by mass) of each element.

第二の発明は、第一の発明に記載の成分組成を有する鋼を1000℃以上1250℃以下に加熱して熱間圧延し、その後、空冷以上の冷却速度で冷却することを特徴とする溶接熱影響部の靱性に優れた高強度鋼の製造方法である。   A second invention is a welding characterized in that a steel having the component composition described in the first invention is heated to 1000 ° C. or more and 1250 ° C. or less and hot-rolled, and then cooled at a cooling rate of air cooling or more. This is a method for producing a high-strength steel having excellent heat-affected zone toughness.

第三の発明は、第一の発明に記載の成分組成を有する鋼を1000℃以上1250℃以下に加熱し、熱間圧延した後、水冷する直接焼入れ工程、または、熱間圧延後350℃以下まで冷却した後、870℃以上に再加熱して、水冷する再加熱焼入れ工程と、前記焼入れ後の鋼を450℃以上700℃以下に加熱し、その後、空冷以上の速度で冷却する焼戻し工程とを有することを特徴とする溶接熱影響部の靱性に優れた高強度鋼の製造方法である。   The third invention is a direct quenching step in which the steel having the component composition described in the first invention is heated to 1000 ° C. or more and 1250 ° C. or less, hot-rolled, and then water-cooled, or 350 ° C. or less after hot-rolling. A reheating quenching step in which the steel is cooled to 870 ° C. or higher and then cooled with water, and the steel after the quenching is heated to 450 ° C. or higher and 700 ° C. or lower, and then cooled at a rate of air cooling or higher. It is a manufacturing method of the high strength steel excellent in the toughness of the welding heat affected zone characterized by having.

本発明によれば、500kJ/cmを超える大入熱溶接等を施した場合にも、優れたHAZ靭性を確保でき、安全性の高い建築構造物等を高能率で製造することができる。   According to the present invention, even when high heat input welding exceeding 500 kJ / cm or the like is performed, excellent HAZ toughness can be secured, and a highly safe building structure or the like can be manufactured with high efficiency.

以下に本発明の各構成要件の限定理由について説明する。   The reasons for limiting the respective constituent requirements of the present invention will be described below.

1.成分組成について
はじめに、本発明の鋼の成分組成を規定した理由を説明する。なお、成分%は、すべて質量%を意味する。
1. About component composition First, the reason which prescribed | regulated the component composition of the steel of this invention is demonstrated. In addition, all component% means the mass%.

C:0.025〜0.050%
Cは、母材強度の確保、およびγ粒の粗大化を抑制してHAZ靭性を確保するのに必要な元素であり、その効果を発揮させるには、0.025%以上の添加が必要である。一方、0.050%を超えて添加すると、MAが増大するためHAZ靭性は劣化するため、C量は0.025〜0.050%の範囲とする。
C: 0.025 to 0.050%
C is an element necessary for securing the strength of the base material and suppressing the coarsening of the γ grains to ensure the HAZ toughness, and in order to exert its effect, addition of 0.025% or more is necessary. is there. On the other hand, if added over 0.050%, MA increases and the HAZ toughness deteriorates, so the C content is in the range of 0.025 to 0.050%.

Si:0.3%以下(0を除く)
Siは、製鋼時の脱酸に必要な元素であるが、脱酸の目的を達すれば、添加量は少なくとも良い。またSiは強力なフェライト生成元素であり、Mnによるオーステナイトの過度の安定化を抑制して、MAの生成を抑制する効果があるが、Siはセメンタイトの生成を強力に抑制するため、過剰の添加では、かえってMAが増大してHAZ靭性が劣化するため、Si量は0.30%以下とする。
Si: 0.3% or less (excluding 0)
Si is an element necessary for deoxidation at the time of steelmaking, but if the purpose of deoxidation is achieved, the addition amount is at least good. Si is a strong ferrite-forming element and has the effect of suppressing the excessive stabilization of austenite by Mn and suppressing the formation of MA. However, since Si strongly suppresses the formation of cementite, it is excessively added. Then, since MA increases and the HAZ toughness deteriorates, the Si amount is set to 0.30% or less.

Mn:1.2〜2.0%
Mnは強力なオーステナイト安定化元素であり、変態点を低下させて母材の強度を確保するのに有用な元素である。また、ベイナイト変態を促進する元素でもある。母材の強度を確保するためには1.2%以上の添加が必要であるが、2.0%を超えて添加するとHAZの硬さが硬くなりすぎ、HAZ靭性が劣化するので、Mn量は1.2〜2.0%の範囲とする。
Mn: 1.2 to 2.0%
Mn is a strong austenite stabilizing element and is an element useful for lowering the transformation point and ensuring the strength of the base material. It is also an element that promotes bainite transformation. In order to ensure the strength of the base material, addition of 1.2% or more is necessary, but if added over 2.0%, the hardness of HAZ becomes too hard and HAZ toughness deteriorates, so the amount of Mn Is in the range of 1.2 to 2.0%.

P:0.05%以下(0を除く)
Pは鋼材の靭性を損ねるため少ないほど好ましい。しかしながら、製鋼プロセスでの脱りんコストも考慮して、P量は0.05%以下とする。
P: 0.05% or less (excluding 0)
P is preferably as small as possible because it impairs the toughness of the steel material. However, in consideration of the dephosphorization cost in the steel making process, the P content is 0.05% or less.

S:0.01%以下(0を除く)
Sは鋼材の靭性を損ねるため少ないほど好ましい。しかしながら、製鋼プロセスでの脱硫コストも考慮して、S量は0.01%以下とする。
S: 0.01% or less (excluding 0)
The smaller the S, the more preferable it is because it impairs the toughness of the steel. However, in consideration of the desulfurization cost in the steel making process, the S amount is set to 0.01% or less.

Cr:1.5〜3.5%
Crは焼入れ性を向上させて母材の強度や靭性を確保するのに有用な元素であるとともに、フェライト安定化元素であり、Mn添加によるオーステナイトの過度の安定化を防止し、MAの発生を抑制するのに有用な元素である。これらの効果を発揮させるには、1.5%以上の添加が必要であるが、3.5%を超えて添加すると、HAZの硬度が増大してHAZ靭性が劣化するため、Cr量は1.5〜3.5%の範囲とする。
Cr: 1.5-3.5%
Cr is an element useful for improving the hardenability and ensuring the strength and toughness of the base metal, and also is a ferrite stabilizing element, preventing excessive stabilization of austenite due to the addition of Mn, and generating MA. It is an element useful for suppression. In order to exert these effects, addition of 1.5% or more is necessary. However, if added over 3.5%, the hardness of HAZ increases and the HAZ toughness deteriorates. The range is 5 to 3.5%.

Al:0.05%以下(0を除く)
Alは、製鋼時の脱酸に必要な元素であるが、脱酸の目的を達すれば、添加量は少なくとも良いが、0.05%を超えて添加すると、アルミナ等の粗大介在物が増加し、母材靭性が劣化する。加えてMAが増加し、HAZ靭性も劣化するため、Al量は0.05%以下とする。
Al: 0.05% or less (excluding 0)
Al is an element necessary for deoxidation at the time of steelmaking, but if the purpose of deoxidation is achieved, the addition amount is at least good, but if added over 0.05%, coarse inclusions such as alumina increase. The base material toughness deteriorates. In addition, MA increases and HAZ toughness deteriorates, so the Al content is 0.05% or less.

Ti:0.005〜0.050%
Tiは、Nと結合しTiNを形成する元素であり、このTiNはHAZのγ粒の成長を抑制しHAZ靭性の向上に有効に寄与する。この効果を発揮させるには、0.005%以上(好ましくは0.010%以上)の添加が必要であるが、0.050%を超えて添加すると、TiNが粗大化し、母材靭性、HAZ靭性が共に劣化するので、Ti量は0.005〜0.050%の範囲とする。
Ti: 0.005 to 0.050%
Ti is an element that combines with N to form TiN. TiN suppresses the growth of HAZ γ grains and effectively contributes to the improvement of HAZ toughness. In order to exert this effect, 0.005% or more (preferably 0.010% or more) should be added. However, if added over 0.050%, TiN becomes coarse, and the base material toughness, HAZ Since both toughness deteriorates, the amount of Ti is made 0.005 to 0.050%.

Ni:0.5〜2.0%
Niも強力なオーステナイト安定化元素であり、変態点を低下させて母材の強度を確保するのに有用な元素であり、また、ベイナイト変態を促進する元素でもある。さらに、マトリックスの靭性を高めることにより母材およびHAZの靭性を高めるので、0.5%以上添加するが、Niは高価な元素であるため、合金コストの観点から添加量は2.0%以下とする。従って、Ni量は0.5〜2.0%の範囲とする。
Ni: 0.5 to 2.0%
Ni is also a strong austenite stabilizing element, is an element useful for ensuring the strength of the base material by lowering the transformation point, and is an element promoting bainite transformation. Furthermore, since the toughness of the matrix and HAZ is increased by increasing the toughness of the matrix, 0.5% or more is added, but since Ni is an expensive element, the addition amount is not more than 2.0% from the viewpoint of alloy cost And Therefore, the Ni content is in the range of 0.5 to 2.0%.

N:0.0015〜0.0060%
Nは、Tiと結合しTiNを形成する元素であり、このTiNはHAZのγ粒の成長を抑制しHAZ靭性の向上に有効に寄与する。この効果を発揮させるには、N量は0.0015%以上(好ましくは0.0025%以上)とするが、0.0060%を超えるとTiNが粗大化し、母材靭性、HAZ靭性が共に劣化するので、N量は0.0015〜0.0060%の範囲とする。
N: 0.0015 to 0.0060%
N is an element that combines with Ti to form TiN, and this TiN suppresses the growth of HAZ γ grains and contributes effectively to the improvement of HAZ toughness. In order to exert this effect, the N amount is 0.0015% or more (preferably 0.0025% or more), but if it exceeds 0.0060%, TiN becomes coarse and both the base material toughness and the HAZ toughness deteriorate. Therefore, the N amount is set to a range of 0.0015 to 0.0060%.

2.3≦(Mn+0.4Cr)≦2.7
なお、式中、Mn、Crは、それぞれの元素の含有量(質量%)を示す。
2.3 ≦ (Mn + 0.4Cr) ≦ 2.7
In the formula, Mn and Cr indicate the content (% by mass) of each element.

Crの添加量はMnの添加量に応じて決定すべきであるが、Mn+0.4Cr≧2.3%のCr添加では、Mnによるオーステナイトの過度の安定化を防止してMAの発生を抑制し、またHAZを適度な硬さを持った微細ベイナイト組織とするため、HAZ靱性が優れるようになる。しかしCrが過剰になり、Mn+0.4Cr>2.7となると、HAZの硬さが硬くなりすぎ、HAZ靱性が低下するので、Mn+0.4Crは、2.3〜2.7の範囲とする。
本発明の高強度鋼における上記成分以外の残部は、Feおよび不可避的不純物である。
The addition amount of Cr should be determined according to the addition amount of Mn. However, when Mn + 0.4Cr ≧ 2.3% Cr is added, excessive stabilization of austenite by Mn is prevented and generation of MA is suppressed. Moreover, since HAZ has a fine bainite structure having an appropriate hardness, the HAZ toughness becomes excellent. However, if Cr becomes excessive and Mn + 0.4Cr> 2.7, the hardness of HAZ becomes too hard and the HAZ toughness decreases, so Mn + 0.4Cr is set in the range of 2.3 to 2.7.
The balance other than the above components in the high-strength steel of the present invention is Fe and inevitable impurities.

2.製造条件について
上述した成分組成を有する鋼を、転炉、電気炉等の溶製手段で常法により溶製し、連続鋳造法または造塊〜分塊法等で常法によりスラブ等の鋼素材とすることが好ましい。なお、溶製方法、鋳造方法については上記した方法に限定されるものではない。
2. Manufacturing conditions Steel having the above-described composition is melted by a conventional method using a melting means such as a converter or an electric furnace, and a steel material such as a slab by a conventional method such as a continuous casting method or an ingot-bundling method. It is preferable that Note that the melting method and the casting method are not limited to the methods described above.

なお、本発明において、加熱温度、圧延終了温度、冷却終了温度および再加熱温度等の温度は鋼板の平均温度とする。平均温度は、スラブもしくは鋼板の表面温度より、板厚、熱伝導等のパラメータを考慮して、計算により求めたものである。   In the present invention, the temperature such as the heating temperature, the rolling end temperature, the cooling end temperature, and the reheating temperature is the average temperature of the steel sheet. The average temperature is obtained by calculation from the surface temperature of the slab or the steel plate in consideration of parameters such as the plate thickness and heat conduction.

以下、各製造条件について説明する。   Hereinafter, each manufacturing condition will be described.

本発明の鋼は通常の熱間圧延を施したのち、空冷したままでも合金成分が多く焼入れ性が高いため引張強度が590MPa以上の高い強度を示すが、圧延後に加速冷却して空冷を超える冷却速度で冷却するか焼入焼戻処理を行うことで引張強度を780MPa以上とすることが出来る。   The steel of the present invention is subjected to ordinary hot rolling, and has a high strength of 590 MPa or more after rolling because it has many alloy components and high hardenability even when air-cooled. The tensile strength can be increased to 780 MPa or more by cooling at a speed or by quenching and tempering.

熱間圧延の加熱温度は、1000℃以上1250℃以下とする。
1000℃未満では、C、Nなどのオーステナイト中での溶解が十分進行しないため、熱間圧延の加熱温度は1000℃以上とする。また、加熱温度が1250℃を超えると、オーステナイト結晶粒が粗大になり、母材の靭性が低下するため、熱間圧延の加熱温度は1000℃以上1250℃以下とする。
The heating temperature of the hot rolling is 1000 ° C. or higher and 1250 ° C. or lower.
If it is less than 1000 degreeC, since melt | dissolution in austenite, such as C and N, does not advance sufficiently, the heating temperature of hot rolling shall be 1000 degreeC or more. If the heating temperature exceeds 1250 ° C., the austenite crystal grains become coarse and the toughness of the base material decreases, so the heating temperature for hot rolling is set to 1000 ° C. or more and 1250 ° C. or less.

熱間圧延後、鋼板を加速冷却することで鋼の変態温度を空冷で冷却した場合よりも下げ母材の強度を空冷材より上げることができる。加速冷却の開始は熱間圧延完了後、いつでもかまわないが、空冷中に変態が開始する温度である600℃よりも高い温度から加速冷却することが母材の強度を上昇させる上で望ましい。また加速冷却は350℃以上で停止することが望ましい。350℃未満まで加速冷却するとマルテンサイト変態が生じ母材の靭性が低下するためである。また加速冷却の冷却速度は空冷を超えれば母材強度上昇の目的を達するが、より望ましくは5℃/s以上とすることで引張強度を780MPa以上とすることが出来る。   After hot rolling, the steel sheet is accelerated and cooled to lower the transformation temperature of the steel by air cooling, and the strength of the base material can be increased from that of the air cooling material. Accelerated cooling may be started at any time after completion of hot rolling, but it is desirable to accelerate cooling from a temperature higher than 600 ° C., which is a temperature at which transformation starts during air cooling, in order to increase the strength of the base material. Further, it is desirable to stop the accelerated cooling at 350 ° C. or higher. This is because martensitic transformation occurs when accelerated cooling to less than 350 ° C. and the toughness of the base material decreases. If the cooling rate of accelerated cooling exceeds air cooling, the purpose of increasing the strength of the base material is achieved, but more desirably, the tensile strength can be increased to 780 MPa or higher by setting it to 5 ° C./s or higher.

また、熱間圧延後、鋼板を直ちに水冷する直接焼入れ、または、熱間圧延後、鋼板を350℃以下まで冷却の後、870℃以上に再加熱して、水冷する再加熱焼入れを行う。   Further, after hot rolling, direct quenching in which the steel sheet is immediately water-cooled, or after hot rolling, the steel sheet is cooled to 350 ° C. or lower, and then reheated to 870 ° C. or higher to perform water-cooling reheating quenching.

再加熱焼入れの際に一旦、350℃以下まで冷却するのは、350℃超えでベイナイト変態が完了するためである(本発明の鋼はCが少なく、Mn、Cr、Niなどが多い成分組成であるため、ほとんど全てベイナイト変態し、マルテンサイト変態はほとんどない)。また870℃以上に再加熱するのは、オーステナイトに完全に変態させ、炭化物となっているCを完全に固溶させるためである。   The reason why it is once cooled to 350 ° C. or lower during reheating and quenching is that the bainite transformation is completed at a temperature exceeding 350 ° C. (the steel of the present invention has a low C content and a high Mn, Cr, Ni, etc. component composition). There is almost no bainite transformation and almost no martensitic transformation). The reason for reheating to 870 ° C. or higher is to completely transform the austenite into C, which is a solid carbide.

焼入れた鋼板は、そのままでは表面の硬度が高く、表面近くの靭性が低いため、焼戻し処理を行う。焼戻し処理は、450℃以上700℃以下で行う。焼戻し温度が450℃未満では靭性の改善効果が無く、700℃超えでは強度の低下が大きく、焼入焼戻によって高強度を得る目的を達せられないからである。   The quenched steel sheet is tempered because it has high surface hardness and low toughness near the surface. The tempering treatment is performed at 450 ° C. or higher and 700 ° C. or lower. This is because if the tempering temperature is less than 450 ° C., there is no effect of improving toughness, and if it exceeds 700 ° C., the strength is greatly lowered, and the purpose of obtaining high strength by quenching and tempering cannot be achieved.

以上のように、本発明の組成の鋼に加速冷却または焼入焼戻工程を加えることで、引張強度が780MPa以上の強度の鋼材を得ることができる。このように、加速冷却または焼入焼戻処理を加えた鋼材は、引張強度が780MPa以上となる他は母材靭性、HAZ靭性とも、熱間圧延まま鋼材と同等以上の性能を示す。   As described above, a steel material having a tensile strength of 780 MPa or more can be obtained by adding an accelerated cooling or quenching and tempering step to the steel having the composition of the present invention. As described above, the steel material subjected to accelerated cooling or quenching and tempering treatment exhibits the same or better performance as the steel material in hot rolling as well as the base material toughness and the HAZ toughness except that the tensile strength becomes 780 MPa or more.

以下、実施例を挙げて本発明をより具体的に説明する。表1に示す成分組成の鋼材を溶製しスラブとした後、1200℃に加熱し、仕上げ温度950℃、板厚15mmまで熱間圧延を行った。熱間圧延後の冷却は空冷とした。このようにして得られた鋼板を用いて、下記の通り母材強度、靭性の測定とHAZ靭性の評価を行った。   Hereinafter, the present invention will be described more specifically with reference to examples. Steel materials having the composition shown in Table 1 were melted to form slabs, heated to 1200 ° C., and hot-rolled to a finishing temperature of 950 ° C. and a plate thickness of 15 mm. Cooling after hot rolling was air cooling. Using the steel plate thus obtained, the base material strength and toughness were measured and the HAZ toughness was evaluated as follows.

母材強度、靭性の測定について
各鋼板の圧延方向から丸棒試験片(ASTM−F型)を採取して、JISZ 2241の要領で引張試験を行い、降伏強度(YS)、引張強度(TS)、伸び(EL)を測定した。そして、引張強度が590MPa以上のものを高強度であると評価した。また、母材の靭性の評価として、シャルピーVノッチ試験片を圧延方向に垂直に3本採取して、JISZ 2242の要領でシャルピー衝撃試験を行い試験温度0℃での吸収エネルギー(vE0 )を測定した。吸収エネルギーの3本の平均が70J以上で、3本の最低値が50J以上のものを靭性に優れると評価した。これらの結果を表2に示す。
Measurement of base material strength and toughness A round bar test piece (ASTM-F type) is taken from the rolling direction of each steel plate and subjected to a tensile test according to JISZ 2241, yield strength (YS), tensile strength (TS). The elongation (EL) was measured. And the thing whose tensile strength is 590 Mpa or more was evaluated as high strength. In addition, as an evaluation of the toughness of the base material, three Charpy V-notch specimens were sampled perpendicular to the rolling direction and subjected to a Charpy impact test in accordance with JISZ 2242, and the absorbed energy (vE0) at a test temperature of 0 ° C. was measured. did. It was evaluated that the average of the three absorbed energy was 70 J or more and the minimum value of the three was 50 J or more was excellent in toughness. These results are shown in Table 2.

HAZ靭性の評価について
スキンプレート材(50mm厚)とダイアフラム材(50mm厚)を組合せ、溶接入熱が550kJ/cmのエレクトロスラグ溶接を行った場合のボンド近傍の熱影響部に相当する熱履歴を模擬し、圧延方向から採取した12mm厚さ×12mm幅の角棒状試験片試験片を加熱して1400℃で1秒間保持し800〜500℃の冷却時間が510秒のサイクルで、高周波誘導加熱装置により熱処理を施した。
Evaluation of HAZ toughness The heat history corresponding to the heat-affected zone in the vicinity of the bond when electroslag welding is performed by combining a skin plate material (50 mm thick) and a diaphragm material (50 mm thick) and welding heat input is 550 kJ / cm. A high-frequency induction heating apparatus that simulates and heats a 12 mm thick × 12 mm wide square bar-shaped test piece sample taken from the rolling direction and holds it at 1400 ° C. for 1 second and a cooling time of 800 to 500 ° C. for 510 seconds. Was subjected to heat treatment.

そして、熱履歴を模擬した熱処理を施した試験片からJIS Z 2202のVノッチ試験片を3本採取して、JISZ 2242の要領でシャルピー衝撃試験を行い、試験温度0℃での吸収エネルギー(vE)を測定した。吸収エネルギーの3本の平均が70J以上で、3本の最低値が50J以上のものを、HAZの靭性に優れると評価した。これらの結果を表3に示す。 Then, three V-notch test pieces of JIS Z 2202 were sampled from the test pieces subjected to heat treatment simulating the thermal history, and Charpy impact test was conducted in accordance with the procedure of JISZ 2242, and the absorbed energy (vE at a test temperature of 0 ° C. 0 ) was measured. An average of three absorbed energies of 70 J or more and a minimum of three of 50 J or more was evaluated as having excellent HAZ toughness. These results are shown in Table 3.

Figure 2012158784
Figure 2012158784

表1に示す鋼種A4、A5、A7、A18〜A20、A25〜A27は母材成分が全て発明の範囲を満たす発明例である。   Steel types A4, A5, A7, A18 to A20, and A25 to A27 shown in Table 1 are invention examples in which the base material components all satisfy the scope of the invention.

一方、鋼種A1〜A3、A6、A8〜A17、A21〜A24およびA28〜A35はSi、Cr、Mn+0.4Crの1種以上が発明の範囲外である比較例である。   On the other hand, steel types A1 to A3, A6, A8 to A17, A21 to A24, and A28 to A35 are comparative examples in which one or more of Si, Cr, and Mn + 0.4Cr are out of the scope of the invention.

Figure 2012158784
Figure 2012158784

表2は母材部の引張試験、シャルピー試験結果を示しており、発明例であるNo.B4、B5、B7、B18〜20、B25〜27は引張強度(TS)は590MPa以上、0℃での吸収エネルギーはいずれも70J以上を満足しており、母材の強度、靭性が優れていることが判る。また、比較例もNo.B16を除いて母材部の強度、靭性は問題はなかった。   Table 2 shows the tensile test and Charpy test results of the base material part. B4, B5, B7, B18-20, B25-27 have a tensile strength (TS) of 590 MPa or more, and the absorbed energy at 0 ° C. satisfies 70 J or more, and the strength and toughness of the base material are excellent. I understand that. Comparative examples are also No. Except for B16, there was no problem in the strength and toughness of the base metal part.

Figure 2012158784
Figure 2012158784

表3は、HAZ部のシャルピー試験結果であり、0℃での吸収エネルギーと脆性破面率を示している。発明例であるNo.B4、B5、B7、B18〜20、B25〜27は、いずれも0℃での吸収エネルギーの各3本の平均値が70J以上、各3本の最低値が50J以上であり、HAZ部の靭性に優れている事が判る。一方、比較例はいずれもHAZ部の靭性が十分でない。   Table 3 shows the Charpy test results of the HAZ part, and shows the absorbed energy and brittle fracture surface rate at 0 ° C. Inventive example No. B4, B5, B7, B18-20, and B25-27 all have an average value of each of three absorbed energy at 0 ° C. of 70 J or more, and the minimum value of each three is 50 J or more, and the toughness of the HAZ part It turns out that it is excellent. On the other hand, none of the comparative examples has sufficient toughness in the HAZ part.

表1に示す鋼種A19とA25(発明例)の成分組成の鋼材を溶製しスラブとした後、1200℃に加熱し、仕上げ温度950℃、板厚15mmまで熱間圧延を行い、熱間圧延後の冷却は空冷により室温まで冷却した。そして、この鋼板を910℃×5分に再加熱後、直ちに水焼入れを行った。さらにこの焼入れ材を500℃×5分で焼戻し、その後空冷により室温まで冷却した(再加熱焼入れ−焼戻処理を表4で、熱処理:RQ−Tと標記)。
また鋼種A25の組成の鋼材は上記と同様にして熱間圧延したのち、900℃から水冷による直接焼入れ(DQ)後、500℃×5分の焼戻を行った(直接焼入れ−焼戻処理を表4で、熱処理:DQ−Tと標記)。
このようにして得られた鋼板を用いて、実施例1と同様の方法で母材強度、靭性の測定とHAZ部靭性の評価を行った。
表4に母材の機械的特性、表5にHAZ部靭性の試験結果を示す。いずれも本発明の鋼材No.C1〜C3はYS≧700MPa、TS≧780MPaを満足する高い強度を示し、靭性も十分である。さらにHAZ靭性も優れている。
Steel materials A19 and A25 (invention example) shown in Table 1 were melted to form a slab, heated to 1200 ° C, hot-rolled to a finishing temperature of 950 ° C and a plate thickness of 15 mm, hot-rolled Subsequent cooling was by air cooling to room temperature. And after reheating this steel plate to 910 degreeC x 5 minutes, water quenching was performed immediately. Furthermore, this quenching material was tempered at 500 ° C. for 5 minutes, and then cooled to room temperature by air cooling (reheating quenching-tempering treatment is shown in Table 4 as heat treatment: RQ-T).
In addition, the steel material having the composition of steel type A25 was hot-rolled in the same manner as described above, and then subjected to direct quenching (DQ) by water cooling from 900 ° C., followed by tempering at 500 ° C. for 5 minutes (direct quenching-tempering treatment). In Table 4, heat treatment: labeled DQ-T).
Using the steel plate thus obtained, the base material strength and toughness were measured and the HAZ part toughness was evaluated in the same manner as in Example 1.
Table 4 shows the mechanical properties of the base material, and Table 5 shows the test results of the HAZ toughness. In either case, the steel material No. C1 to C3 exhibit high strength satisfying YS ≧ 700 MPa, TS ≧ 780 MPa, and toughness is sufficient. Furthermore, HAZ toughness is also excellent.

Figure 2012158784
Figure 2012158784

Figure 2012158784
Figure 2012158784

表1に示す鋼種A19とA25(発明例)の成分組成の鋼材を溶製しスラブとした後、1200℃に加熱し、仕上げ温度870℃、板厚15mmまで熱間圧延を行い、熱間圧延後の冷却は850℃から加速冷却装置により30℃/sの冷却速度で500℃まで冷却した。そして、その後空冷により室温まで冷却した。このようにして得られた鋼板を用いて、実施例1と同様の方法で母材強度、靭性の測定とHAZ部靭性の評価を行った。
表6に母材の機械的特性、表7にHAZ部靭性の試験結果を示す。いずれも本発明の鋼材No.D1、D2はYS≧700MPa、TS≧780MPaを満足する高い強度を示し、靭性も十分である。さらにHAZ靭性も優れている。
Steel materials A19 and A25 (invention example) shown in Table 1 were melted to form a slab, heated to 1200 ° C, hot-rolled to a finishing temperature of 870 ° C and a plate thickness of 15 mm, hot-rolled The subsequent cooling was from 850 ° C. to 500 ° C. at a cooling rate of 30 ° C./s by an accelerated cooling device. And it cooled to room temperature by air cooling after that. Using the steel plate thus obtained, the base material strength and toughness were measured and the HAZ part toughness was evaluated in the same manner as in Example 1.
Table 6 shows the mechanical properties of the base material, and Table 7 shows the test results of the HAZ toughness. In either case, the steel material No. D1 and D2 exhibit high strength satisfying YS ≧ 700 MPa, TS ≧ 780 MPa, and toughness is sufficient. Furthermore, HAZ toughness is also excellent.

Figure 2012158784
Figure 2012158784

Figure 2012158784
Figure 2012158784

Claims (3)

成分組成が、質量%で、C:0.025〜0.050%、Si:0.3%以下、Mn:1.2〜2.0%、P:0.05%以下、S:0.01%以下、Cr:1.5〜3.5%、Al:0.05%以下、Ti:0.005〜0.050%、Ni:0.5〜2.0%、N:0.0015〜0.0060%を含有し、更に、下記式(1)を満たし、残部鉄および不可避不純物からなることを特徴とする溶接熱影響部の靱性に優れた高強度鋼。
2.3≦(Mn+0.4Cr)≦2.7 ・・・(1)
なお、式中、Mn、Crは、それぞれの元素の含有量(質量%)を示す。
The component composition is mass%, C: 0.025 to 0.050%, Si: 0.3% or less, Mn: 1.2 to 2.0%, P: 0.05% or less, S: 0.00. 01% or less, Cr: 1.5 to 3.5%, Al: 0.05% or less, Ti: 0.005 to 0.050%, Ni: 0.5 to 2.0%, N: 0.0015 A high-strength steel excellent in the toughness of the weld heat affected zone, characterized by containing ~ 0.0060%, further satisfying the following formula (1), and consisting of the balance iron and inevitable impurities.
2.3 ≦ (Mn + 0.4Cr) ≦ 2.7 (1)
In the formula, Mn and Cr indicate the content (% by mass) of each element.
請求項1に記載の成分組成を有する鋼を1000℃以上1250℃以下に加熱して熱間圧延し、その後、空冷以上の冷却速度で冷却することを特徴とする溶接熱影響部の靱性に優れた高強度鋼の製造方法。   The steel having the component composition according to claim 1 is heated to 1000 ° C. or higher and 1250 ° C. or lower and hot-rolled, and then cooled at a cooling rate of air cooling or higher, and excellent in toughness of the heat affected zone of welding. A method for producing high strength steel. 請求項1に記載の成分組成を有する鋼を1000℃以上1250℃以下に加熱し、熱間圧延した後、水冷する直接焼入れ工程、または、熱間圧延後350℃以下まで冷却した後、870℃以上に再加熱して、水冷する再加熱焼入れ工程と、前記焼入れ後の鋼を450℃以上700℃以下に加熱し、その後、空冷以上の速度で冷却する焼戻し工程とを有することを特徴とする溶接熱影響部の靱性に優れた高強度鋼の製造方法。   The steel having the component composition according to claim 1 is heated to 1000 ° C. or more and 1250 ° C. or less, hot-rolled, then directly cooled in water, or after hot rolling and cooled to 350 ° C. or less, and then 870 ° C. A reheating and quenching step in which the steel is reheated and water-cooled, and a tempering step in which the steel after quenching is heated to 450 ° C. or higher and 700 ° C. or lower and then cooled at a rate higher than air cooling. A method for producing high-strength steel with excellent toughness of weld heat affected zone.
JP2011017734A 2011-01-31 2011-01-31 High strength steel with excellent toughness of weld heat affected zone Active JP5685960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011017734A JP5685960B2 (en) 2011-01-31 2011-01-31 High strength steel with excellent toughness of weld heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011017734A JP5685960B2 (en) 2011-01-31 2011-01-31 High strength steel with excellent toughness of weld heat affected zone

Publications (2)

Publication Number Publication Date
JP2012158784A true JP2012158784A (en) 2012-08-23
JP5685960B2 JP5685960B2 (en) 2015-03-18

Family

ID=46839555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011017734A Active JP5685960B2 (en) 2011-01-31 2011-01-31 High strength steel with excellent toughness of weld heat affected zone

Country Status (1)

Country Link
JP (1) JP5685960B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213534A (en) * 2004-01-27 2005-08-11 Jfe Steel Kk Method for producing steel material excellent in toughness at welding heat affected zone
JP2007126725A (en) * 2005-11-04 2007-05-24 Kobe Steel Ltd High tensile strength steel plate having excellent toughness in high heat input weld heat-affected zone
JP2007138271A (en) * 2005-11-22 2007-06-07 Kobe Steel Ltd High yield ratio high tensile strength steel plate having excellent toughness in weld heat-affected zone
JP2009293087A (en) * 2008-06-06 2009-12-17 Jfe Steel Corp High strength steel sheet having excellent toughness in high heat input weld heat-affected zone
JP2011190480A (en) * 2010-03-12 2011-09-29 Jfe Steel Corp Steel plate superior in toughness of weld heat-affected zone

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213534A (en) * 2004-01-27 2005-08-11 Jfe Steel Kk Method for producing steel material excellent in toughness at welding heat affected zone
JP2007126725A (en) * 2005-11-04 2007-05-24 Kobe Steel Ltd High tensile strength steel plate having excellent toughness in high heat input weld heat-affected zone
JP2007138271A (en) * 2005-11-22 2007-06-07 Kobe Steel Ltd High yield ratio high tensile strength steel plate having excellent toughness in weld heat-affected zone
JP2009293087A (en) * 2008-06-06 2009-12-17 Jfe Steel Corp High strength steel sheet having excellent toughness in high heat input weld heat-affected zone
JP2011190480A (en) * 2010-03-12 2011-09-29 Jfe Steel Corp Steel plate superior in toughness of weld heat-affected zone

Also Published As

Publication number Publication date
JP5685960B2 (en) 2015-03-18

Similar Documents

Publication Publication Date Title
JP6460292B1 (en) High Mn steel and manufacturing method thereof
KR101386042B1 (en) Steel material for high heat input welding
JP5079419B2 (en) Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
EP1777315A1 (en) Steel for welded structure excellent in low temperature toughness of heat affected zone of welded part, and method for production thereof
JP5076658B2 (en) Steel material for large heat input welding
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP2009270194A (en) PROCESS FOR PRODUCTION OF 780 MPa-GRADE HIGH-TENSILE-STRENGTH STEEL PLATE EXCELLENT IN LOW-TEMPERATURE TOUGHNESS
JP2006342421A (en) Method for producing high-tension steel excellent in weld crack resistance
JP2019199649A (en) Non-tempered low yield ratio high tensile thick steel sheet and its production method
KR100993435B1 (en) Online-cooled high tension steel sheet and method for producing the same
JP5194572B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
JP2008075107A (en) Method for manufacturing high-strength/high-toughness steel
JP2012172242A (en) High-tensile steel sheet having superior toughness and method for manufacturing the same
JP6128276B2 (en) Steel for welding
JP4842402B2 (en) Manufacturing method of high production type 780 MPa class high strength steel sheet with excellent low temperature toughness
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP4652952B2 (en) High-tensile steel plate with excellent toughness of heat affected zone
JP5849892B2 (en) Steel material for large heat input welding
JP5699798B2 (en) Low yield ratio high strength steel with excellent toughness of heat affected zone of high heat input welding and its manufacturing method
JP2017197807A (en) Manufacturing method of thick steel sheet
JP5509945B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JPWO2019050010A1 (en) Steel sheet and manufacturing method thereof
JP5509946B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP5720447B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP5685960B2 (en) High strength steel with excellent toughness of weld heat affected zone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150106

R150 Certificate of patent or registration of utility model

Ref document number: 5685960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250