JP6132747B2 - Hermetic compressor and equipment having hermetic compressor - Google Patents

Hermetic compressor and equipment having hermetic compressor Download PDF

Info

Publication number
JP6132747B2
JP6132747B2 JP2013236393A JP2013236393A JP6132747B2 JP 6132747 B2 JP6132747 B2 JP 6132747B2 JP 2013236393 A JP2013236393 A JP 2013236393A JP 2013236393 A JP2013236393 A JP 2013236393A JP 6132747 B2 JP6132747 B2 JP 6132747B2
Authority
JP
Japan
Prior art keywords
rotating member
oil supply
crankshaft
cylindrical cavity
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013236393A
Other languages
Japanese (ja)
Other versions
JP2015096699A (en
Inventor
美奈子 金田
美奈子 金田
修平 永田
修平 永田
香曽我部 弘勝
弘勝 香曽我部
奨一 加納
奨一 加納
考作 中村
考作 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2013236393A priority Critical patent/JP6132747B2/en
Publication of JP2015096699A publication Critical patent/JP2015096699A/en
Application granted granted Critical
Publication of JP6132747B2 publication Critical patent/JP6132747B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、密閉形圧縮機及び密閉形圧縮機を有する機器に関するものである。   The present invention relates to a hermetic compressor and a device having the hermetic compressor.

近年、冷蔵庫の省エネルギー化の要求が高まっている。冷蔵庫の庫内が設定温度に冷えると、圧縮機の運転は停止と起動を繰り返す断続運転となる。圧縮機が停止すると、冷凍サイクル内の冷媒の圧力差や温度差が均一化されるので、再び起動して同じ圧力差や温度差を作るには余計な電力が必要になる。そこで、冷蔵庫内が設定温度に達した場合には、圧縮機を停止せずに低速運転により稼働させて圧力差や温度差を維持すれば、圧縮機の運転が停止する回数が減少するため、前述した余計な電力を低減でき、冷蔵庫の消費電力量削減に繋がる。しかし圧縮機運転速度が低い時には、後述する圧縮機内の給油ポンプの特性上、摺動部への油の供給量が不足する傾向にある。   In recent years, demands for energy saving in refrigerators are increasing. When the inside of the refrigerator is cooled to the set temperature, the operation of the compressor is an intermittent operation that repeats stopping and starting. When the compressor is stopped, the pressure difference and temperature difference of the refrigerant in the refrigeration cycle are made uniform, so that extra power is required to start again and create the same pressure difference and temperature difference. Therefore, when the refrigerator reaches the set temperature, if the pressure difference and temperature difference are maintained by operating at low speed without stopping the compressor, the number of times the operation of the compressor stops will decrease. The extra power mentioned above can be reduced, leading to a reduction in power consumption of the refrigerator. However, when the compressor operating speed is low, the amount of oil supplied to the sliding portion tends to be insufficient due to the characteristics of an oil pump in the compressor described later.

本技術分野の背景技術に関する密閉形圧縮機内の給油ポンプとして、クランク軸の回転により生じる遠心力を活かした遠心ポンプが知られている。遠心ポンプの給油量は、閾値以上の運転速度において、運転速度の2乗に比例するため、運転速度の低速化が進むと給油量が大きく減少する特徴を持つ。   A centrifugal pump using a centrifugal force generated by rotation of a crankshaft is known as an oil supply pump in a hermetic compressor related to the background art of this technical field. Since the amount of oil supplied to the centrifugal pump is proportional to the square of the operating speed at an operating speed equal to or higher than the threshold value, the amount of oil supplied greatly decreases as the operating speed decreases.

一方、低速運転時においても給油量を確保できる給油ポンプとして粘性ポンプがある。粘性ポンプとは、圧縮機内に備えた静止部材と、回転運動をするクランク軸との速度差によって生じる潤滑油に働くせん断力を活かした給油機構である。図2は遠心ポンプと粘性ポンプにおける運転速度と給油量の関係を示す図である。粘性ポンプの給油量は、運転速度に比例して増加する特徴を持っており、運転速度の低速化が進んでも遠心ポンプのように給油量が大幅には減少しない。そのため同程度のクランク軸径で運転した場合、運転速度範囲の下限値は粘性ポンプの方が遠心ポンプより低くなる。このように粘性ポンプは遠心ポンプよりも低速運転時の給油量を十分に確保できるため、低速運転時にも十分に潤滑油を供給するために粘性ポンプによる油供量の増加が強く求められている。   On the other hand, there is a viscous pump as an oil supply pump that can secure an oil supply amount even during low-speed operation. The viscous pump is an oil supply mechanism that makes use of a shearing force that acts on lubricating oil generated by a speed difference between a stationary member provided in the compressor and a crankshaft that rotates. FIG. 2 is a diagram showing the relationship between the operation speed and the amount of oil supply in the centrifugal pump and the viscous pump. The oil supply amount of the viscous pump has a characteristic of increasing in proportion to the operation speed, and the oil supply amount does not decrease as much as the centrifugal pump even if the operation speed decreases. For this reason, when operating with the same crankshaft diameter, the lower limit of the operating speed range is lower for the viscous pump than for the centrifugal pump. In this way, the viscosity pump can secure a sufficient amount of oil supply during low-speed operation than the centrifugal pump, so there is a strong demand for an increase in oil supply by the viscous pump in order to supply sufficient lubricating oil even during low-speed operation. .

粘性ポンプの構造は例えば特許文献1に示されている。特許文献1の密閉形圧縮機においては、クランク軸(円筒部材133)内の円筒空洞部内に、クランク軸の回転軸と同軸上に挿入された静止部材(スリーブ136)を有している。また、クランク軸内の円筒空洞部内には、クランク軸と共に回転運動をする回転部材(挿入部材138)が設けられている。静止部材の外周面と、クランク軸と共に回転運動をする回転部材の外周面にはらせん溝を備えている。   The structure of the viscous pump is shown in Patent Document 1, for example. The hermetic compressor of Patent Document 1 has a stationary member (sleeve 136) inserted coaxially with the rotating shaft of the crankshaft in a cylindrical cavity portion in the crankshaft (cylindrical member 133). A rotating member (insertion member 138) that rotates with the crankshaft is provided in the cylindrical cavity in the crankshaft. The outer peripheral surface of the stationary member and the outer peripheral surface of the rotating member that rotates with the crankshaft are provided with spiral grooves.

特開2005−337158号公報JP 2005-337158 A

圧縮機への必要油供量は圧縮機の動作速度に依存するが、図2に示すように中速域では遠心ポンプは機能し得る一方で、粘性ポンプの給油量が少ない。このため、特許文献1の様に粘性ポンプのみを有する構成では、圧縮機の運転速度が低下した場合に必要な油供量を確保できないおそれがある。   Although the required oil supply amount to the compressor depends on the operation speed of the compressor, the centrifugal pump can function in the middle speed region as shown in FIG. 2, while the oil supply amount of the viscous pump is small. For this reason, in a configuration having only a viscous pump as in Patent Document 1, there is a possibility that a necessary oil supply amount cannot be ensured when the operating speed of the compressor is lowered.

本発明は上記事情に鑑みてなされたもので、低速域でも十分な給油量を確保可能な密閉形圧縮機を提供する。   The present invention has been made in view of the above circumstances, and provides a hermetic compressor capable of securing a sufficient amount of oil supply even in a low speed region.

前述の目的を達成する態様の一例として、密閉容器の下方に潤滑油を貯留した潤滑油貯留部と、円筒空洞部を有する回転自在のクランク軸と、前記円筒空洞部に少なくとも一部が設けられ、前記クランク軸と同一の回転軸で回転可能な回転部材と、前記クランク軸と前記回転部材とに間隙を有して前記クランク軸と前記回転部材との間に設けた静止部材と、を有する給油手段を備える密閉形圧縮機であって、前記回転部材は内部が中空で、前記潤滑油を当該回転部材の内部に供給する下部連通部を下部に有し、前記給油手段は、第一給油経路らせん溝を前記静止部材と前記回転部材との間隙に含む第一給油経路と、第二給油経路らせん溝を前記静止部材と前記クランク軸との間隙に含む第二給油経路と、前記回転部材の前記下部連通部と前記回転部材の内部とを含む第三給油経路と、を有し、前記回転部材の前記内部と前記円筒空洞部とを連通する出口孔を前記回転部材に設けるとともに当該出口孔を前記静止部材の上端の高さ以上の高さに有する、又は前記回転部材の側面に、ガス抜き孔を有することを特徴とする。 As an example of an aspect for achieving the above-described object, at least a part of the lubricating oil storage part storing lubricating oil below the sealed container, a rotatable crankshaft having a cylindrical cavity part, and the cylindrical cavity part is provided. A rotating member rotatable on the same rotating shaft as the crankshaft, and a stationary member provided between the crankshaft and the rotating member with a gap between the crankshaft and the rotating member. A hermetic compressor including an oil supply means, wherein the rotating member is hollow inside, and has a lower communication portion in the lower part for supplying the lubricating oil to the inside of the rotating member. A first oil supply path including a path spiral groove in a gap between the stationary member and the rotating member; a second oil supply path including a second oil supply path spiral groove in a gap between the stationary member and the crankshaft; and the rotating member. The lower communication part and the The upper end of the rolling possess a third oil supply path and an internal member, wherein the inner and the stationary member the outlet hole provided with an outlet hole communicating with the cylindrical hollow portion to said rotating member of said rotary member having the a height above the height, or the side surface of the rotary member, characterized in that it have a degassing hole.

本発明によれば、低速域でも十分な給油量を確保可能な密閉形圧縮機を提供することができる。   According to the present invention, it is possible to provide a hermetic compressor capable of securing a sufficient amount of oil supply even in a low speed region.

第1実施形態に係る密閉形圧縮機の縦断面図である。It is a longitudinal section of the hermetic compressor concerning a 1st embodiment. 遠心ポンプと粘性ポンプにおける運転速度と給油量の関係を示す図である。It is a figure which shows the relationship between the operating speed and oil supply amount in a centrifugal pump and a viscous pump. 第1実施形態の密閉形圧縮機の天頂部を透過した上面図である。It is the top view which permeate | transmitted the top | zenith part of the hermetic compressor of 1st Embodiment. 第1実施形態に係る給油手段を模式的に表す要部拡大図である。It is a principal part enlarged view which represents typically the oil supply means which concerns on 1st Embodiment. 第1実施形態に係るクランク軸及びクランク軸下部の断面図である。る。It is sectional drawing of the crankshaft and crankshaft lower part which concern on 1st Embodiment. The 第1実施形態に係る静止部材の正面図である。It is a front view of the stationary member concerning a 1st embodiment. 第1実施形態に係る静止部材の断面図である。It is sectional drawing of the stationary member which concerns on 1st Embodiment. 第1実施形態に係る給油経路と回転する回転部材内の油面を示す断面図である。It is sectional drawing which shows the oil level in the rotating member which rotates with the oil supply path | route which concerns on 1st Embodiment. 第1実施形態の給油手段の第一給油経路、第二給油経路、第三給油経路各々の給油量および3つの給油経路の総和給油量と、運転速度との関係を示した概略図である。It is the schematic which showed the relationship between the oil supply amount of each of the 1st oil supply path | route of the oil supply means of 1st Embodiment, the 2nd oil supply path | route, the 3rd oil supply path | route, the sum total oil supply quantity of three oil supply path | routes, and an operating speed. 第1実施形態の圧縮機稼動時に観察される油面形状を示す模式図である。It is a schematic diagram which shows the oil-surface shape observed at the time of the compressor operation of 1st Embodiment. 第2実施形態に係る給油手段を模式的に表す要部拡大断面図である。It is a principal part expanded sectional view which represents typically the oil supply means which concerns on 2nd Embodiment. 第2実施形態に係る静止部材の断面図である。It is sectional drawing of the stationary member which concerns on 2nd Embodiment. 第3実施形態に係る給油手段を模式的に表す要部拡大断面図である。It is a principal part expanded sectional view which represents typically the oil supply means which concerns on 3rd Embodiment. 第4実施形態に係る給油手段を模式的に表す要部拡大断面図である。It is a principal part expanded sectional view which represents typically the oil supply means which concerns on 4th Embodiment. 第5実施形態に係る給油手段を模式的に表す要部拡大断面図である。It is a principal part expanded sectional view which represents typically the oil supply means which concerns on 5th Embodiment. 各実施形態に係る密閉形圧縮機のいずれかが搭載された冷蔵庫の縦断面図である。It is a longitudinal cross-sectional view of the refrigerator in which any of the hermetic compressors according to each embodiment is mounted.

以下、図面を参照しつつ本発明に係る実施形態について説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、本発明は各実施形態に必ずしも限られるものではなく、本発明の思想の範囲内で各実施形態に記載の構成以外の公知の構成を採用することもできる。   Embodiments according to the present invention will be described below with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate. Further, the present invention is not necessarily limited to each embodiment, and a known configuration other than the configuration described in each embodiment can be adopted within the scope of the concept of the present invention.

また、本発明の各種の構成要素は、必ずしも個々に独立した存在である必要はなく、複数の構成要素が一個の部材として形成されていること、一つの構成要素が複数の部材で形成されていること、或る構成要素が他の構成要素の一部であること、或る構成要素の一部と他の構成要素の一部とが重複していること、等を許容する。   The various components of the present invention do not necessarily have to be independent of each other. A plurality of components are formed as a single member, and a single component is formed of a plurality of members. A certain component is a part of another component, a part of a certain component overlaps a part of another component, and the like.

[第1実施形態]
以下、本発明の第1実施形態を図1及び図3乃至図10を用いて詳細に説明する。まず、図1、図3にて密閉形圧縮機の全体構成を説明する。図1は本発明の第1の実施形態に係る密閉形圧縮機の縦断面図、図3は本実施形態の密閉形圧縮機の天頂部を透過した上面図である。本実施形態の密閉形圧縮機50は、密閉容器1内にステータ2aとロータ2bからなる電動要素2と、圧縮要素3を収納している。圧縮要素3はレシプロ圧縮機構であり、シリンダ5a内をコンロッド6によりクランク軸8の偏心軸8aに連結されたピストン7が往復運動する。シリンダブロック5のラジアル軸受5cにはクランク軸8が回転自在に嵌められている。圧縮要素3はフレーム部5bの下部に固定したステータ2aを介して、コイルスプリング23により密閉容器1の底部に弾性的に支持されている。ロータ2bが回転することによってクランク軸8が回転し、偏心軸8aが偏心回転する。偏心軸8aが偏心回転することで、ピストン7はシリンダ5a内を往復運動する。シリンダ5a内は、吸入弁及び吐出弁(図示せず)が組み込まれたシリンダヘッド10によって閉塞され、ピストン7との間に圧縮作動室12を構成している。内部に吐出室11aが形成されたヘッドカバー11は、締付ボルト13によってシリンダブロック5に固定されている。吸入サイレンサ15は、吸込経路における作動流体の圧力脈動を減衰させて騒音を低減するもので、シリンダブロック5のフレーム部5bの上部に位置している。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described in detail with reference to FIGS. 1 and 3 to 10. First, the overall configuration of the hermetic compressor will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view of a hermetic compressor according to the first embodiment of the present invention, and FIG. 3 is a top view of the hermetic compressor according to the present embodiment that is transmitted through the zenith. The hermetic compressor 50 according to this embodiment houses an electric element 2 including a stator 2 a and a rotor 2 b and a compression element 3 in a hermetic container 1. The compression element 3 is a reciprocating compression mechanism, and the piston 7 connected to the eccentric shaft 8a of the crankshaft 8 by the connecting rod 6 reciprocates in the cylinder 5a. A crankshaft 8 is rotatably fitted to the radial bearing 5c of the cylinder block 5. The compression element 3 is elastically supported on the bottom of the hermetic container 1 by a coil spring 23 via a stator 2a fixed to the lower part of the frame part 5b. As the rotor 2b rotates, the crankshaft 8 rotates and the eccentric shaft 8a rotates eccentrically. As the eccentric shaft 8a rotates eccentrically, the piston 7 reciprocates in the cylinder 5a. The inside of the cylinder 5 a is closed by a cylinder head 10 in which a suction valve and a discharge valve (not shown) are incorporated, and a compression working chamber 12 is formed between the cylinder 5 a and the piston 7. The head cover 11 in which the discharge chamber 11 a is formed is fixed to the cylinder block 5 with a fastening bolt 13. The suction silencer 15 reduces the noise by attenuating the pressure pulsation of the working fluid in the suction path, and is located above the frame portion 5 b of the cylinder block 5.

次に圧縮機内部の冷媒経路について説明する。密閉容器1に接続された吸込パイプ14を通って流入した冷媒は、吸入サイレンサ15内を通過し、シリンダヘッド10の吸込口からシリンダ5aの圧縮作動室12内に入る。圧縮作動室12内ではピストン7の往復運動によって冷媒が吸入、圧縮され、吐出口から吐き出される構造になっている。圧縮された冷媒は、シリンダヘッド10の吐出口からヘッドカバー11内の吐出室11aに入り、ここからシリンダブロック5に一体で成形された吐出サイレンサ16を通り、吐出管17を介して吐出パイプ22より外部の冷凍サイクルに流出する。   Next, the refrigerant path inside the compressor will be described. The refrigerant flowing in through the suction pipe 14 connected to the sealed container 1 passes through the suction silencer 15 and enters the compression working chamber 12 of the cylinder 5a from the suction port of the cylinder head 10. In the compression working chamber 12, the refrigerant is sucked and compressed by the reciprocating motion of the piston 7 and discharged from the discharge port. The compressed refrigerant enters the discharge chamber 11 a in the head cover 11 from the discharge port of the cylinder head 10, passes through the discharge silencer 16 integrally formed with the cylinder block 5 from here, and passes through the discharge pipe 17 through the discharge pipe 22. Outflow to external refrigeration cycle.

本実施形態の給油手段を、図4乃至図8を用いて詳細に説明する。図4は本実施形態に係る、給油手段を模式的に示す要部拡大図を示し、図5は本実施形態に係る、クランク軸8およびクランク軸8下部の断面図である。図6は本実施形態に係る静止部材20の正面図、図7は本実施形態に係る静止部材20の断面図である。図8は本実施形態に係る給油経路と回転する回転部材内の油面を示す断面図である。   The oil supply means of this embodiment is demonstrated in detail using FIG. 4 thru | or FIG. FIG. 4 is an enlarged view of a main part schematically showing the oil supply means according to this embodiment, and FIG. 5 is a cross-sectional view of the crankshaft 8 and the lower part of the crankshaft 8 according to this embodiment. FIG. 6 is a front view of the stationary member 20 according to the present embodiment, and FIG. 7 is a cross-sectional view of the stationary member 20 according to the present embodiment. FIG. 8 is a cross-sectional view showing an oil supply path and an oil level in a rotating rotating member according to the present embodiment.

本実施形態では、略円筒状のクランク軸8内部にはクランク軸8下端側に開口して、略円筒状の回転部材18を収容可能な、大径円筒空洞部30aと、その上方に設けられた小径円筒空洞部30bとを含む円筒空洞部30を設けている。円筒空洞部30内部には、中空の回転部材18がクランク軸8の回転軸と同軸上にかつクランク軸8の回転に従って回転するように装着されている。好ましくは、回転部材18はクランク軸8に相対回転不能に設けられており、クランク軸8と回転部材18とは同一の角速度で回転する。回転部材18の底は、密閉容器1の下方に設けられた潤滑油貯留部4aの潤滑油4に浸されており、潤滑油を回転部材18の内部に供給するよう、下部連通部として例えば円形の下部孔18aが設けてある。   In the present embodiment, a large-diameter cylindrical hollow portion 30a that opens to the lower end side of the crankshaft 8 and can accommodate the substantially cylindrical rotating member 18 is provided in the substantially cylindrical crankshaft 8 and the upper portion thereof. A cylindrical cavity 30 including a small-diameter cylindrical cavity 30b is provided. A hollow rotating member 18 is mounted inside the cylindrical cavity 30 so as to rotate coaxially with the rotating shaft of the crankshaft 8 and according to the rotation of the crankshaft 8. Preferably, the rotating member 18 is provided so as not to rotate relative to the crankshaft 8, and the crankshaft 8 and the rotating member 18 rotate at the same angular velocity. The bottom of the rotating member 18 is immersed in the lubricating oil 4 in the lubricating oil reservoir 4a provided below the hermetic container 1 and is, for example, circular as a lower communication portion so as to supply the lubricating oil to the inside of the rotating member 18. The lower hole 18a is provided.

円筒空洞部30は、クランク軸8に回転部材18を装着し得る小径円筒空洞部30bと、クランク軸8と回転部材18との半径方向に間隙を設けられるように大径円筒空洞部30aを有し、大径円筒空洞部30aには、クランク軸8と回転部材18のそれぞれに間隙を有して略円筒状の静止部材20を設けている。   The cylindrical cavity 30 has a small-diameter cylindrical cavity 30b in which the rotating member 18 can be mounted on the crankshaft 8, and a large-diameter cylindrical cavity 30a so that a gap is provided in the radial direction between the crankshaft 8 and the rotating member 18. The large-diameter cylindrical cavity 30a is provided with a substantially cylindrical stationary member 20 with a gap between each of the crankshaft 8 and the rotating member 18.

静止部材20は例えばポリフェニレンサルファイド樹脂(PPS)などの樹脂等でできている。静止部材20は上端及び下端が開放した中空無底略円筒状であり、回転部材18の一部を間隙を備えて収容可能である。クランク軸8と静止部材20との半径方向の間隙は0.2〜0.3mmに設定されており、回転部材18と静止部材との半径方向の間隙も同様に0.2〜0.3mmに設定されている。   The stationary member 20 is made of a resin such as polyphenylene sulfide resin (PPS). The stationary member 20 is a hollow bottomless substantially cylindrical shape having an open upper end and a lower end, and a part of the rotating member 18 can be accommodated with a gap. The radial gap between the crankshaft 8 and the stationary member 20 is set to 0.2 to 0.3 mm, and the radial gap between the rotating member 18 and the stationary member is similarly set to 0.2 to 0.3 mm. Is set.

本実施形態では静止部材20の外周面および内周面に、第二給油経路らせん溝20b、第一給油経路らせん溝20cを有している。第二給油経路らせん溝20b、第一給油経路らせん溝20cの深さはそれぞれ0.6〜1.2mmに設定されている。また、静止部材20は、その底面に孔の開いた凸部20aを有している。凸部20aの孔には回転抑制手段としてのワイヤー21が通している。ワイヤー21はステータ2aに固定されている。これにより静止部材20の運動を抑制でき、例えばクランク軸8や回転部材18が回転した場合、静止部材20に回転力が伝達されて回転することが抑制される。即ち、クランク軸8及び回転部材18は、静止部材20に回転力を与えることが抑制され、静止部材20に対して効率よく回転する。   In the present embodiment, a second oil supply path spiral groove 20 b and a first oil supply path spiral groove 20 c are provided on the outer peripheral surface and the inner peripheral surface of the stationary member 20. The depths of the second oil supply path spiral groove 20b and the first oil supply path spiral groove 20c are set to 0.6 to 1.2 mm, respectively. The stationary member 20 has a convex portion 20a having a hole in the bottom surface. A wire 21 as a rotation suppressing means passes through the hole of the convex portion 20a. The wire 21 is fixed to the stator 2a. Thereby, the motion of the stationary member 20 can be suppressed. For example, when the crankshaft 8 or the rotating member 18 is rotated, the rotational force is transmitted to the stationary member 20 and the rotation is suppressed. That is, the crankshaft 8 and the rotating member 18 are restrained from applying a rotational force to the stationary member 20 and rotate efficiently with respect to the stationary member 20.

圧縮機が稼働すると、ロータ2bの回転に伴い、クランク軸8と回転部材18とが回転する。クランク軸8の回転によって、クランク軸8に固定された回転部材18と、静止部材20とに生じる速度差により、回転部材18と静止部材20との半径方向の間隙にある潤滑油にはせん断力が働き、潤滑油は静止部材20内周面の第一給油経路らせん溝20cに沿って、静止部材20と回転部材18との半径方向の間隙を通過し、回転部材18の内部を上昇する。これを第一給油経路と称する。   When the compressor is operated, the crankshaft 8 and the rotating member 18 rotate with the rotation of the rotor 2b. Due to the difference in speed generated between the rotating member 18 fixed to the crankshaft 8 and the stationary member 20 due to the rotation of the crankshaft 8, the lubricating oil in the radial gap between the rotating member 18 and the stationary member 20 has a shearing force. The lubricating oil passes through the radial groove between the stationary member 20 and the rotating member 18 along the first oil supply path spiral groove 20 c on the inner peripheral surface of the stationary member 20, and ascends inside the rotating member 18. This is referred to as a first oil supply path.

また、クランク軸8と静止部材20との速度差により、クランク軸8と静止部材20との半径方向の間隙にある潤滑油にはせん断力が働き、潤滑油は静止部材20外周面の第二給油経路らせん溝20bに沿って、クランク軸8と静止部材20との半径方向の間隙を通過し、クランク軸内部を上昇する。これを第二給油経路と称する。   Further, due to the speed difference between the crankshaft 8 and the stationary member 20, a shearing force acts on the lubricating oil in the radial gap between the crankshaft 8 and the stationary member 20, and the lubricating oil is the second of the outer peripheral surface of the stationary member 20. Along the oil supply path spiral groove 20b, it passes through a radial gap between the crankshaft 8 and the stationary member 20, and ascends inside the crankshaft. This is referred to as a second oil supply path.

さらに、潤滑油は回転部材18の底に設けた下部連通部である下部孔18aより、クランク軸8に固定された円筒形状の回転部材18内部に入る。回転部材18内部に入った潤滑油は、回転部材18の回転により遠心力が働き、回転部材18内部を上昇する。これを第三給油経路と称する。   Furthermore, the lubricating oil enters the inside of the cylindrical rotating member 18 fixed to the crankshaft 8 from a lower hole 18 a that is a lower communication portion provided at the bottom of the rotating member 18. The lubricating oil that has entered the rotary member 18 is subjected to centrifugal force by the rotation of the rotary member 18, and rises inside the rotary member 18. This is referred to as a third oil supply path.

第一、第二、及び第三給油経路によりクランク軸8内部を上昇した潤滑油は、クランク軸8の外表面と大径円筒空洞部30aとを連通する連通孔8bへ運ばれる。連通孔8bは、例えば第一給油経路等の給油手段によって上昇した潤滑油4をクランク外表面らせん溝8cに供給可能であれば、位置は特に制限されないが、好ましくは、静止部材20の上端部近傍の高さ、さらに好ましくは静止部材20の上端部を含む高さに設けられる。連通孔8bを介して、クランク軸8外表面とラジアル軸受5c(図1等参照。)との半径方向の間隙に到達した潤滑油には、クランク軸8外表面と、ラジアル軸受5cとに生じる速度差により、せん断力が働く。潤滑油に働くせん断力が駆動力となって、潤滑油はクランク軸8の外表面に設けられたクランク外表面らせん溝8c(図4、図5等参照。)に沿って、クランク軸8の上方へ導かれる。   The lubricating oil that has risen inside the crankshaft 8 through the first, second, and third oil supply paths is conveyed to the communication hole 8b that communicates the outer surface of the crankshaft 8 and the large-diameter cylindrical cavity 30a. The position of the communication hole 8b is not particularly limited as long as the lubricating oil 4 raised by the oil supply means such as the first oil supply path can be supplied to the crank outer surface spiral groove 8c, but preferably the upper end of the stationary member 20 It is provided at a height in the vicinity, more preferably at a height including the upper end of the stationary member 20. Lubricating oil that has reached the radial gap between the outer surface of the crankshaft 8 and the radial bearing 5c (see FIG. 1, etc.) via the communication hole 8b is generated on the outer surface of the crankshaft 8 and the radial bearing 5c. Shear force works due to the speed difference. The shearing force acting on the lubricating oil serves as a driving force, and the lubricating oil moves along the crank outer surface spiral groove 8c (see FIGS. 4 and 5, etc.) provided on the outer surface of the crankshaft 8. Guided upward.

その後、潤滑油は、クランク軸8外表面にある連通孔8dを通過し、再びクランク軸8内部に入る。クランク軸8内部に入った潤滑油は、偏心軸8a内を通過し、偏心軸8aに回転自在に嵌合されたコンロッド6を貫通した孔(図示せず)の内部を通過する。コンロッド6内部を通過した潤滑油は、コンロッド6とピストン7とを連結している、ボールジョイント19の潤滑を行う。さらに、偏心軸8aの上端に取り付けられたバランスウエイト9を一部貫通する形で設けられた孔(図示せず)から噴射され、最後に偏心軸8aの上端部から周囲に噴射される。主にこの噴射された潤滑油4により、ピストン7とシリンダ5aとの間の潤滑及びシールが行われる。   Thereafter, the lubricating oil passes through the communication hole 8d in the outer surface of the crankshaft 8 and enters the crankshaft 8 again. The lubricating oil that has entered the crankshaft 8 passes through the eccentric shaft 8a and passes through a hole (not shown) that passes through the connecting rod 6 that is rotatably fitted to the eccentric shaft 8a. The lubricating oil that has passed through the connecting rod 6 lubricates the ball joint 19 that connects the connecting rod 6 and the piston 7. Furthermore, it injects from the hole (not shown) provided in the form which penetrates the balance weight 9 attached to the upper end of the eccentric shaft 8a, and is finally injected to the circumference | surroundings from the upper end part of the eccentric shaft 8a. Lubrication and sealing between the piston 7 and the cylinder 5a are performed mainly by the injected lubricating oil 4.

図9は本実施形態の給油手段の第一給油経路、第二給油経路、第三給油経路各々の給油量およびこれら3つの給油経路の総和給油量と、運転速度との関係を示した概略図である。低速運転時には、遠心ポンプを構成する回転部材18内部の油面は、回転部材18側面の出口孔18cに到達しない。そのため圧縮機内部の給油手段の給油は、粘性ポンプによる給油が支配的になる。つまり圧縮機内給油手段の給油量は、第一給油経路、第二給油経路を通過する油量の総和となる。遠心ポンプを構成する回転部材18内部の油面が、回転部材18側面の出口孔18cに達する運転速度になると、遠心ポンプと粘性ポンプの両方が給油することにより、圧縮機内給油手段の給油量は第一給油経路、第二給油経路、第三給油経路を通過する油量の総和となる。そして中速域での所定速度以上、および高速域になると粘性ポンプの給油能力は遠心ポンプよりも小さくなる。そのため圧縮機内の給油手段の給油は、遠心ポンプによる給油が支配的になる。   FIG. 9 is a schematic diagram showing the relationship between the operating speed and the oil supply amount of each of the first oil supply path, the second oil supply path, and the third oil supply path of the oil supply means of this embodiment, and the total oil supply amount of these three oil supply paths. It is. During low speed operation, the oil level inside the rotating member 18 constituting the centrifugal pump does not reach the outlet hole 18c on the side surface of the rotating member 18. Therefore, the oil supply by the viscous pump is dominant in the oil supply means inside the compressor. That is, the amount of oil supplied from the compressor oil supply means is the sum of the amounts of oil passing through the first oil supply path and the second oil supply path. When the oil level in the rotary member 18 constituting the centrifugal pump reaches an operation speed that reaches the outlet hole 18c on the side of the rotary member 18, both the centrifugal pump and the viscous pump supply oil. This is the total amount of oil passing through the first oil supply path, the second oil supply path, and the third oil supply path. And if it becomes more than the predetermined speed in a medium speed area and a high speed area, the oil supply capability of a viscous pump will become smaller than a centrifugal pump. Therefore, the oil supply by the centrifugal pump is dominant in the oil supply means in the compressor.

このように運転速度により、圧縮機内給油手段の支配的な給油経路が変わるため、本実施形態の給油手段による給油量は図9に示すような曲線となる。遠心ポンプ単体で給油ができない低速域では、粘性ポンプにより給油を行い、中速域においては遠心ポンプと粘性ポンプを併用することで、粘性ポンプ単体よりも多くの給油量を確保することができる。このため本実施形態ではいずれの運転速度においても十分な給油量を確保することが可能となる。   As described above, the dominant oil supply path of the oil supply means in the compressor changes depending on the operation speed, and therefore, the amount of oil supplied by the oil supply means of this embodiment becomes a curve as shown in FIG. In the low speed range where the centrifugal pump alone cannot be refueled, lubrication is performed by the viscous pump, and in the middle speed region, the centrifugal pump and the viscous pump are used together, so that a larger amount of oil can be secured than the viscous pump alone. For this reason, in this embodiment, it becomes possible to ensure a sufficient amount of oil supply at any operating speed.

次に回転部材18に設け、第三給油経路を上昇した潤滑油4を大径円筒空洞部30aへと供給する出口孔18cの位置について説明する。回転部材18に設けた出口孔18cの下端は、大径円筒空洞部30a内の静止部材20の上端と同一高さ、或いは上端よりも上方(静止部材20の上端の高さ以上の高さ)に位置している。これにより、第一給油経路及び/又は第二給油経路を上昇した潤滑油が、回転部材18内部に落下することを防ぐことができ、十分な給油量を確保することができる。なお、出口孔18cの下端の高さの上限は特に制限されないが、第三給油経路によって潤滑油が上昇する高さを鑑みて設けることが好ましい。   Next, the position of the outlet hole 18c that is provided in the rotating member 18 and that supplies the lubricating oil 4 that has moved up the third oil supply path to the large-diameter cylindrical cavity 30a will be described. The lower end of the outlet hole 18c provided in the rotating member 18 is the same height as the upper end of the stationary member 20 in the large-diameter cylindrical cavity 30a, or above the upper end (height higher than the height of the upper end of the stationary member 20). Is located. Thereby, it can prevent that the lubricating oil which raised the 1st oil supply path | route and / or the 2nd oil supply path | route falls into the inside of the rotating member 18, and can ensure sufficient oil supply amount. The upper limit of the height of the lower end of the outlet hole 18c is not particularly limited, but is preferably provided in view of the height at which the lubricating oil rises through the third oil supply path.

出口孔18cの下端が、静止部材20の上端よりも下方に位置すると、第一給油経路及び/又は第二給油経路を上昇した潤滑油は出口孔18cに達し、潤滑油の重力により回転部材18の内部に落下する可能性が考えられる。なお、出口孔18cの個数は特に制限されず、一つ以上であれば良い。   When the lower end of the outlet hole 18c is positioned below the upper end of the stationary member 20, the lubricating oil that has risen in the first oil supply path and / or the second oil supply path reaches the outlet hole 18c, and the rotating member 18 is caused by the gravity of the lubricating oil. There is a possibility of falling into the interior. The number of outlet holes 18c is not particularly limited and may be one or more.

図10は本実施例において、圧縮機稼動時に観察される油面形状を示す模式図である。クランク軸8内部に存在する潤滑油は、回転部材18の回転によりクランク軸8の外周方向に遠心力を受ける。そのためクランク軸8の外周寄りの油面はクランク軸8の回転軸である中心の油面よりも高くなる。第二給油経路の下端20dが、遠心ポンプの一部を構成する回転部材18の下端よりも下方にあると、クランク軸8下部にある潤滑油は第二給油経路に優先的に入る。その結果、回転部材18内部に入る潤滑油量が減少するため、遠心ポンプの給油量は減少する。しかし本実施形態によれば、第二給油経路の下端20dは回転部材18の下端よりも上方に位置している。そのため潤滑油は粘性ポンプと遠心ポンプの両方に十分に入るため、十分に潤滑油を供給することができる。   FIG. 10 is a schematic diagram showing the oil surface shape observed when the compressor is operated in this embodiment. Lubricating oil present in the crankshaft 8 is subjected to centrifugal force in the outer circumferential direction of the crankshaft 8 by the rotation of the rotating member 18. Therefore, the oil level near the outer periphery of the crankshaft 8 is higher than the central oil level that is the rotation axis of the crankshaft 8. When the lower end 20d of the second oil supply path is below the lower end of the rotating member 18 constituting a part of the centrifugal pump, the lubricating oil at the lower part of the crankshaft 8 preferentially enters the second oil supply path. As a result, the amount of lubricating oil entering the rotating member 18 decreases, and the amount of oil supplied to the centrifugal pump decreases. However, according to the present embodiment, the lower end 20 d of the second oil supply path is located above the lower end of the rotating member 18. Therefore, the lubricating oil sufficiently enters both the viscous pump and the centrifugal pump, so that the lubricating oil can be sufficiently supplied.

また圧縮機の稼動時にクランク軸8が回転すると、潤滑油中に溶解していた冷媒がガスとなって放出し、潤滑油経路を塞ぐ可能性が考えられる。冷媒ガスが潤滑油経路を塞ぐと、給油量は低下してしまう。しかし本実施形態によれば、回転部材18側面で大径円筒空洞部30aにガス抜き孔18bを設けている。ガス抜き孔18bの下端は、静止部材20上端より上方に位置し、好ましくは、出口孔18cの上端より上部に位置し、さらに好ましくは、大径円筒空洞部30aの上端近傍に位置している。この構造によりクランク軸8の回転に伴い、例えば粘性ポンプ内に発生した冷媒ガスは、クランク軸8内部を上昇しガス抜き孔18bを通り、クランク軸8内部のガス抜き経路8gから密閉空間へ逃げる。さらに、ガス抜き孔18bの下端が出口孔18cより上部に位置する場合は、第三給油経路から大径円筒空洞部30aに流れるガス冷媒を効率よくガス抜き経路8gへと送出できる。そのため冷媒ガスは潤滑油経路を塞ぎにくくなる。これにより安定した給油量を確保することができる。   Further, if the crankshaft 8 rotates during operation of the compressor, the refrigerant dissolved in the lubricating oil may be discharged as a gas, possibly blocking the lubricating oil path. When the refrigerant gas blocks the lubricating oil path, the amount of oil supply decreases. However, according to this embodiment, the gas vent hole 18b is provided in the large-diameter cylindrical cavity 30a on the side surface of the rotating member 18. The lower end of the gas vent hole 18b is located above the upper end of the stationary member 20, preferably located above the upper end of the outlet hole 18c, and more preferably located near the upper end of the large-diameter cylindrical cavity 30a. . With this structure, for example, the refrigerant gas generated in the viscous pump with the rotation of the crankshaft 8 rises inside the crankshaft 8, passes through the gas vent hole 18 b, and escapes from the gas vent path 8 g inside the crankshaft 8 to the sealed space. . Furthermore, when the lower end of the gas vent hole 18b is located above the outlet hole 18c, the gas refrigerant flowing from the third oil supply path to the large-diameter cylindrical cavity 30a can be efficiently sent to the gas vent path 8g. Therefore, it becomes difficult for the refrigerant gas to block the lubricating oil path. Thereby, the stable amount of oil supply can be ensured.

[第2実施形態]
次に、第2実施形態に係る密閉形圧縮機の構造について図11、図12を用いて説明する。図11は本実施形態にかかる給油手段を模式的に表す要部拡大断面図、図12は静止部材20の断面図である。
[Second Embodiment]
Next, the structure of the hermetic compressor according to the second embodiment will be described with reference to FIGS. 11 and 12. FIG. 11 is an enlarged cross-sectional view of the main part schematically showing the oil supply means according to the present embodiment, and FIG. 12 is a cross-sectional view of the stationary member 20.

本実施形態は静止部材20内周面の第一給油経路らせん溝20cが静止部材20の上方の一部に設けられている点を除き第1実施形態と同様である。第一給油経路らせん溝20cが設けられていない下方の位置での内径bは、第一給油経路らせん溝20cが設けられている上方の位置での内径aよりも大きくなるよう設定している。そのため第1実施形態と比較すると、本実施形態の方が静止部材20と回転部材18との摺動面積を減らすことができ、摺動損失を低減できる。   This embodiment is the same as the first embodiment except that the first oil supply path spiral groove 20 c on the inner peripheral surface of the stationary member 20 is provided in a part above the stationary member 20. The inner diameter b at the lower position where the first oil supply path spiral groove 20c is not provided is set to be larger than the inner diameter a at the upper position where the first oil supply path spiral groove 20c is provided. Therefore, compared with 1st Embodiment, the direction of this embodiment can reduce the sliding area of the stationary member 20 and the rotation member 18, and can reduce a sliding loss.

本実施形態においても、第1実施形態と同様の効果を奏することができる。また、静止部材20と回転部材18との間隙にある潤滑油は、静止部材20と回転部材18の速度差によりせん断力を受け、静止部材内周面の第一給油経路らせん溝20cを辿って上向き方向に上昇しようとする。これより静止部材20外周面とクランク軸8内周面との半径方向の間隙(第二給油経路)を上昇した潤滑油が、静止部材20内周面と回転部材18外周面との半径方向の間隙(第一給油経路)から、下方に落下することを防ぐことができる。そのため低速域でも十分な給油量を確保することができる。本実施形態においても粘性ポンプと遠心ポンプを並列に配置することで、インバータ搭載の圧縮機において、いずれの運転速度においても十分に給油することができ、圧縮機性能を向上することができる。   In this embodiment, the same effect as that of the first embodiment can be obtained. Further, the lubricating oil in the gap between the stationary member 20 and the rotating member 18 receives a shearing force due to the speed difference between the stationary member 20 and the rotating member 18, and follows the first oil supply path spiral groove 20c on the inner peripheral surface of the stationary member. Try to rise upward. As a result, the lubricating oil that has risen in the radial gap (second oil supply path) between the outer peripheral surface of the stationary member 20 and the inner peripheral surface of the crankshaft 8 is moved in the radial direction between the inner peripheral surface of the stationary member 20 and the outer peripheral surface of the rotating member 18. It is possible to prevent a downward drop from the gap (first oil supply path). Therefore, a sufficient amount of oil can be ensured even in the low speed range. Also in the present embodiment, by arranging the viscous pump and the centrifugal pump in parallel, the compressor equipped with the inverter can sufficiently supply oil at any operation speed, and the compressor performance can be improved.

[第3実施形態]
次に、第3実施形態に係る密閉形圧縮機の構造について図13を用いて説明する。本実施形態は、クランク軸8の下端が回転抑制手段であるワイヤー21の凸部20aの上端より上方に位置し、静止部材20の第二給油経路らせん溝20bの一部を露出している点を除き、第1又は第2実施形態と同様の構成である。これにより圧縮機の稼動時に振動によりワイヤー21とクランク軸8の下端が衝突することを防ぐことができ、騒音低減、信頼性向上に繋がる。本実施形態においても、第1又は第2実施形態と同様の効果を奏することができる。また、粘性ポンプと遠心ポンプを並列に配置することで、インバータ搭載の圧縮機において、いずれの運転速度においても十分に給油することができ、圧縮機性能を向上することができる。
[Third Embodiment]
Next, the structure of the hermetic compressor according to the third embodiment will be described with reference to FIG. In this embodiment, the lower end of the crankshaft 8 is located above the upper end of the convex portion 20a of the wire 21 that is the rotation suppressing means, and a part of the second oil supply path spiral groove 20b of the stationary member 20 is exposed. Except for, the configuration is the same as that of the first or second embodiment. As a result, it is possible to prevent the wire 21 and the lower end of the crankshaft 8 from colliding with each other due to vibration during operation of the compressor, leading to noise reduction and improved reliability. Also in this embodiment, the same effects as those of the first or second embodiment can be obtained. Further, by arranging the viscous pump and the centrifugal pump in parallel, the compressor mounted with the inverter can sufficiently supply oil at any operating speed, and the compressor performance can be improved.

[第4実施形態]
次に、第4実施形態に係る密閉型圧縮機の構造について図14を用いて説明する。本実施形態は、静止部材20内周面の第一給油経路らせん溝20cに代えて、回転部材18の外周面に第一給油経路らせん溝20c’を設けた点を除き、第1乃至第3実施形態と同様の構成である。これにより静止部材20の内周面にらせん溝を設置するよりも加工がしやすくコストが抑えられる。本実施形態においても、第1乃至第3実施形態と同様の効果を奏することができる。また、粘性ポンプと遠心ポンプを並列に配置することで、インバータ搭載の圧縮機において、いずれの運転速度においても十分に給油することができ、圧縮機性能を向上することができる。
[Fourth Embodiment]
Next, the structure of the hermetic compressor according to the fourth embodiment will be described with reference to FIG. The present embodiment is the first to third except that the first oil supply path spiral groove 20c ′ is provided on the outer peripheral surface of the rotating member 18 instead of the first oil supply path spiral groove 20c on the inner peripheral surface of the stationary member 20. The configuration is the same as that of the embodiment. Thereby, it is easier to process than the installation of a spiral groove on the inner peripheral surface of the stationary member 20, and the cost can be reduced. In this embodiment, the same effects as those of the first to third embodiments can be obtained. Further, by arranging the viscous pump and the centrifugal pump in parallel, the compressor mounted with the inverter can sufficiently supply oil at any operating speed, and the compressor performance can be improved.

[第5実施形態]
次に、第5実施形態に係る密閉型圧縮機の構造について図15を用いて説明する。本実施形態は、静止部材20外周面の第二給油経路らせん溝20bに代えて、回転部材18の内周面に第二給油経路らせん溝20b’を設けた点を除き、第1乃至第4実施形態と同様の構成である。本実施形態においても、第1乃至第3実施形態と同様の効果を奏することができる。また、粘性ポンプと遠心ポンプを並列に配置することで、インバータ搭載の圧縮機において、いずれの運転速度においても十分に給油することができ、圧縮機性能を向上することができる。
[Fifth Embodiment]
Next, the structure of the hermetic compressor according to the fifth embodiment will be described with reference to FIG. The present embodiment is the first to fourth except that the second oil supply path spiral groove 20b ′ is provided on the inner peripheral surface of the rotating member 18 instead of the second oil supply path spiral groove 20b on the outer peripheral surface of the stationary member 20. The configuration is the same as that of the embodiment. In this embodiment, the same effects as those of the first to third embodiments can be obtained. Further, by arranging the viscous pump and the centrifugal pump in parallel, the compressor mounted with the inverter can sufficiently supply oil at any operating speed, and the compressor performance can be improved.

[冷蔵庫]
図16は第1乃至第5の実施形態に係る密閉形圧縮機のいずれかを搭載した冷蔵庫の縦断面図である。図16において、本実施形態の密閉形圧縮機50は、冷却器66を備え、温暖化係数の小さい自然冷媒R600aを用いた冷蔵庫60に搭載され、冷蔵室62、上段冷凍室63、下段冷凍室64、野菜室65からなる庫内空間は密閉形圧縮機50の駆動により冷凍サイクル(図示せず)を動作させることにより冷却される。
[refrigerator]
FIG. 16 is a longitudinal sectional view of a refrigerator equipped with any of the hermetic compressors according to the first to fifth embodiments. In FIG. 16, the hermetic compressor 50 of this embodiment includes a cooler 66 and is mounted on a refrigerator 60 using a natural refrigerant R600a having a small warming coefficient, and includes a refrigerator room 62, an upper freezer room 63, and a lower freezer room. 64 and the vegetable compartment 65 are cooled by operating a refrigeration cycle (not shown) by driving the hermetic compressor 50.

以上詳細に説明した上記各実施形態の圧縮機を用いれば、粘性ポンプと遠心ポンプを並列に配置することで、粘性ポンプの油供量が不足し得る運転速度においても十分に給油することができ、圧縮機性能を向上することができる。   By using the compressors of the above-described embodiments described in detail above, the viscous pump and the centrifugal pump can be arranged in parallel, so that sufficient oil can be supplied even at an operating speed at which the oil supply of the viscous pump may be insufficient. , The compressor performance can be improved.

また、低速運転時および高速運転時の両方において、潤滑油を効率よく安定して汲み上げ、摺動部に十分な給油を行い、圧縮機効率を向上することができる。また、本発明の密閉形圧縮機は、冷蔵庫に限らず冷凍空調用途ではルームエアコンや冷凍機等に適用することも可能であり、これらの機器の効率を大幅に改善することができる。   Further, in both the low speed operation and the high speed operation, the lubricating oil can be efficiently and stably pumped, and sufficient oil can be supplied to the sliding portion to improve the compressor efficiency. Moreover, the hermetic compressor of the present invention can be applied not only to a refrigerator but also to a room air conditioner, a refrigerator, and the like for refrigeration and air conditioning applications, and the efficiency of these devices can be greatly improved.

1…密閉容器、2…電動要素、2a…ステータ、2b…ロータ、3…圧縮要素、4…潤滑油、4a…潤滑油貯留部、5…シリンダブロック、5a…シリンダ、5b…フレーム部、5c…ラジアル軸受、6…コンロッド、7…ピストン、8…クランク軸、8a…偏心軸、8b…連通孔、8c…クランク外表面らせん溝、8d…ピン部への連通孔、8g…クランク軸内部のガス抜き経路、9…バランスウエイト、10…シリンダヘッド、11…ヘッドカバー、11a…吐出室、11b…吸入サイレンサ取り付け口、11c…ボルト孔、12…圧縮作動室、13…締付ボルト、14…吸込パイプ、15…吸入サイレンサ、16…吐出サイレンサ、17…吐出管、18…回転部材、18a…下部孔(下部連通部)、18b…ガス抜き孔、18c…出口孔、19…ボールジョイント、20…静止部材、20a…凸部、20b,20b’…第二給油経路らせん溝、20c,20c’…第一給油経路らせん溝、20d…静止部材下端、21…ワイヤー(回転抑制手段)、22…吐出パイプ、30…円筒空洞部、30a…大径円筒空洞部、30b…小径円筒空洞部、50…密閉形圧縮機、60…冷蔵庫、61…冷蔵庫本体、62…冷蔵室、63…上段冷凍室、64…下段冷凍室、65…野菜室、66…冷却器   DESCRIPTION OF SYMBOLS 1 ... Sealed container, 2 ... Electric element, 2a ... Stator, 2b ... Rotor, 3 ... Compression element, 4 ... Lubricating oil, 4a ... Lubricating oil storage part, 5 ... Cylinder block, 5a ... Cylinder, 5b ... Frame part, 5c ... Radial bearing, 6 ... Connecting rod, 7 ... Piston, 8 ... Crankshaft, 8a ... Eccentric shaft, 8b ... Communication hole, 8c ... Spiral groove on the outer surface of the crank, 8d ... Communication hole to the pin part, 8g ... Inside the crankshaft Degassing path, 9 ... balance weight, 10 ... cylinder head, 11 ... head cover, 11a ... discharge chamber, 11b ... suction silencer mounting port, 11c ... bolt hole, 12 ... compression working chamber, 13 ... clamping bolt, 14 ... suction Pipe, 15 ... Suction silencer, 16 ... Discharge silencer, 17 ... Discharge pipe, 18 ... Rotating member, 18a ... Lower hole (lower communication part), 18b ... Gas vent hole, 18c ... Outlet hole DESCRIPTION OF SYMBOLS 19 ... Ball joint, 20 ... Static member, 20a ... Convex part, 20b, 20b '... Second oil supply path spiral groove, 20c, 20c' ... First oil supply path spiral groove, 20d ... Static member lower end, 21 ... Wire (rotation Suppression means), 22 ... discharge pipe, 30 ... cylindrical cavity, 30a ... large diameter cylindrical cavity, 30b ... small diameter cylindrical cavity, 50 ... hermetic compressor, 60 ... refrigerator, 61 ... refrigerator body, 62 ... refrigerator compartment 63 ... Upper freezer, 64 ... Lower freezer, 65 ... Vegetable room, 66 ... Cooler

Claims (5)

密閉容器の下方に潤滑油を貯留した潤滑油貯留部と、
円筒空洞部を有する回転自在のクランク軸と、
前記円筒空洞部に少なくとも一部が設けられ、前記クランク軸と同一の回転軸で回転可能な回転部材と、
前記クランク軸と前記回転部材とに間隙を有して前記クランク軸と前記回転部材との間に設けた静止部材と、を有する給油手段を備える密閉形圧縮機であって、
前記回転部材は内部が中空で、前記潤滑油を当該回転部材の内部に供給する下部連通部を下部に有し、
前記給油手段は、
第一給油経路らせん溝を前記静止部材と前記回転部材との間隙に含む第一給油経路と、
第二給油経路らせん溝を前記静止部材と前記クランク軸との間隙に含む第二給油経路と、
前記回転部材の前記下部連通部と前記回転部材の内部とを含む第三給油経路と、を有し、
前記回転部材の前記内部と前記円筒空洞部とを連通する出口孔を前記回転部材に設けるとともに当該出口孔を前記静止部材の上端の高さ以上の高さに有する、又は
前記回転部材の側面に、ガス抜き孔を有することを特徴とする密閉形圧縮機。
A lubricating oil reservoir that stores the lubricating oil below the sealed container;
A rotatable crankshaft having a cylindrical cavity;
A rotating member provided at least in part in the cylindrical cavity, and rotatable on the same rotating shaft as the crankshaft;
A hermetic compressor comprising oil supply means having a stationary member provided between the crankshaft and the rotating member with a gap between the crankshaft and the rotating member,
The rotating member is hollow inside, and has a lower communication part at the lower part for supplying the lubricating oil to the inside of the rotating member,
The refueling means is
A first oiling path including a first oiling path spiral groove in a gap between the stationary member and the rotating member;
A second oil supply path including a second oil supply path spiral groove in a gap between the stationary member and the crankshaft;
Have a, and a third oil supply path including the inside of the rotary member and the lower communicating portion of said rotary member,
An outlet hole that communicates the inside of the rotating member and the cylindrical cavity is provided in the rotating member and the outlet hole has a height that is equal to or higher than the height of the upper end of the stationary member, or
A side surface of said rotary member, hermetic compressors, characterized by have a gas vent hole.
前記回転部材の前記内部と前記円筒空洞部とを連通する出口孔を前記回転部材に設け、
当該出口孔の下端を前記静止部材の上端の高さ以上の高さに有することを特徴とする、請求項1に記載の密閉形圧縮機。
An outlet hole for communicating the inside of the rotating member and the cylindrical cavity is provided in the rotating member,
2. The hermetic compressor according to claim 1, wherein a lower end of the outlet hole has a height equal to or higher than a height of the upper end of the stationary member.
前記回転部材の前記内部と前記円筒空洞部とを連通する出口孔を前記回転部材に設けるとともに当該出口孔を前記静止部材の上端の高さ以上の高さに有する、かつ、
前記回転部材の側面に、ガス抜き孔を設けたことを特徴とする、請求項1又は2に記載の密閉形圧縮機。
An outlet hole for communicating the inside of the rotating member and the cylindrical cavity is provided in the rotating member, and the outlet hole has a height equal to or higher than the height of the upper end of the stationary member, and
The hermetic compressor according to claim 1, wherein a gas vent hole is provided on a side surface of the rotating member.
前記回転部材の前記内部と前記円筒空洞部とを連通する出口孔を前記回転部材に設け、
前記円筒空洞部は、小径円筒空洞部と、前記静止部材を有する当該小径円筒空洞部の下方の大径円筒空洞部とを含み、
前記ガス抜き孔の下端が前記出口孔の上端より上方かつ前記大径円筒空洞部の上端近傍に位置することを特徴とする、請求項に記載の密閉形圧縮機。
An outlet hole for communicating the inside of the rotating member and the cylindrical cavity is provided in the rotating member,
The cylindrical cavity includes a small-diameter cylindrical cavity and a large-diameter cylindrical cavity below the small-diameter cylindrical cavity having the stationary member,
The hermetic compressor according to claim 3 , wherein a lower end of the gas vent hole is located above an upper end of the outlet hole and in the vicinity of an upper end of the large-diameter cylindrical cavity.
請求項1乃至4の何れか一項に記載の密閉形圧縮機を有することを特徴とする機器。   An apparatus comprising the hermetic compressor according to any one of claims 1 to 4.
JP2013236393A 2013-11-15 2013-11-15 Hermetic compressor and equipment having hermetic compressor Expired - Fee Related JP6132747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013236393A JP6132747B2 (en) 2013-11-15 2013-11-15 Hermetic compressor and equipment having hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013236393A JP6132747B2 (en) 2013-11-15 2013-11-15 Hermetic compressor and equipment having hermetic compressor

Publications (2)

Publication Number Publication Date
JP2015096699A JP2015096699A (en) 2015-05-21
JP6132747B2 true JP6132747B2 (en) 2017-05-24

Family

ID=53374099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013236393A Expired - Fee Related JP6132747B2 (en) 2013-11-15 2013-11-15 Hermetic compressor and equipment having hermetic compressor

Country Status (1)

Country Link
JP (1) JP6132747B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106438288B (en) * 2016-10-17 2018-10-19 珠海格力节能环保制冷技术研究中心有限公司 Compressor and its centrifugal pump structure
CN111271254B (en) * 2018-12-05 2022-07-12 安徽美芝制冷设备有限公司 Oil supply structure for compressor and compressor with same
CN113700634B (en) * 2021-09-18 2023-11-21 珠海格力节能环保制冷技术研究中心有限公司 Cam crankshaft mechanism and piston compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005337158A (en) * 2004-05-28 2005-12-08 Matsushita Electric Ind Co Ltd Compressor

Also Published As

Publication number Publication date
JP2015096699A (en) 2015-05-21

Similar Documents

Publication Publication Date Title
JP6938370B2 (en) Closed compressor and refrigeration system
JP2004027969A (en) Hermetically sealed compressor
US8978826B2 (en) Compressor
US20090092504A1 (en) Hermetic compressor
JP6132747B2 (en) Hermetic compressor and equipment having hermetic compressor
JP6138625B2 (en) Hermetic compressor and refrigerator using the same
KR20160127361A (en) Oil Pumping Structure of Hermetic Compressor
JP2015004287A (en) Enclosed compressor and refrigerator using the same
JP2015007378A (en) Hermetic type compressor and refrigerator using the same
JP2015081558A (en) Enclosed compressor and equipment mounted with the same
US20120160610A1 (en) Lubricant supply tube for compressors
WO2015059833A1 (en) Scroll fluid machine
JP2014163299A (en) Hermetic type compressor and refrigerator using the same
JP6234793B2 (en) Hermetic compressor and refrigeration / freezing apparatus using the same
JP2015197057A (en) compressor
US20120308410A1 (en) Fluid Machine
JP2012041879A (en) Hermetic compressor and refrigerator using the same
JP5372869B2 (en) Hermetic compressor and refrigerator using the same
JP2017101557A (en) Hermetic type compressor
KR100771594B1 (en) crankshaft of compressor for refrigerating machine
KR100629870B1 (en) Lubrication system for horizontal compressor
JP2009062954A (en) Hermetic compressor
JP2014084715A (en) Hermetic compressor, and refrigerator
JP5680500B2 (en) Hermetic compressor and refrigerator using the same
JP2016130502A (en) Hermetic type compressor and refrigerator with hermetic type compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170418

R150 Certificate of patent or registration of utility model

Ref document number: 6132747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees