JP2012154185A - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP2012154185A
JP2012154185A JP2011011508A JP2011011508A JP2012154185A JP 2012154185 A JP2012154185 A JP 2012154185A JP 2011011508 A JP2011011508 A JP 2011011508A JP 2011011508 A JP2011011508 A JP 2011011508A JP 2012154185 A JP2012154185 A JP 2012154185A
Authority
JP
Japan
Prior art keywords
crankshaft
supply passage
oil
oil supply
rotary compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011011508A
Other languages
Japanese (ja)
Other versions
JP5358591B2 (en
Inventor
Naohiro Tsuchiya
直洋 土屋
Yasuhiro Kishi
康弘 岸
Ryusuke Takano
龍扶 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2011011508A priority Critical patent/JP5358591B2/en
Priority to KR1020110014895A priority patent/KR101300961B1/en
Priority to CN201110048165.2A priority patent/CN102606478B/en
Publication of JP2012154185A publication Critical patent/JP2012154185A/en
Application granted granted Critical
Publication of JP5358591B2 publication Critical patent/JP5358591B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/902Hermetically sealed motor pump unit

Abstract

PROBLEM TO BE SOLVED: To increase the efficiency of a compressor by restraining strength from being decreased by a hole serving as an oil feeding passage provided in a crankshaft and a hole serving as a channel for refrigerant gas foamed in the oil feeding passage.SOLUTION: The length of the hole serving as the oil feeding passage provided in the axial direction of the crankshaft is set equal to/shorter than that of a lower end of a bearing of a closing member, and the closing member has a gas channel that brings the oil feeding passage and the inside of an airtight container into a conduction state.

Description

本発明は、冷凍空調システム等の冷媒ガスを圧縮する、ロータリ圧縮機に関するものである。   The present invention relates to a rotary compressor that compresses refrigerant gas such as a refrigeration air conditioning system.

近年、環境負荷低減の観点から、自然系冷媒の適用や、圧縮機の更なる高効率化が必要となってきている。例えば自然系冷媒のうち二酸化炭素冷媒を用いた冷凍空調システムでは、R410A冷媒に対して吐出圧力と吸込圧力との差圧が大きくなるので、圧縮機構部を構成する各部品にかかる負荷が大きくなる。そのため、従来技術において許容されていた圧縮機構部における変形を低減し、機械損失を如何に抑えるかが大きな課題となっている。   In recent years, it has become necessary to apply natural refrigerants and further increase the efficiency of compressors from the viewpoint of reducing environmental impact. For example, in a refrigeration and air conditioning system using a carbon dioxide refrigerant among natural refrigerants, the differential pressure between the discharge pressure and the suction pressure with respect to the R410A refrigerant increases, so the load on each component constituting the compression mechanism section increases. . Therefore, how to reduce the deformation in the compression mechanism part allowed in the prior art and suppress the mechanical loss is a big problem.

冷凍空調システム等の冷媒ガスを圧縮するロータリ圧縮機には、圧縮機の密閉容器内に収納された電動機部の回転トルクを圧縮機構部に伝達するクランク軸が備えられている。前記クランク軸には、2つの荷重に対する強度を有する必要がある。その2つの荷重とは、電動機部で発生した回転トルク及び磁気吸引力によって径方向に働く荷重と、前記電動機部で発生した回転トルクと逆方向に作用する圧縮機構部におけるガス圧縮トルク及び主に前記クランク軸を保持する軸受部において働く荷重である。   2. Description of the Related Art A rotary compressor that compresses refrigerant gas, such as a refrigeration and air conditioning system, is provided with a crankshaft that transmits rotational torque of an electric motor unit housed in a hermetic container of the compressor to a compression mechanism unit. The crankshaft needs to have strength against two loads. The two loads are a load that works in the radial direction due to the rotational torque and magnetic attraction generated in the motor part, a gas compression torque in the compression mechanism part that acts in the opposite direction to the rotational torque generated in the motor part, and mainly This is a load that acts on the bearing portion that holds the crankshaft.

一方前記クランク軸には、前記圧縮機の密閉容器内下部に貯蔵された冷凍機油を前記圧縮機構部へ供給するため、給油路となる穴が、下端から軸方向に設けられている。また前記クランク軸には、冷凍機油内に溶け込んだ冷媒ガスの発泡現象による給油阻害を防止するため、例えば特許文献1のように、前記給油路となる穴を延長する方向にガス流路が設けられている。   On the other hand, the crankshaft is provided with a hole serving as an oil supply passage in the axial direction from the lower end in order to supply the refrigerating machine oil stored in the lower part of the sealed container of the compressor to the compression mechanism. The crankshaft is provided with a gas flow path in the direction of extending the hole serving as the oil supply path, for example, as disclosed in Patent Document 1, in order to prevent oil supply obstruction due to the foaming phenomenon of the refrigerant gas dissolved in the refrigerating machine oil. It has been.

特開2008−208752号公報JP 2008-208752 A

前記クランク軸の軸径は、前記給油路及びガス流路を設け且つ前記電動機部及び圧縮機構部において発生するトルク及び荷重に対する強度を有するだけの太さとしなければならない。しかしながら、前記クランク軸の軸径を太くすると、前記軸受部における摩擦力が大きくなり、機械損失が発生する。ここで前記給油路となる穴は、前記圧縮機構部における各摺動部位に冷凍機油を供給するために、前記クランク軸の軸方向に設けることが必要不可欠である。よって、前記給油路となる穴は、前記クランク軸の強度を考慮すると、軸方向長さを必要最小限とする必要がある。一方で前記ガス流路は、前記給油路と前記密閉容器内とを導通することが必要となるが、必ずしも前記クランク軸の軸方向に設ける必要は無い。   The diameter of the crankshaft must be large enough to provide the oil supply passage and the gas passage and to have strength against torque and load generated in the electric motor portion and the compression mechanism portion. However, if the shaft diameter of the crankshaft is increased, the frictional force in the bearing portion increases and mechanical loss occurs. Here, it is indispensable to provide the hole serving as the oil supply passage in the axial direction of the crankshaft in order to supply the refrigerating machine oil to each sliding portion in the compression mechanism section. Therefore, the hole serving as the oil supply passage needs to have a minimum axial length in consideration of the strength of the crankshaft. On the other hand, the gas flow path needs to be electrically connected to the oil supply path and the inside of the sealed container, but is not necessarily provided in the axial direction of the crankshaft.

特許文献1では、前記給油路は、前記クランク軸の軸方向に下端から上側軸受中央近傍まで開けられている。また、前記ガス流路は、前記給油路の内径に対し径を小さくした上で前記給油路を延長するように前記電動機部の下端近傍まで開けられた後、前記クランク軸の径方向に向かって開けられている。これによれば、前記クランク軸のうち前記電動機部と係合する部分は中実軸となるため強度が高くなる。しかしながら、前記クランク軸のうち前記上側軸受部にかかる部分は中空軸であるため、強度が低い。よって前記クランク軸の中空軸のうち前記上側軸受部にかかる部分では、前記トルク及び荷重により変形が発生し、前記上側軸受部との摩擦力が大きくなり圧縮機の効率低下を招く可能性があった。   In Patent Document 1, the oil supply passage is opened from the lower end to the vicinity of the center of the upper bearing in the axial direction of the crankshaft. Further, the gas flow path is opened to the vicinity of the lower end of the electric motor section so as to extend the oil supply path after reducing the diameter with respect to the inner diameter of the oil supply path, and then toward the radial direction of the crankshaft. Opened. According to this, the portion of the crankshaft that engages with the electric motor portion is a solid shaft, so the strength is increased. However, since the portion of the crankshaft that covers the upper bearing portion is a hollow shaft, the strength is low. Therefore, in the hollow shaft of the crankshaft, the portion of the crankshaft that covers the upper bearing portion is deformed by the torque and load, and the frictional force with the upper bearing portion may increase, leading to a reduction in compressor efficiency. It was.

本発明の目的は、圧縮機の効率を向上させることにある。   An object of the present invention is to improve the efficiency of a compressor.

本発明の目的は、
密閉容器内に電動機部を収納し、前記電動機部の回転を伝達する偏心部を有したクランク軸と前記クランク軸の回転動力により圧縮仕事を行う圧縮機構部を設け、前記圧縮機構部は、シリンダと、前記シリンダ内に配置されクランク軸の偏心部により回転駆動されるローラと、前記ローラ外周に延びて前記ローラの偏心運動に応じて前記シリンダに設けられた収納部に出入りするベーンと、前記シリンダの両端面を閉塞し且つ前記クランク軸を保持する軸受部を有する閉塞部材により構成され、前記密閉容器内下部に前記圧縮機構部を潤滑する冷凍機油を貯蔵し、
前記クランク軸の下端から軸方向に前記冷凍機油の給油路となる穴を設け、前記給油路と前記密閉容器内とを導通し前記給油路内で発泡した冷媒ガスの流路となる穴が設けられたロータリ圧縮機において、
前記クランク軸の軸方向に設けられた給油路となる穴の長さを前記上側閉塞部材の軸受部下端以下とし、且つ前記給油路と前記密閉容器内とを導通するガス流路を前記上側閉塞部材に前記クランク軸の略径方向に有する
ことによって達成される。
The purpose of the present invention is to
A motor part is housed in a sealed container, a crankshaft having an eccentric part for transmitting the rotation of the motor part, and a compression mechanism part for performing compression work by the rotational power of the crankshaft are provided, and the compression mechanism part is a cylinder A roller disposed in the cylinder and rotationally driven by an eccentric part of a crankshaft; a vane extending to the outer periphery of the roller and entering and exiting a storage part provided in the cylinder according to the eccentric movement of the roller; It is constituted by a closing member having a bearing portion that closes both end surfaces of the cylinder and holds the crankshaft, and stores refrigerating machine oil that lubricates the compression mechanism portion in the lower part of the hermetic container,
A hole serving as an oil supply path for the refrigerating machine oil is provided in the axial direction from the lower end of the crankshaft, and a hole serving as a flow path for the refrigerant gas that is communicated between the oil supply path and the sealed container and foamed in the oil supply path is provided. In the rotary compressor
The length of a hole serving as an oil supply path provided in the axial direction of the crankshaft is set to be equal to or less than the lower end of the bearing portion of the upper closing member, and a gas flow path that conducts the oil supply path and the inside of the sealed container is closed on the upper side. This is achieved by having the member substantially in the radial direction of the crankshaft.

また、本発明の目的は、
密閉容器内に固定するための上ベア平面部を有する上ベアでクランク軸の支持を担い、
前記クランク軸の回転によりシリンダ内に配設される圧縮室の容積を変化させることで冷媒を圧縮し、
前記クランク軸内に配設された給油路により、前記密閉容器内の油を吸上げ、前記圧縮室及びその周囲に油を供給するロータリ圧縮機において、
前記クランク軸は、油を通すための給油路であって、前記シリンダの厚みを貫通して前記上ベア平面部に対応する前記クランク軸の位置まで配設されるとともに、前記上ベア軸受部に対応する前記クランク軸の位置には達せず当該対応する前記クランク軸を中実に保つ、給油路を有し、
前記上ベア平面部には、前記圧縮室から前記密閉容器に冷媒を吐出するためのガス流路が配設された、
ことを特徴とするロータリ圧縮機
によって達成される。
The object of the present invention is to
Take the support of the crankshaft with the upper bearer having the upper bearer plane part for fixing in the sealed container,
Compressing the refrigerant by changing the volume of the compression chamber disposed in the cylinder by the rotation of the crankshaft,
In the rotary compressor that sucks up the oil in the hermetic container by the oil supply passage disposed in the crankshaft and supplies the oil to the compression chamber and its surroundings,
The crankshaft is an oil supply passage through which oil passes, and is disposed up to the position of the crankshaft that penetrates the thickness of the cylinder and corresponds to the upper bearer plane part, and is connected to the upper bearer bearing part. An oil supply passage that does not reach the position of the corresponding crankshaft and keeps the corresponding crankshaft solid;
In the upper bare plane portion, a gas flow path for discharging a refrigerant from the compression chamber to the sealed container is disposed.
This is achieved by a rotary compressor characterized in that.

本発明によれば、効率を向上させることができる。   According to the present invention, the efficiency can be improved.

本発明に関するロータリ圧縮機の縦断面図。The longitudinal cross-sectional view of the rotary compressor regarding this invention. 従来技術における圧縮機の縦断面図。The longitudinal cross-sectional view of the compressor in a prior art. 本発明に関する冷凍機油及び冷媒ガスの流れを表す断面図。Sectional drawing showing the flow of the refrigerating machine oil and refrigerant gas regarding this invention. 従来技術に関する冷凍機油及び冷媒ガスの流れを表す断面図。Sectional drawing showing the flow of the refrigeration oil and refrigerant gas regarding a prior art.

以下、図面を用いて実施例を説明する。   Embodiments will be described below with reference to the drawings.

圧縮機のケースとなる密閉容器1内に電動機部の回転を伝達する偏心部を有したクランク軸2と、前記クランク軸2の回転動力により圧縮仕事を行う圧縮機構部を設け、前記圧縮機構部は、シリンダ3と、前記シリンダ3内に配置され前記クランク軸2の偏心部2aにより回転駆動されるローラ4と、前記ローラ4外周に延びて前記ローラ4の偏心運動に応じて前記シリンダ3に設けられた収納部に出入りするベーン5と、前記シリンダ3の上端面を閉塞し且つ前記クランク軸2を保持する軸受部を有する上ベア6と、前記シリンダ3の下端面を閉塞し且つ前記クランク軸2を保持する軸受部を有する下ベア7により構成されている。   A crankshaft 2 having an eccentric portion for transmitting the rotation of an electric motor portion is provided in a sealed container 1 serving as a compressor case, and a compression mechanism portion for performing a compression work by the rotational power of the crankshaft 2, and the compression mechanism portion Includes a cylinder 3, a roller 4 disposed in the cylinder 3 and driven to rotate by an eccentric portion 2 a of the crankshaft 2, and extends to the outer periphery of the roller 4 so as to respond to the eccentric motion of the roller 4. A vane 5 that goes in and out of a storage portion provided; an upper bear 6 having a bearing portion that closes the upper end surface of the cylinder 3 and holds the crankshaft 2; and a lower end surface of the cylinder 3 that closes the lower end surface and the crank The lower bear 7 has a bearing portion for holding the shaft 2.

なお、上ベア6は、上ベア軸受部6bと、上ベア平面部6eとを主な構成部分としている。上ベア平面部6eが密閉容器1と固定されることで、上ベア6は密閉容器1に固定される。従って、上ベア平面部6eはある程度の軸方向長さ(厚さ)を有している。   The upper bear 6 includes an upper bear bearing portion 6b and an upper bear flat portion 6e as main components. The upper bear plane portion 6 e is fixed to the sealed container 1, whereby the upper bear 6 is fixed to the sealed container 1. Therefore, the upper bare plane portion 6e has a certain axial length (thickness).

前記密閉容器1内下部には、前記圧縮機構部の潤滑を行う冷凍機油8が貯蔵されている。圧縮機は、冷凍サイクル装置の一部を構成している。冷凍サイクルから圧縮機へ流入する冷媒ガスは、前記圧縮機構部において、シリンダ3に設けられた吸込口9からシリンダ3内に流入し、シリンダ内壁面3aと、ローラ外壁面4aと、前記ベーン側面と、上ベア内壁面6aと、下ベア内壁面7aによって形成される圧縮室10内で昇圧され、図示しない吐出口から前記密閉容器1内に排出される。   Refrigerating machine oil 8 that lubricates the compression mechanism is stored in the lower part of the sealed container 1. The compressor constitutes a part of the refrigeration cycle apparatus. Refrigerant gas flowing into the compressor from the refrigeration cycle flows into the cylinder 3 from the suction port 9 provided in the cylinder 3 in the compression mechanism, and the cylinder inner wall surface 3a, the roller outer wall surface 4a, and the vane side surface. Then, the pressure is increased in the compression chamber 10 formed by the upper bearer inner wall surface 6a and the lower bearer inner wall surface 7a, and discharged from the discharge port (not shown) into the sealed container 1.

前記冷凍機油8は、前記クランク軸2の軸方向に設けられた直径d1の給油路2bから吸上げられ、前記給油路2bから下ベア軸受部7bへの供給路となる2cと、前記給油路2bから前記クランク軸の偏心部2aとローラ内壁面4bへの供給路となる2dと、前記給油路2bから上ベア軸受部6bへの供給路2eより、各摺動部へ供給される。   The refrigerating machine oil 8 is sucked up from an oil supply passage 2b having a diameter d1 provided in the axial direction of the crankshaft 2 and 2c serving as a supply passage from the oil supply passage 2b to the lower bare bearing portion 7b, and the oil supply passage. 2b is supplied to each sliding portion from 2d serving as a supply path to the eccentric part 2a of the crankshaft and the roller inner wall surface 4b, and from a supply path 2e from the oil supply path 2b to the upper bearer bearing part 6b.

前記3つの供給路2c,2d,2eの出口側は前記冷凍機油の流入性を向上させるための空間12が設けられている。前記上ベア軸受部6b及び下ベア軸受部7bには、それぞれ溝6c及び7c(図中斜めの破線)が設けられており、前記クランク軸2の回転運動と前記冷凍機油8の粘性を利用した粘性ポンプ機構により給油を行っている。図3及び図4における実線矢印は前記冷凍機油8の流れを表している。   On the outlet side of the three supply passages 2c, 2d, 2e, a space 12 for improving the inflow property of the refrigerating machine oil is provided. The upper bear bearing portion 6b and the lower bear bearing portion 7b are provided with grooves 6c and 7c (oblique broken lines in the figure), respectively, and utilize the rotational motion of the crankshaft 2 and the viscosity of the refrigerator oil 8 Oil is supplied by a viscous pump mechanism. 3 and 4 indicate the flow of the refrigerating machine oil 8.

ここで前記冷凍機油8には、前記吐出口から排出された冷媒ガスが液化して溶け込む。前記冷凍機油8に溶け込んだ冷媒は、周囲温度の上昇或いは減圧されることにより気化し、体積を拡大し発泡現象を発生する。そのため、前記給油路2bには、前記発泡現象による給油阻害を防ぐための、ガス流路が設けられている。図3及び図4における破線矢印は前記冷凍機油8内に溶け込んだ冷媒が気化した後の流れを表している。   Here, the refrigerant gas discharged from the discharge port is liquefied and dissolved in the refrigerating machine oil 8. The refrigerant dissolved in the refrigerating machine oil 8 is vaporized when the ambient temperature is increased or depressurized, and the volume is increased to generate a foaming phenomenon. For this reason, the oil supply passage 2b is provided with a gas flow path for preventing oil supply obstruction due to the foaming phenomenon. 3 and 4 indicate the flow after the refrigerant dissolved in the refrigerating machine oil 8 is vaporized.

以降、図2を用いて従来技術について説明し、本発明の課題の明確化を行う。前記給油路2bは、直径d1で長さを前記クランク軸2の軸方向に前記クランク軸2の下端から前記上ベア軸受部6bの略中央まで設けている。また、前記給油路2bの上端面から前記クランク軸2の軸方向に前記クランク軸2の上端まで直径d2で開けられた穴2fは、前記給油路2bと前記密閉容器1内とを導通することで前記給油路2b内での発泡現象による給油阻害を防ぐためのガス流路である。そのため、前記クランク軸2は、前記給油路2b及びガス流路2fにより、下端から上端までの全長において中空軸となっている。   Hereinafter, the prior art will be described with reference to FIG. 2 to clarify the problem of the present invention. The oil supply passage 2b has a diameter d1 and a length in the axial direction of the crankshaft 2 from the lower end of the crankshaft 2 to the approximate center of the upper bearer bearing portion 6b. Further, a hole 2f formed with a diameter d2 from the upper end surface of the oil supply passage 2b to the upper end of the crankshaft 2 in the axial direction of the crankshaft 2 connects the oil supply passage 2b and the inside of the sealed container 1 with each other. This is a gas flow path for preventing an oil supply hindrance due to a foaming phenomenon in the oil supply path 2b. Therefore, the crankshaft 2 is a hollow shaft in the entire length from the lower end to the upper end by the oil supply passage 2b and the gas passage 2f.

ここで前記クランク軸2は、前記電動機部の回転力を伝達し前記上ベア軸受部6bにて保持されていることから、トルク及び曲げ力に対する強度が必要となる。特に前記上ベア軸受部6bにおいては、
前記クランク軸2の直径D1と圧縮機回転数によって決定される周速、
前記クランク軸2から前記上ベア軸受部6bに対する垂直荷重、
前記クランク軸2と前記上ベア軸受部6bの表面性状で決定される摩擦係数、
これら3要素の積で表される摩擦力が働き、機械損失を発生する。
Here, since the crankshaft 2 transmits the rotational force of the electric motor part and is held by the upper bearer bearing part 6b, strength against torque and bending force is required. Particularly in the upper bearer bearing portion 6b,
The peripheral speed determined by the diameter D1 of the crankshaft 2 and the rotational speed of the compressor,
A vertical load from the crankshaft 2 to the upper bearing portion 6b,
Friction coefficient determined by the surface properties of the crankshaft 2 and the upper bare bearing portion 6b,
The frictional force represented by the product of these three elements works to generate mechanical loss.

前記摩擦力を決定する3つの要素のうち垂直荷重は、前記クランク軸2の変形が大きくなるにつれて増大する。一方前記摩擦力を決定する3つの要素のうち前記クランク軸2の周速は、前記クランク軸2の直径D1が大きくなるにつれて増大する。   Of the three factors that determine the frictional force, the vertical load increases as the deformation of the crankshaft 2 increases. On the other hand, the peripheral speed of the crankshaft 2 among the three factors that determine the frictional force increases as the diameter D1 of the crankshaft 2 increases.

このため摩擦力により発生する機械損失を低減するには、前記クランク軸2の変形抑止すること、或いは、前記クランク軸2の軸受部の周速を低減する必要がある。近年の圧縮機の使用環境は、例えば家庭用ルームエアコンに搭載される際には暖房能力の向上を目的に回転数増加或いは圧縮機の気筒容積拡大が必要となってきており、前記クランク軸2の変形或いは周速が大きくならざるを得ない状況となっている。   For this reason, in order to reduce the mechanical loss caused by the frictional force, it is necessary to suppress the deformation of the crankshaft 2 or to reduce the peripheral speed of the bearing portion of the crankshaft 2. The recent usage environment of compressors, for example, when installed in a room air conditioner for home use, requires increasing the number of revolutions or expanding the cylinder volume of the compressor for the purpose of improving the heating capacity. The deformation or peripheral speed is inevitably large.

また、前記ガス流路2fには、前記発泡現象により発生した冷媒ガスと前記給油路2bを通った前記冷凍機油8の一部が流れることになる。ここで前記冷凍機油8は、圧縮機の各摺動部への安定した供給を行うために、前記密閉容器1内下部に留まっていることが望ましいが、一部は冷媒ガスの流れとともに圧縮機外部の冷凍サイクルへ流出することとなる。   In addition, the refrigerant gas generated by the foaming phenomenon and a part of the refrigerating machine oil 8 that has passed through the oil supply path 2b flow through the gas flow path 2f. Here, it is desirable that the refrigerating machine oil 8 stays in the lower part of the hermetic container 1 in order to stably supply the sliding parts of the compressor, but a part of the compressor oil 8 flows together with the flow of the refrigerant gas. It will flow out to the external refrigeration cycle.

前記冷凍機油8の冷凍サイクルへの流出量が過大となると、冷凍サイクル内の流路抵抗の増加及び熱交換効率の低下による、効率低下となる。前述のような近年の圧縮機使用環境の変化により、冷媒ガスの循環量も多くなるため、前記冷凍機油8の冷凍サイクルへの流出量低減が求められている。   When the amount of the refrigerating machine oil 8 flowing out to the refrigeration cycle becomes excessive, the efficiency decreases due to an increase in flow path resistance and a decrease in heat exchange efficiency in the refrigeration cycle. Due to the recent changes in the compressor usage environment as described above, the amount of refrigerant gas circulated also increases. Therefore, it is required to reduce the amount of refrigerant oil 8 flowing out to the refrigeration cycle.

このような背景の中、従来技術の如く給油路2b及びガス流路2fにより中空軸となった前記クランク軸2では、特に前記上ベア軸受部における強度不足と前記冷凍機油8がガス流路2fを通り前記電動機部上方へ流れ冷凍サイクルへ流出することによる、効率低下を抑えることが課題となってきた。   In such a background, in the crankshaft 2 that has become a hollow shaft by the oil supply passage 2b and the gas flow passage 2f as in the prior art, the lack of strength particularly in the upper bare bearing portion and the refrigerating machine oil 8 is caused by the gas flow passage 2f. It has been a problem to suppress the efficiency reduction caused by passing through the motor part and flowing out to the refrigeration cycle.

以上のような課題に対し、以降、図1を用いて本発明の実施例について説明する。   In the following, the embodiment of the present invention will be described with reference to FIG.

前記給油路2bは、直径d1で長さを前記クランク軸2の軸方向に前記クランク軸2の下端から前記上ベア軸受部6bの下端以下とする。前記ガス流路2fは前記上ベア6の閉塞部に前記クランク軸2の径方向に設ける。以上の構成により、前述の従来技術における2つの課題、摩擦力による機械損失と、冷凍サイクルへの油の流出による効率低下と、を解決することができる。   The oil supply path 2b has a diameter d1 and a length in the axial direction of the crankshaft 2 from the lower end of the crankshaft 2 to the lower end of the upper bare bearing portion 6b. The gas flow path 2 f is provided in the closed portion of the upper bear 6 in the radial direction of the crankshaft 2. With the above configuration, it is possible to solve the above-described two problems in the prior art, mechanical loss due to frictional force, and efficiency reduction due to the outflow of oil to the refrigeration cycle.

まず1つめの課題である前記クランク軸2の軸受部における機械損失の低減について述べる。前記給油路2bは、各摺動部への前記冷凍機油8を供給するため、前記3つの供給路2c,2d,2eと導通している必要がある。そのため、前記給油路の長さは、前記3つの供給路2c,2d,2eのうち最も上方にある前記上ベア供給路2eに到達するように設ける必要がある。前記上ベア給油路2eの出口近傍は、前記空間12を設けるため軸受機構とはなっていない。以上より、前記クランク軸2は、前記給油路2bの長さを前記上ベア供給路2eの下端以上とし且つ前記上ベア軸受部6b下端以下とすることで、中実の部分を増やし、軸の変形を抑えることができる。   First, reduction of mechanical loss in the bearing portion of the crankshaft 2 which is the first problem will be described. The oil supply path 2b needs to be electrically connected to the three supply paths 2c, 2d, and 2e in order to supply the refrigerating machine oil 8 to each sliding portion. Therefore, the length of the oil supply path needs to be provided so as to reach the upper bare supply path 2e that is the uppermost of the three supply paths 2c, 2d, and 2e. Since the space 12 is provided in the vicinity of the outlet of the upper bare oil supply passage 2e, it is not a bearing mechanism. From the above, the crankshaft 2 has a solid portion increased by making the length of the oil supply passage 2b longer than the lower end of the upper bear supply passage 2e and less than the lower end of the upper bear bearing portion 6b. Deformation can be suppressed.

ここで、前記給油路2bの上端は、前記上ベア供給路2eの直径内に配置されていることが望ましい。これにより、前記給油路2bの下端或いは前記上ベア供給路2eからエアブローすることにより、前記給油路2b加工時の切削粉或いは前記クランク軸2洗浄後の洗浄液や残留物等の異物の排出を容易に行うことができる。   Here, it is desirable that the upper end of the oil supply passage 2b is disposed within the diameter of the upper bear supply passage 2e. Thereby, by blowing air from the lower end of the oil supply passage 2b or the upper bear supply passage 2e, it is possible to easily discharge cutting powder during processing of the oil supply passage 2b or foreign matters such as cleaning liquid and residue after the crankshaft 2 is cleaned. Can be done.

また、前記ガス流路2fを前記上ベア6の閉塞部に設けることで、前記クランク軸2のうち前記上ベア軸受部6bと軸受機構を構成する部位を中実軸とすることができ、同様に変形を抑えることができる。これにより、前記クランク軸2から前記上ベア軸受部6bに対する垂直荷重において発生する摩擦力を小さくすることができ、圧縮機の効率を向上させることができる。或いは、前記クランク軸2のうち前記上ベア軸受部6bと軸受機構を構成する部位を中実軸とすることで、前記クランク軸2の変形量が同一となるまで前記クランク軸2の径を細くすることができる。これにより、前述の摩擦力を決定する周速を低減することができ、圧縮機の効率を向上させることができる。   Further, by providing the gas flow path 2f in the closed portion of the upper bear 6, the portion of the crankshaft 2 that forms the bearing mechanism with the upper bear bearing portion 6b can be a solid shaft. It is possible to suppress deformation. Thereby, the frictional force generated in the vertical load from the crankshaft 2 to the upper bearer bearing portion 6b can be reduced, and the efficiency of the compressor can be improved. Alternatively, the portion of the crankshaft 2 that forms the bearing mechanism with the upper bare bearing portion 6b is a solid shaft, so that the diameter of the crankshaft 2 is reduced until the amount of deformation of the crankshaft 2 is the same. can do. Thereby, the peripheral speed which determines the above-mentioned frictional force can be reduced, and the efficiency of a compressor can be improved.

次に2つめの課題である前記冷凍機油8の冷凍サイクルへの流出抑止について述べる。前述の如く前記ガス流路2fを前記上ベア6の閉塞部に設けることで、前記冷凍機油8は、前記密閉容器1内の前記上ベア6の閉塞部以下で循環させることができる。これにより、前記電動機部の回転運動の影響を抑えることができ、冷凍サイクルへの流出を抑止することができる。ここで前記上ベア6の閉塞部に設けられたガス流路2fの出口は、前記上ベア6の閉塞部上方への流れを抑止する壁面6dを設けることが望ましい。   Next, the second problem, the suppression of outflow of the refrigerating machine oil 8 to the refrigeration cycle will be described. By providing the gas flow path 2 f in the closed portion of the upper bear 6 as described above, the refrigerating machine oil 8 can be circulated below the closed portion of the upper bear 6 in the sealed container 1. Thereby, the influence of the rotational motion of the said motor part can be suppressed, and the outflow to a refrigerating cycle can be suppressed. Here, it is desirable that the outlet of the gas flow path 2f provided in the closed portion of the upper bear 6 is provided with a wall surface 6d that suppresses the flow of the upper bear 6 to the upper portion of the closed portion.

以上、本実施例によれば、前記クランク軸に設けられた給油路となる穴の長さを前記閉塞部材の軸受部下端以下とし、且つ前記ガス流路を前記上側閉塞部材にクランク軸の径方向に配置することで、前記クランク軸の軸受部を中実軸とすることができ、前記クランク軸の変形を低減する効果により、圧縮機の効率を向上することができる。   As described above, according to the present embodiment, the length of the hole serving as the oil supply passage provided in the crankshaft is set to be equal to or less than the lower end of the bearing portion of the closing member, and the gas passage is connected to the upper closing member with the diameter of the crankshaft. By arranging in the direction, the bearing portion of the crankshaft can be a solid shaft, and the efficiency of the compressor can be improved due to the effect of reducing deformation of the crankshaft.

また、前記クランク軸の軸受部を中実軸とすることで、前記クランク軸の軸径は前記クランク軸の変形量を従来同等となるまで小さくすることができ、軸受部における周速を低減する効果により、圧縮機の効率を向上させることができる。また、前記クランク軸に設けられたガス流路を前記上側閉塞部材にクランク軸の径方向に配置することで、圧縮機の密閉容器内下部に貯蔵された冷凍機油を上側閉塞部材下方で循環させることができ、冷凍サイクルへの流出による効率低下を防止することができる。   In addition, by using a solid shaft as the bearing portion of the crankshaft, the shaft diameter of the crankshaft can be reduced until the amount of deformation of the crankshaft becomes equivalent to the conventional one, and the peripheral speed at the bearing portion is reduced. Due to the effect, the efficiency of the compressor can be improved. In addition, the gas flow path provided in the crankshaft is disposed in the upper closing member in the radial direction of the crankshaft so that the refrigeration oil stored in the lower part of the hermetic container of the compressor is circulated below the upper closing member. It is possible to prevent a decrease in efficiency due to the outflow to the refrigeration cycle.

つまり、クランク軸に設けられた給油路となる穴及び給油路内で発泡した冷媒ガスの流路となる穴による強度低下を抑えることにより、効率を向上させることができる。   That is, the efficiency can be improved by suppressing a decrease in strength due to a hole serving as an oil supply path provided in the crankshaft and a hole serving as a flow path for the refrigerant gas foamed in the oil supply path.

1 密閉容器
2 クランク軸
2a クランク軸の偏心部
2b 給油路
2c 下ベア供給路
2d 偏心部供給路
2e 上ベア供給路
2f ガス流路
3 シリンダ
3a シリンダ内壁面
4 ローラ
4a ローラ外壁面
6 上ベア
6a 上ベア内壁面
6b 上ベア軸受部
6c 上ベア溝
6d ガス流路出口上方壁面
6e 上ベア平面部
7 下ベア
7a 下ベア内壁面
7b 下ベア軸受部
7c 下ベア溝
8 冷凍機油
9 吸込口
10 圧縮室
12 供給路出口側空間
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Crankshaft 2a Eccentric part 2b of crankshaft Oil supply path 2c Lower bear supply path 2d Eccentric part supply path 2e Upper bear supply path 2f Gas flow path 3 Cylinder 3a Cylinder inner wall surface 4 Roller 4a Roller outer wall surface 6 Upper bear 6a Upper bearer inner wall surface 6b Upper bearer bearing portion 6c Upper bearer groove 6d Gas flow path outlet upper wall surface 6e Upper bearer flat surface portion 7 Lower bearer 7a Lower bearer inner wall surface 7b Lower bearer bearing portion 7c Lower bearer groove 8 Refrigerating machine oil 9 Suction port 10 Compression Chamber 12 Supply channel outlet side space

Claims (6)

密閉容器内に電動機部を収納し、前記電動機部の回転を伝達する偏心部を有したクランク軸と前記クランク軸により駆動することで圧縮仕事を行う圧縮機構部を設け、前記圧縮機構部は、シリンダと、前記シリンダ内に配置されクランク軸の偏心部により回転駆動されるローラと、前記ローラ外周に延びて前記ローラの偏心運動に応じて前記シリンダに設けられた収納部に出入りするベーンと、前記ベーンをローラに押し付けるスプリングと、前記シリンダの両端面を閉塞し且つ前記クランク軸を保持する軸受部を有する閉塞部材により構成され、
前記圧縮機構部の潤滑を目的とした冷凍機油は密閉容器内下部に貯えられ、前記冷凍機油を前記圧縮機構部へ供給するための給油路を前記クランク軸に設けたロータリ圧縮機において、
前記クランク軸の給油路は、前記クランク軸の軸方向にクランク軸の下端から上側閉塞部材の軸受部下端以下に配置し、且つ前記給油路と前記密閉容器とを導通するガス流路を前記上側閉塞部材に配置したことを特徴とするロータリ圧縮機。
A motor part is housed in a sealed container, a crankshaft having an eccentric part that transmits the rotation of the motor part and a compression mechanism part that performs compression work by being driven by the crankshaft are provided. A cylinder, a roller disposed in the cylinder and driven to rotate by an eccentric part of a crankshaft, a vane extending to the outer periphery of the roller and entering and exiting a storage part provided in the cylinder according to the eccentric movement of the roller; A spring that presses the vane against the roller, and a closing member that has a bearing portion that closes both end faces of the cylinder and holds the crankshaft;
In the rotary compressor in which the refrigerating machine oil for lubrication of the compression mechanism part is stored in a lower part in a sealed container, and an oil supply passage for supplying the refrigerating machine oil to the compression mechanism part is provided in the crankshaft.
The crankshaft oil supply passage is arranged in the axial direction of the crankshaft from the lower end of the crankshaft to the lower end of the bearing portion of the upper closing member, and a gas passage that connects the oil supply passage and the sealed container is provided on the upper side. A rotary compressor characterized in that the rotary compressor is disposed on a closing member.
請求項1において、
前記クランク軸の給油路の上端は、前記冷凍機油を前記上側閉塞部材の軸受部へ供給するための供給路となる穴の直径内に配置されていることを特徴とするロータリ圧縮機。
In claim 1,
The upper end of the oil supply passage of the crankshaft is disposed within the diameter of a hole that serves as a supply passage for supplying the refrigerating machine oil to the bearing portion of the upper closing member.
請求項1において、
前記給油路と前記密閉容器とを連通するガス流路は、前記給油路から前記クランク軸の偏心部外壁面への供給路及び前記上側閉塞部材のフランジ部厚さ内で前記クランク軸の径方向に開けられた穴で構成されていることを特徴とするロータリ圧縮機。
In claim 1,
A gas flow path communicating the oil supply passage and the sealed container is a supply passage from the oil supply passage to the outer wall surface of the eccentric portion of the crankshaft and a radial direction of the crankshaft within a flange portion thickness of the upper closing member A rotary compressor characterized in that it is composed of holes drilled in.
請求項3において、
前記上側閉塞部材のフランジ部厚さ内で前記クランク軸の径方向に開けられた穴の出口には、前記密閉容器内上方への流れを抑制する壁面を有することを特徴とするロータリ圧縮機。
In claim 3,
The rotary compressor characterized by having a wall surface that suppresses the upward flow in the hermetic container at the outlet of a hole formed in the radial direction of the crankshaft within the flange portion thickness of the upper closing member.
密閉容器内に固定するための上ベア平面部を有する上ベアでクランク軸の支持を担い、
前記クランク軸の回転によりシリンダ内に配設される圧縮室の容積を変化させることで冷媒を圧縮し、
前記クランク軸内に配設された給油路により、前記密閉容器内の油を吸上げ、前記圧縮室及びその周囲に油を供給するロータリ圧縮機において、
前記クランク軸は、油を通すための給油路であって、前記シリンダの厚みを貫通して前記上ベア平面部に対応する前記クランク軸の位置まで配設されるとともに、前記上ベア軸受部に対応する前記クランク軸の位置には達せず当該対応する前記クランク軸を中実に保つ、給油路を有し、
前記上ベア平面部には、前記圧縮室から前記密閉容器に冷媒を吐出するためのガス流路が配設された、
ことを特徴とするロータリ圧縮機。
Take the support of the crankshaft with the upper bearer having the upper bearer plane part for fixing in the sealed container,
Compressing the refrigerant by changing the volume of the compression chamber disposed in the cylinder by the rotation of the crankshaft,
In the rotary compressor that sucks up the oil in the hermetic container by the oil supply passage disposed in the crankshaft and supplies the oil to the compression chamber and its surroundings,
The crankshaft is an oil supply passage through which oil passes, and is disposed up to the position of the crankshaft that penetrates the thickness of the cylinder and corresponds to the upper bearer plane part, and is connected to the upper bearer bearing part. An oil supply passage that does not reach the position of the corresponding crankshaft and keeps the corresponding crankshaft solid;
In the upper bare plane portion, a gas flow path for discharging a refrigerant from the compression chamber to the sealed container is disposed.
A rotary compressor characterized by that.
請求項5において、
前記給油路は、前記圧縮室の周囲に油を供給するため、下ベア供給路,偏心部供給路,上ベア供給路に連通していることを特徴とするロータリ圧縮機。
In claim 5,
The rotary compressor is characterized in that the oil supply passage communicates with a lower bear supply passage, an eccentric portion supply passage, and an upper bear supply passage in order to supply oil around the compression chamber.
JP2011011508A 2011-01-24 2011-01-24 Rotary compressor Active JP5358591B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011011508A JP5358591B2 (en) 2011-01-24 2011-01-24 Rotary compressor
KR1020110014895A KR101300961B1 (en) 2011-01-24 2011-02-21 Rotary compressor
CN201110048165.2A CN102606478B (en) 2011-01-24 2011-02-25 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011011508A JP5358591B2 (en) 2011-01-24 2011-01-24 Rotary compressor

Publications (2)

Publication Number Publication Date
JP2012154185A true JP2012154185A (en) 2012-08-16
JP5358591B2 JP5358591B2 (en) 2013-12-04

Family

ID=46524151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011011508A Active JP5358591B2 (en) 2011-01-24 2011-01-24 Rotary compressor

Country Status (3)

Country Link
JP (1) JP5358591B2 (en)
KR (1) KR101300961B1 (en)
CN (1) CN102606478B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104712530B (en) * 2013-12-12 2019-06-25 珠海格力电器股份有限公司 Compressor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223385A (en) * 1987-03-13 1988-09-16 Hitachi Ltd Rotary compressor
JPS63230982A (en) * 1987-03-20 1988-09-27 Hitachi Ltd Rotary compressor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62188586U (en) * 1986-05-20 1987-12-01
JP3379114B2 (en) * 1992-08-26 2003-02-17 株式会社日立製作所 Rotary compressor
JP4168506B2 (en) 1999-01-25 2008-10-22 ダイキン工業株式会社 Rotary compressor
KR20040023069A (en) * 2002-09-10 2004-03-18 엘지전자 주식회사 Hermetic rotary compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223385A (en) * 1987-03-13 1988-09-16 Hitachi Ltd Rotary compressor
JPS63230982A (en) * 1987-03-20 1988-09-27 Hitachi Ltd Rotary compressor

Also Published As

Publication number Publication date
KR101300961B1 (en) 2013-08-27
JP5358591B2 (en) 2013-12-04
CN102606478A (en) 2012-07-25
CN102606478B (en) 2015-09-30
KR20120085628A (en) 2012-08-01

Similar Documents

Publication Publication Date Title
WO2013057946A1 (en) Rotary compressor having two cylinders
JP6253278B2 (en) Refrigeration cycle
JP6664118B2 (en) 2-cylinder hermetic compressor
WO2016152126A1 (en) Hermetic compressor and refrigeration device
JP2010185342A (en) Rotary motor-driven compressor
US9115715B2 (en) Compressor with pressure reduction groove formed in eccentric part
JP6762253B2 (en) Revolver and refrigeration cycle equipment
JP6134903B2 (en) Positive displacement compressor
JP5358591B2 (en) Rotary compressor
JP6132747B2 (en) Hermetic compressor and equipment having hermetic compressor
WO2018179356A1 (en) Rotary compressor and refrigeration cycle device
WO2016016917A1 (en) Scroll compressor
WO2016075768A1 (en) Scroll compressor
JP5168191B2 (en) Scroll compressor
JP2009108747A (en) Hermetic electric compressor
JP5791760B2 (en) Refrigerant compressor
WO2020039489A1 (en) Compressor and refrigeration cycle device equipped with same
JP2013238191A (en) Compressor
JP5469612B2 (en) Rotary fluid machinery
JP2017101557A (en) Hermetic type compressor
JP6643712B2 (en) 2-cylinder hermetic compressor
JP2012241629A (en) Hermetic type electric compressor
JP6441119B2 (en) Rotary compressor and refrigeration cycle apparatus
WO2018189827A1 (en) Enclosed compressor and refrigeration cycle device
JP2009074452A (en) Sealed motor-driven compressor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130902

R150 Certificate of patent or registration of utility model

Ref document number: 5358591

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250