WO2016016917A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2016016917A1
WO2016016917A1 PCT/JP2014/069773 JP2014069773W WO2016016917A1 WO 2016016917 A1 WO2016016917 A1 WO 2016016917A1 JP 2014069773 W JP2014069773 W JP 2014069773W WO 2016016917 A1 WO2016016917 A1 WO 2016016917A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
frame
compression mechanism
space
orbiting
Prior art date
Application number
PCT/JP2014/069773
Other languages
French (fr)
Japanese (ja)
Inventor
幸野 雄
柳瀬 裕一
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to PCT/JP2014/069773 priority Critical patent/WO2016016917A1/en
Publication of WO2016016917A1 publication Critical patent/WO2016016917A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to a scroll compressor.
  • a hermetic type is widely used as a compressor for refrigerating and air-conditioning.
  • a compression mechanism and an electric motor are housed in a hermetic container, and the hermetic container and the compression mechanism are often fixed by tack welding.
  • Patent Document 1 there is Patent Document 1 regarding tack welding of such a sealed container and a compression mechanism.
  • Sealed scroll compressors are generally tack welded between the sealed container and the frame, but if the compression mechanism is made of an aluminum material in order to cope with high speed, it is not possible to tack weld the sealed container and the frame. Have difficulty.
  • Patent Document 1 is not a technique for solving the problem of material welding, but in order to eliminate deformation of the frame due to tack welding, a support frame dedicated to tack welding is newly provided, and this support frame and the sealed container are tack welded. To do.
  • the support frame and the hermetic container are tack welded, if the support frame is made of an iron-based material, the hermetic container and the compression mechanism part are not attached to the support frame even if an aluminum material is used for the compression mechanism part. It can be fixed via.
  • the problem to be solved by the present invention is to enable the hermetic container and the compression mechanism part to be fixed even if an aluminum material is used for the compression mechanism part, and to suppress deformation of the compression mechanism part due to tack welding.
  • the scroll compressor of the present invention includes a hermetic container, a swivel base plate, a spiral swirl wrap standing on the swivel base plate, and a swirl formed on the opposite side of the swirl base plate.
  • a compression mechanism unit comprising a orbiting scroll having a bearing, a fixed base plate, and a spiral fixed lap standing on the fixed base plate, and a fixed scroll that meshes with the orbiting scroll to form a compression chamber.
  • the outer peripheral portion is supported by a frame auxiliary member welded and fixed to the hermetic container, an electric motor portion that drives the compression mechanism portion, a slewing bearing, and a main bearing.
  • a crankshaft that transmits the rotational force of the motor part to the compression mechanism part, an oil reservoir part that is located at the bottom of the sealed container and stores lubricating oil, and a discharge pipe that discharges the refrigerant compressed in the compression chamber outside the sealed container And comprising.
  • the sealed container and the compression mechanism portion can be fixed, and welding deformation of the compression mechanism portion can be suppressed.
  • 1 is a longitudinal sectional view of a scroll compressor according to a first embodiment.
  • Explanatory drawing of the oil supply structure of 1st Embodiment Explanatory drawing of the flow of the gas refrigerant of a 1st embodiment
  • Main bearing cover perspective view of the first embodiment AA sectional view of FIG.
  • the scroll compressor of the present invention includes a hermetic container, a swivel base plate, a spiral swirl wrap standing on the swivel base plate, and a swirl formed on the opposite side of the swirl base plate.
  • a compression mechanism unit comprising a orbiting scroll having a bearing, a fixed base plate, and a spiral fixed lap standing on the fixed base plate, and a fixed scroll that meshes with the orbiting scroll to form a compression chamber.
  • the frame including the main bearing is mechanically fastened from below the frame, and the outer peripheral portion is It is supported by a sealed container and a frame auxiliary member that is fixed by welding, an electric motor unit that drives the compression mechanism unit, a slewing bearing, and a main bearing.
  • a crankshaft that transmits force to the compression mechanism, an oil reservoir that is located at the bottom of the sealed container and stores lubricating oil, and a discharge pipe that discharges the refrigerant compressed by the compression mechanism outside the sealed container.
  • the frame auxiliary member is mechanically fastened from below the frame and the outer peripheral part is welded and fixed to the sealed container, the sealed container can be used even if an aluminum-based material is used for the compression mechanism. And the compression mechanism portion can be fixed, and welding deformation of the compression mechanism portion can also be suppressed.
  • FIGS. 1 is a longitudinal sectional view of a scroll compressor
  • FIG. 2 is an explanatory view of an oil supply structure
  • FIG. 3 is an explanatory view of a flow of gas refrigerant
  • FIG. 4 is a perspective view of a main bearing cover
  • FIG. FIG. 1 is a longitudinal sectional view of a scroll compressor
  • FIG. 2 is an explanatory view of an oil supply structure
  • FIG. 3 is an explanatory view of a flow of gas refrigerant
  • FIG. 4 is a perspective view of a main bearing cover
  • the scroll compressor 1 houses a compression mechanism unit 3 and an electric motor unit 4 that drives the compression mechanism unit 3 in a sealed container 2.
  • the sealed container 2 is configured by welding a lid chamber 2b and a bottom chamber 2c up and down to a cylindrical case 2a.
  • a compression mechanism unit 3 is disposed at the upper part of the sealed container 2, and an electric motor unit 4 is disposed at the lower part.
  • the lid chamber 2b is provided with a suction pipe 2d, and the case 2a is provided with a discharge pipe 2e.
  • the compression mechanism unit 3 includes a fixed scroll 5, a turning scroll 6, and a frame 9 that is fastened to the fixed scroll 5 with a bolt or the like and supports the turning scroll 6.
  • the orbiting scroll 6 is rotatably disposed opposite to the fixed scroll 5, and the suction chamber 10 and the compression chamber 11 are formed by the fixed scroll 5 and the orbiting scroll 6.
  • the frame 9 includes a main bearing 9a that rotatably supports the crankshaft 7.
  • An orbiting bearing 6 a is provided on the lower surface side of the orbiting scroll 6, and an eccentric portion 7 b of the crankshaft 7 is connected thereto.
  • the Oldham ring 12 is disposed between the lower surface side of the orbiting scroll 6 and the frame 9.
  • the Oldham ring 12 is mounted in a groove formed on the lower surface side of the orbiting scroll 6 and a groove formed in the frame 9.
  • the Oldham ring 12 causes the orbiting scroll 6 to revolve by receiving the eccentric rotation of the eccentric portion 7b of the crankshaft 7 without rotating.
  • the stator 4a of the electric motor unit 4 is fixed to the sealed container 2 by press fitting, welding or the like.
  • the rotor 4b is rotatably disposed in the stator 4a, and the crankshaft 7 is fixed to the rotor 4b.
  • the crankshaft 7 includes a main shaft 7a and an eccentric portion 7b, and is supported by a main bearing 9a and a lower bearing 14 provided on the frame 9.
  • the eccentric portion 7 b is formed integrally with the main shaft 7 a of the crankshaft 7 so as to be eccentric, and is fitted to the orbiting bearing 6 a provided on the back surface of the orbiting scroll 6.
  • the crankshaft 7 is driven by the electric motor unit 4, and the eccentric part 7 b rotates eccentrically with respect to the main shaft 7 a, thereby causing the orbiting scroll 6 to rotate.
  • a positive displacement oil pump 15 connected to the crankshaft 7 is installed below the lower bearing 14, and the lubricating oil 13 is supplied to the oil supply passage 7c by the rotational movement of the crankshaft 7.
  • the main bearing cover 8 (frame auxiliary member 8) that receives the lubricating oil 13 that lubricates the main bearing 9a is attached to the lower side of the main bearing 9a of the frame 9.
  • the main bearing cover 8 has a circular opening through which the crankshaft 7 penetrates at the center, and is made of an annular iron-based material when viewed from the crankshaft direction.
  • the sealed container 2 and the main bearing cover 8 are tack welded at the welded portion 8a and fixed by the molten tack welded portion 17.
  • the main bearing cover 8 is mechanically fastened and fixed to the lower part of the frame 9 with bolts or the like. As a result, the sealed container 2 and the compression mechanism 3 are fixed via the main bearing cover 8.
  • the flow of the lubricating oil 13 will be described with reference to FIG.
  • the lubricating oil 13 supplied to the oil supply passage 7c by the oil supply pump 15 goes to the upper end of the crankshaft 7, and lubricates the swing bearing 6a and the main bearing 9a. Thereafter, the lubricating oil 13 is guided to a space formed by the frame 9 and the main bearing cover 8 and returned from the oil drain pipe 16 to the oil storage chamber.
  • the gas refrigerant discharged from the discharge port 5a flows into the space between the frame 9 and the stator 4a through the fixed scroll 5 and the outer peripheral grooves 5b and 9b of the frame 9.
  • a gas passage 8b is formed in the annular surface of the main bearing cover 8 so as to penetrate from the frame 9 side to the stator 4a side, and the gas refrigerant flowing into the space passes through the gas passage 8b. Then, it is discharged from the discharge pipe 2e to the outside of the sealed container 2.
  • FIG. 5 shows a cross-sectional view taken along the line AA in FIG.
  • the main bearing cover 8 is provided with a welded portion 8 a having a diameter substantially the same as the inner diameter of the sealed container 2.
  • the hermetic container 2 and the main bearing cover 8 are tack welded by the welded portion 8a and fixed by the molten tack welded portion 17.
  • tack welding 17 is made into four places, the same effect is acquired even if it is less than four places from welding strength and welding space.
  • a ferrous material is used for the main bearing cover 8 fixed to the frame 9, and a welded portion 8a for tack welding is provided on the outer peripheral portion.
  • the welded portion 8a and the sealed container 2 can be tack-welded. Therefore, even if an aluminum alloy or the like is used for the compression mechanism unit 3, the sealed container 2 and the compression mechanism unit 3 are provided with the main bearing cover 8. It becomes possible to fix through.
  • the end plate portion 6b of the orbiting scroll 6 is sandwiched between the fixed scroll 6 and the frame 9 with a 10 ⁇ m gap, and when the frame 9 is tack welded, this gap changes due to welding deformation.
  • the deformation mode varies depending on the part shape, welding conditions, and the like. For example, if the deformation is performed in a direction in which the gap is widened, the orbiting scroll 6 is easily tilted, and the gap at the tip of the scroll wrap is widened, leading to an increase in leakage loss. On the contrary, if it deform
  • the main bearing cover 8 is fastened and fixed to the frame 9 with bolts or the like.
  • the gas passage 8b since the gas passage 8b is provided, the gas passage 8b has a flexible structure even when tack-welded to the main bearing cover 8, and the frame. The propagation of deformation to 9 can be reduced.
  • the difference of the second embodiment from the first embodiment is the position of the tack welded portion 17.
  • the position of the tack welded portion 17 is made to coincide with the center position of the main bearing 9a in the axial direction (shown by a one-dot chain line).
  • the position of the tack welded portion 17 is made coincident with the axial center of the main bearing 9a. Therefore, the moment applied to the tack welded portion 17 by the bearing load of the main bearing 9a can be reduced, and vibration and noise are reduced. it can.
  • FIG. 7 is a longitudinal sectional view of the scroll compressor of the third embodiment
  • FIG. 8 is an explanatory view of an oil supply structure of the third embodiment
  • FIG. 9 is an explanatory view of the flow of the gas refrigerant of the third embodiment.
  • the basic structure is the same as that in each of the above embodiments, and detailed description thereof is omitted.
  • the third embodiment differs from the first embodiment in the oil supply structure.
  • the lubricating oil 13 is supplied to each sliding portion by the differential pressure between the back pressure chamber 18 provided on the back surface of the orbiting scroll 6 and the oil storage chamber that is the discharge pressure atmosphere.
  • the pressure in the back pressure chamber 18 is such as a back pressure control valve having a check valve structure conventionally used as a back pressure control mechanism of a scroll compressor, an intermediate hole communicating the compression chamber and the back pressure chamber in the middle of compression, or the like.
  • the pressure is controlled between the discharge pressure and the suction pressure.
  • An oil supply pipe 19 is provided at the lower end of the crankshaft 7, and the lubricating oil 13 is supplied from the oil supply pipe 19 to the oil supply passage 7 c using the differential pressure between the oil storage chamber and the back pressure chamber 18. Part of the lubricating oil 13 flowing through the oil supply passage 7c is supplied to the main bearing 9a from the lateral hole 7d, and the remaining lubricating oil 13 is supplied to the swivel bearing 6a. The lubricating oil 13 supplied to the slewing bearing 6 a and the main bearing 9 a merges again at the thrust receiving surface 7 e of the crankshaft 7 and flows into the back pressure chamber 18.
  • the seal bearing 20 (frame auxiliary member 20) is mechanically fastened to the frame 9 with bolts or the like below the main bearing 9a.
  • the seal bearing 20 serves to seal the main bearing 9a from the sealed container 2 so that the gas refrigerant in the sealed container 2 does not flow into the main bearing 9a and cause poor lubrication.
  • a welded portion 20a facing the inner diameter of the sealed container 2 is provided on the outer periphery of the seal bearing 20, and the welded portion 20a is tack welded to the sealed container 2.
  • the gas refrigerant discharged from the discharge port 5a flows into the space between the frame 9 and the stator 4a through the fixed scroll 5 and the outer peripheral grooves 5b and 9b of the frame 9.
  • a gas passage 20b is formed in the seal bearing 20, and the gas refrigerant flowing into the space is discharged from the discharge vessel 2e to the outside through the gas passage 20b.
  • the compression mechanism portion 3 As described in the operation and effect of the first embodiment, in order to reduce the size and speed, it is necessary to configure the compression mechanism portion 3 with an aluminum alloy, a magnesium alloy, or the like to reduce the weight. It becomes difficult to fix the welding to the sealed container 2.
  • the present invention uses a ferrous material for the seal bearing 20 fixed to the frame 9 and provides a welded portion 20a for tack welding on the outer peripheral portion.
  • the welded portion 20a and the sealed container 2 can be tack-welded. Therefore, even if an aluminum alloy or the like is used for the compression mechanism portion 3, the sealed container 2 and the compression mechanism portion 3 are connected to the seal bearing 20. It becomes possible to fix through.
  • the end plate portion 6b of the orbiting scroll 6 is sandwiched between the fixed scroll 6 and the frame 9 with a 10 ⁇ m gap, and when the frame 9 is tack welded, this gap changes due to welding deformation.
  • the deformation mode varies depending on the part shape, welding conditions, and the like. For example, if the deformation is performed in a direction in which the gap is increased, the orbiting scroll 6 is easily tilted, and the gap at the tip of the scroll wrap is enlarged, leading to an increase in leakage loss. On the contrary, if it deform
  • the frame 9 since the seal bearing 20 is provided with the gas passage 20b, the frame 9 has a flexible structure even when tack-welded to the seal bearing 20 and is fastened to the seal bearing 20 with bolts or the like. The propagation of deformation to can be reduced.
  • FIG. 10 is an explanatory diagram of the oil supply structure and the flow of the gas refrigerant according to the fourth embodiment.
  • the broken line is the flow of the lubricating oil
  • the solid line is the flow of the gas refrigerant.
  • the basic structure is the same as that in each of the above embodiments, and detailed description thereof is omitted.
  • the difference between the fourth embodiment and the first embodiment is the flow of the gas refrigerant in the sealed container 2.
  • a back pressure chamber 18 is provided on the frame 9 side of the orbiting scroll 6. The pressure in the back pressure chamber 18 is controlled to an intermediate pressure between the discharge pressure and the suction pressure by a back pressure control mechanism (not shown) conventionally used in a scroll compressor.
  • a seal ring 21 is provided on the lower end surface of the orbiting scroll 6 and partitions the back pressure chamber 18 and the space around the crankshaft 7 from the seal ring 21.
  • a groove (not shown) for supplying a part of the lubricating oil 13 lubricating the orbiting bearing 6 a to the back pressure chamber 18 is provided on the lower end surface of the orbiting scroll 6.
  • the lubricating oil 13 supplied to the back pressure chamber 18 is then supplied to the suction chamber 10.
  • the lubricating oil 13 supplied to the suction chamber 10 seals a minute gap in the compression chamber 11 and is discharged from the discharge port 5a together with the gas refrigerant.
  • the gas refrigerant discharged from the discharge port 5a contains the lubricating oil 13 used for sealing the gap in the compression chamber 11 at a rate of 5 to 10 wt% with respect to the circulation amount of the gas refrigerant.
  • the oil-rich gas refrigerant discharged from the discharge port 5a flows into the space between the frame 9 and the stator 4a through the fixed scroll 5 and the outer peripheral grooves 5b and 9b of the frame 9.
  • a cylindrical partition plate 8c connected to the main bearing cover 8 is disposed below the main bearing cover 8 and between the gas passage 8b of the main bearing cover 8 and the discharge pipe 2e.
  • the gas refrigerant is guided from the space between the frame 9 and the stator 4a to the motor unit 4 side through the gas passage 8b.
  • the gas refrigerant does not flow to the discharge pipe 2e by the partition plate 8c, and the stator 4a and the rotor 4b.
  • the lubricating oil 13 is returned to the oil storage chamber, and only the gas refrigerant flows out of the discharge pipe 2e through the core cut 4c of the stator 4a.
  • the oil-rich gas refrigerant guided to the space between the compression mechanism unit 6 and the motor unit 4 is discharged from the discharge pipe by the gas passage 8b and the partition plate 8c of the main bearing cover 8. Since it can flow to the oil storage chamber side without interfering with 2e, the amount of oil flowing out from the discharge pipe 2e can be reduced.
  • FIG. 11 is an explanatory view of the oil supply structure and the flow of the gas refrigerant of the fifth embodiment
  • FIG. 12 is a perspective view of the main bearing cover of the fifth embodiment.
  • the broken line is the flow of the lubricating oil
  • the solid line is the flow of the gas refrigerant.
  • the basic structure is the same as that in each of the above embodiments, and detailed description thereof is omitted.
  • the oil-rich gas refrigerant discharged from the discharge port 5a flows into the space between the frame 9 and the stator 4a through the fixed scroll 5 and the outer peripheral grooves 5b and 9b of the frame 9.
  • the gas refrigerant passes through the outer peripheral groove 8d of the main bearing cover 8 and is guided to the electric motor unit 4 side, and flows from the outer space of the partition plate 8c to the oil storage chamber through the core cut 4c.
  • the lubricating oil 13 is returned to the oil storage chamber, and only the gas refrigerant passes between the stator 4a and the rotor 4b and is guided to the inner space of the partition plate 8c.
  • the discharge pipe 2e is inserted from the discharge pipe insertion hole 8e of the main bearing cover 8 and communicates with the inner space of the partition plate 8c (the inlet of the discharge pipe 2e passes through the partition plate 8c and is located in the inner space).
  • the gas refrigerant led to the inner space flows out from the discharge pipe 2e.
  • the oil-rich gas refrigerant guided to the space between the frame 9 and the stator 4a interferes with the discharge pipe 2e by the outer peripheral groove 8d and the partition plate 8c of the main bearing cover 8. Therefore, the amount of oil flowing out from the discharge pipe 2e can be reduced.

Abstract

This scroll compressor is provided with: a compression mechanism which comprises an orbiting scroll and a fixed scroll that meshes with the orbiting scroll to form a compression chamber; a frame which is positioned on the side of the orbiting scroll opposite of the fixed scroll, which is attached to the fixed scroll such that the frame and the fixed scroll together sandwich the orbiting scroll, and on which a primary bearing is formed; and a frame auxiliary member which is mechanically fastened from the bottom of the frame and is welded at the outer periphery to an airtight container. Since the scroll compressor is provided with a frame auxiliary member which is mechanically fastened from the bottom of the frame and is welded at the outer periphery to the airtight container, even when using an aluminum material in the compression mechanism, it is possible both to fix the compression mechanism to the airtight container and to suppress welding deformation of the compression mechanism.

Description

スクロール圧縮機Scroll compressor
 本発明はスクロール圧縮機に関する。 The present invention relates to a scroll compressor.
 冷凍空調機において、地球温暖化係数(GWP)の低い冷媒へ変更する動きが強まっている。空気調和機で用いられるR410Aの代替冷媒としては、R32やR290、R1234ze等が候補として挙げられる。これら、候補冷媒をR410Aと比較すると、R32は分子量が小さく漏れ損失が増加する。また、R290とR1234zeは能力が低く、圧縮機の押除容積を大きくしなければならない。このような課題に対する解決策としては、圧縮機の押除容積を小さくし、高速回転で運転することが有効である。しかしながら、スクロール圧縮機を高速運転すると、旋回スクロールやモータによる遠心力によって、クランク軸がたわみ、軸受の信頼性低下や振動騒音の増加につながる。 In refrigeration air conditioners, there is an increasing trend to change to refrigerants with low global warming potential (GWP). R32, R290, R1234ze etc. are mentioned as a candidate as a substitute refrigerant | coolant of R410A used with an air conditioner. When these candidate refrigerants are compared with R410A, R32 has a smaller molecular weight and increased leakage loss. Also, R290 and R1234ze have low capacity, and the displacement volume of the compressor must be increased. As a solution to such a problem, it is effective to reduce the displacement volume of the compressor and operate at high speed. However, when the scroll compressor is operated at a high speed, the crankshaft is bent due to the centrifugal force generated by the orbiting scroll and the motor, leading to a decrease in bearing reliability and an increase in vibration noise.
 このような現象を回避するためには、旋回スクロールにアルミ等の軽量材料を用いる必要がある。しかし、旋回スクロールのみアルミ材料を用い、固定スクロールやフレームに従来の鉄系材料を用いると、線膨張係数の違いにより圧縮機内部の隙間が拡大して効率が低下する。従って、旋回スクロール、固定スクロール及びフレームは同じ材料にすることが望ましい。 In order to avoid such a phenomenon, it is necessary to use a lightweight material such as aluminum for the orbiting scroll. However, when an aluminum material is used only for the orbiting scroll and a conventional iron-based material is used for the fixed scroll and the frame, the efficiency inside the compressor is reduced due to the gap in the compressor being enlarged due to the difference in the linear expansion coefficient. Therefore, it is desirable that the orbiting scroll, the fixed scroll and the frame are made of the same material.
 一方で、冷凍空調用の圧縮機には、密閉型が広く使用されている。この密閉型圧縮機では、密閉容器内に圧縮機構部や電動機部が収納され、密閉容器と圧縮機構部はタック溶接で固定される場合が多い。このような密閉容器と圧縮機構部のタック溶接に関して、例えば、特許文献1がある。 On the other hand, a hermetic type is widely used as a compressor for refrigerating and air-conditioning. In this hermetic compressor, a compression mechanism and an electric motor are housed in a hermetic container, and the hermetic container and the compression mechanism are often fixed by tack welding. For example, there is Patent Document 1 regarding tack welding of such a sealed container and a compression mechanism.
特開2003-239873号公報JP 2003-239873 A
 密閉型のスクロール圧縮機は、密閉容器とフレームをタック溶接することが一般的であるが、高速化に対応するため圧縮機構部をアルミ材料にすると、密閉容器とフレームとをタック溶接することは困難である。 Sealed scroll compressors are generally tack welded between the sealed container and the frame, but if the compression mechanism is made of an aluminum material in order to cope with high speed, it is not possible to tack weld the sealed container and the frame. Have difficulty.
 特許文献1は、材料的な溶接の不具合を解決する技術ではないが、タック溶接によるフレームの変形を無くすためにタック溶接専用の支持枠を新規に設けて、この支持枠と密閉容器をタック溶接する。特許文献1の構成では、支持枠と密閉容器をタック溶接するので、支持枠を鉄系材料にすれば、圧縮機構部にアルミ材料を使用しても、密閉容器と圧縮機構部は支持枠を介して固定可能である。しかし、支持枠を固定スクロールとボルトで締結しているため、圧縮機構部にアルミ材料を用いた場合、支持枠と固定スクロールの線膨張係数の違いにより、固定スクロールの変形を拘束する可能性がある。固定スクロールの変形が拘束されると、旋回スクロールやフレームとの変形量に差異が生じ、圧縮機内部の隙間が拡大し効率が低下する。 Patent Document 1 is not a technique for solving the problem of material welding, but in order to eliminate deformation of the frame due to tack welding, a support frame dedicated to tack welding is newly provided, and this support frame and the sealed container are tack welded. To do. In the configuration of Patent Document 1, since the support frame and the hermetic container are tack welded, if the support frame is made of an iron-based material, the hermetic container and the compression mechanism part are not attached to the support frame even if an aluminum material is used for the compression mechanism part. It can be fixed via. However, since the support frame is fastened with the fixed scroll and the bolt, when aluminum material is used for the compression mechanism, there is a possibility that the deformation of the fixed scroll may be restricted due to the difference in the linear expansion coefficient between the support frame and the fixed scroll. is there. When the deformation of the fixed scroll is constrained, a difference occurs in the amount of deformation with the orbiting scroll and the frame, and the gap inside the compressor is enlarged, and the efficiency is lowered.
 本発明が解決しようとする課題は、圧縮機構部にアルミ材料を用いても、密閉容器と圧縮機構部の固定を可能とするとともに、タック溶接による圧縮機構部の変形を抑制することである。 The problem to be solved by the present invention is to enable the hermetic container and the compression mechanism part to be fixed even if an aluminum material is used for the compression mechanism part, and to suppress deformation of the compression mechanism part due to tack welding.
 本発明のスクロール圧縮機は、密閉容器と、密閉容器内に、旋回台板、旋回台板に立設する渦巻状の旋回ラップ、及び、旋回台板の旋回ラップと反対側に形成された旋回軸受、を有する旋回スクロール、並びに、固定台板、及び、固定台板に立設する渦巻状の固定ラップ、を有し、旋回スクロールと互いにかみ合い圧縮室を形成する固定スクロール、を備える圧縮機構部と、旋回スクロールの固定スクロールと反対側に位置し、固定スクロールとで旋回スクロールを挟み込むように固定スクロールに取り付けられるとともに、主軸受が形成されたフレームと、フレームの下方から機械的に締結され、外周部が密閉容器と溶接固定されたフレーム補助部材と、圧縮機構部を駆動する電動機部と、旋回軸受及び主軸受により支持されるとともに、電動機部の回転力を圧縮機構部に伝達するクランク軸と、密閉容器の底部に位置し、潤滑油を貯留する油溜部と、密閉容器外に圧縮室で圧縮された冷媒を吐出する吐出管と、を備える。 The scroll compressor of the present invention includes a hermetic container, a swivel base plate, a spiral swirl wrap standing on the swivel base plate, and a swirl formed on the opposite side of the swirl base plate. A compression mechanism unit comprising a orbiting scroll having a bearing, a fixed base plate, and a spiral fixed lap standing on the fixed base plate, and a fixed scroll that meshes with the orbiting scroll to form a compression chamber. And is located on the opposite side of the fixed scroll of the orbiting scroll, is attached to the fixed scroll so as to sandwich the orbiting scroll with the fixed scroll, and is mechanically fastened from below the frame on which the main bearing is formed, The outer peripheral portion is supported by a frame auxiliary member welded and fixed to the hermetic container, an electric motor portion that drives the compression mechanism portion, a slewing bearing, and a main bearing. A crankshaft that transmits the rotational force of the motor part to the compression mechanism part, an oil reservoir part that is located at the bottom of the sealed container and stores lubricating oil, and a discharge pipe that discharges the refrigerant compressed in the compression chamber outside the sealed container And comprising.
 本発明によれば、圧縮機構部にアルミ系材料を用いても、密閉容器と圧縮機構部の固定が可能となるとともに、圧縮機構部の溶接変形も抑制することができる。 According to the present invention, even when an aluminum-based material is used for the compression mechanism portion, the sealed container and the compression mechanism portion can be fixed, and welding deformation of the compression mechanism portion can be suppressed.
第1実施形態のスクロール圧縮機の縦断面図1 is a longitudinal sectional view of a scroll compressor according to a first embodiment. 第1実施形態の給油構造の説明図Explanatory drawing of the oil supply structure of 1st Embodiment 第1実施形態のガス冷媒の流れの説明図Explanatory drawing of the flow of the gas refrigerant of a 1st embodiment 第1実施形態の主軸受カバー斜視図Main bearing cover perspective view of the first embodiment 図1のA-A断面図AA sectional view of FIG. 第2実施形態のタック溶接位置を示した図The figure which showed the tack welding position of 2nd Embodiment 第3実施形態のスクロール圧縮機の縦断面図Longitudinal sectional view of the scroll compressor of the third embodiment 第3実施形態の給油構造の説明図Explanatory drawing of the oil supply structure of 3rd Embodiment 第3実施形態のガス冷媒の流れの説明図Explanatory drawing of the flow of the gas refrigerant of a 3rd embodiment 第4実施形態の給油構造とガス冷媒の流れの説明図Explanatory drawing of the oil supply structure of 4th Embodiment and the flow of a gas refrigerant 第5実施形態の給油構造とガス冷媒の流れの説明図Explanatory drawing of the oil supply structure of 5th Embodiment and the flow of a gas refrigerant 第5実施形態の主軸受カバー斜視図Main bearing cover perspective view of the fifth embodiment
 本発明のスクロール圧縮機は、密閉容器と、密閉容器内に、旋回台板、旋回台板に立設する渦巻状の旋回ラップ、及び、旋回台板の旋回ラップと反対側に形成された旋回軸受、を有する旋回スクロール、並びに、固定台板、及び、固定台板に立設する渦巻状の固定ラップ、を有し、旋回スクロールと互いにかみ合い圧縮室を形成する固定スクロール、を備える圧縮機構部と、旋回スクロールの固定スクロールと反対側に位置し、固定スクロールとで旋回スクロールを挟み込むように固定スクロールに取り付けられ、主軸受を備えるフレームと、フレームの下方から機械的に締結され、外周部が密閉容器と溶接固定されたフレーム補助部材と、圧縮機構部を駆動する電動機部と、旋回軸受及び主軸受により支持されるとともに、電動機部の回転力を圧縮機構部に伝達するクランク軸と、密閉容器の底部に位置し、潤滑油を貯留する油溜部と、密閉容器外に圧縮機構部で圧縮された冷媒を吐出する吐出管と、を備える。本発明のスクロール圧縮機によれば、フレームの下方から機械的に締結され外周部が密閉容器と溶接固定されたフレーム補助部材を備えるので、圧縮機構部にアルミ系材料を用いても、密閉容器と圧縮機構部の固定が可能となるとともに、圧縮機構部の溶接変形も抑制することができる。 The scroll compressor of the present invention includes a hermetic container, a swivel base plate, a spiral swirl wrap standing on the swivel base plate, and a swirl formed on the opposite side of the swirl base plate. A compression mechanism unit comprising a orbiting scroll having a bearing, a fixed base plate, and a spiral fixed lap standing on the fixed base plate, and a fixed scroll that meshes with the orbiting scroll to form a compression chamber. And is mounted on the fixed scroll so that the orbiting scroll is sandwiched between the fixed scroll and the fixed scroll, and the frame including the main bearing is mechanically fastened from below the frame, and the outer peripheral portion is It is supported by a sealed container and a frame auxiliary member that is fixed by welding, an electric motor unit that drives the compression mechanism unit, a slewing bearing, and a main bearing. A crankshaft that transmits force to the compression mechanism, an oil reservoir that is located at the bottom of the sealed container and stores lubricating oil, and a discharge pipe that discharges the refrigerant compressed by the compression mechanism outside the sealed container. Prepare. According to the scroll compressor of the present invention, since the frame auxiliary member is mechanically fastened from below the frame and the outer peripheral part is welded and fixed to the sealed container, the sealed container can be used even if an aluminum-based material is used for the compression mechanism. And the compression mechanism portion can be fixed, and welding deformation of the compression mechanism portion can also be suppressed.
 まず、図1から図5を用いて、本発明の第1の実施形態を説明する。図1はスクロール圧縮機の縦断面図、図2は給油構造の説明図、図3はガス冷媒の流れの説明図、図4は主軸受カバー斜視図、図5は図1のA-A断面図である。 First, the first embodiment of the present invention will be described with reference to FIGS. 1 is a longitudinal sectional view of a scroll compressor, FIG. 2 is an explanatory view of an oil supply structure, FIG. 3 is an explanatory view of a flow of gas refrigerant, FIG. 4 is a perspective view of a main bearing cover, and FIG. FIG.
 スクロール圧縮機1は、密閉容器2の中に、圧縮機構部3と、圧縮機構部3を駆動する電動機部4を収納する。 The scroll compressor 1 houses a compression mechanism unit 3 and an electric motor unit 4 that drives the compression mechanism unit 3 in a sealed container 2.
 密閉容器2は、円筒状のケース2aに蓋チャンバ2bと底チャンバ2cが上下に溶接されて構成される。密閉容器2の上部には圧縮機構部3が、下部には電動機部4が配置される。また、蓋チャンバ2bには吸込管2dが、ケース2aには吐出管2eが設けられる。 The sealed container 2 is configured by welding a lid chamber 2b and a bottom chamber 2c up and down to a cylindrical case 2a. A compression mechanism unit 3 is disposed at the upper part of the sealed container 2, and an electric motor unit 4 is disposed at the lower part. The lid chamber 2b is provided with a suction pipe 2d, and the case 2a is provided with a discharge pipe 2e.
 圧縮機構部3は、固定スクロール5、旋回スクロール6、及び、固定スクロール5にボルト等で締結されて旋回スクロール6を支持するフレーム9を備えて構成される。 The compression mechanism unit 3 includes a fixed scroll 5, a turning scroll 6, and a frame 9 that is fastened to the fixed scroll 5 with a bolt or the like and supports the turning scroll 6.
 固定スクロール5には相対向して旋回スクロール6が旋回自在に配置されており、固定スクロール5及び旋回スクロール6により、吸込室10と圧縮室11が形成される。 The orbiting scroll 6 is rotatably disposed opposite to the fixed scroll 5, and the suction chamber 10 and the compression chamber 11 are formed by the fixed scroll 5 and the orbiting scroll 6.
 フレーム9は、クランク軸7を回転自在に支持する主軸受9aを備える。旋回スクロール6の下面側には旋回軸受6aが設けられており、クランク軸7の偏心部7bが連結される。 The frame 9 includes a main bearing 9a that rotatably supports the crankshaft 7. An orbiting bearing 6 a is provided on the lower surface side of the orbiting scroll 6, and an eccentric portion 7 b of the crankshaft 7 is connected thereto.
 旋回スクロール6の下面側とフレーム9の間には、オルダムリング12が配置される。オルダムリング12は、旋回スクロール6の下面側に形成された溝とフレーム9に形成された溝に装着される。オルダムリング12により、旋回スクロール6は自転することなく、クランク軸7の偏心部7bの偏心回転を受けて公転運動する。 The Oldham ring 12 is disposed between the lower surface side of the orbiting scroll 6 and the frame 9. The Oldham ring 12 is mounted in a groove formed on the lower surface side of the orbiting scroll 6 and a groove formed in the frame 9. The Oldham ring 12 causes the orbiting scroll 6 to revolve by receiving the eccentric rotation of the eccentric portion 7b of the crankshaft 7 without rotating.
 電動機部4のステータ4aは、密閉容器2に圧入、溶接等により固定される。ロータ4bはステータ4a内に回転可能に配置されており、ロータ4bにはクランク軸7が固定される。 The stator 4a of the electric motor unit 4 is fixed to the sealed container 2 by press fitting, welding or the like. The rotor 4b is rotatably disposed in the stator 4a, and the crankshaft 7 is fixed to the rotor 4b.
 電動機部4の下側には貯油室があり、摺動部を潤滑するための潤滑油13が貯留される。 There is an oil storage chamber below the motor unit 4, and the lubricating oil 13 for lubricating the sliding part is stored.
 クランク軸7は、主軸7aと偏心部7bとを備えて構成され、フレーム9に設けた主軸受9aと下軸受14とで支持される。偏心部7bはクランク軸7の主軸7aに対して偏心して一体に形成されており、旋回スクロール6の背面に設けた旋回軸受6aに嵌合される。クランク軸7は電動機部4によって駆動され、偏心部7bは主軸7aに対して偏心回転運動し、旋回スクロール6を旋回運動させる。下軸受14の下側にはクランク軸7と連結された容積型の給油ポンプ15が設置され、クランク軸7の回転運動によって潤滑油13を給油通路7cへ供給する。 The crankshaft 7 includes a main shaft 7a and an eccentric portion 7b, and is supported by a main bearing 9a and a lower bearing 14 provided on the frame 9. The eccentric portion 7 b is formed integrally with the main shaft 7 a of the crankshaft 7 so as to be eccentric, and is fitted to the orbiting bearing 6 a provided on the back surface of the orbiting scroll 6. The crankshaft 7 is driven by the electric motor unit 4, and the eccentric part 7 b rotates eccentrically with respect to the main shaft 7 a, thereby causing the orbiting scroll 6 to rotate. A positive displacement oil pump 15 connected to the crankshaft 7 is installed below the lower bearing 14, and the lubricating oil 13 is supplied to the oil supply passage 7c by the rotational movement of the crankshaft 7.
 フレーム9の主軸受9aの下側には、主軸受9aを潤滑した潤滑油13を受ける主軸受カバー8(フレーム補助部材8)が取り付けられる。主軸受カバー8は、図4に示すように、中心にクランク軸7が貫通する円形の開口部を有し、クランク軸方向から見て円環形状の鉄系材料で構成される。密閉容器2と主軸受カバー8は溶接部8aでタック溶接されて、溶融したタック溶接部17により固定される。また、主軸受カバー8はフレーム9の下方とボルト等で機械的に締結固定される。その結果、密閉容器2と圧縮機構部3は主軸受カバー8を介して固定される。 The main bearing cover 8 (frame auxiliary member 8) that receives the lubricating oil 13 that lubricates the main bearing 9a is attached to the lower side of the main bearing 9a of the frame 9. As shown in FIG. 4, the main bearing cover 8 has a circular opening through which the crankshaft 7 penetrates at the center, and is made of an annular iron-based material when viewed from the crankshaft direction. The sealed container 2 and the main bearing cover 8 are tack welded at the welded portion 8a and fixed by the molten tack welded portion 17. The main bearing cover 8 is mechanically fastened and fixed to the lower part of the frame 9 with bolts or the like. As a result, the sealed container 2 and the compression mechanism 3 are fixed via the main bearing cover 8.
 図2を用いて潤滑油13の流れについて説明する。給油ポンプ15により給油通路7cへ供給された潤滑油13は、クランク軸7の上端まで行き、旋回軸受6aと主軸受9aを潤滑する。その後、潤滑油13は、フレーム9と主軸受カバー8で形成される空間に導かれ、排油パイプ16から貯油室へと返油される。 The flow of the lubricating oil 13 will be described with reference to FIG. The lubricating oil 13 supplied to the oil supply passage 7c by the oil supply pump 15 goes to the upper end of the crankshaft 7, and lubricates the swing bearing 6a and the main bearing 9a. Thereafter, the lubricating oil 13 is guided to a space formed by the frame 9 and the main bearing cover 8 and returned from the oil drain pipe 16 to the oil storage chamber.
 次に、図3を用いて、密閉容器2内部のガス冷媒の流れを説明する。吐出ポート5aから吐き出されたガス冷媒は、固定スクロール5とフレーム9の外周溝5b,9bを通って、フレーム9とステータ4aの間の空間に流入する。図4に示すように、主軸受カバー8の円環面にはガス通路8bがフレーム9側からステータ4a側に貫通するように形成されており、空間に流入したガス冷媒は、ガス通路8bを通って、吐出管2eから密閉容器2の外部へ吐き出される。 Next, the flow of the gas refrigerant inside the sealed container 2 will be described with reference to FIG. The gas refrigerant discharged from the discharge port 5a flows into the space between the frame 9 and the stator 4a through the fixed scroll 5 and the outer peripheral grooves 5b and 9b of the frame 9. As shown in FIG. 4, a gas passage 8b is formed in the annular surface of the main bearing cover 8 so as to penetrate from the frame 9 side to the stator 4a side, and the gas refrigerant flowing into the space passes through the gas passage 8b. Then, it is discharged from the discharge pipe 2e to the outside of the sealed container 2.
 図5に図1のA-A断面図を示す。図4にも記載しているが、主軸受カバー8には、密閉容器2の内径とほぼ同じ直径である溶接部8aが設けられる。密閉容器2と主軸受カバー8は、溶接部8aでタック溶接されて、溶融したタック溶接部17により固定される。ここで、タック溶接17は4箇所としているが、溶接強度と溶接スペースから4箇所より少なくても多くて同様の効果が得られる。 FIG. 5 shows a cross-sectional view taken along the line AA in FIG. As shown in FIG. 4, the main bearing cover 8 is provided with a welded portion 8 a having a diameter substantially the same as the inner diameter of the sealed container 2. The hermetic container 2 and the main bearing cover 8 are tack welded by the welded portion 8a and fixed by the molten tack welded portion 17. Here, although tack welding 17 is made into four places, the same effect is acquired even if it is less than four places from welding strength and welding space.
 以上、本発明の第1実施形態の構造について説明したが、以下に作用効果についてまとめる。 Although the structure of the first embodiment of the present invention has been described above, the effects are summarized below.
 背景技術で説明したように、低GWPのR32やR290、R1234zeの特性に対応するため、圧縮機を小型高速化する必要がある。小型高速化のためには、圧縮機構部3をアルミニウム合金やマグネシウム合金などで構成し、軽量化を図る必要があるが、圧縮機構部3と密閉容器2との溶接固定が困難となる。 As explained in the background art, it is necessary to reduce the size and speed of the compressor in order to cope with the characteristics of low GWP R32, R290, and R1234ze. In order to increase the size and speed, it is necessary to make the compression mechanism portion 3 of an aluminum alloy or a magnesium alloy to reduce the weight, but it is difficult to fix the compression mechanism portion 3 and the sealed container 2 by welding.
 この課題を解決するために、本実施例では、フレーム9に固定される主軸受カバー8に鉄系材料を用いるとともに、外周部にタック溶接するための溶接部8aを設けている。このような構成とすることにより、溶接部8aと密閉容器2をタック溶接できるので、圧縮機構部3にアルミニウム合金等を使用しても、密閉容器2と圧縮機構部3は、主軸受カバー8を介し固定可能となる。 In order to solve this problem, in this embodiment, a ferrous material is used for the main bearing cover 8 fixed to the frame 9, and a welded portion 8a for tack welding is provided on the outer peripheral portion. By adopting such a configuration, the welded portion 8a and the sealed container 2 can be tack-welded. Therefore, even if an aluminum alloy or the like is used for the compression mechanism unit 3, the sealed container 2 and the compression mechanism unit 3 are provided with the main bearing cover 8. It becomes possible to fix through.
 また、旋回スクロール6の鏡板部6bは、固定スクロール6とフレーム9の間に10μmの隙間を有して挟みこまれており、フレーム9にタック溶接をすると溶接変形により、この隙間が変化する。変形モードは、部品形状や溶接条件等により変わるが、例えば、隙間が拡がる方向に変形すると、旋回スクロール6が傾き易くなり、スクロールラップ先端部の隙間が拡大し漏れ損失の増大につながる。逆に、小さくなる方向に変形すると、鏡板部6bの摺動ロスが増大する。この課題に対し、本発明では、主軸受カバー8にタック溶接する構造なので、このようなフレームの変形が抑制できる。 Also, the end plate portion 6b of the orbiting scroll 6 is sandwiched between the fixed scroll 6 and the frame 9 with a 10 μm gap, and when the frame 9 is tack welded, this gap changes due to welding deformation. The deformation mode varies depending on the part shape, welding conditions, and the like. For example, if the deformation is performed in a direction in which the gap is widened, the orbiting scroll 6 is easily tilted, and the gap at the tip of the scroll wrap is widened, leading to an increase in leakage loss. On the contrary, if it deform | transforms in the direction which becomes small, the sliding loss of the end plate part 6b will increase. With respect to this problem, in the present invention, since the structure is such that the main bearing cover 8 is tack welded, such deformation of the frame can be suppressed.
 更に、主軸受カバー8はフレーム9とボルト等で締結固定されるが、ガス通路8bを設けているので、主軸受カバー8にタック溶接しても、ガス通路8bが柔構造となって、フレーム9への変形の伝播を少なくできる。 Further, the main bearing cover 8 is fastened and fixed to the frame 9 with bolts or the like. However, since the gas passage 8b is provided, the gas passage 8b has a flexible structure even when tack-welded to the main bearing cover 8, and the frame. The propagation of deformation to 9 can be reduced.
 次に、第2の実施形態を図6を用いて説明する。基本的構造は第1実施形態と同様であり、詳細な説明は省略する。 Next, a second embodiment will be described with reference to FIG. The basic structure is the same as that of the first embodiment, and detailed description thereof is omitted.
 第2実施形態が第1実施形態と異なる点は、タック溶接部17の位置である。第2の実施形態では、タック溶接部17の位置を、主軸受9aの軸方向の中心位置と一致させている(一点鎖線で記載)。このように本実施形態では、タック溶接部17の位置を主軸受9aの軸方向中心と一致させるので、主軸受9aの軸受荷重によってタック溶接部17にかかるモーメントを軽減でき、振動や騒音を低減できる。 The difference of the second embodiment from the first embodiment is the position of the tack welded portion 17. In the second embodiment, the position of the tack welded portion 17 is made to coincide with the center position of the main bearing 9a in the axial direction (shown by a one-dot chain line). As described above, in this embodiment, the position of the tack welded portion 17 is made coincident with the axial center of the main bearing 9a. Therefore, the moment applied to the tack welded portion 17 by the bearing load of the main bearing 9a can be reduced, and vibration and noise are reduced. it can.
 次に、第3の実施形態を図7から図9を用いて説明する。図7は第3実施形態のスクロール圧縮機の縦断面図、図8は第3実施形態の給油構造の説明図、図9は第3実施形態のガス冷媒の流れの説明図である。基本的構造は上記各実施例と同様であり、詳細な説明は省略する。 Next, a third embodiment will be described with reference to FIGS. FIG. 7 is a longitudinal sectional view of the scroll compressor of the third embodiment, FIG. 8 is an explanatory view of an oil supply structure of the third embodiment, and FIG. 9 is an explanatory view of the flow of the gas refrigerant of the third embodiment. The basic structure is the same as that in each of the above embodiments, and detailed description thereof is omitted.
 第3実施形態が第1実施形態と異なる点は給油構造である。本実施形態では、旋回スクロール6の背面に設けられた背圧室18と吐出圧力雰囲気である貯油室との差圧により、各摺動部に潤滑油13が供給される。そして、背圧室18の圧力は、従来からスクロール圧縮機の背圧制御機構として用いられている逆止弁構造の背圧制御弁や圧縮途中の圧縮室と背圧室を連通する中間孔等で、吐出圧力と吸込圧力の間の圧力に制御される。 The third embodiment differs from the first embodiment in the oil supply structure. In the present embodiment, the lubricating oil 13 is supplied to each sliding portion by the differential pressure between the back pressure chamber 18 provided on the back surface of the orbiting scroll 6 and the oil storage chamber that is the discharge pressure atmosphere. The pressure in the back pressure chamber 18 is such as a back pressure control valve having a check valve structure conventionally used as a back pressure control mechanism of a scroll compressor, an intermediate hole communicating the compression chamber and the back pressure chamber in the middle of compression, or the like. Thus, the pressure is controlled between the discharge pressure and the suction pressure.
 図8を用いて、第3実施形態の給油構造について説明する。クランク軸7の下端部には、給油パイプ19が設けられており、給油パイプ19から、貯油室と背圧室18の差圧を利用して、給油通路7cへ潤滑油13が供給される。給油通路7cを流れる潤滑油13の一部は、横孔7dから主軸受9aに供給され、残りの潤滑油13は、旋回軸受6aに供給される。旋回軸受6aと主軸受9aに供給された潤滑油13は、クランク軸7のスラスト受面7eで再度合流し、背圧室18に流入する。 The oil supply structure of the third embodiment will be described with reference to FIG. An oil supply pipe 19 is provided at the lower end of the crankshaft 7, and the lubricating oil 13 is supplied from the oil supply pipe 19 to the oil supply passage 7 c using the differential pressure between the oil storage chamber and the back pressure chamber 18. Part of the lubricating oil 13 flowing through the oil supply passage 7c is supplied to the main bearing 9a from the lateral hole 7d, and the remaining lubricating oil 13 is supplied to the swivel bearing 6a. The lubricating oil 13 supplied to the slewing bearing 6 a and the main bearing 9 a merges again at the thrust receiving surface 7 e of the crankshaft 7 and flows into the back pressure chamber 18.
 主軸受9aの下側には、シール軸受20(フレーム補助部材20)がボルト等で機械的にフレーム9に締結される。シール軸受20は、密閉容器2のガス冷媒が主軸受9aに流入して潤滑不良を起こさないように、密閉容器2から主軸受9aを封止する役割を果たす。 The seal bearing 20 (frame auxiliary member 20) is mechanically fastened to the frame 9 with bolts or the like below the main bearing 9a. The seal bearing 20 serves to seal the main bearing 9a from the sealed container 2 so that the gas refrigerant in the sealed container 2 does not flow into the main bearing 9a and cause poor lubrication.
 また、シール軸受20の外周は、密閉容器2の内径に面する溶接部20aが設けられており、溶接部20aで密閉容器2とタック溶接される。 Further, a welded portion 20a facing the inner diameter of the sealed container 2 is provided on the outer periphery of the seal bearing 20, and the welded portion 20a is tack welded to the sealed container 2.
 次に、図9を用いて、密閉容器2内部のガス冷媒の流れを説明する。吐出ポート5aから吐き出されたガス冷媒は、固定スクロール5とフレーム9の外周溝5bと9bを通って、フレーム9とステータ4aの間の空間に流入する。シール軸受20には、ガス通路20bが形成されており、空間に流入したガス冷媒は、ガス通路20bを通って、吐出管2eから密閉容器2から外部へ吐き出される。 Next, the flow of the gas refrigerant inside the sealed container 2 will be described with reference to FIG. The gas refrigerant discharged from the discharge port 5a flows into the space between the frame 9 and the stator 4a through the fixed scroll 5 and the outer peripheral grooves 5b and 9b of the frame 9. A gas passage 20b is formed in the seal bearing 20, and the gas refrigerant flowing into the space is discharged from the discharge vessel 2e to the outside through the gas passage 20b.
 以上、本発明の第3実施形態の構造について説明したが、以下に作用効果についてまとめる。 The structure of the third embodiment of the present invention has been described above, but the effects are summarized below.
 第1実施形態の作用効果でも説明したように、小型高速化のためには、圧縮機構部3をアルミニウム合金やマグネシウム合金などで構成し、軽量化を図る必要があるが、圧縮機構部3と密閉容器2との溶接固定が困難となる。 As described in the operation and effect of the first embodiment, in order to reduce the size and speed, it is necessary to configure the compression mechanism portion 3 with an aluminum alloy, a magnesium alloy, or the like to reduce the weight. It becomes difficult to fix the welding to the sealed container 2.
 この課題を解決するために、本発明は、フレーム9に固定されるシール軸受20に鉄系材料を用いるとともに、外周部にタック溶接するための溶接部20aを設ける。このような構成とすることにより、溶接部20aと密閉容器2をタック溶接できるので、圧縮機構部3にアルミニウム合金等を使用しても、密閉容器2と圧縮機構部3は、シール軸受20を介し固定可能となる。 In order to solve this problem, the present invention uses a ferrous material for the seal bearing 20 fixed to the frame 9 and provides a welded portion 20a for tack welding on the outer peripheral portion. By adopting such a configuration, the welded portion 20a and the sealed container 2 can be tack-welded. Therefore, even if an aluminum alloy or the like is used for the compression mechanism portion 3, the sealed container 2 and the compression mechanism portion 3 are connected to the seal bearing 20. It becomes possible to fix through.
 また、旋回スクロール6の鏡板部6bは、固定スクロール6とフレーム9の間に10μmの隙間を有して挟みこまれており、フレーム9にタック溶接をすると溶接変形により、この隙間が変化する。変形モードは、部品形状や溶接条件等により変わるが、例えば、隙間が大きくなる方向に変形すると、旋回スクロール6が傾き易くなり、スクロールラップ先端部の隙間が拡大し漏れ損失の増大につながる。逆に、小さくなる方向に変形すると、鏡板部6bの摺動ロスが増大する。この課題に対し、本実施例では、シール軸受20にタック溶接するので、このようなフレームの変形が抑制できる。 Also, the end plate portion 6b of the orbiting scroll 6 is sandwiched between the fixed scroll 6 and the frame 9 with a 10 μm gap, and when the frame 9 is tack welded, this gap changes due to welding deformation. The deformation mode varies depending on the part shape, welding conditions, and the like. For example, if the deformation is performed in a direction in which the gap is increased, the orbiting scroll 6 is easily tilted, and the gap at the tip of the scroll wrap is enlarged, leading to an increase in leakage loss. On the contrary, if it deform | transforms in the direction which becomes small, the sliding loss of the end plate part 6b will increase. In this embodiment, since tack welding is performed on the seal bearing 20 in this embodiment, such deformation of the frame can be suppressed.
 更に、シール軸受20には、ガス通路20bを設けているので、シール軸受20にタック溶接しても、ガス通路20bが柔構造となって、シール軸受20とボルト等で締結しているフレーム9への変形の伝播を少なくできる。 Further, since the seal bearing 20 is provided with the gas passage 20b, the frame 9 has a flexible structure even when tack-welded to the seal bearing 20 and is fastened to the seal bearing 20 with bolts or the like. The propagation of deformation to can be reduced.
 次に、第4の実施形態を図10を用いて説明する。図10は第4実施形態の給油構造とガス冷媒の流れの説明図である。ここで、破線は潤滑油の流れで、実線はガス冷媒の流れである。基本的構造は上記各実施例と同様であり、詳細な説明は省略する。 Next, a fourth embodiment will be described with reference to FIG. FIG. 10 is an explanatory diagram of the oil supply structure and the flow of the gas refrigerant according to the fourth embodiment. Here, the broken line is the flow of the lubricating oil, and the solid line is the flow of the gas refrigerant. The basic structure is the same as that in each of the above embodiments, and detailed description thereof is omitted.
 第4実施形態と第1実施形態の異なる点は、密閉容器2内のガス冷媒の流れである。旋回スクロール6のフレーム9側には、背圧室18が設けられる。背圧室18の圧力は、従来からスクロール圧縮機でよく用いられる背圧制御機構(図示せず)によって、吐出圧力と吸込圧力の中間の圧力に制御される。 The difference between the fourth embodiment and the first embodiment is the flow of the gas refrigerant in the sealed container 2. A back pressure chamber 18 is provided on the frame 9 side of the orbiting scroll 6. The pressure in the back pressure chamber 18 is controlled to an intermediate pressure between the discharge pressure and the suction pressure by a back pressure control mechanism (not shown) conventionally used in a scroll compressor.
 旋回スクロール6の下側端面にはシールリング21が設けられており、シールリング21より、背圧室18とクランク軸7周囲の空間とを仕切る。旋回スクロール6の下側端面には、旋回軸受6aを潤滑した潤滑油13の一部を背圧室18へ供給するための溝(図示せず)が設けられる。背圧室18へ供給された潤滑油13は、その後、吸込室10に給油される。吸込室10に給油された潤滑油13は、圧縮行程において、圧縮室11の微小な隙間をオイルシールして、ガス冷媒と共に吐出ポート5aから吐き出される。このため、吐出ポート5aから吐き出されたガス冷媒には、圧縮室11の隙間のシールに用いられた潤滑油13が、ガス冷媒の循環量に対して、5~10wt%の割合で含まれる。 A seal ring 21 is provided on the lower end surface of the orbiting scroll 6 and partitions the back pressure chamber 18 and the space around the crankshaft 7 from the seal ring 21. A groove (not shown) for supplying a part of the lubricating oil 13 lubricating the orbiting bearing 6 a to the back pressure chamber 18 is provided on the lower end surface of the orbiting scroll 6. The lubricating oil 13 supplied to the back pressure chamber 18 is then supplied to the suction chamber 10. In the compression stroke, the lubricating oil 13 supplied to the suction chamber 10 seals a minute gap in the compression chamber 11 and is discharged from the discharge port 5a together with the gas refrigerant. For this reason, the gas refrigerant discharged from the discharge port 5a contains the lubricating oil 13 used for sealing the gap in the compression chamber 11 at a rate of 5 to 10 wt% with respect to the circulation amount of the gas refrigerant.
 吐出ポート5aから吐き出されたオイルリッチのガス冷媒は、固定スクロール5とフレーム9の外周溝5bと9bを通って、フレーム9とステータ4aの間の空間に流れ込む。主軸受カバー8の下方であって主軸受カバー8のガス通路8bと吐出管2eとの間に、主軸受カバー8に接続された円筒状の仕切板8cが配置される。ガス冷媒はフレーム9とステータ4aの間の空間からガス通路8bを通って電動機部4側に導かれるが、仕切板8cにより、ガス冷媒は吐出管2eには流れずに、ステータ4aとロータ4bの間を通って貯油室へと流れる。ここで、潤滑油13は貯油室へ返油され、ガス冷媒のみがステータ4aのコアカット4cを通って、吐出管2eから外部に流出する。 The oil-rich gas refrigerant discharged from the discharge port 5a flows into the space between the frame 9 and the stator 4a through the fixed scroll 5 and the outer peripheral grooves 5b and 9b of the frame 9. A cylindrical partition plate 8c connected to the main bearing cover 8 is disposed below the main bearing cover 8 and between the gas passage 8b of the main bearing cover 8 and the discharge pipe 2e. The gas refrigerant is guided from the space between the frame 9 and the stator 4a to the motor unit 4 side through the gas passage 8b. However, the gas refrigerant does not flow to the discharge pipe 2e by the partition plate 8c, and the stator 4a and the rotor 4b. Flows to the oil storage chamber. Here, the lubricating oil 13 is returned to the oil storage chamber, and only the gas refrigerant flows out of the discharge pipe 2e through the core cut 4c of the stator 4a.
 以上のように、第4実施形態では、圧縮機構部6と電動機部4の間の空間に導かれたオイルリッチのガス冷媒を、主軸受カバー8のガス通路8bと仕切板8cによって、吐出管2eと干渉させずに、一旦、貯油室側へと流せるので、吐出管2eから流出する油量を低減できる。 As described above, in the fourth embodiment, the oil-rich gas refrigerant guided to the space between the compression mechanism unit 6 and the motor unit 4 is discharged from the discharge pipe by the gas passage 8b and the partition plate 8c of the main bearing cover 8. Since it can flow to the oil storage chamber side without interfering with 2e, the amount of oil flowing out from the discharge pipe 2e can be reduced.
 次に、第5の実施形態を図11と図12を用いて説明する。図11は第5実施形態の給油構造とガス冷媒の流れの説明図、図12は第5実施形態の主軸受カバー斜視図である。ここで、破線は潤滑油の流れで、実線はガス冷媒の流れである。基本的構造は上記各実施例と同様であり、詳細な説明は省略する。 Next, a fifth embodiment will be described with reference to FIGS. FIG. 11 is an explanatory view of the oil supply structure and the flow of the gas refrigerant of the fifth embodiment, and FIG. 12 is a perspective view of the main bearing cover of the fifth embodiment. Here, the broken line is the flow of the lubricating oil, and the solid line is the flow of the gas refrigerant. The basic structure is the same as that in each of the above embodiments, and detailed description thereof is omitted.
 吐出ポート5aから吐き出されたオイルリッチのガス冷媒は、固定スクロール5とフレーム9の外周溝5bと9bを通って、フレーム9とステータ4aの間の空間に流れ込む。そして、ガス冷媒は、主軸受カバー8の外周溝8dを通って、電動機部4側に導かれ、仕切板8cの外側空間から、コアカット4cを通って貯油室へと流れる。ここで、潤滑油13は貯油室へ返油され、ガス冷媒のみが、ステータ4aとロータ4bの間を通って、仕切板8cの内側空間に導かれる。吐出管2eは主軸受カバー8の吐出管挿入孔8eから挿入され、仕切板8cの内側空間と連通しており(吐出管2eの流入口が仕切板8cを貫通して内側空間に位置しており)、内側空間に導かれたガス冷媒は、吐出管2eから外部に流出する。 The oil-rich gas refrigerant discharged from the discharge port 5a flows into the space between the frame 9 and the stator 4a through the fixed scroll 5 and the outer peripheral grooves 5b and 9b of the frame 9. The gas refrigerant passes through the outer peripheral groove 8d of the main bearing cover 8 and is guided to the electric motor unit 4 side, and flows from the outer space of the partition plate 8c to the oil storage chamber through the core cut 4c. Here, the lubricating oil 13 is returned to the oil storage chamber, and only the gas refrigerant passes between the stator 4a and the rotor 4b and is guided to the inner space of the partition plate 8c. The discharge pipe 2e is inserted from the discharge pipe insertion hole 8e of the main bearing cover 8 and communicates with the inner space of the partition plate 8c (the inlet of the discharge pipe 2e passes through the partition plate 8c and is located in the inner space). The gas refrigerant led to the inner space flows out from the discharge pipe 2e.
 以上のように、第5実施形態では、フレーム9とステータ4aの間の空間に導かれたオイルリッチのガス冷媒を、主軸受カバー8の外周溝8dと仕切板8cによって、吐出管2eと干渉せず、貯油室側へと流せるので、吐出管2eから流出する油量を低減できる。 As described above, in the fifth embodiment, the oil-rich gas refrigerant guided to the space between the frame 9 and the stator 4a interferes with the discharge pipe 2e by the outer peripheral groove 8d and the partition plate 8c of the main bearing cover 8. Therefore, the amount of oil flowing out from the discharge pipe 2e can be reduced.
1   スクロール圧縮機
2   密閉容器
2a  ケース
2b  蓋チャンバ
2c  底チャンバ
2d  吸込管
2e  吐出管
3   圧縮機構部
4   電動機部
4a  ステータ
4b  ロータ
4c  コアカット
5   固定スクロール
5a  吐出ポート
5b  外周溝
6   旋回スクロール
6a  旋回軸受
6b  鏡板部
7   クランク軸
7a  主軸
7b  偏心部
7c  給油通路
7d  横孔
7e  スラスト受面
8   主軸受カバー(フレーム補助部材)
8a  溶接部
8b  ガス通路
8c  仕切板
8d  外周溝
8e  吐出管挿入孔
9   フレーム
9a  主軸受
9b  外周溝
10  吸込室
11  圧縮室
12  オルダムリング
13  潤滑油
14  下軸受
15  給油ポンプ
16  排油パイプ
17  タック溶接部
18  背圧室
19  給油パイプ
20  シール軸受(フレーム補助部材)
20a 溶接部
20b ガス通路
21  シールリング
DESCRIPTION OF SYMBOLS 1 Scroll compressor 2 Sealed container 2a Case 2b Cover chamber 2c Bottom chamber 2d Suction pipe 2e Discharge pipe 3 Compression mechanism part 4 Electric motor part 4a Stator 4b Rotor 4c Core cut 5 Fixed scroll 5a Discharge port 5b Outer peripheral groove 6 Orbiting scroll 6a Orbiting bearing 6b End plate part 7 Crankshaft 7a Main shaft 7b Eccentric part 7c Oil supply passage 7d Horizontal hole 7e Thrust receiving surface 8 Main bearing cover (frame auxiliary member)
8a welded portion 8b gas passage 8c partition plate 8d outer peripheral groove 8e discharge pipe insertion hole 9 frame 9a main bearing 9b outer peripheral groove 10 suction chamber 11 compression chamber 12 Oldham ring 13 lubricating oil 14 lower bearing 15 oil pump 16 exhaust oil pipe 17 tack welding Part 18 Back pressure chamber 19 Oil supply pipe 20 Seal bearing (frame auxiliary member)
20a welded portion 20b gas passage 21 seal ring

Claims (5)

  1.  密閉容器と、
     前記密閉容器内に、
      旋回台板、前記旋回台板に立設する渦巻状の旋回ラップ、及び、前記旋回台板の前記旋回ラップと反対側に形成された旋回軸受、を有する旋回スクロール、並びに、
      固定台板、及び、前記固定台板に立設する渦巻状の固定ラップ、を有し、前記旋回スクロールと互いにかみ合い圧縮室を形成する固定スクロール、
     を備える圧縮機構部と、
     前記旋回スクロールの前記固定スクロールと反対側に位置し、前記固定スクロールとで前記旋回スクロールを挟み込むように前記固定スクロールに取り付けられ、主軸受を備えるフレームと、
     前記フレームの下方から機械的に締結され、外周部が前記密閉容器と溶接固定されたフレーム補助部材と、
     前記圧縮機構部を駆動する電動機部と、
     前記旋回軸受及び前記主軸受により支持されるとともに、前記電動機部の回転力を前記圧縮機構部に伝達するクランク軸と、
     前記密閉容器の底部に位置し、潤滑油を貯留する油溜部と、
     前記密閉容器外に前記圧縮機構部で圧縮された冷媒を吐出する吐出管と、
    を備えたことを特徴とするスクロール圧縮機。
    A sealed container;
    In the sealed container,
    An orbiting scroll having an orbiting base plate, a spiral orbiting wrap standing on the orbiting base plate, and an orbiting bearing formed on the opposite side of the orbiting base plate from the orbiting wrap; and
    A fixed scroll having a fixed base plate and a spiral fixed wrap standing on the fixed base plate, and meshing with the orbiting scroll to form a compression chamber;
    A compression mechanism comprising:
    A frame that is located on the opposite side of the fixed scroll of the orbiting scroll, is attached to the fixed scroll so as to sandwich the orbiting scroll with the fixed scroll, and includes a main bearing;
    A frame auxiliary member that is mechanically fastened from below the frame and whose outer peripheral portion is fixed to the sealed container by welding;
    An electric motor that drives the compression mechanism;
    A crankshaft that is supported by the slewing bearing and the main bearing, and that transmits the rotational force of the electric motor unit to the compression mechanism unit;
    An oil reservoir that is located at the bottom of the sealed container and stores lubricating oil;
    A discharge pipe for discharging the refrigerant compressed by the compression mechanism section outside the sealed container;
    A scroll compressor characterized by comprising:
  2.  請求項1において、
     前記旋回スクロール、前記固定スクロール、及び、前記フレームはアルミニウム合金又はマグネシウム合金で形成され、前記フレーム補助部材は鉄系材料で形成された
    ことを特徴とするスクロール圧縮機。
    In claim 1,
    The scroll compressor, wherein the orbiting scroll, the fixed scroll, and the frame are made of an aluminum alloy or a magnesium alloy, and the frame auxiliary member is made of an iron-based material.
  3.  請求項1又は2において、
     前記フレーム補助部材により、前記圧縮機構部が配置された圧縮機部空間と前記電動機部が配置された電動機部空間とが仕切られるとともに、前記フレーム補助部材は前記圧縮機部空間と前記電動機部空間とを連通する連通路を有する
    ことを特徴とするスクロール圧縮機。
    In claim 1 or 2,
    The frame auxiliary member partitions the compressor part space in which the compression mechanism part is arranged and the motor part space in which the electric motor part is arranged, and the frame auxiliary member includes the compressor part space and the electric motor part space. A scroll compressor characterized in that it has a communication passage that communicates with the compressor.
  4.  請求項3において、
     前記フレーム補助部材の下方に配置され、且つ、前記フレーム補助部材と前記電動機部の間の空間を、前記クランク軸側に位置するクランク軸側空間と前記密閉容器側に位置する密閉容器側空間とに分ける仕切板を有し、
     前記圧縮機構部で圧縮した冷媒は、前記連通路から前記内側空間、前記油溜部、前記外側空間を経由して、前記吐出管から吐出される
    ことを特徴とするスクロール圧縮機。
    In claim 3,
    A space between the frame auxiliary member and the electric motor part, which is disposed below the frame auxiliary member, and a crankshaft side space located on the crankshaft side and a closed vessel side space located on the closed vessel side Has a partition plate,
    The refrigerant compressed by the compression mechanism is discharged from the discharge pipe from the communication path via the inner space, the oil reservoir, and the outer space.
  5.  請求項3において、
     前記連通路は前記フレーム補助部材の外周部に形成され、
     前記フレーム補助部材の下方に配置され、且つ、前記電動機部と前記フレーム補助部材の間の空間を、前記クランク軸側に位置するクランク軸側空間と前記密閉容器側に位置する密閉容器側空間とに分ける仕切板を有し、
     前記吐出管の冷媒流入口が前記内側空間に開口し、
     前記圧縮機構部で圧縮した冷媒は、前記連通路から前記外側空間、前記油溜部、前記内側空間を経由して、前記吐出管から吐出される
    ことを特徴とするスクロール圧縮機。
    In claim 3,
    The communication path is formed in an outer peripheral portion of the frame auxiliary member,
    A space between the electric motor unit and the frame auxiliary member, which is disposed below the frame auxiliary member, and a crankshaft side space located on the crankshaft side and a closed vessel side space located on the closed vessel side Has a partition plate,
    A refrigerant inlet of the discharge pipe opens into the inner space;
    The refrigerant compressed by the compression mechanism is discharged from the discharge pipe from the communication path via the outer space, the oil reservoir, and the inner space.
PCT/JP2014/069773 2014-07-28 2014-07-28 Scroll compressor WO2016016917A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/069773 WO2016016917A1 (en) 2014-07-28 2014-07-28 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/069773 WO2016016917A1 (en) 2014-07-28 2014-07-28 Scroll compressor

Publications (1)

Publication Number Publication Date
WO2016016917A1 true WO2016016917A1 (en) 2016-02-04

Family

ID=55216863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069773 WO2016016917A1 (en) 2014-07-28 2014-07-28 Scroll compressor

Country Status (1)

Country Link
WO (1) WO2016016917A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017172348A (en) * 2016-03-18 2017-09-28 日立ジョンソンコントロールズ空調株式会社 Displacement type compressor
WO2018196485A1 (en) * 2017-04-28 2018-11-01 上海海立新能源技术有限公司 Upright compressor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160587A (en) * 1982-03-19 1983-09-24 Hitachi Ltd Enclosed motor driven compressor
JPS61167191A (en) * 1986-01-09 1986-07-28 Mitsubishi Electric Corp Scroll type compressor
JP2000213463A (en) * 1999-01-25 2000-08-02 Matsushita Electric Ind Co Ltd Hermetic compressor and assembling method of the same
US6280155B1 (en) * 2000-03-21 2001-08-28 Tecumseh Products Company Discharge manifold and mounting system for, and method of assembling, a hermetic compressor
JP2004100662A (en) * 2002-09-13 2004-04-02 Hitachi Home & Life Solutions Inc Scroll compressor
JP2006090137A (en) * 2004-09-21 2006-04-06 Matsushita Electric Ind Co Ltd Scroll compressor
JP2009270461A (en) * 2008-05-02 2009-11-19 Denso Corp Scroll type compressor
JP2014105672A (en) * 2012-11-29 2014-06-09 Mitsubishi Electric Corp Scroll compressor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58160587A (en) * 1982-03-19 1983-09-24 Hitachi Ltd Enclosed motor driven compressor
JPS61167191A (en) * 1986-01-09 1986-07-28 Mitsubishi Electric Corp Scroll type compressor
JP2000213463A (en) * 1999-01-25 2000-08-02 Matsushita Electric Ind Co Ltd Hermetic compressor and assembling method of the same
US6280155B1 (en) * 2000-03-21 2001-08-28 Tecumseh Products Company Discharge manifold and mounting system for, and method of assembling, a hermetic compressor
JP2004100662A (en) * 2002-09-13 2004-04-02 Hitachi Home & Life Solutions Inc Scroll compressor
JP2006090137A (en) * 2004-09-21 2006-04-06 Matsushita Electric Ind Co Ltd Scroll compressor
JP2009270461A (en) * 2008-05-02 2009-11-19 Denso Corp Scroll type compressor
JP2014105672A (en) * 2012-11-29 2014-06-09 Mitsubishi Electric Corp Scroll compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017172348A (en) * 2016-03-18 2017-09-28 日立ジョンソンコントロールズ空調株式会社 Displacement type compressor
WO2018196485A1 (en) * 2017-04-28 2018-11-01 上海海立新能源技术有限公司 Upright compressor

Similar Documents

Publication Publication Date Title
JP5491420B2 (en) Scroll compressor
JP5260608B2 (en) Scroll compressor
JP5178668B2 (en) Scroll compressor
JP6664118B2 (en) 2-cylinder hermetic compressor
JP5433604B2 (en) Scroll compressor
JP5455763B2 (en) Scroll compressor, refrigeration cycle equipment
JP6745992B2 (en) Scroll compressor and refrigeration cycle device
JP6554926B2 (en) Scroll compressor
WO2016016917A1 (en) Scroll compressor
JP6134903B2 (en) Positive displacement compressor
JP6057535B2 (en) Refrigerant compressor
JP5506839B2 (en) Scroll compressor and air conditioner
JP5328536B2 (en) Scroll compressor
JPH06264881A (en) Rotary compressor
JP2012013029A (en) Compressor
JP5114708B2 (en) Hermetic scroll compressor
WO2015125304A1 (en) Compressor
JP2016156297A (en) Scroll compressor
JP2015042858A (en) Hermetic scroll compressor
WO2020039489A1 (en) Compressor and refrigeration cycle device equipped with same
JP4301120B2 (en) Scroll compressor
JP2012036841A (en) Compressor
JP2014105692A (en) Scroll compressor
JP2015105616A (en) Rotary compressor
KR20130092769A (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14898564

Country of ref document: EP

Kind code of ref document: A1