WO2018189827A1 - Enclosed compressor and refrigeration cycle device - Google Patents

Enclosed compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2018189827A1
WO2018189827A1 PCT/JP2017/014985 JP2017014985W WO2018189827A1 WO 2018189827 A1 WO2018189827 A1 WO 2018189827A1 JP 2017014985 W JP2017014985 W JP 2017014985W WO 2018189827 A1 WO2018189827 A1 WO 2018189827A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge port
discharge
bearing
refrigerant
cylinder
Prior art date
Application number
PCT/JP2017/014985
Other languages
French (fr)
Japanese (ja)
Inventor
祐一朗 今川
勝巳 遠藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/014985 priority Critical patent/WO2018189827A1/en
Publication of WO2018189827A1 publication Critical patent/WO2018189827A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present invention relates to a hermetic compressor and a refrigeration cycle apparatus.
  • a conventional hermetic compressor includes an electric motor unit including a stator and a rotor, and a compression mechanism unit that is coupled to the electric motor unit via a crankshaft and compresses the refrigerant by rotation of the crankshaft. It has the structure arrange
  • the compression mechanism portion is provided in the cylinder, the rolling piston that fits the eccentric shaft portion of the crankshaft, the bearing that is installed on both end surfaces of the cylinder in the axial direction, and rotatably supports the crankshaft.
  • a vane or the like slidably disposed in the vane groove is provided.
  • the cylinder has a compression chamber formed therein by closing both end faces in the axial direction with end plate portions of the bearings.
  • the rolling piston performs an eccentric motion in the cylinder, and as a result, the refrigerant sucked into the compression chamber is compressed with the rotation of the crankshaft.
  • Compressed high-pressure refrigerant gas is discharged into a sealed container from a discharge port provided in the recess of the bearing.
  • the recess of the bearing is provided with a discharge valve device composed of a valve seat, valve, valve retainer and rivet so that when the compression chamber reaches a predetermined pressure, the valve is pushed up to open the discharge port (For example, refer to Patent Document 1).
  • the discharge valve device is configured such that a valve and a valve presser are sequentially placed on a valve seat, and these are fastened to a bearing with a rivet.
  • the inner wall of the cylinder is provided with a discharge notch that is partially cut out in accordance with the outer shape of the discharge port, thereby reducing the flow resistance immediately before the refrigerant gas is discharged and reducing the pressure loss. It is common to reduce this.
  • the recess provided in the bearing in Patent Document 1 includes a first counterbore hole concentric with the discharge port, a second counterbore hole (counterbore portion 13b) eccentric to the first counterbore hole, and a first counterbore hole. It is comprised from the linear part extended in one direction from a part of outer peripheral surface.
  • the first counterbore hole and the second counterbore hole provided around the discharge port are provided to ensure a sufficient space for the refrigerant discharged from the discharge port to flow. These first counterbore holes and second counterbore holes suppress the flow resistance of the refrigerant immediately after discharge, thereby reducing pressure loss.
  • Patent Document 1 the pressure loss of the refrigerant before and after the discharge is reduced by the discharge notch and the counterbore hole.
  • the discharge notch provided on the inner wall of the cylinder is an ineffective space that does not contribute to compression, and this ineffective space becomes dead volume, increasing recompression loss and heating loss, and reducing the efficiency of the hermetic compressor. Invite. For this reason, reduction of the discharge notch is required, but Patent Document 1 does not discuss this point at all.
  • the position of the first counterbore hole is determined in consideration of this.
  • the position of the discharge port provided concentrically with the first counterbore hole is also determined, and the size of the discharge notch is also determined according to the position of the discharge port. For this reason, there has been a problem that it is difficult to achieve both the securing of the counterbore hole diameter necessary for reducing the pressure loss of the refrigerant gas during discharge and the reduction of the discharge notch.
  • the present invention has been made in view of the above points, and is a hermetic compression capable of achieving both the securing of the counterbore hole diameter necessary for reducing the pressure loss of the refrigerant gas at the time of discharge and the reduction of the discharge notch.
  • An object is to provide a machine and a refrigeration cycle apparatus.
  • a hermetic compressor includes a cylindrical cylinder that forms a compression chamber that compresses refrigerant by rotation of a crankshaft, and a bearing that is disposed on an end surface in the axial direction of the cylinder and rotatably supports the crankshaft.
  • the bearing has a discharge port for discharging the refrigerant compressed in the compression chamber, and a concave counterbore hole provided around the discharge port and having a volume necessary for the flow of the refrigerant discharged from the discharge port.
  • the discharge port is eccentrically provided on the bearing center side with respect to the counterbore hole, and a discharge notch for communicating the compression chamber and the discharge port is provided on the inner wall portion of the cylinder facing the eccentric discharge port. It is what.
  • the counterbore hole is formed in the volume necessary for the flow of the refrigerant discharged from the discharge port, and the discharge port is provided eccentric to the bearing center side with respect to the counterbore hole. It is possible to achieve both the securing of the counterbore hole diameter necessary for reducing the pressure loss of the refrigerant gas and the reduction of the discharge notch.
  • FIG. 1 is a schematic longitudinal cross-sectional view of the hermetic compressor which concerns on Embodiment 1 of this invention. It is a typical top view of the compression mechanism part of the hermetic compressor concerning Embodiment 1 of this invention. It is a general
  • 1 is a schematic plan view of a bearing of a hermetic compressor according to Embodiment 1 of the present invention. It is a typical top view of the compression mechanism part of a comparative example. It is a general
  • FIG. 1 is a schematic longitudinal sectional view of a hermetic compressor according to Embodiment 1 of the present invention.
  • the hermetic compressor according to the first embodiment will be described by taking a two-stage hermetic rotary compressor as an example. However, the present invention is not limited to this, and is not limited to a single-stage or three-stage or more hermetic rotary compression. Is also applicable.
  • the hermetic compressor includes an electric motor unit 2 and a compression mechanism unit 3 that is coupled to the electric motor unit 2 via a crankshaft 4 and compresses the refrigerant by the rotation of the crankshaft 4. It has an arranged configuration.
  • a suction pipe 5 for sucking gas is connected to the side surface of the sealed container 1, and a discharge pipe 6 for discharging compressed gas is provided on the upper surface of the sealed container 1.
  • the electric motor unit 2 includes a stator 2a attached to the crankshaft 4 and a rotor 2b that rotationally drives the rotor 2b. Then, the energization of the stator 2 a is started, so that the rotor 2 b is rotated, and the rotational power is transmitted to the compression mechanism unit 3 through the crankshaft 4.
  • the compression mechanism section 3 includes upper and lower bearings 40, 50 disposed on both axial end surfaces of the first compression mechanism section 30A, the second compression mechanism section 30B, and the first compression mechanism section 30A and the second compression mechanism section 30B. And.
  • Each of the bearings 40 and 50 includes a hollow cylindrical bearing boss portion 40a that rotatably supports the crankshaft 4, and a flat plate-shaped end plate portion 40b that closes an end surface of a cylinder 31 described later.
  • a discharge port 41 is formed in the end plate portion 40b.
  • the intermediate partition plate 7 is disposed between the first compression mechanism 30A and the second compression mechanism 30B.
  • FIG. 2 is a schematic plan view of the compression mechanism portion of the hermetic compressor according to Embodiment 1 of the present invention.
  • the configuration of the first compression mechanism 30A and the second compression mechanism 30B of the compression mechanism 3 will be described. Since the first compression mechanism 30A and the second compression mechanism 30B have basically the same configuration, the first compression mechanism 30A will be described below as a representative.
  • the first compression mechanism portion 30A is slidably disposed in a cylindrical cylinder 31, a rolling piston 32 that is rotatably fitted to the eccentric shaft portion 4a of the crankshaft 4, and a vane groove 35 provided in the cylinder 31. Vane 33 and the like.
  • the cylinder 31 is formed of a flat plate, and a substantially cylindrical through-hole is formed through substantially vertically at the center.
  • the compression hole 34 is formed in the cylinder 31 by closing the through hole by the end plate portion 40 b of the bearing 40 and the intermediate partition plate 7.
  • the vane groove 35 communicates with the compression chamber 34 and extends in the radial direction of the compression chamber 34, and the vane tip 33 a of the vane 33 movably provided in the vane groove 35 slides on the outer peripheral surface of the rolling piston 32.
  • the inside of the compression chamber 34 is divided into a low pressure part 36 and a high pressure part 37.
  • the cylinder 31 is provided with a suction port 38 that communicates with the low pressure portion 36 and a discharge notch 39 that communicates with a discharge port 41 formed in the end plate portion 40 b of the bearing 40.
  • the discharge notch 39 is formed by cutting the inner wall of the cylinder 31 in accordance with the outer shape of the discharge port 41. That is, the inner wall portion of the cylinder 31 facing the discharge port 41 is notched to form a discharge notch 39, and the compression chamber 34 communicates with the discharge port 41 through the discharge notch 39.
  • FIG. 3 is a schematic cross-sectional view of the periphery including the bearing of the hermetic compressor according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic plan view of the bearing of the hermetic compressor according to Embodiment 1 of the present invention.
  • a recess 60 is formed around the discharge port 41 in the bearing 40.
  • the recess 60 includes a circular concave counterbore hole 61 formed around the discharge port 41 and a discharge valve groove 62 extending in one direction from the outer periphery of the counterbore hole 61.
  • a discharge valve 63 Disposed within the discharge valve groove 62 are a discharge valve 63 that covers the outlet opening of the discharge port 41 and prevents backflow of refrigerant gas, and a valve presser 64 that limits the lift amount of the discharge valve 63, and these are rivets 65.
  • the bearing 40 and the cylinder 31 are fixed. When the fluid is compressed to a predetermined pressure in the compression chamber 34, the discharge valve 63 is lifted against the elastic force and the discharge port 41 is opened. The compressed refrigerant gas is discharged from the opened discharge port 41 into the inner space of the sealed container 1.
  • the rolling piston 32 rotates eccentrically in the cylinder 31.
  • the low-pressure part 36 into which the low-pressure gas refrigerant has been sucked through the suction port 38 turns to the high-pressure part 37, and the volume of the high-pressure part 37 is gradually reduced to compress the refrigerant.
  • the compressed gas refrigerant reaches a predetermined pressure, it is guided to the discharge port 41 through the discharge notch 39 of the cylinder 31 and discharged from the discharge port 41 to the internal space of the sealed container 1.
  • the second compression mechanism portion 30B is the first compression mechanism in that the member that closes the through hole formed at the approximate center of the cylinder 31 of the second compression mechanism portion 30B is the intermediate partition plate 7 and the bearing 50. Unlike the unit 30A, other configurations and operations are basically the same as those of the first compression mechanism unit 30A.
  • the suction and compression of the refrigerant gas are repeated as the crankshaft 4 rotates. Then, the refrigerant gas compressed by each of the first compression mechanism portion 30A and the second compression mechanism portion 30B and discharged to the internal space of the sealed container 1 is discharged from the discharge pipe 6 to the outside of the sealed container 1.
  • the discharge port 41 is provided eccentric to the center side of the bearing with respect to the counterbore hole 61. That is, as shown in FIG. 4, the center M ⁇ b> 1 of the discharge port 41 is eccentric to the bearing center side with respect to the center M ⁇ b> 2 of the counterbore hole 61.
  • the counterbore 61 is configured with a hole diameter that realizes a volume necessary for securing a sufficient space for refrigerant flow immediately after discharge, that is, a hole diameter required for reducing the pressure loss of the refrigerant gas during discharge.
  • FIG. 5 is a schematic plan view of a compression mechanism portion of a comparative example.
  • FIG. 6 is a schematic cross-sectional view of the periphery including the bearing of the comparative example.
  • FIG. 7 is a schematic plan view of a bearing of a comparative example.
  • each counterbore hole 61 formed in the bearing 40, and this one counterbore hole 61 is configured with a hole diameter necessary for reducing the pressure loss of the refrigerant gas at the time of discharge. ing.
  • the counterbore hole 61 and the discharge port 410 are formed concentrically, and the discharge notch 390 is configured to face the discharge port 410 and cut out the inner wall of the cylinder 31.
  • the discharge port 41 is eccentrically provided on the bearing center side with respect to the counterbore hole 61 as described above.
  • the position of the discharge notch 39 formed on the inner wall of the cylinder 31 in accordance with the position of the discharge port 41 also approaches the bearing center side.
  • the dead volume of 31 can be reduced. That is, in the first embodiment, the discharge notch 39 can be reduced while the counterbore hole 61 is secured to a necessary hole diameter.
  • the counterbore hole 61 is provided concentrically with the discharge port 41 in the comparative example. It will be close to the bearing center side. In this case, the counterbore hole 61 interferes with the bearing boss portion 40a. In order to prevent the counterbore 61 from interfering with the bearing boss 40a, it is necessary to reduce the hole diameter of the counterbore 61, and the pressure loss immediately after the high-pressure refrigerant gas is discharged increases.
  • the counterbore hole 61 having a hole diameter necessary for reducing the pressure loss of the refrigerant gas at the time of discharge is disposed at a position that does not cause interference with the bearing boss portion 40a.
  • the discharge port 41 eccentric to the bearing center side both the securing of the hole diameter of the counterbored hole 61 and the reduction of the discharge notch 39 can be achieved.
  • FIG. The second embodiment relates to a refrigeration cycle apparatus including the hermetic compressor 71 of the first embodiment.
  • FIG. 8 is a diagram showing a refrigerant circuit of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
  • the refrigeration cycle apparatus 70 includes the hermetic compressor 71 of the first embodiment, a condenser 72, an expansion valve 73 as a decompression device, and an evaporator 74.
  • the gas refrigerant discharged from the hermetic compressor 71 flows into the condenser 72, exchanges heat with the air passing through the condenser 72, and flows out as high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the condenser 72 is decompressed by the expansion valve 73, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the evaporator 74.
  • the low-pressure gas-liquid two-phase refrigerant flowing into the evaporator 74 exchanges heat with the air passing through the evaporator 74 to become a low-pressure gas refrigerant, and is sucked into the hermetic compressor 71 again.
  • the refrigeration cycle apparatus 70 configured as described above includes the hermetic compressor 71 of the first embodiment, so that power consumption can be reduced.
  • the refrigeration cycle apparatus 70 can be applied to an air conditioner, a refrigerated freezer, or the like.

Abstract

This enclosed compressor is provided with a cylindrical cylinder forming a compression chamber that compresses refrigerant through the rotation of a crankshaft, and a bearing that is disposed in an axial-direction end surface of the cylinder and rotatably supports the crankshaft. Formed in the bearing are a discharge port that discharges refrigerant compressed in the compression chamber, and a recessed counterbore hole that is provided to the periphery of the discharge port and that has the capacity needed for the refrigerant discharged from the discharge port to flow. The discharge port is provided so as to be eccentric relative to the counterbore hole toward the bearing center, and a discharge cutout through which the compression chamber and the discharge port communicate is provided to an inner-wall portion of the cylinder, which faces the eccentric discharge port.

Description

密閉型圧縮機及び冷凍サイクル装置Hermetic compressor and refrigeration cycle apparatus
 この発明は、密閉型圧縮機及び冷凍サイクル装置に関するものである。 The present invention relates to a hermetic compressor and a refrigeration cycle apparatus.
 従来の密閉型圧縮機は、固定子と回転子とからなる電動機部と、電動機部にクランク軸を介して連結され、クランク軸の回転によって冷媒を圧縮する圧縮機構部とを備え、これらが密閉容器の内部に配置された構成を有する。そして、電動機部によってクランク軸が回転し、クランク軸の回転により圧縮機構部が駆動することにより、吸入管から吸入された低圧冷媒ガスが圧縮機構部で圧縮されて高圧冷媒ガスとなり、吐出管から密閉容器外へと吐出される。 A conventional hermetic compressor includes an electric motor unit including a stator and a rotor, and a compression mechanism unit that is coupled to the electric motor unit via a crankshaft and compresses the refrigerant by rotation of the crankshaft. It has the structure arrange | positioned inside the container. Then, the crankshaft is rotated by the electric motor section, and the compression mechanism section is driven by the rotation of the crankshaft, whereby the low-pressure refrigerant gas sucked from the suction pipe is compressed by the compression mechanism section to become high-pressure refrigerant gas, and is discharged from the discharge pipe. It is discharged out of the closed container.
 圧縮機構部は、円筒状のシリンダと、クランク軸の偏心軸部に嵌合するローリングピストンと、シリンダの軸方向両端面に設置され、クランク軸を回転自在に支持する軸受と、シリンダに設けられたベーン溝に摺動自在に配置されたベーン等を備えている。シリンダは、軸方向両端面が軸受の端板部で閉塞されることで内部に圧縮室を形成している。 The compression mechanism portion is provided in the cylinder, the rolling piston that fits the eccentric shaft portion of the crankshaft, the bearing that is installed on both end surfaces of the cylinder in the axial direction, and rotatably supports the crankshaft. A vane or the like slidably disposed in the vane groove is provided. The cylinder has a compression chamber formed therein by closing both end faces in the axial direction with end plate portions of the bearings.
 上記構成において、ローリングピストンがシリンダ内で偏心運動を行い、その結果、圧縮室内に吸入された冷媒がクランク軸の回転に伴って圧縮される。 In the above configuration, the rolling piston performs an eccentric motion in the cylinder, and as a result, the refrigerant sucked into the compression chamber is compressed with the rotation of the crankshaft.
 圧縮された高圧冷媒ガスは、軸受の窪みに設けられた吐出口から密閉容器内に吐出される。軸受の窪みには、弁座、弁、弁押さえ及びリベットから構成された吐出弁装置が設けられており、圧縮室が所定の圧力に達すると、弁が押し上げられて吐出口を開放するようになっている(例えば、特許文献1参照)。吐出弁装置は、弁座上に弁及び弁押さえが順に載置され、これらがリベットで軸受に締結されることで構成されている。 Compressed high-pressure refrigerant gas is discharged into a sealed container from a discharge port provided in the recess of the bearing. The recess of the bearing is provided with a discharge valve device composed of a valve seat, valve, valve retainer and rivet so that when the compression chamber reaches a predetermined pressure, the valve is pushed up to open the discharge port (For example, refer to Patent Document 1). The discharge valve device is configured such that a valve and a valve presser are sequentially placed on a valve seat, and these are fastened to a bearing with a rivet.
 特許文献1には詳細が図示されていないものの、シリンダの内壁には、吐出口の外形に合わせて一部分を切り欠いた吐出切欠きが設けられ、冷媒ガスの吐出直前の流通抵抗を減らして圧損の低減を図ることが一般的である。また、特許文献1において軸受に設けられた窪みは、吐出口と同心円の第1ザグリ穴と、第1ザグリ穴に対して偏心した第2ザグリ穴(ザグリ部13b)と、第1ザグリ穴の外周面の一部から一方向に延びる直線部とから構成されている。吐出口の周囲に設けられた第1ザグリ穴及び第2ザグリ穴は、吐出口から吐出された冷媒が流動するための十分な空間を確保するために設けられている。これら第1ザグリ穴及び第2ザグリ穴によって吐出直後の冷媒の流動抵抗を抑えて圧損の低減が図られている。 Although details are not shown in Patent Document 1, the inner wall of the cylinder is provided with a discharge notch that is partially cut out in accordance with the outer shape of the discharge port, thereby reducing the flow resistance immediately before the refrigerant gas is discharged and reducing the pressure loss. It is common to reduce this. In addition, the recess provided in the bearing in Patent Document 1 includes a first counterbore hole concentric with the discharge port, a second counterbore hole (counterbore portion 13b) eccentric to the first counterbore hole, and a first counterbore hole. It is comprised from the linear part extended in one direction from a part of outer peripheral surface. The first counterbore hole and the second counterbore hole provided around the discharge port are provided to ensure a sufficient space for the refrigerant discharged from the discharge port to flow. These first counterbore holes and second counterbore holes suppress the flow resistance of the refrigerant immediately after discharge, thereby reducing pressure loss.
特開2008-101503号公報JP 2008-101503 A
 特許文献1では、吐出切欠き及びザグリ穴によって吐出前後の冷媒の圧損低減が図られている。しかしながら、シリンダの内壁に設けられた吐出切欠きは圧縮に寄与しない無効空間であり、この無効空間が死容積となって再圧縮損失及び加熱損失を増加させ、密閉型圧縮機の効率の低下を招く。このため、吐出切欠きの縮小が求められるが、特許文献1では、この点について何ら検討されていない。 In Patent Document 1, the pressure loss of the refrigerant before and after the discharge is reduced by the discharge notch and the counterbore hole. However, the discharge notch provided on the inner wall of the cylinder is an ineffective space that does not contribute to compression, and this ineffective space becomes dead volume, increasing recompression loss and heating loss, and reducing the efficiency of the hermetic compressor. Invite. For this reason, reduction of the discharge notch is required, but Patent Document 1 does not discuss this point at all.
 また、特許文献1では、吐出口と同心円の第1ザグリ穴と、第1ザグリ穴に対して偏心した第2ザグリ穴との2つを設けて吐出直後の冷媒が流動するための十分な空間を確保している。このように、ザグリ穴を2つ設けることは、構造が複雑化し、加工コストの上昇に繋がる。そこで、第2ザグリ穴を省略し、吐出口と同心円の第1ザグリ穴の一つに集約する構成とした場合、第2ザグリ穴を省略する分、第1ザグリ穴の穴径を大きく確保する必要が生じる。このように第1ザグリ穴の穴径を大きく確保すると、他の構成部と干渉する可能性があることから、これを考慮して第1ザグリ穴の配置位置が決められる。そして、第1ザグリ穴の配置位置が決まると、第1ザグリ穴と同心円に設けられる吐出口の位置も決まり、更に吐出口の位置に応じて吐出切欠きの大きさも決まることになる。このため、吐出時の冷媒ガスの圧損低減に必要なザグリ穴の穴径の確保と、吐出切欠きの縮小との両立が困難であるという問題があった。 Moreover, in patent document 1, sufficient space for the refrigerant | coolant immediately after discharge to flow by providing two of the 1 counterbore hole concentric with a discharge port, and the 2nd counterbore hole eccentric with respect to the 1st counterbore hole is provided. Is secured. Thus, providing two counterbore holes complicates the structure and leads to an increase in processing cost. Therefore, when the second counterbore hole is omitted and the first counterbore hole is concentrically integrated with the discharge port, the second counterbore hole is omitted, and the first counterbore hole has a large diameter. Need arises. If a large hole diameter of the first counterbore hole is ensured in this way, there is a possibility that the first counterbore hole may interfere with other components. Therefore, the position of the first counterbore hole is determined in consideration of this. When the position of the first counterbore hole is determined, the position of the discharge port provided concentrically with the first counterbore hole is also determined, and the size of the discharge notch is also determined according to the position of the discharge port. For this reason, there has been a problem that it is difficult to achieve both the securing of the counterbore hole diameter necessary for reducing the pressure loss of the refrigerant gas during discharge and the reduction of the discharge notch.
 この発明はこのような点を鑑みなされたもので、吐出時の冷媒ガスの圧損低減に必要なザグリ穴の穴径の確保と吐出切欠きの縮小との両立を図ることが可能な密閉型圧縮機及び冷凍サイクル装置を提供することを目的とする。 The present invention has been made in view of the above points, and is a hermetic compression capable of achieving both the securing of the counterbore hole diameter necessary for reducing the pressure loss of the refrigerant gas at the time of discharge and the reduction of the discharge notch. An object is to provide a machine and a refrigeration cycle apparatus.
 この発明に係る密閉型圧縮機は、クランク軸の回転によって冷媒を圧縮する圧縮室を形成する円筒状のシリンダと、シリンダの軸方向端面に配置され、クランク軸を回転自在に支持する軸受とを備え、軸受には、圧縮室で圧縮された冷媒を吐出する吐出口と、吐出口の周囲に設けられ、吐出口から吐出された冷媒の流動に必要な容積を有する凹状のザグリ穴とが形成されており、吐出口がザグリ穴に対して軸受中心側に偏心して設けられ、偏心した吐出口と対向する、シリンダの内壁部分に、圧縮室と吐出口とを連通する吐出切欠きが設けられているものである。 A hermetic compressor according to the present invention includes a cylindrical cylinder that forms a compression chamber that compresses refrigerant by rotation of a crankshaft, and a bearing that is disposed on an end surface in the axial direction of the cylinder and rotatably supports the crankshaft. The bearing has a discharge port for discharging the refrigerant compressed in the compression chamber, and a concave counterbore hole provided around the discharge port and having a volume necessary for the flow of the refrigerant discharged from the discharge port. The discharge port is eccentrically provided on the bearing center side with respect to the counterbore hole, and a discharge notch for communicating the compression chamber and the discharge port is provided on the inner wall portion of the cylinder facing the eccentric discharge port. It is what.
 この発明によれば、吐出口から吐出された冷媒の流動に必要な容積にザグリ穴が形成され、そのザグリ穴に対して吐出口が軸受中心側に偏心して設けられているため、吐出時の冷媒ガスの圧損低減に必要なザグリ穴の穴径の確保と吐出切欠きの縮小との両立を図ることが可能である。 According to the present invention, the counterbore hole is formed in the volume necessary for the flow of the refrigerant discharged from the discharge port, and the discharge port is provided eccentric to the bearing center side with respect to the counterbore hole. It is possible to achieve both the securing of the counterbore hole diameter necessary for reducing the pressure loss of the refrigerant gas and the reduction of the discharge notch.
この発明の実施の形態1に係る密閉型圧縮機の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the hermetic compressor which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る密閉型圧縮機の圧縮機構部の模式的な平面図である。It is a typical top view of the compression mechanism part of the hermetic compressor concerning Embodiment 1 of this invention. この発明の実施の形態1に係る密閉型圧縮機の軸受を含む周囲の概略断面図である。It is a general | schematic sectional drawing of the circumference | surroundings including the bearing of the hermetic compressor which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る密閉型圧縮機の軸受の概略平面図である。1 is a schematic plan view of a bearing of a hermetic compressor according to Embodiment 1 of the present invention. 比較例の圧縮機構部の模式的な平面図である。It is a typical top view of the compression mechanism part of a comparative example. 比較例の軸受を含む周囲の概略断面図である。It is a general | schematic sectional drawing of the circumference | surroundings including the bearing of a comparative example. 比較例の軸受の概略平面図である。It is a schematic plan view of the bearing of a comparative example. この発明の実施の形態2に係る冷凍サイクル装置の冷媒回路を示す図である。It is a figure which shows the refrigerant circuit of the refrigerating-cycle apparatus which concerns on Embodiment 2 of this invention.
実施の形態1.
 図1は、この発明の実施の形態1に係る密閉型圧縮機の概略縦断面図である。この実施の形態1に係る密閉型圧縮機は、二段式の密閉型ロータリ圧縮機を例に説明するが、これに限るものではなく、一段式、または三段式以上の密閉型ロータリ圧縮にも適用可能である。
 密閉型圧縮機は、電動機部2と、電動機部2にクランク軸4を介して連結され、クランク軸4の回転によって冷媒を圧縮する圧縮機構部3とを備え、これらが密閉容器1の内部に配置された構成を有する。また、密閉容器1の側面には、ガスを吸入するための吸入管5が接続され、密閉容器1の上面には、圧縮したガスを吐出するための吐出管6が設けられている。
Embodiment 1 FIG.
1 is a schematic longitudinal sectional view of a hermetic compressor according to Embodiment 1 of the present invention. The hermetic compressor according to the first embodiment will be described by taking a two-stage hermetic rotary compressor as an example. However, the present invention is not limited to this, and is not limited to a single-stage or three-stage or more hermetic rotary compression. Is also applicable.
The hermetic compressor includes an electric motor unit 2 and a compression mechanism unit 3 that is coupled to the electric motor unit 2 via a crankshaft 4 and compresses the refrigerant by the rotation of the crankshaft 4. It has an arranged configuration. A suction pipe 5 for sucking gas is connected to the side surface of the sealed container 1, and a discharge pipe 6 for discharging compressed gas is provided on the upper surface of the sealed container 1.
 電動機部2は、クランク軸4に取り付けられた固定子2aと、回転子2bを回転駆動する回転子2bとを備えている。そして、固定子2aへの通電が開始されることにより回転子2bが回転し、クランク軸4を介して圧縮機構部3に回転動力が伝達されるようになっている。 The electric motor unit 2 includes a stator 2a attached to the crankshaft 4 and a rotor 2b that rotationally drives the rotor 2b. Then, the energization of the stator 2 a is started, so that the rotor 2 b is rotated, and the rotational power is transmitted to the compression mechanism unit 3 through the crankshaft 4.
 圧縮機構部3は、第1圧縮機構部30Aと、第2圧縮機構部30Bと、第1圧縮機構部30A及び第2圧縮機構部30Bの軸方向両端面に配置された上下の軸受40、50とを備えている。軸受40、50のそれぞれは、クランク軸4を回転自在に支持する中空円筒状の軸受ボス部40aと、後述のシリンダ31の端面を閉塞する平板環状の端板部40bとから構成されている。端板部40bには吐出口41が形成されている。また、第1圧縮機構部30Aと第2圧縮機構部30Bとの間には中間仕切板7が配置されている。 The compression mechanism section 3 includes upper and lower bearings 40, 50 disposed on both axial end surfaces of the first compression mechanism section 30A, the second compression mechanism section 30B, and the first compression mechanism section 30A and the second compression mechanism section 30B. And. Each of the bearings 40 and 50 includes a hollow cylindrical bearing boss portion 40a that rotatably supports the crankshaft 4, and a flat plate-shaped end plate portion 40b that closes an end surface of a cylinder 31 described later. A discharge port 41 is formed in the end plate portion 40b. Further, the intermediate partition plate 7 is disposed between the first compression mechanism 30A and the second compression mechanism 30B.
 図2は、この発明の実施の形態1に係る密閉型圧縮機の圧縮機構部の模式的な平面図である。以下、圧縮機構部3の第1圧縮機構部30Aと第2圧縮機構部30Bの構成について説明する。第1圧縮機構部30A及び第2圧縮機構部30Bは基本的に同様の構成であるため、以下、第1圧縮機構部30Aを代表して説明する。 FIG. 2 is a schematic plan view of the compression mechanism portion of the hermetic compressor according to Embodiment 1 of the present invention. Hereinafter, the configuration of the first compression mechanism 30A and the second compression mechanism 30B of the compression mechanism 3 will be described. Since the first compression mechanism 30A and the second compression mechanism 30B have basically the same configuration, the first compression mechanism 30A will be described below as a representative.
 第1圧縮機構部30Aは、円筒状のシリンダ31と、クランク軸4の偏心軸部4aに回転可能に嵌合するローリングピストン32と、シリンダ31に設けられたベーン溝35に摺動自在に配置されたベーン33等を備えている。シリンダ31は平板で構成され、その略中心には、略円筒状の貫通孔が上下方向に貫通形成されている。この貫通孔が軸受40の端板部40bと中間仕切板7とによって閉塞されることで、シリンダ31内に圧縮室34が形成される。 The first compression mechanism portion 30A is slidably disposed in a cylindrical cylinder 31, a rolling piston 32 that is rotatably fitted to the eccentric shaft portion 4a of the crankshaft 4, and a vane groove 35 provided in the cylinder 31. Vane 33 and the like. The cylinder 31 is formed of a flat plate, and a substantially cylindrical through-hole is formed through substantially vertically at the center. The compression hole 34 is formed in the cylinder 31 by closing the through hole by the end plate portion 40 b of the bearing 40 and the intermediate partition plate 7.
 ベーン溝35は、圧縮室34に連通して圧縮室34の半径方向に延びており、ベーン溝35内に進退自在に設けられたベーン33のベーン先端部33aがローリングピストン32の外周面と摺接することによって圧縮室34内を低圧部36と高圧部37とに仕切っている。また、シリンダ31には、低圧部36に連通する吸入口38と、軸受40の端板部40bに形成された吐出口41に連通する吐出切欠き39とが設けられている。吐出切欠き39は、シリンダ31の内壁が吐出口41の外形に合わせて切り欠かれて形成されている。つまり、吐出口41と対向する、シリンダ31の内壁部分が切り欠かれて吐出切欠き39が形成されており、この吐出切欠き39を介して圧縮室34が吐出口41に連通している。 The vane groove 35 communicates with the compression chamber 34 and extends in the radial direction of the compression chamber 34, and the vane tip 33 a of the vane 33 movably provided in the vane groove 35 slides on the outer peripheral surface of the rolling piston 32. By contacting, the inside of the compression chamber 34 is divided into a low pressure part 36 and a high pressure part 37. In addition, the cylinder 31 is provided with a suction port 38 that communicates with the low pressure portion 36 and a discharge notch 39 that communicates with a discharge port 41 formed in the end plate portion 40 b of the bearing 40. The discharge notch 39 is formed by cutting the inner wall of the cylinder 31 in accordance with the outer shape of the discharge port 41. That is, the inner wall portion of the cylinder 31 facing the discharge port 41 is notched to form a discharge notch 39, and the compression chamber 34 communicates with the discharge port 41 through the discharge notch 39.
 図3は、この発明の実施の形態1に係る密閉型圧縮機の軸受を含む周囲の概略断面図である。図4は、この発明の実施の形態1に係る密閉型圧縮機の軸受の概略平面図である。
 軸受40において吐出口41の周囲には窪み60が形成されている。窪み60は、図4に示すように、吐出口41の周囲に形成された円形凹状のザグリ穴61と、ザグリ穴61の外周から一方向に延びる吐出弁溝62とから構成されている。
FIG. 3 is a schematic cross-sectional view of the periphery including the bearing of the hermetic compressor according to Embodiment 1 of the present invention. FIG. 4 is a schematic plan view of the bearing of the hermetic compressor according to Embodiment 1 of the present invention.
A recess 60 is formed around the discharge port 41 in the bearing 40. As shown in FIG. 4, the recess 60 includes a circular concave counterbore hole 61 formed around the discharge port 41 and a discharge valve groove 62 extending in one direction from the outer periphery of the counterbore hole 61.
 吐出弁溝62内には、吐出口41の出口開口部を覆い、冷媒ガスの逆流を防ぐ吐出弁63と、吐出弁63のリフト量を制限する弁押さえ64とが配置され、これらがリベット65で軸受40及びシリンダ31に固定されている。そして、圧縮室34内で流体が所定圧力まで圧縮されると、吐出弁63がその弾性力に逆らって持ち上げられて吐出口41が開放される。そして、圧縮された冷媒ガスが、開放された吐出口41から密閉容器1の内部空間に吐出されるようになっている。 Disposed within the discharge valve groove 62 are a discharge valve 63 that covers the outlet opening of the discharge port 41 and prevents backflow of refrigerant gas, and a valve presser 64 that limits the lift amount of the discharge valve 63, and these are rivets 65. The bearing 40 and the cylinder 31 are fixed. When the fluid is compressed to a predetermined pressure in the compression chamber 34, the discharge valve 63 is lifted against the elastic force and the discharge port 41 is opened. The compressed refrigerant gas is discharged from the opened discharge port 41 into the inner space of the sealed container 1.
 図1の説明に戻る。以上のように構成された第1圧縮機構部30Aでは、電動機部2に電力供給すると、電動機部2によってクランク軸4が回転する。クランク軸4が回転することにより、圧縮室34内で偏心軸部4aが偏心回転運動する。 Returning to the explanation of FIG. In the first compression mechanism section 30 </ b> A configured as described above, when electric power is supplied to the electric motor section 2, the crankshaft 4 is rotated by the electric motor section 2. As the crankshaft 4 rotates, the eccentric shaft portion 4 a moves eccentrically in the compression chamber 34.
 偏心軸部4aの偏心回転運動に伴い、ローリングピストン32がシリンダ31内を偏心回転運動する。ローリングピストン32の回転に伴い、吸入口38を介して低圧のガス冷媒が吸入された低圧部36が高圧部37に転じ、高圧部37の容積が徐々に縮小されることで冷媒が圧縮される。圧縮されたガス冷媒は、所定の圧力になると、シリンダ31の吐出切欠き39を介して吐出口41に導かれ、吐出口41から密閉容器1の内部空間に吐出される。 伴 い As the eccentric shaft 4a rotates eccentrically, the rolling piston 32 rotates eccentrically in the cylinder 31. Along with the rotation of the rolling piston 32, the low-pressure part 36 into which the low-pressure gas refrigerant has been sucked through the suction port 38 turns to the high-pressure part 37, and the volume of the high-pressure part 37 is gradually reduced to compress the refrigerant. . When the compressed gas refrigerant reaches a predetermined pressure, it is guided to the discharge port 41 through the discharge notch 39 of the cylinder 31 and discharged from the discharge port 41 to the internal space of the sealed container 1.
 なお、第2圧縮機構部30Bは、第2圧縮機構部30Bのシリンダ31の略中心に形成された貫通孔を閉塞する部材が、中間仕切板7と軸受50とである点が第1圧縮機構部30Aと異なり、その他の構成及び動作は第1圧縮機構部30Aと基本的に同様である。 The second compression mechanism portion 30B is the first compression mechanism in that the member that closes the through hole formed at the approximate center of the cylinder 31 of the second compression mechanism portion 30B is the intermediate partition plate 7 and the bearing 50. Unlike the unit 30A, other configurations and operations are basically the same as those of the first compression mechanism unit 30A.
 第1圧縮機構部30A及び第2圧縮機構部30Bでは、クランク軸4が回転することで、冷媒ガスの吸入、圧縮が繰り返される。そして、第1圧縮機構部30A及び第2圧縮機構部30Bのそれぞれで圧縮されて密閉容器1の内部空間に吐出された冷媒ガスは、吐出管6より密閉容器1外へと吐出される。 In the first compression mechanism 30A and the second compression mechanism 30B, the suction and compression of the refrigerant gas are repeated as the crankshaft 4 rotates. Then, the refrigerant gas compressed by each of the first compression mechanism portion 30A and the second compression mechanism portion 30B and discharged to the internal space of the sealed container 1 is discharged from the discharge pipe 6 to the outside of the sealed container 1.
 そして、この実施の形態1の特徴とする構成としては、吐出口41が、ザグリ穴61に対して軸受中心側に偏心して設けられていることにある。つまり、図4に示すように、吐出口41の中心M1がザグリ穴61の中心M2に対して軸受中心側に偏心している。なお、ザグリ穴61は、吐出直後の冷媒流動に十分な空間を確保するために必要な容積を実現する穴径、つまり吐出時の冷媒ガスの圧損低減に必要な穴径で構成されている。 As a characteristic feature of the first embodiment, the discharge port 41 is provided eccentric to the center side of the bearing with respect to the counterbore hole 61. That is, as shown in FIG. 4, the center M <b> 1 of the discharge port 41 is eccentric to the bearing center side with respect to the center M <b> 2 of the counterbore hole 61. The counterbore 61 is configured with a hole diameter that realizes a volume necessary for securing a sufficient space for refrigerant flow immediately after discharge, that is, a hole diameter required for reducing the pressure loss of the refrigerant gas during discharge.
 以下、この構成としたことによる効果をより明確に説明するため、比較例として、吐出口41とザグリ穴61とが同心円で形成した構成を挙げ、これと比較して説明する。 Hereinafter, in order to more clearly describe the effect of this configuration, as a comparative example, a configuration in which the discharge port 41 and the counterbore 61 are formed in concentric circles will be given and described in comparison with this.
 まず、図5~図7により、比較例の構成について説明する。図5は、比較例の圧縮機構部の模式的な平面図である。図6は、比較例の軸受を含む周囲の概略断面図である。図7は、比較例の軸受の概略平面図である。 First, the configuration of the comparative example will be described with reference to FIGS. FIG. 5 is a schematic plan view of a compression mechanism portion of a comparative example. FIG. 6 is a schematic cross-sectional view of the periphery including the bearing of the comparative example. FIG. 7 is a schematic plan view of a bearing of a comparative example.
 図5~図7に示す比較例において、軸受40に形成されたザグリ穴61は一つであり、この一つのザグリ穴61が、吐出時の冷媒ガスの圧損低減に必要な穴径で構成されている。そして、ザグリ穴61と吐出口410とが同心円に形成され、吐出切欠き390は、吐出口410と対向してシリンダ31の内壁を切り欠いて構成されている。 5 to 7, there is one counterbore hole 61 formed in the bearing 40, and this one counterbore hole 61 is configured with a hole diameter necessary for reducing the pressure loss of the refrigerant gas at the time of discharge. ing. The counterbore hole 61 and the discharge port 410 are formed concentrically, and the discharge notch 390 is configured to face the discharge port 410 and cut out the inner wall of the cylinder 31.
 一方、この実施の形態1では、上述したように吐出口41をザグリ穴61に対して軸受中心側に偏心して設けている。これにより、吐出口41の位置に合わせてシリンダ31の内壁に形成される吐出切欠き39の位置もまた、軸受中心側に寄ることになる。その結果、図2に示した実施の形態1の吐出切欠き39と図5に示した比較例の吐出切欠き390とを比較して明らかなように、吐出切欠き39の容積が減り、シリンダ31の死容積を低減することができる。つまり、実施の形態1では、ザグリ穴61を必要な穴径に確保しつつ、吐出切欠き39の縮小を図ることができる。よって、吐出時の圧損低減に必要なザグリ穴61の穴径確保による吐出時の圧損の低減と、吐出切欠き39の縮小による再圧縮損失及び過熱損失の低減との両立を図ることが可能である。その結果、密閉型圧縮機の性能向上を図ることができる。 On the other hand, in the first embodiment, the discharge port 41 is eccentrically provided on the bearing center side with respect to the counterbore hole 61 as described above. As a result, the position of the discharge notch 39 formed on the inner wall of the cylinder 31 in accordance with the position of the discharge port 41 also approaches the bearing center side. As a result, as apparent from a comparison between the discharge notch 39 of the first embodiment shown in FIG. 2 and the discharge notch 390 of the comparative example shown in FIG. The dead volume of 31 can be reduced. That is, in the first embodiment, the discharge notch 39 can be reduced while the counterbore hole 61 is secured to a necessary hole diameter. Therefore, it is possible to achieve both reduction of pressure loss during discharge by securing the hole diameter of the counterbore hole 61 necessary for reducing pressure loss during discharge and reduction of recompression loss and overheat loss due to reduction of the discharge notch 39. is there. As a result, the performance of the hermetic compressor can be improved.
 ここで、仮に比較例の図7において、吐出口410の位置を軸受中心側に寄せた構成とした場合、比較例ではザグリ穴61が吐出口41と同心円に設けられるため、ザグリ穴61もまた軸受中心側に寄ることになる。この場合、ザグリ穴61が軸受ボス部40aと干渉してしまう。ザグリ穴61が軸受ボス部40aに干渉しないようにするには、ザグリ穴61の穴径を縮小する必要が生じ、高圧冷媒ガス吐出直後の圧損が増加してしまう。 Here, in FIG. 7 of the comparative example, when the position of the discharge port 410 is shifted to the bearing center side, the counterbore hole 61 is provided concentrically with the discharge port 41 in the comparative example. It will be close to the bearing center side. In this case, the counterbore hole 61 interferes with the bearing boss portion 40a. In order to prevent the counterbore 61 from interfering with the bearing boss 40a, it is necessary to reduce the hole diameter of the counterbore 61, and the pressure loss immediately after the high-pressure refrigerant gas is discharged increases.
 これに対し、この実施の形態1では、吐出時の冷媒ガスの圧損低減に必要な穴径のザグリ穴61を、軸受ボス部40aへの干渉を招くことない位置に配置し、そのザグリ穴61に対して吐出口41を軸受中心側に偏心させることで、ザグリ穴61の穴径の確保と吐出切欠き39の縮小との両立が可能である。 On the other hand, in the first embodiment, the counterbore hole 61 having a hole diameter necessary for reducing the pressure loss of the refrigerant gas at the time of discharge is disposed at a position that does not cause interference with the bearing boss portion 40a. On the other hand, by making the discharge port 41 eccentric to the bearing center side, both the securing of the hole diameter of the counterbored hole 61 and the reduction of the discharge notch 39 can be achieved.
実施の形態2.
 実施の形態2は、実施の形態1の密閉型圧縮機71を備えた冷凍サイクル装置に関するものである。
Embodiment 2. FIG.
The second embodiment relates to a refrigeration cycle apparatus including the hermetic compressor 71 of the first embodiment.
 図8は、この発明の実施の形態2に係る冷凍サイクル装置の冷媒回路を示す図である。
 冷凍サイクル装置70は、実施の形態1の密閉型圧縮機71と、凝縮器72と、減圧装置としての膨張弁73と、蒸発器74とを備えている。密閉型圧縮機71から吐出されたガス冷媒は凝縮器72に流入し、凝縮器72を通過する空気と熱交換して高圧液冷媒となって流出する。凝縮器72を流出した高圧液冷媒は膨張弁73で減圧されて低圧の気液二相冷媒となり、蒸発器74に流入する。蒸発器74に流入した低圧の気液二相冷媒は、蒸発器74を通過する空気と熱交換して低圧ガス冷媒となり、再び密閉型圧縮機71に吸入される。
FIG. 8 is a diagram showing a refrigerant circuit of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.
The refrigeration cycle apparatus 70 includes the hermetic compressor 71 of the first embodiment, a condenser 72, an expansion valve 73 as a decompression device, and an evaporator 74. The gas refrigerant discharged from the hermetic compressor 71 flows into the condenser 72, exchanges heat with the air passing through the condenser 72, and flows out as high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out of the condenser 72 is decompressed by the expansion valve 73, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the evaporator 74. The low-pressure gas-liquid two-phase refrigerant flowing into the evaporator 74 exchanges heat with the air passing through the evaporator 74 to become a low-pressure gas refrigerant, and is sucked into the hermetic compressor 71 again.
 このように構成された冷凍サイクル装置70は、実施の形態1の密閉型圧縮機71を備えることで、消費電力の削減が可能である。 The refrigeration cycle apparatus 70 configured as described above includes the hermetic compressor 71 of the first embodiment, so that power consumption can be reduced.
 なお、冷凍サイクル装置70は、空気調和機、冷蔵冷凍庫等に適用することができる。 In addition, the refrigeration cycle apparatus 70 can be applied to an air conditioner, a refrigerated freezer, or the like.
 1 密閉容器、2 電動機部、2a 固定子、2b 回転子、3 圧縮機構部、4 クランク軸、4a 偏心軸部、5 吸入管、6 吐出管、7 中間仕切板、13b ザグリ部、30A 第1圧縮機構部、30B 第2圧縮機構部、31 シリンダ、32 ローリングピストン、33 ベーン、33a ベーン先端部、34 圧縮室、35 ベーン溝、36 低圧部、37 高圧部、38 吸入口、39 吐出切欠き、40 軸受、40a 軸受ボス部、40b 端板部、41 吐出口、50 軸受、60 窪み、61 ザグリ穴、62 吐出弁溝、63 吐出弁、64 弁押さえ、65 リベット、70 冷凍サイクル装置、71 密閉型圧縮機、72 凝縮器、73 膨張弁、74 蒸発器、390 吐出切欠き、410 吐出口、M1 吐出口の中心、M2 ザグリ穴の中心。 1 closed container, 2 motor section, 2a stator, 2b rotor, 3 compression mechanism section, 4 crankshaft, 4a eccentric shaft section, 5 suction pipe, 6 discharge pipe, 7 intermediate partition plate, 13b counterbore section, 30A 1st Compression mechanism, 30B Second compression mechanism, 31 cylinder, 32 rolling piston, 33 vane, 33a vane tip, 34 compression chamber, 35 vane groove, 36 low pressure, 37 high pressure, 38 suction port, 39 discharge notch , 40 bearing, 40a bearing boss, 40b end plate, 41 discharge port, 50 bearing, 60 recess, 61 counter bore, 62 discharge valve groove, 63 discharge valve, 64 valve presser, 65 rivet, 70 refrigeration cycle device, 71 Hermetic compressor, 72 condenser, 73 expansion valve, 74 evaporator, 390 discharge notch, 410 discharge port, Centers of the ejection ports, M2 counterbore center.

Claims (2)

  1.  クランク軸の回転によって冷媒を圧縮する圧縮室を形成する円筒状のシリンダと、
     前記シリンダの軸方向端面に配置され、前記クランク軸を回転自在に支持する軸受とを備え、
     前記軸受には、前記圧縮室で圧縮された冷媒を吐出する吐出口と、前記吐出口の周囲に設けられ、前記吐出口から吐出された冷媒の流動に必要な容積を有する凹状のザグリ穴とが形成されており、
     前記吐出口が前記ザグリ穴に対して軸受中心側に偏心して設けられ、偏心した前記吐出口と対向する、前記シリンダの内壁部分に、前記圧縮室と前記吐出口とを連通する吐出切欠きが設けられている密閉型圧縮機。
    A cylindrical cylinder forming a compression chamber for compressing the refrigerant by rotation of the crankshaft;
    A bearing that is disposed on an axial end surface of the cylinder and rotatably supports the crankshaft;
    The bearing has a discharge port for discharging the refrigerant compressed in the compression chamber, and a concave counterbore hole provided around the discharge port and having a volume necessary for the flow of the refrigerant discharged from the discharge port. Is formed,
    The discharge port is provided eccentric to the bearing center side with respect to the counterbore hole, and a discharge notch communicating the compression chamber and the discharge port is formed in an inner wall portion of the cylinder facing the eccentric discharge port. A hermetic compressor provided.
  2.  請求項1記載の密閉型圧縮機と、凝縮器と、減圧装置と、蒸発器とを備えた冷凍サイクル装置。 A refrigeration cycle apparatus comprising the hermetic compressor according to claim 1, a condenser, a decompression device, and an evaporator.
PCT/JP2017/014985 2017-04-12 2017-04-12 Enclosed compressor and refrigeration cycle device WO2018189827A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/014985 WO2018189827A1 (en) 2017-04-12 2017-04-12 Enclosed compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/014985 WO2018189827A1 (en) 2017-04-12 2017-04-12 Enclosed compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2018189827A1 true WO2018189827A1 (en) 2018-10-18

Family

ID=63792376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/014985 WO2018189827A1 (en) 2017-04-12 2017-04-12 Enclosed compressor and refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2018189827A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015158185A (en) * 2014-02-25 2015-09-03 東芝キヤリア株式会社 Compressor, compressor manufacturing method, and refrigeration cycle device
WO2016098710A1 (en) * 2014-12-19 2016-06-23 株式会社富士通ゼネラル Rotary compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015158185A (en) * 2014-02-25 2015-09-03 東芝キヤリア株式会社 Compressor, compressor manufacturing method, and refrigeration cycle device
WO2016098710A1 (en) * 2014-12-19 2016-06-23 株式会社富士通ゼネラル Rotary compressor

Similar Documents

Publication Publication Date Title
AU2005240929B2 (en) Rotary compressor
JP2007291996A (en) Hermetic rotary compressor and refrigerating cycle device
JP6291533B2 (en) High-pressure compressor and refrigeration cycle apparatus including the same
JP2016118142A (en) Rotary compressor
US9748815B2 (en) Rotary compressor with the balance weight formed with a recess for receiving the head of a rivet
JP4040605B2 (en) Variable capacity rotary compressor
JP2005509802A (en) Hermetic compressor
WO2018189827A1 (en) Enclosed compressor and refrigeration cycle device
JP2006177227A (en) Rotary two-stage compressor
KR20050066322A (en) Compressor
KR100436271B1 (en) Rotary compprersor
WO2018179356A1 (en) Rotary compressor and refrigeration cycle device
JP5727348B2 (en) Gas compressor
US10968911B2 (en) Oscillating piston-type compressor
JP5781355B2 (en) Hermetic rotary compressor
KR102089805B1 (en) Rotary compressor and manufacturing method of rotary compressor
CN112412789B (en) Compressor and refrigeration cycle device
JP6556372B1 (en) Hermetic compressor and refrigeration cycle apparatus
KR102299099B1 (en) rotary compressor
JP6769078B2 (en) Rotary compressor
KR100494391B1 (en) Closed rotary compressor
KR20230173540A (en) Rotary compressor and home appliance including the same
JP2023162986A (en) Rotary compressor and refrigeration device
JP2004293450A (en) Refrigerant cycle apparatus
JP2014070587A (en) Rotary compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17905721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP