JP2004027969A - Hermetically sealed compressor - Google Patents

Hermetically sealed compressor Download PDF

Info

Publication number
JP2004027969A
JP2004027969A JP2002185774A JP2002185774A JP2004027969A JP 2004027969 A JP2004027969 A JP 2004027969A JP 2002185774 A JP2002185774 A JP 2002185774A JP 2002185774 A JP2002185774 A JP 2002185774A JP 2004027969 A JP2004027969 A JP 2004027969A
Authority
JP
Japan
Prior art keywords
oil
piston
oil supply
bearing
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002185774A
Other languages
Japanese (ja)
Inventor
Hironari Akashi
明石 浩業
Junta Kawabata
川端 淳太
Akihiko Kubota
窪田 昭彦
Takahide Nagao
長尾 崇秀
Makoto Katayama
片山 誠
Kosuke Tsuboi
坪井 康祐
Takashi Kakiuchi
垣内 隆志
Takeshi Kojima
小島 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP2002185774A priority Critical patent/JP2004027969A/en
Priority to CNB038149699A priority patent/CN100379986C/en
Priority to AU2003238161A priority patent/AU2003238161A1/en
Priority to KR1020047020714A priority patent/KR100857964B1/en
Priority to BR0312074-0A priority patent/BR0312074A/en
Priority to US10/518,643 priority patent/US20050265863A1/en
Priority to EP03736282A priority patent/EP1527280A1/en
Priority to PCT/JP2003/008143 priority patent/WO2004003387A1/en
Publication of JP2004027969A publication Critical patent/JP2004027969A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0284Constructional details, e.g. reservoirs in the casing
    • F04B39/0292Lubrication of pistons or cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • F04B39/0238Hermetic compressors with oil distribution channels
    • F04B39/0246Hermetic compressors with oil distribution channels in the rotating shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the efficiency and reliability and to reduce the noise in supplying the oil to a piston part in a center impeller type bearing of a hermetically sealed compressor. <P>SOLUTION: As an oil supply passage 129 is formed on an assistant bearing 119 for guiding a lubricant 108 discharged from an upper end of an oil supply mechanism 114 to a sliding face of a piston 120, the lubricant 108 is supplied from the oil supply passage 129 to the piston 120 and a piston pin 122, which improves the sealing performance, reduces the leakage of a refrigerant gas from a compression chamber 117, and improves the refrigerating performance and efficiency. Further as the lubrication of the sliding part of the piston 120 and the piston pin 122 is improved, the noise caused by sliding can be reduced, and the reliability can be improved. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、冷蔵庫、エアーコンディショナー、冷凍冷蔵装置等に用いられる密閉形圧縮機に関するものである。
【0002】
【従来の技術】
近年、家庭用冷凍冷蔵庫等の冷凍装置に使用される密閉型圧縮機については、消費電力の低減や静音化が強く望まれている。こうした中、潤滑油の低粘度化や、インバーター駆動による圧縮機の低回転化(例えば、家庭用冷蔵庫の場合、1200r/min程度)が進んできている。一方、オゾン破壊係数がゼロであるR134aやR600aに代表される温暖化係数の低い自然冷媒である炭化水素系冷媒等への対応が前提となってきている。また、過去より採用されていたシャフトを2ヵ所以上で保持する両持ち軸受という方法は、摺動ロスを減らし、また運転時の振動、騒音を低減する要素技術として有効である。
【0003】
従来の密閉型圧縮機としては、特開昭61−118571号公報に記載されているものがある。
【0004】
以下、図面を参照しながら、上述した従来の密閉型圧縮機について説明する。
【0005】
図8は従来の密閉型圧縮機の縦断面図である。図9は従来の密閉形圧縮機の要部上面図である。図10及び図11は従来の密閉形圧縮機の要部断面図である。図8、図9において、1は密閉容器で、2は密閉容器内空間である。密閉容器1内には、巻線部3aを保有する固定子3と回転子4からなる電動要素5と、電動要素5によって駆動される圧縮要素6を収容する。8は密閉容器1内に貯溜した潤滑油である。
【0006】
10はシャフトで、回転子5を圧入固定した主軸部11および主軸部11に対し偏心して形成された偏心部12の他、主軸部と同軸に設けられた副軸部13を有する。主軸部11の内部には同芯ポンプ14が設けられ一端が潤滑油8中に開口し他端が縦孔部15と連通し、縦孔部15がシャフト10上端部へ連通している。16はシリンダブロックで、略円筒形の圧縮室17を有するとともに主軸部11を軸支する主軸受18を有し、上方に副軸部13を軸支する副軸受19が固定されており、副軸受19にはシャフト10外周部に設けた窪み部19aを設けている。20はピストンでシリンダブロック16の圧縮室17に往復摺動自在に挿入され、偏心部12との間を連結手段21とピストンピン22によって連結されている。
【0007】
以上のように構成された密閉型圧縮機について以下その動作を説明する。
【0008】
電動要素5の回転子4はシャフト10を回転させ、偏心部12の回転運動が連結手段21を介してピストン20に伝えられることでピストン20は圧縮室17内を往復運動する。それにより、冷媒ガスは冷却システム(図示せず)から圧縮室17内へ吸入・圧縮された後、再び冷却システムへと吐き出される。
【0009】
ここで、両持ち軸受の摺動ロス減のメカニズムに関して説明する。
【0010】
圧縮機運転中にピストン20の圧縮荷重が連結手段21を介して偏心部12へと伝達される。ここで、両持ち軸受タイプはピストン20からの圧縮荷重のかかる偏心部12(作用点)を中心にして上下両方の軸受で荷重を受けるため、軸受には上下でほぼ均等な荷重が配分され、また、内周でこじりが生ずる片持ち軸受タイプと異なり面当たりとなるため、シャフト10摺動部の荷重分布が均等となることで面圧が下がり、片持ちタイプよりも摺動長を短くすることができる。その結果、摺動ロスが減少し、圧縮機の効率向上が図れるといった長所を備える。
【0011】
次に、従来の両持ち軸受タイプの給油メカニズムに関して説明する。
【0012】
図10において、シャフト10の回転により、同芯ポンプ14内の潤滑油8は遠心力により放物線状A1、A2の自由表面をなしながら上方へと汲み上げられ、支流A1の搬送力により縦孔部15に流入され、主軸11、偏心部12、副軸部13への各摺動部へと順に導かれ、これらを潤滑する。また、図11において、縦孔部15へ汲み上げられた潤滑油8の内、一方は副軸部13に設けた連通孔13a及び窪み部19aをガイドに密閉容器1へ投射(方向B)され、一方は縦孔部15上端から密閉容器1へと投射(方向C)を行う。これにより各摺動部から受熱した潤滑油8が密閉容器1へと放熱・冷却できる仕組みとなっている。
【0013】
【発明が解決しようとする課題】
しかしながら上記従来の構成では、シャフト10の回転により汲み上げられる潤滑油8はピストン20へ空中散布という形で間接的に供給されるためその供給量は不安定であり、ピストン20とシリンダブロック16間の潤滑油8が不足した場合、圧縮室17からの冷媒ガスの漏れ量が多くなって冷凍能力や効率が低下したり、ピストン20とシリンダブロック16の摺動部が潤滑不良になり摩耗が発生するという信頼性低下の可能性があった。
【0014】
また、上記従来の構成では、副軸部13の先端が副軸受19やシリンダブロック16より高い位置にあるため、副軸部13の縦孔部15の上端や連通孔13aから飛散した潤滑油8の一部はシリンダブロック16を飛び越えて、圧縮室の下方に通常位置する吸入マフラー(図示せず)にかかってしまうが、その結果、吸入マフラーの温度が上昇して吸入ガスの温度が上昇し、冷凍能力や効率が低下することがあった。
【0015】
また、上記従来の構成では、圧縮要素6を組み立てる際に副軸受19をシリンダブロック16に固定した後にピストン20、ピストンピン22、連結手段21を組み立てることができないため、組み立て方法や順序が限られて組み立ての効率が悪かった。
【0016】
また、上記従来の構成では、窪み部19a内の潤滑油8は密閉型圧縮機の運転停止中には給油経路である連通孔13a、縦孔部15を通って下方に流出してしまう。従って、次の起動時には、潤滑油8が高い揚程差を持つ副軸受19まで到達するまでの間は無給油状態で摺動してしまい、副軸部13と副軸受19の摺動部が潤滑不良になり摩耗が発生するという信頼性低下の可能性があった。
【0017】
また、電源周波数以下の運転周波数を含む複数の運転周波数でインバーター駆動される密閉型電動機において、上記課題は更に増大する。
【0018】
本発明は上記従来の課題を解決するもので、エネルギー効率が高くて運転時の騒音や振動が低く、組み立て性がよく、かつ信頼性の高い密閉型圧縮機を提供することを目的とする。
【0019】
【課題を解決するための手段】
本発明の請求項1に記載の発明は、密閉容器内に潤滑油を貯溜するとともに電動要素と前記電動要素によって駆動される圧縮要素を収容し、前記圧縮要素は偏心軸部と前記偏心軸部を挟んで上下に同軸状に設けた副軸部および主軸部とを有したシャフトと、略円筒形の圧縮室を備えたシリンダブロックと、前記シリンダブロックに固定されるか又は一体に前記圧縮室の軸心と略直交するように形成され、前記シャフトの前記主軸部の上半部を軸支する主軸受と、前記シリンダブロックに固定されるか又は一体に形成され、前記副軸部を軸支する副軸受と、前記圧縮室内で往復運動するピストンと、前記ピストンと前記偏心軸とを連結する連結手段とを備えており、前記シャフトに下端が前記潤滑油に連通し、上端が前記副軸部の上端部に貫通開口する給油機構を設けるとともに、前記給油機構の上端から吐出された潤滑油を前記ピストンの摺動面へと導く給油通路を前記副軸受あるいは前記シリンダブロックの少なくとも一方に設けた構成とすることで、給油機構によって副軸部まで上昇してきた潤滑油は、シャフトの回転による遠心力によって副軸受の上端部から飛散し、その一部は副軸受にはねかかり、副軸受上面に溜まる。この副軸受上面に溜まった潤滑油は、重力により給油通路からピストンやピストンピンに安定的に連続的に供給されるため、ピストンとシリンダブロック間のシール性が良くなるとともに、金属接触が減り、これに起因する騒音や摩耗が低下するという作用を有する。
【0020】
請求項2に記載の発明は、請求項1記載の発明に、更に、副軸受上面の給油通路中に潤滑油を貯溜するオイルプールを凹設したものであり、オイルプールに一旦集めた潤滑油をピストン等の摺動部に安定して供給できるという作用を有する。
【0021】
請求項3に記載の発明は、請求項1または請求項2に記載の発明に、更に、副軸部の、副軸受上面より上の部分に、給油機構と連通するオイル飛散孔を略水平方向に穿設したものであり、シャフトの回転数や潤滑油の粘度が変化した場合でも、潤滑油がオイル飛散孔から吹き出す方向が一定し、飛散した潤滑油を回収しやすいため、潤滑油をピストン等の摺動部に安定して供給できるという作用を有する。
【0022】
請求項4に記載の発明は、請求項1から請求項3記載のいずれか1項に記載の発明に、更に、副軸受上面で給油通路近傍に上方に突出形成したオイルフェンスを設けたものであり、副軸部の上端部から飛散した潤滑油をオイルフェンスに当てて副軸受上面に集めることができるため、十分な量の潤滑油をピストン等の摺動部に安定して供給できるという作用を有する。また、オイルフェンスが妨害となって圧縮室の下方に位置する吸入マフラーに潤滑油がはねかかることを防ぎ、吸入マフラーの温度上昇を防止できるという作用を有する。
【0023】
請求項5に記載の発明は、請求項1から請求項4のいずれか1項に記載の発明に、さらに副軸受上面に設けた給油通路に連通し、シリンダブロックの圧縮室上部に設けた給油通路の上に開口する開口部を備えたものであり、給油通路の開口部から副軸受下面まで流れてきた潤滑油は、シリンダブロック上の給油通路を通るか、あるいは直接的にピストンやピストンピンに滴下し、潤滑油をピストン等の摺動部に安定して供給できるという作用を有する。
【0024】
請求項6に記載の発明は、請求項5に記載の発明において、副軸受下端面側に、開口部近傍に下方に突出したオイルガイドを設けたものであり、副軸受下面の給油通路の開口部まで流れてきた潤滑油は、不特定な方向に流れていくこと無く、オイルガイドに沿ってピストンやピストンピンに滴下するため、確実に安定的にピストンピンの位置に給油することができるという作用を有する。
【0025】
請求項7に記載の発明は、請求項5に記載の発明に、更に、ピストンに固定され、連結手段であるコンロッドとピストンとを連結する円筒状のピストンピンを備えるとともに、開口部は、前記ピストン下死点近傍において、前記ピストンピンの真上に位置し、かつ前記ピストンピン水平断面よりも大きくしたもので、予め副軸受がシリンダブロックに固定されているか、一体に形成されている場合において、副軸を副軸受への挿入をした後にコンロッドを偏心部に通し、次にシリンダブロックにピストンを挿入し、最後に給油通路の開口部の上部からピストンピンをピストンに挿入してコンロッドとピストンを連結することができるため、組み立てが順序良くできて作業効率が向上するという作用を有する。
【0026】
請求項8に記載の発明は、請求項1に記載の発明において、給油通路に、一端がシリンダブロックの圧縮室内上部に連通開口するシリンダ連通孔を設けたものであり、シリンダ連通孔はピストンによってほぼ封止されているため、停止中でも給油通路内に潤滑油が保持されるため、起動と同時にピストンやピストンピンへの潤滑油の供給が開始され、ピストンとシリンダブロック間のシール性が良くなるとともに金属接触が減り、これに起因する騒音や摩耗が低下するという作用を有する。
【0027】
請求項9に記載の発明は、請求項1から請求項8のいずれか1項に記載の発明に、更に、ピストンの下死点近傍で給油通路に連通する略環状の給油溝を前記ピストンの外周に凹設したことを特徴とするものであり、ピストンが下死点付近のときに給油溝に潤滑油が供給され、圧縮行程時にピストンとシリンダブロックとの間に潤滑油を送り込むため、ピストンとシリンダブロック間のシール性が良くなるとともに、金属接触が減り、これに起因する騒音や摩耗が低下するという作用を有する。
【0028】
請求項10に記載の発明は、請求項1から請求項9のいずれか1項に記載の発明に、更に、副軸部と副軸受との摺動面に連通するオイルバスを副軸部の周りに形成したものであり、オイルバスの下方部は副軸部でほぼ封止されているため、副軸部の上端部から飛散し、オイルバスに溜まった潤滑油は、停止中でもオイルバス内に残留しており、起動と同時に副軸部への潤滑油の供給が開始され、起動直後の副軸部と副軸受の潤滑性が向上するという作用を有する。
【0029】
請求項11に記載の発明は、請求項10に記載の発明に、更に、副軸部に、オイルバスと給油機構とを連通させるとともに、前記オイルバスの底面より上に底面が位置するような給油孔を穿設したものであり、給油孔からオイルバスに安定的に潤滑油を供給することができると共に、停止中でも潤滑油の一部はオイルバス内に残留することで、起動から停止まで常に安定して副軸部への潤滑油の供給ができるという作用を有する。
【0030】
請求項12に記載の発明は、請求項1に記載の発明において、副軸受内部に給油通路の一部を形成するとともに、シャフト1回転中に少なくとも1回は前記給油通路と給油機構とを連通する給油孔を副軸部内に形成したものであり、給油機構によって副軸部まで上昇してきた潤滑油は、給油孔から給油通路内に直接流入するため、シャフトの回転数や潤滑油の粘度が変化した場合でも、ピストンやピストンピンへ安定して潤滑油を供給できるという作用を有する。
【0031】
請求項13に記載の発明は、請求項1、請求項3、請求項9のいずれか1項に記載の発明において、シリンダブロックの圧縮室上方面に、上方に突出形成したオイルフェンスを設けるとともに、シリンダブロックの圧縮室上方面に給油通路を形成したものであり、副軸部の上端部から飛散した潤滑油をオイルフェンスに当ててシリンダブロック上面に集めることができるため、十分な量の潤滑油をピストン等の摺動部に安定して供給されるとともに、シリンダブロックが冷却されて温度が低下するため、圧縮室内に吸入されたガス冷媒の温度上昇が抑制されて受熱損失が低減するという作用を有する。
【0032】
また、オイルフェンスが妨害となって圧縮室の下方に位置する吸入マフラーに潤滑油がはねかかることを防ぎ、吸入マフラーの温度上昇を防止できるという作用を有する。
【0033】
請求項14に記載の発明は、請求項1から請求項13のいずれか1項に記載の発明に、更に、少なくとも電源周波数以下の運転周波数を含む複数の運転周波数でインバーター駆動されるものであり、低い運転周波数による圧縮負荷の低減によって消費電力量が低減されるという作用を有する。
【0034】
請求項15に記載の発明は、請求項14に記載の発明に、更に、電源周波数以下の運転周波数には少なくとも30Hz以下の運転周波数を含むものであり、30Hz以下の低い運転周波数による圧縮負荷の低減によって更に消費電力量を低減することができるという作用を有する。
【0035】
【発明の実施の形態】
以下、本発明による圧縮機の実施例について、図面を参照しながら説明する。なお、従来と同一構成については、同一符号を付して詳細な説明を省略する。
【0036】
(実施の形態1)
図1は、本発明の実施の形態1による密閉型圧縮機の縦断面図であり、図2は同実施の形態の平面断面図である。図3は、同実施の形態の要部断面図である。
【0037】
図1、図2、図3において、101は密閉容器で、102は密閉容器内空間である。密閉容器101は、巻線部103aを保有する固定子103と回転子104からなる電動要素105と、電動要素105によって駆動される圧縮要素106を収容する。電動要素105はインバータ駆動され、回転数を自在に変化することができる。108は密閉容器101内に貯溜した潤滑油である。
【0038】
110はシャフトで、回転子105を圧入固定した主軸部111および主軸部111に対し偏心して形成された偏心部112、主軸部111と同軸に設けられた副軸部113を有する。
【0039】
シャフト110の内部には給油機構114が設けられ、一端が潤滑油108中に連通し他端が縦孔部115としてシャフト110の上端部へ連通している。116はシリンダブロックで、略円筒形の圧縮室117を有するとともに主軸部111を軸支する主軸受118を有し、上方に副軸部113を軸支する副軸受119が固定されている。120はピストンで圧縮室117に往復摺動自在に挿入され、偏心部112との間を連結手段121とピストンピン122によって連結されている。123は一端が圧縮室117内に連通し、他端が密閉容器内空間102に連通した吸入マフラーである。124は副軸受119上面に連通し、ピストン120の上方に開口する開口部である。
【0040】
125は副軸受119上面に凹設した潤滑油125を貯溜するオイルプールである。126はオイルプール125近傍に副軸受119と一体で上方に突出形成したオイルフェンスである。127は副軸部113の、副軸受119上面より上の部分に略水平方向に穿設した、給油機構114と連通するオイル飛散孔である。
【0041】
128は副軸受119下端面側に、開口部近傍に下方に突出したオイルガイドである。129は給油機構114の上端から吐出された潤滑油108をピストン120の摺動面へと導く給油通路であり、オイル飛散孔127、オイルプール125、オイルフェンス126、開口部124、オイルガイド128をその構成に含む。また、シリンダブロック116の圧縮室117上部にも給油通路129の一部が形成されている。
【0042】
尚、本圧縮機に使用される冷媒はオゾン破壊係数がゼロのR134aやR600aに代表される温暖化係数の低い自然冷媒である炭化水素系冷媒等であり、それぞれ相溶性のある潤滑油と組み合わせてある。
【0043】
以上のように構成された密閉型圧縮機について、以下その動作を説明する。
【0044】
シャフト110の回転により給油機構114に遠心力等によるポンプ能力が発生し、密閉容器101底部の潤滑油108は給油機構114内を通り上方へと汲み上げられる。給油機構114の上部である縦孔部115の上部へ汲み上げられた潤滑油108は、図3に示すように、シャフト110の回転による遠心力により飛散して、従来通り密閉容器101内面にはねかかると共に、一部は副軸受119にはねかかりその上面のオイルプール125に溜まる。オイルプール125に溜まった潤滑油108は、重力により開口部124から直接滴下したり、シリンダブロック116の壁面をつたってピストン120やピストンピン122に供給され、更にピストン120の往復運動によりピストン120とシリンダブロック116間に潤滑油108が入り込む。そのため、潤滑油108によるシール性が良くなり、圧縮室117から密閉容器内空間102の冷媒ガスの漏れ量が低下して冷凍能力や効率が向上する。更にピストン120とシリンダブロック116の摺動部やピストンピン122の摺動部の金属接触を防止して潤滑が良好になり、摺動に起因する騒音が低下すると共に、信頼性が向上する。
【0045】
更に、オイルフェンス126を設けることにより、副軸部113の上部から飛散した潤滑油108がオイルフェンス126に当たって副軸受119上面のオイルプール125に潤滑油108を集めることができるため、更に十分な量の潤滑油108を安定してピストン120やピストンピン122に供給できる。また、オイルフェンス126があるため圧縮室117の下方に位置する吸入マフラー123に潤滑油108がはねかかることが無く、吸入マフラー123の温度上昇に伴う吸入ガスの温度上昇を防止でき、冷凍能力や効率が高くなる。
【0046】
更に、オイル飛散孔127を設けることにより、シャフト110の回転数や潤滑油108の粘度が変化した場合でも、潤滑油108がオイル飛散孔127から吹き出す方向は略水平方向に安定するため、確実にオイルフェンス126に潤滑油108を当てることができ、ピストン120やピストンピン122への安定した潤滑油108の供給ができる。
【0047】
更に、副軸受119下面の給油通路129の開口部124の下端部まで流れてきた潤滑油108は、オイルガイド128に沿ってピストン120やピストンピン122に滴下するため、副軸受119下面に沿って不特定な方向に流れていくことが無く、確実に安定的にピストンの摺動面あるいはピストンピンに給油することができる。
【0048】
尚、副軸受119下面の給油通路129の開口部124とシリンダブロック116が近接している場合には、副軸受119下面の給油通路129の開口部124まで流れてきた潤滑油108は、シリンダブロック116にそのまま連続的に伝って流れ、不連続的に滴となって滴下する場合に比べて、連続的に確実にピストン120やピストンピン122に給油することができると共に、シリンダブロック116表面にも流れて冷却効果が得られる。
【0049】
本実施の形態では、起動初期は60Hz等の比較的高い運転周波数で給油能力を高めてオイルプール125に潤滑油108を溜め、その後冷凍サイクルの負荷に応じた省エネ運転をするために25Hz等の低い運転周波数にするように制御している。
【0050】
尚、上述した構成による作用は、冷媒の他それに組み合わされる潤滑油の種類を問わず、普遍的である。
【0051】
(実施の形態2)
図4は、本発明の実施の形態2による要部断面図である。尚、本実施の形態における密閉型圧縮機の基本構成は図1、図2で示した内容と同じである。
【0052】
図4において、130は、給油機構114の上端から吐出された潤滑油108をピストン120の摺動面へと導く給油通路131の一部として副軸受132に設けられ、ピストン120下死点近傍において、ピストンピン122の真上に位置し、かつピストンピン122の水平断面よりも大きい断面を持つ開口部である。
【0053】
以上のように構成された圧縮機について、以下その動作を説明する。
【0054】
予め副軸受がシリンダブロック116に固定されているか、副軸受132がシリンダブロック116と一体に形成されている場合において、組み立てはシャフト110の副軸113をまずコンロッド121に通し、続けて副軸受132に通す順序となるが、その際、ピストン120とコンロッド121がピストンピン122で連結され、更にピストン120がシリンダブロック116に挿入されている場合は、コンロッド121の自由度が少なく、副軸113の副軸受132への挿入と偏心部112のコンロッド121への挿入を同時に行わなければならず、組み立てが難しくなる。しかし、本発明では、副軸113の副軸受132への挿入をした後にコンロッド121を偏心部112に通し、次にシリンダブロック116にピストン120を挿入し、最後に給油通路131の開口部の上部からピストンピン122をピストン120に挿入してコンロッド121とピストン120を連結することができるため、組み立てが順序良くできて作業効率が向上する。(実施の形態3)
図5は、本発明の実施の形態3による要部断面図である。尚、本実施の形態における密閉型圧縮機の基本構成は図1、図2で示した内容と同じである。
【0055】
図5において、133はシリンダ連通孔で、一端がオイルプール125に連通し、下端がシリンダブロック116の圧縮室117内上部に連通開口している。134はピストン120の下死点近傍でシリンダ連通孔133に連通する略環状の給油溝であり、ピストン120の外周に凹設している。
【0056】
135はシリンダブロック116に固定され、副軸部113を軸支する副軸受であり、136は副軸部113と副軸受135との摺動面に連通するオイルバスであり、副軸部113の周りに形成されている。137は副軸部113に穿設され、オイルバス136と給油機構114とを連通させるとともに、オイルバス136の底面より上に底面が位置する給油孔である。
【0057】
138は給油機構114の上端から吐出された潤滑油108をピストン120の摺動面へと導く給油通路であり、オイル飛散孔127、オイルプール125、オイルフェンス126、シリンダ連通孔133から形成されている。
【0058】
以上のように構成された圧縮機について、以下その動作を説明する。
【0059】
給油通路138の潤滑油108はシリンダ連通孔133に流入するが、シリンダ連通孔133の下端部はピストン120でほぼ封止された状態になっているため、停止中でもシリンダ連通孔133内は潤滑油108が残留する。そのため、起動と同時にシリンダ連通孔133内に残留した潤滑油108はピストン120とシリンダブロック116間へ供給され、ピストン120とシリンダブロック116間のシール性が起動直後から良くなり、圧縮室117から密閉容器内空間102への冷媒ガスの漏れ量が低下して冷凍能力や効率が向上する。更に起動直後に発生しやすいピストン120とシリンダブロック116の摺動部やピストンピン122の摺動部の金属接触が減り、摺動に起因する騒音が低下すると共に、信頼性が向上する。
【0060】
更に、ピストン120が下死点付近のときに給油溝134に潤滑油108が供給され、圧縮行程時にピストン120とシリンダブロック116との間に潤滑油108を送り込む。この作用により、潤滑油108によるピストン120とシリンダブロック116との間のシール性は更に良くなり、圧縮室117から密閉容器内空間102への冷媒ガスの漏れ量が更に低下して冷凍能力や効率が向上する。また、ピストン120とシリンダブロック116の摺動部の金属接触が更に減り、摺動に起因する騒音が更に低下すると共に、信頼性が更に向上する。
【0061】
また、給油機構114によって副軸部113まで上昇してきた潤滑油108の一部は、給油孔137を通ってオイルバス136に溜まり、副軸部113と副軸受135の摺動面へ潤滑油108を供給する。オイルバス136の下方部は副軸部113でほぼ封止された状態になっており、更に給油孔137はオイルバス136の底面より上に底面が位置するため、停止中には潤滑油108はオイルバス136からわずかに流出するだけであり、オイルバス136内は潤滑油108が残留している。そのため、起動と同時に副軸部113への潤滑油108の供給ができ、起動直後の副軸部113と副軸受135の摺動部の金属接触が減ることで、摺動に起因する騒音が低下すると共に、信頼性が向上する。
【0062】
なお、電源周波数以下の低周波数の運転周波数でインバーター駆動され、起動する場合は潤滑油108が副軸部113まで到達する時間が長く、その間、無給油状態となりやすいが、上述した構成では起動と同時に副軸部113への潤滑油108の供給ができるため、効果は更に大きくなる。
【0063】
また、オイルプール125やオイルバス136内に潤滑油108が溜まってしまえば、30Hz以下の極めて低周波数で運転する場合のように、給油機構114によるポンプ能力が低く、潤滑油108が副軸部113の上端部まで到達する時間が長い場合でも、それまでの間、副軸受135やピストン120部にはそれぞれオイルバス136、オイルプール125から潤滑油108が供給される。従って、より低い運転周波数の運転が可能となることから、冷凍システム内の圧力負荷条件が軽減されて、圧縮機の消費電力量をより低減することが可能となる。
【0064】
なお、上述した構成による作用は、冷媒の他それに組み合わされる潤滑油の種類を問わず、普遍的である。
【0065】
(実施の形態4)
図6は、本発明の実施の形態4による要部断面図である。尚、本実施の形態における密閉型圧縮機の基本構成は図1、図2で示した内容と同じである。
【0066】
図6において、139は給油機構114の上端から吐出された潤滑油108をピストン120の摺動面へと導く給油通路であり、その一部が副軸受140内部に形成され、更にシリンダブロック116内部へと連通し、ピストン120上方に開口端を有している。141はシャフト110の1回転中に少なくとも1回は給油通路139と給油機構114とを連通し、副軸部113内に形成された給油孔である。
【0067】
以上のように構成された圧縮機について、以下その動作を説明する。
【0068】
給油機構114によって副軸部113まで上昇してきた潤滑油108は、給油孔141から給油通路139内に直接流入するため、シャフト110の回転数や潤滑油108の粘度が変化した場合でも、ピストン120やピストンピン122へ安定して確実に潤滑油108を供給できる。
【0069】
従ってピストン120とシリンダブロック116間のシール性が良くなり、圧縮室117から密閉容器内空間102への冷媒ガスの漏れ量が低下して冷凍能力や効率が向上する。更に起動直後に発生しやすいピストン120とシリンダブロック116の摺動部やピストンピン122の摺動部の金属接触が減り、摺動に起因する騒音が低下すると共に、信頼性が向上する。
【0070】
(実施の形態5)
図7は、本発明の実施の形態5による要部断面図である。尚、本実施の形態における密閉型圧縮機の基本構成は図1、図2で示した内容と同じである。
【0071】
図7において、142はシリンダブロック116の圧縮室117上方面に、上方に突出形成したオイルフェンスであり、143は給油機構114の上端から吐出された潤滑油108をピストン120の摺動面へと導く給油通路であり、その一部がシリンダブロック116の圧縮室117上方面に形成されている。144はシリンダブロック116に固定され、副軸部113を軸支する副軸受である。
【0072】
以上のように構成された圧縮機について、以下その動作を説明する。
【0073】
給油機構114によって副軸部113まで上昇してきた潤滑油108の一部は副軸部113の上端部から飛散してオイルフェンス142に当たり、給油通路143に沿ってシリンダブロック116上面を流れて、ピストン120やピストンピン122に供給される。このとき、シリンダブロック116が潤滑油108によって冷却されて温度が低下するため、圧縮室117内に吸入されたガス冷媒の温度上昇が抑制されて受熱損失が低減し、冷凍能力や効率が上昇する。また、シリンダブロック116の温度低下によりピストン120とシリンダブロック116の摺動部の焼き付き等を防止でき信頼性が向上する。
【0074】
また、オイルフェンス142があるため圧縮室117の下方に位置する吸入マフラー123にはねかかる潤滑油108はほとんど無くなるため、吸入マフラー123の温度上昇に伴う吸入ガスの温度上昇を防止でき、冷凍能力や効率を上げることができる。
【0075】
【発明の効果】
以上説明したように請求項1に記載の発明は、シャフトに下端が潤滑油に連通し、上端が副軸部の上端部に貫通開口する給油機構を設けるとともに、前記給油機構の上端から吐出された潤滑油を前記ピストンの摺動面へと導く給油通路を前記副軸受あるいは前記シリンダブロックの少なくとも一方に設けた構成としたことで、潤滑油は、給油通路からピストンやピストンピンに安定的に供給され、冷凍能力や効率が向上するとともにピストンやピストンピンの摺動に起因する騒音が低下し、さらに信頼性が向上する。
【0076】
請求項2に記載の発明は、請求項1記載の発明に、更に、副軸受上面の給油通路中に潤滑油を貯溜するオイルプールを凹設したものであり、十分な量の潤滑油を安定してピストンに供給でき、冷凍能力や効率が向上するとともにピストンやピストンピンの摺動に起因する騒音が低下し、さらに信頼性が向上する。
【0077】
請求項3に記載の発明は、請求項1または請求項2に記載の発明に、更に、副軸部の、副軸受上面より上の部分に、給油機構と連通するオイル飛散孔を略水平方向に穿設したものであり、シャフトの回転数や潤滑油の粘度が変化した場合でも、潤滑油がオイル飛散孔から吹き出す方向が一定し、飛散した潤滑油を回収しやすいため、ピストンやピストンピンへの安定した潤滑油の供給ができ、冷凍能力や効率が向上するとともにピストンやピストンピンの摺動に起因する騒音が低下し、さらに信頼性が向上する。
【0078】
請求項4に記載の発明は、請求項1から請求項3記載のいずれか1項に記載の発明に、更に、副軸受上面で給油通路近傍に上方に突出形成したオイルフェンスを設けたものであり、副軸受上面に潤滑油を集めることができ、十分な量の潤滑油を安定してピストンに供給でき、さらに潤滑油による吸入マフラーの温度上昇に伴う吸入ガスの温度上昇を防止できるため、冷凍能力や効率が向上するとともにピストンやピストンピンの摺動に起因する騒音が低下し、さらに信頼性が向上する。
【0079】
請求項5に記載の発明は、請求項1から請求項4のいずれか1項に記載の発明において、副軸受上面に設けた給油通路に連通し、シリンダブロックの圧縮室上部に設けた給油通路の上に開口する開口部を備えたものであり、潤滑油はシリンダブロック上の給油通路を通ってからか、あるいは直接的にピストンやピストンピンに滴下し、給油することができ、確実にピストンやピストンピンに給油することができると共に、シリンダブロック表面にも流れて冷却効果が得られ、冷凍能力や効率が向上するとともにピストンやピストンピンの摺動に起因する騒音が低下し、さらに信頼性が向上する。
【0080】
請求項6に記載の発明は、請求項5に記載の発明において、副軸受下端面側に、開口部近傍に下方に突出したオイルガイドを設けたものであり、確実に安定的に狙い通りのピストンの摺動部に給油することができ、冷凍能力や効率が向上するとともにピストンやピストンピンの摺動に起因する騒音が低下し、さらに信頼性が向上する。
【0081】
請求項7に記載の発明は、請求項5に記載の発明に、更に、ピストンに固定され、連結手段であるコンロッドとピストンとを連結する円筒状のピストンピンを備えるとともに、開口部は、前記ピストン下死点近傍において、前記ピストンピンの真上に位置し、かつ前記ピストンピン水平断面よりも大きくしたもので、予め副軸受がシリンダブロックに固定されているか、一体に形成されている場合において、組み立ては副軸の副軸受への挿入と偏心部のコンロッドへの挿入を同時に行う必要がないため容易であり、組み立てが順序良くできて作業効率が向上する。
【0082】
請求項8に記載の発明は、請求項1に記載の発明において、給油通路に、一端がシリンダブロックの圧縮室内上部に連通開口するシリンダ連通孔を設けたものであり、起動直後から圧縮室からの冷媒ガスの漏れ量が低下して冷凍能力や効率が向上する。更にピストンやピストンピンの摺動部の金属接触を起動直後から防止して潤滑が良好になり、摺動に起因する騒音が低下すると共に、信頼性が向上する。
【0083】
請求項9に記載の発明は、請求項1から請求項8のいずれか1項に記載の発明に、更に、ピストンの下死点近傍で給油通路に連通する略環状の給油溝を前記ピストンの外周に凹設したことを特徴とするものであり、シール性の向上による冷凍能力や効率の向上と摺動部の信頼性向上効果が得られる。
【0084】
請求項10に記載の発明は、請求項1から請求項9のいずれか1項に記載の発明に、更に、副軸部と副軸受との摺動面に連通するオイルバスを副軸部の周りに形成したものであり、起動と同時に副軸部への潤滑油の供給ができ、副軸部と副軸受の摺動部の潤滑が良好になり、摺動に起因する騒音が低下すると共に、信頼性が向上する
請求項11に記載の発明は、請求項10に記載の発明に、更に、副軸部に、オイルバスと給油機構とを連通させるとともに、前記オイルバスの底面より上に底面が位置するような給油孔を穿設したものであり、起動から停止まで常に安定して副軸部への潤滑油の供給ができる。
【0085】
請求項12に記載の発明は、請求項1に記載の発明において、副軸受内部に給油通路の一部を形成するとともに、シャフト1回転中に少なくとも1回は前記給油通路と給油機構とを連通する給油孔を副軸部内に形成したものであり、シャフトの回転数や潤滑油の粘度が変化した場合でも、副軸部と副軸受の摺動面やピストン、ピストンピンへ安定して潤滑油を供給できる。
【0086】
請求項13に記載の発明は、請求項1、請求項3、請求項9のいずれか1項に記載の発明において、シリンダブロックの圧縮室上方面に、上方に突出形成したオイルフェンスを設けるとともに、シリンダブロックの圧縮室上方面に給油通路を形成したものであり、受熱損失が低減し、冷凍能力や効率が上昇するとともに信頼性が向上する。また、吸入マフラーの温度上昇に伴う吸入ガスの温度上昇を防止でき、冷凍能力や効率が高くなる。
【0087】
請求項14に記載の発明は、請求項1から請求項13のいずれか1項に記載の発明に、更に、少なくとも電源周波数以下の運転周波数を含む複数の運転周波数でインバーター駆動されるものであり、圧縮機の消費電力量が低減される。
【0088】
請求項15に記載の発明は、請求項14に記載の発明に、更に、電源周波数以下の運転周波数には少なくとも30Hz以下の運転周波数を含むものであり、より低い運転周波数での運転が可能となることから、更に消費電力量が低減される。
【図面の簡単な説明】
【図1】本発明による実施の形態1による密閉型圧縮機の縦断面図
【図2】同実施の形態の平面断面図
【図3】同実施の形態の要部断面図
【図4】本発明による実施の形態2による密閉型圧縮機の要部断面図
【図5】本発明による実施の形態3による密閉型圧縮機の要部断面図
【図6】本発明による実施の形態4による密閉型圧縮機の要部断面図
【図7】本発明による実施の形態5による密閉型圧縮機の要部断面図
【図8】従来の密閉型圧縮機の縦断面図
【図9】従来の密閉型圧縮機の上面図
【図10】従来のシャフト下部断面図
【図11】従来の副軸要部断面図
【符号の説明】
101 密閉容器
105 電動要素
106 圧縮要素
108 潤滑油
110 シャフト
111 主軸部
112 偏心軸部
113 副軸部
114 給油機構
116 シリンダブロック
117 圧縮室
118 主軸受
119 副軸受
120 ピストン
121 連結手段
124 開口部
125 オイルプール
126 オイルフェンス
127 オイル飛散孔
128 オイルガイド
129 給油通路
130 開口部
131 給油通路
132 副軸受
133 シリンダ連通孔
134 給油溝
135 副軸受
136 オイルバス
137 給油孔
138 給油通路
139 給油通路
140 副軸受
141 給油孔
142 オイルフェンス
143 給油通路
144 副軸受
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hermetic compressor used for a refrigerator, an air conditioner, a freezing and refrigeration device, and the like.
[0002]
[Prior art]
2. Description of the Related Art In recent years, for hermetic compressors used in refrigeration systems such as home refrigerators, it has been strongly desired to reduce power consumption and reduce noise. Under these circumstances, the viscosity of lubricating oil has been reduced, and the rotation of a compressor driven by an inverter has been reduced (for example, in the case of a household refrigerator, about 1200 r / min). On the other hand, it has been premised that a natural refrigerant having a low global warming coefficient represented by R134a or R600a having an ozone depletion coefficient of zero is used, such as a hydrocarbon-based refrigerant. The method of using a double-sided bearing that holds a shaft at two or more locations, which has been adopted in the past, is effective as an elemental technology for reducing sliding loss and vibration and noise during operation.
[0003]
2. Description of the Related Art A conventional hermetic compressor is disclosed in Japanese Patent Application Laid-Open No. S61-118571.
[0004]
Hereinafter, the conventional hermetic compressor described above will be described with reference to the drawings.
[0005]
FIG. 8 is a longitudinal sectional view of a conventional hermetic compressor. FIG. 9 is a top view of a main part of a conventional hermetic compressor. 10 and 11 are cross-sectional views of a main part of a conventional hermetic compressor. 8 and 9, reference numeral 1 denotes a closed container, and 2 denotes a space in the closed container. The closed casing 1 accommodates an electric element 5 including a stator 3 having a winding part 3a and a rotor 4, and a compression element 6 driven by the electric element 5. Reference numeral 8 denotes a lubricating oil stored in the closed container 1.
[0006]
Reference numeral 10 denotes a shaft having a main shaft 11 to which the rotor 5 is press-fitted and fixed, an eccentric portion 12 formed eccentrically with respect to the main shaft 11, and a sub shaft 13 provided coaxially with the main shaft. A concentric pump 14 is provided inside the main shaft portion 11, one end of which is opened in the lubricating oil 8, the other end thereof communicates with the vertical hole 15, and the vertical hole 15 communicates with the upper end of the shaft 10. Reference numeral 16 denotes a cylinder block having a substantially cylindrical compression chamber 17, a main bearing 18 for supporting the main shaft 11, and a sub bearing 19 for supporting the sub shaft 13 fixed above. The bearing 19 is provided with a depression 19 a provided on the outer peripheral portion of the shaft 10. A piston 20 is reciprocally slidably inserted into the compression chamber 17 of the cylinder block 16, and is connected to the eccentric portion 12 by a connecting means 21 and a piston pin 22.
[0007]
The operation of the hermetic compressor configured as described above will be described below.
[0008]
The rotor 4 of the electric element 5 rotates the shaft 10, and the rotational movement of the eccentric part 12 is transmitted to the piston 20 via the connecting means 21, so that the piston 20 reciprocates in the compression chamber 17. Thereby, the refrigerant gas is sucked and compressed from the cooling system (not shown) into the compression chamber 17, and then discharged again to the cooling system.
[0009]
Here, a mechanism for reducing the sliding loss of the double-ended bearing will be described.
[0010]
During the operation of the compressor, the compression load of the piston 20 is transmitted to the eccentric portion 12 via the connecting means 21. Here, in the double-supported bearing type, since the load is received by both the upper and lower bearings centering on the eccentric portion 12 (action point) to which the compressive load from the piston 20 is applied, a substantially uniform load is distributed to the bearings vertically. In addition, since the bearing comes into contact with the surface, unlike the cantilever bearing type in which the inner circumference is twisted, the load distribution of the sliding portion of the shaft 10 becomes uniform, thereby reducing the surface pressure and shortening the sliding length as compared with the cantilever type. be able to. As a result, the sliding loss is reduced and the compressor efficiency is improved.
[0011]
Next, a conventional lubrication mechanism of a double-sided bearing type will be described.
[0012]
In FIG. 10, the rotation of the shaft 10 causes the lubricating oil 8 in the concentric pump 14 to be pumped upward while forming the free surface of the paraboloids A1 and A2 by centrifugal force. And lubricates them sequentially to the sliding portions to the main shaft 11, the eccentric portion 12, and the sub shaft portion 13. In FIG. 11, one of the lubricating oils 8 pumped into the vertical hole 15 is projected (direction B) onto the closed container 1 by using the communication hole 13a and the recess 19a provided in the sub shaft 13 as a guide. One performs projection (direction C) from the upper end of the vertical hole portion 15 to the closed container 1. Thereby, the lubricating oil 8 received from each sliding portion can be radiated and cooled to the closed container 1.
[0013]
[Problems to be solved by the invention]
However, in the above-described conventional configuration, the amount of lubricating oil 8 pumped up by the rotation of the shaft 10 is indirectly supplied to the piston 20 in the form of spraying in the air. When the lubricating oil 8 is insufficient, the amount of refrigerant gas leaking from the compression chamber 17 increases, and the refrigerating capacity and efficiency decrease, and the sliding portion between the piston 20 and the cylinder block 16 becomes poorly lubricated and wear occurs. There was a possibility that the reliability decreased.
[0014]
Further, in the above-described conventional configuration, since the tip of the sub shaft portion 13 is located at a position higher than the sub bearing 19 and the cylinder block 16, the lubricating oil 8 scattered from the upper end of the vertical hole portion 15 of the sub shaft portion 13 and the communication hole 13a is formed. Part of the gas flows over the cylinder block 16 and is applied to a suction muffler (not shown) which is normally located below the compression chamber. As a result, the temperature of the suction muffler rises and the temperature of the suction gas rises. In some cases, the refrigerating capacity and efficiency were reduced.
[0015]
In addition, in the above-described conventional configuration, when assembling the compression element 6, the piston 20, the piston pin 22, and the connecting means 21 cannot be assembled after the auxiliary bearing 19 is fixed to the cylinder block 16, so that the assembling method and order are limited. The efficiency of assembly was poor.
[0016]
Further, in the above-described conventional configuration, the lubricating oil 8 in the recess 19a flows downward through the communication hole 13a and the vertical hole 15 which are the oil supply path during the stoppage of the operation of the hermetic compressor. Therefore, at the next start-up, the lubricating oil 8 slides without lubricating until it reaches the auxiliary bearing 19 having a large head difference, and the sliding portion between the auxiliary shaft portion 13 and the auxiliary bearing 19 is lubricated. There was a possibility that the reliability was deteriorated due to the occurrence of defects and wear.
[0017]
Further, in a hermetic motor that is inverter-driven at a plurality of operation frequencies including an operation frequency equal to or lower than the power supply frequency, the above problem is further increased.
[0018]
An object of the present invention is to provide a hermetic compressor having high energy efficiency, low noise and vibration during operation, good assemblability, and high reliability.
[0019]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention stores a lubricating oil in a closed container and accommodates an electric element and a compression element driven by the electric element, wherein the compression element has an eccentric shaft portion and the eccentric shaft portion. A shaft having a sub-shaft portion and a main shaft portion provided coaxially above and below a cylinder block, a cylinder block having a substantially cylindrical compression chamber, and being fixed to or integral with the cylinder block. A main bearing that is formed so as to be substantially perpendicular to the axis of the main shaft and that supports the upper half of the main shaft portion of the shaft, and that is fixed to or integrally formed with the cylinder block, A supporting bearing, a piston reciprocating in the compression chamber, and connecting means for connecting the piston and the eccentric shaft. A lower end of the shaft communicates with the lubricating oil, and an upper end of the shaft is connected to the auxiliary shaft. Penetrates the upper end of the shaft And a lubricating passage for guiding the lubricating oil discharged from the upper end of the lubricating mechanism to the sliding surface of the piston is provided in at least one of the auxiliary bearing and the cylinder block. The lubricating oil that has risen to the sub-shaft by the oil supply mechanism scatters from the upper end of the sub-bearing due to centrifugal force caused by the rotation of the shaft, and a part of the lubricating oil splashes on the sub-bearing and accumulates on the upper surface of the sub-bearing. The lubricating oil accumulated on the upper surface of the auxiliary bearing is supplied stably and continuously to the piston and the piston pin from the oil supply passage by gravity, so that the sealing performance between the piston and the cylinder block is improved, and metal contact is reduced, This has the effect of reducing noise and wear caused by this.
[0020]
According to a second aspect of the present invention, in addition to the first aspect of the present invention, an oil pool for storing lubricating oil is provided in the oil supply passage on the upper surface of the auxiliary bearing, and the lubricating oil once collected in the oil pool is provided. Can be supplied stably to a sliding portion such as a piston.
[0021]
According to a third aspect of the present invention, in addition to the first or second aspect of the present invention, an oil spill hole communicating with the oil supply mechanism is formed in a portion of the sub shaft portion above the upper surface of the sub bearing in a substantially horizontal direction. Even if the rotational speed of the shaft or the viscosity of the lubricating oil changes, the direction in which the lubricating oil blows out from the oil spill hole is constant, and it is easy to collect the scattered lubricating oil. Has the effect that it can be supplied stably to the sliding parts.
[0022]
According to a fourth aspect of the present invention, in addition to the first aspect of the present invention, there is further provided an oil fence protruding upward near the oil supply passage on the upper surface of the auxiliary bearing. Yes, lubricating oil scattered from the upper end of the counter shaft can be applied to the oil fence and collected on the upper surface of the sub bearing, so that a sufficient amount of lubricating oil can be supplied stably to sliding parts such as pistons. Having. In addition, the lubricating oil can be prevented from splashing on the suction muffler located below the compression chamber due to the oil fence obstructing, and the temperature of the suction muffler can be prevented from rising.
[0023]
According to a fifth aspect of the present invention, there is provided the lubrication system according to any one of the first to fourth aspects, wherein the lubrication system further communicates with an oil supply passage provided on the upper surface of the auxiliary bearing, and is provided above the compression chamber of the cylinder block. The lubricating oil flowing from the opening of the oil supply passage to the lower surface of the sub-bearing passes through the oil supply passage on the cylinder block or directly to the piston or piston pin. And lubricating oil can be stably supplied to a sliding portion such as a piston.
[0024]
The invention according to claim 6 is the invention according to claim 5, wherein an oil guide projecting downward near the opening is provided on the lower end surface side of the sub bearing, and the opening of the oil supply passage on the lower surface of the sub bearing is provided. Since the lubricating oil that has flowed to the part drops along the oil guide onto the piston or piston pin without flowing in an unspecified direction, it can be reliably and stably supplied to the position of the piston pin. Has an action.
[0025]
According to a seventh aspect of the present invention, in addition to the fifth aspect of the present invention, there is further provided a cylindrical piston pin fixed to the piston and connecting the connecting rod and the piston as connecting means, In the vicinity of the piston bottom dead center, located just above the piston pin and larger than the horizontal cross section of the piston pin, when the auxiliary bearing is fixed to the cylinder block in advance or is formed integrally After inserting the counter shaft into the sub bearing, pass the connecting rod through the eccentric part, then insert the piston into the cylinder block, and finally insert the piston pin into the piston from the top of the opening of the oil supply passage. Can be connected, so that the assembly can be performed in an orderly manner and the working efficiency is improved.
[0026]
According to an eighth aspect of the present invention, in the first aspect of the present invention, the oil supply passage is provided with a cylinder communication hole having one end communicating with the upper part of the compression chamber of the cylinder block. The cylinder communication hole is formed by a piston. Since it is almost sealed, lubricating oil is held in the oil supply passage even during stoppage, so that lubricating oil supply to the piston and piston pin starts at the same time as startup, improving the seal between the piston and cylinder block. At the same time, metal contact is reduced, and the resulting noise and wear are reduced.
[0027]
According to a ninth aspect of the present invention, in addition to the first aspect of the present invention, a substantially annular oil supply groove communicating with the oil supply passage near the bottom dead center of the piston is further provided. The lubricating oil is supplied to the oil supply groove when the piston is near the bottom dead center, and is fed between the piston and the cylinder block during the compression stroke. In addition to improving the sealing performance between the motor and the cylinder block, the metal contact is reduced, and the resulting noise and wear are reduced.
[0028]
According to a tenth aspect of the present invention, in addition to any one of the first to ninth aspects of the present invention, an oil bath communicating with a sliding surface between the sub-shaft and the sub-bearing is further provided on the sub-shaft. Since the lower part of the oil bath is almost sealed by the countershaft part, the lubricating oil scattered from the upper end of the countershaft part and accumulated in the oil bath remains in the oil bath even when stopped. The lubricating oil is supplied to the sub-shaft portion simultaneously with the start-up, and the lubrication between the sub-shaft portion and the sub-bearing immediately after the start-up is improved.
[0029]
According to an eleventh aspect of the present invention, in addition to the tenth aspect, the oil bath and the oil supply mechanism are communicated with the countershaft portion, and the bottom surface is located above the bottom surface of the oil bath. With a lubrication hole, the lubrication oil can be stably supplied from the lubrication hole to the oil bath. This has the effect that the lubricating oil can always be supplied to the countershaft stably.
[0030]
According to a twelfth aspect of the present invention, in the first aspect, a part of the oil supply passage is formed inside the auxiliary bearing, and the oil supply passage and the oil supply mechanism are communicated at least once during one rotation of the shaft. The lubricating oil that has risen to the sub-shaft by the lubrication mechanism flows directly from the lubrication hole into the oil supply passage, so that the rotational speed of the shaft and the viscosity of the lubricating oil are reduced. Even if it changes, the lubricating oil can be stably supplied to the piston and the piston pin.
[0031]
According to a thirteenth aspect of the present invention, in the invention according to any one of the first, third, and ninth aspects, an oil fence formed to protrude upward is provided on the upper surface of the compression chamber of the cylinder block. The lubrication oil passage is formed on the upper surface of the compression chamber of the cylinder block. Lubricating oil scattered from the upper end of the countershaft can be applied to the oil fence and collected on the upper surface of the cylinder block. Oil is supplied stably to sliding parts such as pistons, and the temperature of the cylinder block is reduced by cooling.Therefore, the temperature rise of the gas refrigerant sucked into the compression chamber is suppressed, and heat loss is reduced. Has an action.
[0032]
In addition, the lubricating oil can be prevented from splashing on the suction muffler located below the compression chamber due to the oil fence obstructing, and the temperature of the suction muffler can be prevented from rising.
[0033]
According to a fourteenth aspect of the present invention, in addition to any one of the first to thirteenth aspects, the invention is further driven by an inverter at a plurality of operation frequencies including at least an operation frequency equal to or lower than the power supply frequency. This has the effect of reducing the amount of power consumption by reducing the compression load due to the low operating frequency.
[0034]
According to a fifteenth aspect of the present invention, in addition to the invention of the fourteenth aspect, the operating frequency equal to or lower than the power supply frequency includes at least the operating frequency equal to or lower than 30 Hz. The reduction has the effect of further reducing the power consumption.
[0035]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the compressor according to the present invention will be described with reference to the drawings. In addition, about the same structure as a conventional one, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
[0036]
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of a hermetic compressor according to Embodiment 1 of the present invention, and FIG. 2 is a plan sectional view of the same embodiment. FIG. 3 is a sectional view of a main part of the embodiment.
[0037]
1, 2, and 3, reference numeral 101 denotes a closed container, and 102 denotes a space in the closed container. The airtight container 101 accommodates an electric element 105 including a stator 103 having a winding part 103 a and a rotor 104, and a compression element 106 driven by the electric element 105. The electric element 105 is driven by an inverter, and can change the number of rotations freely. Reference numeral 108 denotes a lubricating oil stored in the closed container 101.
[0038]
Reference numeral 110 denotes a shaft having a main shaft portion 111 into which the rotor 105 is press-fitted and fixed, an eccentric portion 112 formed eccentrically with respect to the main shaft portion 111, and a sub shaft portion 113 provided coaxially with the main shaft portion 111.
[0039]
An oil supply mechanism 114 is provided inside the shaft 110, and one end communicates with the lubricating oil 108 and the other end communicates with the upper end of the shaft 110 as a vertical hole 115. Reference numeral 116 denotes a cylinder block having a substantially cylindrical compression chamber 117, a main bearing 118 for supporting the main shaft 111, and an auxiliary bearing 119 for supporting the sub shaft 113 fixed above. A piston 120 is reciprocally slidably inserted into the compression chamber 117, and is connected to the eccentric portion 112 by a connecting means 121 and a piston pin 122. Reference numeral 123 denotes a suction muffler having one end communicating with the compression chamber 117 and the other end communicating with the internal space 102 of the closed container. Reference numeral 124 denotes an opening communicating with the upper surface of the sub bearing 119 and opening above the piston 120.
[0040]
Reference numeral 125 denotes an oil pool for storing the lubricating oil 125 recessed on the upper surface of the sub bearing 119. Reference numeral 126 denotes an oil fence formed near the oil pool 125 and integrally with the auxiliary bearing 119 so as to protrude upward. Reference numeral 127 denotes an oil spill hole which is formed in a substantially horizontal direction in a portion of the sub shaft portion 113 above the upper surface of the sub bearing 119 and communicates with the oil supply mechanism 114.
[0041]
Reference numeral 128 denotes an oil guide that protrudes downward from the lower bearing side of the auxiliary bearing 119 near the opening. Reference numeral 129 denotes an oil supply passage for guiding the lubricating oil 108 discharged from the upper end of the oil supply mechanism 114 to the sliding surface of the piston 120. The oil supply passage 129 includes an oil splash hole 127, an oil pool 125, an oil fence 126, an opening 124, and an oil guide 128. Include in its configuration. Further, a part of the oil supply passage 129 is also formed above the compression chamber 117 of the cylinder block 116.
[0042]
The refrigerant used in this compressor is a hydrocarbon-based refrigerant which is a natural refrigerant having a low global warming coefficient represented by R134a and R600a having zero ozone destruction coefficient, and is combined with a compatible lubricating oil. It is.
[0043]
The operation of the hermetic compressor configured as described above will be described below.
[0044]
Due to the rotation of the shaft 110, a pumping capability is generated in the oil supply mechanism 114 by centrifugal force or the like, and the lubricating oil 108 at the bottom of the closed container 101 is pumped upward through the oil supply mechanism 114. As shown in FIG. 3, the lubricating oil 108 pumped to the upper part of the vertical hole part 115 which is the upper part of the oil supply mechanism 114 is scattered by centrifugal force due to the rotation of the shaft 110, and splashes on the inner surface of the closed container 101 as in the related art. At the same time, a part of the oil splashes on the auxiliary bearing 119 and accumulates in the oil pool 125 on the upper surface thereof. The lubricating oil 108 accumulated in the oil pool 125 is directly dropped from the opening 124 by gravity, or is supplied to the piston 120 or the piston pin 122 through the wall surface of the cylinder block 116, and is further supplied to the piston 120 by reciprocating motion of the piston 120. Lubricating oil 108 enters between cylinder blocks 116. Therefore, the sealing performance by the lubricating oil 108 is improved, the amount of refrigerant gas leaking from the compression chamber 117 into the closed container space 102 is reduced, and the refrigeration capacity and efficiency are improved. Further, metal contact between the sliding portion between the piston 120 and the cylinder block 116 and the sliding portion between the piston pin 122 is prevented, lubrication is improved, noise due to sliding is reduced, and reliability is improved.
[0045]
Further, by providing the oil fence 126, the lubricating oil 108 scattered from the upper portion of the sub shaft portion 113 can hit the oil fence 126 and collect the lubricating oil 108 in the oil pool 125 on the upper surface of the sub bearing 119. Can be supplied to the piston 120 and the piston pin 122 stably. In addition, since the oil fence 126 is provided, the lubricating oil 108 does not splash on the suction muffler 123 located below the compression chamber 117, so that a rise in the temperature of the suction gas due to a rise in the temperature of the suction muffler 123 can be prevented. And efficiency is increased.
[0046]
Further, by providing the oil spill hole 127, even when the rotational speed of the shaft 110 or the viscosity of the lubricating oil 108 changes, the direction in which the lubricating oil 108 blows out from the oil spill hole 127 is stabilized in a substantially horizontal direction. The lubricating oil 108 can be applied to the oil fence 126, and the lubricating oil 108 can be stably supplied to the piston 120 and the piston pin 122.
[0047]
Further, the lubricating oil 108 flowing to the lower end of the opening 124 of the oil supply passage 129 on the lower surface of the sub-bearing 119 is dropped on the piston 120 or the piston pin 122 along the oil guide 128, so that the lubricating oil 108 flows along the lower surface of the sub-bearing 119. It is possible to reliably and stably supply oil to the sliding surface of the piston or the piston pin without flowing in an unspecified direction.
[0048]
When the opening 124 of the oil supply passage 129 on the lower surface of the sub bearing 119 and the cylinder block 116 are close to each other, the lubricating oil 108 flowing to the opening 124 of the oil supply passage 129 on the lower surface of the sub bearing 119 is discharged from the cylinder block. It is possible to continuously and reliably supply oil to the piston 120 and the piston pin 122 as compared with a case where the oil flows continuously to the liquid 116 and drops as a discontinuous droplet. Flowing to obtain a cooling effect.
[0049]
In the present embodiment, the lubricating oil 108 is stored in the oil pool 125 by increasing the lubricating capacity at a relatively high operating frequency such as 60 Hz in the initial stage of the startup, and then the frequency is increased to 25 Hz or the like in order to perform the energy saving operation according to the load of the refrigeration cycle. It is controlled to have a low operating frequency.
[0050]
The operation of the above configuration is universal regardless of the type of lubricating oil combined with the refrigerant in addition to the refrigerant.
[0051]
(Embodiment 2)
FIG. 4 is a sectional view of a main part according to the second embodiment of the present invention. The basic configuration of the hermetic compressor in the present embodiment is the same as that shown in FIGS.
[0052]
In FIG. 4, 130 is provided in the sub bearing 132 as a part of an oil supply passage 131 that guides the lubricating oil 108 discharged from the upper end of the oil supply mechanism 114 to the sliding surface of the piston 120, and near the bottom dead center of the piston 120. , Located directly above the piston pin 122 and having a cross section larger than the horizontal cross section of the piston pin 122.
[0053]
The operation of the compressor configured as described above will be described below.
[0054]
When the sub bearing is fixed to the cylinder block 116 in advance or the sub bearing 132 is formed integrally with the cylinder block 116, the assembling is performed by first passing the sub shaft 113 of the shaft 110 through the connecting rod 121, and then continuing with the sub bearing 132 In this case, when the piston 120 and the connecting rod 121 are connected by the piston pin 122 and the piston 120 is further inserted into the cylinder block 116, the degree of freedom of the connecting rod 121 is small. The insertion into the auxiliary bearing 132 and the insertion into the connecting rod 121 of the eccentric portion 112 must be performed simultaneously, which makes assembly difficult. However, in the present invention, after the sub shaft 113 is inserted into the sub bearing 132, the connecting rod 121 is passed through the eccentric portion 112, then the piston 120 is inserted into the cylinder block 116, and finally the upper part of the opening of the oil supply passage 131 is formed. Since the piston pin 122 can be inserted into the piston 120 to connect the connecting rod 121 and the piston 120, assembly can be performed in an orderly manner, and work efficiency is improved. (Embodiment 3)
FIG. 5 is a cross-sectional view of a main part according to Embodiment 3 of the present invention. The basic configuration of the hermetic compressor in the present embodiment is the same as that shown in FIGS.
[0055]
In FIG. 5, reference numeral 133 denotes a cylinder communication hole, one end of which communicates with the oil pool 125, and the lower end of which communicates with the upper portion of the cylinder block 116 inside the compression chamber 117. Reference numeral 134 denotes a substantially annular oil supply groove communicating with the cylinder communication hole 133 in the vicinity of the bottom dead center of the piston 120, and is recessed on the outer periphery of the piston 120.
[0056]
Reference numeral 135 denotes a sub-bearing fixed to the cylinder block 116 and supporting the sub-shaft portion 113. Reference numeral 136 denotes an oil bath communicating with a sliding surface between the sub-shaft portion 113 and the sub-bearing 135. It is formed around. Reference numeral 137 denotes an oil supply hole formed in the sub shaft portion 113 to communicate the oil bath 136 with the oil supply mechanism 114 and to have a bottom surface located above the bottom surface of the oil bath 136.
[0057]
Reference numeral 138 denotes an oil supply passage for guiding the lubricating oil 108 discharged from the upper end of the oil supply mechanism 114 to the sliding surface of the piston 120. The oil supply passage 138 is formed by an oil splash hole 127, an oil pool 125, an oil fence 126, and a cylinder communication hole 133. I have.
[0058]
The operation of the compressor configured as described above will be described below.
[0059]
Although the lubricating oil 108 in the oil supply passage 138 flows into the cylinder communication hole 133, since the lower end of the cylinder communication hole 133 is almost sealed by the piston 120, the lubricating oil remains in the cylinder communication hole 133 even during stop. 108 remain. Therefore, the lubricating oil 108 remaining in the cylinder communication hole 133 at the same time as the start-up is supplied to the space between the piston 120 and the cylinder block 116, and the sealing between the piston 120 and the cylinder block 116 is improved immediately after the start-up. The amount of refrigerant gas leaking into the container space 102 is reduced, and refrigeration capacity and efficiency are improved. Further, metal contact between the sliding portion of the piston 120 and the sliding portion of the cylinder block 116 and the sliding portion of the piston pin 122, which is likely to occur immediately after startup, is reduced, so that noise due to sliding is reduced and reliability is improved.
[0060]
Further, when the piston 120 is near the bottom dead center, the lubricating oil 108 is supplied to the oil supply groove 134, and the lubricating oil 108 is sent between the piston 120 and the cylinder block 116 during the compression stroke. By this action, the sealing performance between the piston 120 and the cylinder block 116 by the lubricating oil 108 is further improved, and the amount of refrigerant gas leaking from the compression chamber 117 to the closed container interior space 102 is further reduced, so that the refrigeration capacity and efficiency are improved. Is improved. Further, the metal contact between the sliding portion of the piston 120 and the cylinder block 116 is further reduced, so that the noise caused by the sliding is further reduced and the reliability is further improved.
[0061]
A part of the lubricating oil 108 that has risen to the sub shaft portion 113 by the lubrication mechanism 114 accumulates in the oil bath 136 through the oil supply hole 137 and is transferred to the sliding surface of the sub shaft portion 113 and the sub bearing 135. Supply. The lower portion of the oil bath 136 is substantially sealed by the sub shaft portion 113, and the oil supply hole 137 has a bottom surface located above the bottom surface of the oil bath 136. Lubricating oil 108 remains in oil bath 136 only slightly out of oil bath 136. Therefore, the lubricating oil 108 can be supplied to the sub-shaft portion 113 at the same time as the start-up, and the metal contact between the sub-shaft portion 113 and the sliding portion of the sub-bearing 135 immediately after the start-up is reduced, so that noise caused by sliding is reduced. And the reliability is improved.
[0062]
In addition, when the inverter is driven at an operation frequency of a low frequency equal to or lower than the power supply frequency and starts, the time for the lubricating oil 108 to reach the sub-shaft portion 113 is long, and during that time, the lubrication oil is likely to be in a non-lubricating state. At the same time, the lubricating oil 108 can be supplied to the sub shaft 113, so that the effect is further enhanced.
[0063]
Further, if the lubricating oil 108 accumulates in the oil pool 125 or the oil bath 136, the pumping capacity of the lubricating mechanism 114 is low as in the case of operating at an extremely low frequency of 30 Hz or less, and the lubricating oil 108 Even if the time to reach the upper end of the 113 is long, the lubricating oil 108 is supplied to the auxiliary bearing 135 and the piston 120 from the oil bath 136 and the oil pool 125 until that time. Accordingly, since the operation at the lower operation frequency is possible, the pressure load condition in the refrigeration system is reduced, and the power consumption of the compressor can be further reduced.
[0064]
The operation according to the above-described configuration is universal regardless of the type of lubricating oil combined with the refrigerant.
[0065]
(Embodiment 4)
FIG. 6 is a sectional view of a main part according to a fourth embodiment of the present invention. The basic configuration of the hermetic compressor in the present embodiment is the same as that shown in FIGS.
[0066]
In FIG. 6, reference numeral 139 denotes an oil supply passage for guiding the lubricating oil 108 discharged from the upper end of the oil supply mechanism 114 to the sliding surface of the piston 120, a part of which is formed in the sub-bearing 140 and further in the cylinder block 116. And has an open end above the piston 120. Reference numeral 141 denotes an oil supply hole formed in the sub shaft portion 113, which connects the oil supply passage 139 and the oil supply mechanism 114 at least once during one rotation of the shaft 110.
[0067]
The operation of the compressor configured as described above will be described below.
[0068]
The lubricating oil 108 that has risen to the sub shaft portion 113 by the lubrication mechanism 114 flows directly from the lubrication hole 141 into the lubrication passage 139, so that even if the rotation speed of the shaft 110 or the viscosity of the lubrication oil 108 changes, the piston 120 And the lubricating oil 108 can be supplied to the piston pin 122 stably and reliably.
[0069]
Accordingly, the sealing performance between the piston 120 and the cylinder block 116 is improved, the amount of refrigerant gas leaking from the compression chamber 117 to the closed container space 102 is reduced, and the refrigerating capacity and efficiency are improved. Further, metal contact between the sliding portion of the piston 120 and the sliding portion of the cylinder block 116 and the sliding portion of the piston pin 122, which is likely to occur immediately after startup, is reduced, so that noise due to sliding is reduced and reliability is improved.
[0070]
(Embodiment 5)
FIG. 7 is a sectional view of a main part according to a fifth embodiment of the present invention. The basic configuration of the hermetic compressor in the present embodiment is the same as that shown in FIGS.
[0071]
In FIG. 7, reference numeral 142 denotes an oil fence formed on the upper surface of the compression chamber 117 of the cylinder block 116 so as to protrude upward. Reference numeral 143 denotes the lubricating oil 108 discharged from the upper end of the oil supply mechanism 114 to the sliding surface of the piston 120. A part of the oil supply passage is formed on the upper surface of the compression chamber 117 of the cylinder block 116. Reference numeral 144 denotes a sub bearing which is fixed to the cylinder block 116 and supports the sub shaft portion 113.
[0072]
The operation of the compressor configured as described above will be described below.
[0073]
A portion of the lubricating oil 108 that has risen to the sub shaft 113 by the oil supply mechanism 114 scatters from the upper end of the sub shaft 113 and hits the oil fence 142, flows over the upper surface of the cylinder block 116 along the oil supply passage 143, and 120 and the piston pin 122. At this time, since the cylinder block 116 is cooled by the lubricating oil 108 and the temperature is reduced, the temperature rise of the gas refrigerant sucked into the compression chamber 117 is suppressed, the heat receiving loss is reduced, and the refrigeration capacity and efficiency are increased. . Further, seizure or the like of the sliding portion between the piston 120 and the cylinder block 116 due to a decrease in the temperature of the cylinder block 116 can be prevented, and the reliability is improved.
[0074]
Further, since the oil fence 142 is provided, almost no lubricating oil 108 splashes on the suction muffler 123 located below the compression chamber 117. Therefore, it is possible to prevent a rise in the temperature of the suction gas due to a rise in the temperature of the suction muffler 123, and the refrigerating capacity. And efficiency can be increased.
[0075]
【The invention's effect】
As described above, the invention according to claim 1 has an oil supply mechanism in which the lower end communicates with the lubricating oil and the upper end penetrates and opens to the upper end of the countershaft, and the oil is discharged from the upper end of the oil supply mechanism. By providing a lubrication oil passage that guides the lubricating oil to the sliding surface of the piston in at least one of the auxiliary bearing and the cylinder block, the lubrication oil is stably supplied from the lubrication oil passage to the piston or the piston pin. Supplied, the refrigerating capacity and efficiency are improved, the noise due to the sliding of the piston and the piston pin is reduced, and the reliability is further improved.
[0076]
According to a second aspect of the present invention, in addition to the first aspect of the present invention, an oil pool for storing a lubricating oil in a lubricating passage on the upper surface of the sub-bearing is formed in a recessed manner, so that a sufficient amount of the lubricating oil can be stabilized. As a result, the refrigerating capacity and efficiency are improved, the noise caused by the sliding of the piston and the piston pin is reduced, and the reliability is further improved.
[0077]
According to a third aspect of the present invention, in addition to the first or second aspect of the present invention, an oil spill hole communicating with the oil supply mechanism is formed in a portion of the sub shaft portion above the upper surface of the sub bearing in a substantially horizontal direction. Even if the rotational speed of the shaft or the viscosity of the lubricating oil changes, the direction in which the lubricating oil blows out from the oil spill hole is constant, and the scattered lubricating oil is easily collected. Lubricating oil can be supplied stably, the refrigerating capacity and efficiency are improved, the noise caused by the sliding of the piston and the piston pin is reduced, and the reliability is further improved.
[0078]
According to a fourth aspect of the present invention, in addition to the first aspect of the present invention, there is further provided an oil fence protruding upward near the oil supply passage on the upper surface of the auxiliary bearing. Yes, lubricating oil can be collected on the upper surface of the auxiliary bearing, a sufficient amount of lubricating oil can be stably supplied to the piston, and the temperature of the suction gas can be prevented from rising due to the temperature rise of the suction muffler due to the lubrication oil. The refrigerating capacity and efficiency are improved, the noise caused by the sliding of the piston and the piston pin is reduced, and the reliability is further improved.
[0079]
According to a fifth aspect of the present invention, in the first aspect of the present invention, there is provided an oil supply passage communicating with the oil supply passage provided on the upper surface of the auxiliary bearing and provided above the compression chamber of the cylinder block. The lubricating oil can be supplied after the lubricating oil has passed through the oil supply passage on the cylinder block or directly on the piston or piston pin, and the lubricating oil can be reliably supplied. Oil can flow to the cylinder block surface as well as provide a cooling effect, improving refrigeration capacity and efficiency, reducing noise caused by piston and piston pin sliding, and further improving reliability. Is improved.
[0080]
According to a sixth aspect of the present invention, in the invention of the fifth aspect, an oil guide protruding downward near the opening is provided on the lower end surface side of the auxiliary bearing, so that the target can be reliably and stably aimed at. Oil can be supplied to the sliding portion of the piston, so that the refrigerating capacity and efficiency are improved, noise caused by sliding of the piston and the piston pin is reduced, and reliability is further improved.
[0081]
According to a seventh aspect of the present invention, in addition to the fifth aspect of the present invention, there is further provided a cylindrical piston pin fixed to the piston and connecting the connecting rod and the piston as connecting means, In the vicinity of the piston bottom dead center, located just above the piston pin and larger than the horizontal cross section of the piston pin, when the auxiliary bearing is fixed to the cylinder block in advance or is formed integrally The assembly is easy because it is not necessary to simultaneously insert the countershaft into the sub-bearing and insert the eccentric portion into the connecting rod, so that the assembly can be performed in order and the working efficiency is improved.
[0082]
According to an eighth aspect of the present invention, in the first aspect of the invention, the oil supply passage is provided with a cylinder communication hole having one end communicating with an upper portion of the compression chamber of the cylinder block. And the amount of refrigerant gas leakage is reduced, and the refrigerating capacity and efficiency are improved. Further, the metal contact of the sliding portion of the piston or the piston pin is prevented immediately after the start, and the lubrication is improved, the noise caused by the sliding is reduced, and the reliability is improved.
[0083]
According to a ninth aspect of the present invention, in addition to the first aspect of the present invention, a substantially annular oil supply groove communicating with the oil supply passage near the bottom dead center of the piston is further provided. It is characterized in that it is recessed on the outer periphery, so that the refrigerating capacity and efficiency can be improved by improving the sealing performance, and the effect of improving the reliability of the sliding portion is obtained.
[0084]
According to a tenth aspect of the present invention, in addition to any one of the first to ninth aspects of the present invention, an oil bath communicating with a sliding surface between the sub-shaft and the sub-bearing is further provided on the sub-shaft. The lubricating oil can be supplied to the sub shaft part at the same time as starting, lubrication of the sliding part of the sub shaft part and the sub bearing is improved, and noise caused by sliding is reduced. , Improve reliability
According to an eleventh aspect of the present invention, in addition to the tenth aspect, the oil bath and the oil supply mechanism are communicated with the countershaft portion, and the bottom surface is located above the bottom surface of the oil bath. A lubrication hole is formed, and lubricating oil can be constantly supplied to the sub shaft from start to stop.
[0085]
According to a twelfth aspect of the present invention, in the first aspect, a part of the oil supply passage is formed inside the auxiliary bearing, and the oil supply passage and the oil supply mechanism are communicated at least once during one rotation of the shaft. The lubrication hole is formed in the sub-shaft part, and even if the rotational speed of the shaft or the viscosity of the lubricating oil changes, the lubricating oil is stably applied to the sliding surface of the sub-shaft part and the sub-bearing, piston and piston pin. Can be supplied.
[0086]
According to a thirteenth aspect of the present invention, in the invention according to any one of the first, third, and ninth aspects, an oil fence formed to protrude upward is provided on the upper surface of the compression chamber of the cylinder block. The oil supply passage is formed on the upper surface of the compression chamber of the cylinder block, so that the heat receiving loss is reduced, the refrigerating capacity and efficiency are increased, and the reliability is improved. Further, it is possible to prevent a rise in the temperature of the suction gas due to a rise in the temperature of the suction muffler, thereby increasing the refrigerating capacity and efficiency.
[0087]
According to a fourteenth aspect of the present invention, in addition to any one of the first to thirteenth aspects, the invention is further driven by an inverter at a plurality of operation frequencies including at least an operation frequency equal to or lower than the power supply frequency. In addition, the power consumption of the compressor is reduced.
[0088]
The invention according to claim 15 further includes, in addition to the invention according to claim 14, the operation frequency equal to or lower than the power supply frequency includes at least the operation frequency equal to or lower than 30 Hz, and the operation at a lower operation frequency is enabled. Therefore, the power consumption is further reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a hermetic compressor according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional plan view of the embodiment.
FIG. 3 is a sectional view of a main part of the embodiment.
FIG. 4 is a sectional view of a main part of a hermetic compressor according to a second embodiment of the present invention.
FIG. 5 is a sectional view of a main part of a hermetic compressor according to a third embodiment of the present invention.
FIG. 6 is a sectional view of an essential part of a hermetic compressor according to a fourth embodiment of the present invention.
FIG. 7 is a sectional view of a main part of a hermetic compressor according to a fifth embodiment of the present invention.
FIG. 8 is a longitudinal sectional view of a conventional hermetic compressor.
FIG. 9 is a top view of a conventional hermetic compressor.
FIG. 10 is a sectional view of a lower portion of a conventional shaft.
FIG. 11 is a sectional view of a main part of a conventional countershaft.
[Explanation of symbols]
101 Closed container
105 motorized element
106 compression element
108 Lubricating oil
110 shaft
111 spindle
112 Eccentric shaft
113 counter shaft
114 Refueling mechanism
116 cylinder block
117 Compression chamber
118 Main bearing
119 Secondary bearing
120 piston
121 connecting means
124 opening
125 oil pool
126 Oil fence
127 Oil splash hole
128 oil guide
129 Refueling passage
130 opening
131 Refueling passage
132 Secondary bearing
133 Cylinder communication hole
134 Oil groove
135 auxiliary bearing
136 Oil bath
137 Oil supply hole
138 Refueling passage
139 Refueling passage
140 Secondary bearing
141 Oil hole
142 oil fence
143 Refueling passage
144 auxiliary bearing

Claims (15)

密閉容器内に潤滑油を貯溜するとともに電動要素と前記電動要素によって駆動される圧縮要素を収容し、前記圧縮要素は偏心軸部と前記偏心軸部を挟んで上下に同軸状に設けた副軸部および主軸部とを有したシャフトと、略円筒形の圧縮室を備えたシリンダブロックと、前記シリンダブロックに固定されるか又は一体に前記圧縮室の軸心と略直交するように形成され、前記シャフトの前記主軸部の上半部を軸支する主軸受と、前記シリンダブロックに固定されるか又は一体に形成され、前記副軸部を軸支する副軸受と、前記圧縮室内で往復運動するピストンと、前記ピストンと前記偏心軸とを連結する連結手段とを備えており、前記シャフトに下端が前記潤滑油に連通し、上端が前記副軸部の上端部に貫通開口する給油機構を設けるとともに、前記給油機構の上端から吐出された潤滑油を前記ピストンの摺動面へと導く給油通路を前記副軸受あるいは前記シリンダブロックの少なくとも一方に設けた密閉型圧縮機。An electric element and a compression element driven by the electric element are stored in the closed container and lubricating oil is accommodated therein, and the compression element is provided with an eccentric shaft portion and a sub shaft provided vertically coaxially with the eccentric shaft portion interposed therebetween. Shaft having a portion and a main shaft portion, a cylinder block having a substantially cylindrical compression chamber, and fixed to the cylinder block or integrally formed so as to be substantially orthogonal to the axis of the compression chamber, A main bearing that supports the upper half of the main shaft portion of the shaft, a sub-bearing that is fixed to or integrally formed with the cylinder block and supports the sub-shaft portion, and a reciprocating motion in the compression chamber. And a connecting means for connecting the piston and the eccentric shaft, wherein a lower end of the shaft communicates with the lubricating oil, and an upper end of the oil supply mechanism has an upper end through-opened to an upper end of the sub shaft portion. Along with Hermetic compressor provided on at least one of the upper end of the lubricating oil discharged from the leading to the sliding surface of the piston oil supply passage the auxiliary bearing or the cylinder block of the oil supply mechanism. 副軸受上面の給油通路中に潤滑油を貯溜するオイルプールを凹設した請求項1に記載の密閉型圧縮機。The hermetic compressor according to claim 1, wherein an oil pool for storing lubricating oil is recessed in an oil supply passage on an upper surface of the auxiliary bearing. 副軸部の、副軸受上面より上の部分に、給油機構と連通するオイル飛散孔を略水平方向に穿設した請求項1または請求項2に記載の密閉型圧縮機。3. The hermetic compressor according to claim 1, wherein an oil splash hole communicating with the oil supply mechanism is formed substantially horizontally in a portion of the countershaft portion above the upper surface of the sub bearing. 副軸受上面で給油通路近傍に上方に突出形成したオイルフェンスを設けた請求項1から3のいずれか1項に記載の密閉型圧縮機。The hermetic compressor according to any one of claims 1 to 3, further comprising an oil fence protruding upward from the upper surface of the auxiliary bearing near the oil supply passage. 副軸受上面に設けた給油通路に連通し、シリンダブロックの圧縮室上部に設けた給油通路の上に開口する開口部を備えた請求項1から請求項4のいずれか1項に記載の密閉型圧縮機。The closed type according to any one of claims 1 to 4, further comprising an opening communicating with the oil supply passage provided on the upper surface of the auxiliary bearing and opening on the oil supply passage provided above the compression chamber of the cylinder block. Compressor. 副軸受下端面側に、開口部近傍に下方に突出したオイルガイドを設けた請求項5に記載の密閉型圧縮機。The hermetic compressor according to claim 5, wherein an oil guide protruding downward near the opening is provided on a lower bearing lower surface side of the auxiliary bearing. ピストンに固定され、連結手段であるコンロッドとピストンとを連結する円筒状のピストンピンを備えるとともに、開口部は、前記ピストン下死点近傍において、前記ピストンピンの真上に位置し、かつ前記ピストンピン水平断面よりも大きい請求項5に記載の密閉型圧縮機。A piston pin fixed to the piston and connecting the connecting rod and the piston as a connecting means, and an opening is located immediately above the piston pin near the bottom dead center of the piston, and the piston The hermetic compressor according to claim 5, which is larger than a horizontal cross section of the pin. 給油通路に、一端がシリンダブロックの圧縮室内上部に連通開口するシリンダ連通孔を設けた請求項1に記載の密閉型圧縮機。2. The hermetic compressor according to claim 1, wherein the oil supply passage is provided with a cylinder communication hole, one end of which is opened to communicate with an upper portion of the compression chamber of the cylinder block. ピストンの下死点近傍で給油通路に連通する略環状の給油溝を前記ピストンの外周に凹設した請求項1から請求項8のいずれか1項に記載の密閉型圧縮機。The hermetic compressor according to any one of claims 1 to 8, wherein a substantially annular oil supply groove communicating with the oil supply passage near the bottom dead center of the piston is recessed on the outer periphery of the piston. 副軸部と副軸受との摺動面に連通するオイルバスを副軸部の周りに形成した請求項1から請求項9のいずれか1項に記載の密閉型圧縮機。The hermetic compressor according to any one of claims 1 to 9, wherein an oil bath communicating with a sliding surface between the countershaft and the sub-bearing is formed around the countershaft. 副軸部に、オイルバスと給油機構とを連通させるとともに、前記オイルバスの底面より上に底面が位置するような給油孔を穿設した請求項10に記載の密閉型圧縮機。The hermetic compressor according to claim 10, wherein an oil bath and an oil supply mechanism are communicated with the countershaft portion, and an oil supply hole is formed such that a bottom surface is located above a bottom surface of the oil bath. 副軸受内部に給油通路の一部を形成するとともに、シャフト1回転中に少なくとも1回は前記給油通路と給油機構とを連通する給油孔を副軸部内に形成した請求項1に記載の密閉型圧縮機。2. The sealed type according to claim 1, wherein a part of an oil supply passage is formed inside the auxiliary bearing, and an oil supply hole for communicating the oil supply passage with the oil supply mechanism is formed in the auxiliary shaft at least once during one rotation of the shaft. Compressor. シリンダブロックの圧縮室上方面に、上方に突出形成したオイルフェンスを設けるとともに、シリンダブロックの圧縮室上方面に給油通路を形成した請求項1、請求項3、請求項9のいずれか1項に記載の密閉型圧縮機。An oil fence is provided on an upper surface of the compression chamber of the cylinder block so as to protrude upward, and an oil supply passage is formed on an upper surface of the compression chamber of the cylinder block. A hermetic compressor as described. 少なくとも電源周波数以下の運転周波数を含む複数の運転周波数でインバーター駆動される請求項1から請求項13のいずれか1項に記載の密閉型圧縮機。The hermetic compressor according to any one of claims 1 to 13, wherein the compressor is driven at a plurality of operation frequencies including an operation frequency at least equal to or lower than a power supply frequency. 電源周波数以下の運転周波数には少なくとも30Hz以下の運転周波数を含む請求項14に記載の密閉型圧縮機。15. The hermetic compressor according to claim 14, wherein the operating frequency equal to or lower than the power supply frequency includes at least an operating frequency equal to or lower than 30 Hz.
JP2002185774A 2002-06-26 2002-06-26 Hermetically sealed compressor Pending JP2004027969A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002185774A JP2004027969A (en) 2002-06-26 2002-06-26 Hermetically sealed compressor
CNB038149699A CN100379986C (en) 2002-06-26 2003-06-26 Hermetic compressor
AU2003238161A AU2003238161A1 (en) 2002-06-26 2003-06-26 Hermetic compressor
KR1020047020714A KR100857964B1 (en) 2002-06-26 2003-06-26 Hermetic compressor
BR0312074-0A BR0312074A (en) 2002-06-26 2003-06-26 Airtight compressor
US10/518,643 US20050265863A1 (en) 2002-06-26 2003-06-26 Hermetic compressor
EP03736282A EP1527280A1 (en) 2002-06-26 2003-06-26 Hermetic compressor
PCT/JP2003/008143 WO2004003387A1 (en) 2002-06-26 2003-06-26 Hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002185774A JP2004027969A (en) 2002-06-26 2002-06-26 Hermetically sealed compressor

Publications (1)

Publication Number Publication Date
JP2004027969A true JP2004027969A (en) 2004-01-29

Family

ID=29996750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002185774A Pending JP2004027969A (en) 2002-06-26 2002-06-26 Hermetically sealed compressor

Country Status (8)

Country Link
US (1) US20050265863A1 (en)
EP (1) EP1527280A1 (en)
JP (1) JP2004027969A (en)
KR (1) KR100857964B1 (en)
CN (1) CN100379986C (en)
AU (1) AU2003238161A1 (en)
BR (1) BR0312074A (en)
WO (1) WO2004003387A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307795A (en) * 2004-04-20 2005-11-04 Matsushita Electric Ind Co Ltd Compressor
WO2005116450A1 (en) * 2004-05-28 2005-12-08 Matsushita Electric Industrial Co., Ltd. Hermetic compressor
WO2006064890A1 (en) * 2004-12-14 2006-06-22 Matsushita Electric Industrial Co., Ltd. Hermetic compressor
JP2009236080A (en) * 2008-03-28 2009-10-15 Panasonic Corp Hermetic compressor
KR101313549B1 (en) * 2006-11-06 2013-10-01 삼성전자주식회사 Hermetic type compressor
KR20190052564A (en) * 2017-11-08 2019-05-16 엘지전자 주식회사 A Lubricant Oil Provider and a Compressor Using the Same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005133707A (en) * 2003-10-10 2005-05-26 Matsushita Electric Ind Co Ltd Enclosed compressor
JP4429769B2 (en) * 2004-03-16 2010-03-10 パナソニック株式会社 Hermetic compressor
WO2007063077A1 (en) * 2005-11-30 2007-06-07 Arcelik Anonim Sirketi A compressor
KR100874069B1 (en) * 2006-04-19 2008-12-12 파나소닉 주식회사 Hermetic compressor
KR20080069171A (en) * 2006-11-13 2008-07-25 마쯔시다덴기산교 가부시키가이샤 Compressor
WO2009139138A1 (en) * 2008-05-12 2009-11-19 Panasonic Corporation Closed type compressor and freezing apparatus using the same
BRPI0802447A2 (en) * 2008-07-15 2010-03-23 Whirlpool Sa refrigeration compressor with internal cooling system
KR101454247B1 (en) * 2009-01-14 2014-10-23 엘지전자 주식회사 Reciprocating compressor
EP2940300B1 (en) * 2012-12-27 2017-03-01 Panasonic Intellectual Property Management Co., Ltd. Hermetic compressor and refrigeration device with same
CN104110360B (en) * 2013-04-22 2016-09-28 青岛海尔智能技术研发有限公司 A kind of linear compressor and lubricating method thereof
CN104251198B (en) * 2013-06-25 2018-01-09 青岛海尔智能技术研发有限公司 The lubrication system of linear compressor
JP6154090B1 (en) * 2015-12-25 2017-06-28 パナソニック株式会社 Hermetic compressor and refrigeration apparatus using the same
AT15828U1 (en) * 2016-12-27 2018-07-15 Secop Gmbh LUBRICANT CONSUMPTION FOR A REFRIGERANT COMPRESSOR AND REFRIGERANT COMPRESSOR
KR101983459B1 (en) * 2017-09-25 2019-05-28 엘지전자 주식회사 Reciprocating compressor
KR101983467B1 (en) 2017-09-28 2019-08-28 엘지전자 주식회사 Reciprocating Type Compressor
CN108591015B (en) * 2017-12-25 2024-05-24 珠海格力节能环保制冷技术研究中心有限公司 Pump body assembly for piston compressor, piston compressor and heat exchange system
KR102001336B1 (en) * 2018-01-25 2019-07-17 엘지전자 주식회사 A Connecting Structure between a Cylinder Head and a Connecting Pipe and a Recipro-type Compressor Using the Same
CN110925167A (en) * 2019-11-18 2020-03-27 珠海格力节能环保制冷技术研究中心有限公司 Cylinder oil supply assembly, cylinder assembly and compressor
CN111894831B (en) * 2020-06-16 2022-06-17 珠海格力节能环保制冷技术研究中心有限公司 Compressor capable of switching single support and double supports

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2583583A (en) * 1948-10-20 1952-01-29 John R Mangan Compressor pump
DE1797261U (en) * 1959-03-06 1959-10-08 Licentia Gmbh OIL LUBRICATION FOR REFRIGERANT COMPRESSORS.
US3451615A (en) * 1967-07-12 1969-06-24 Tecumseh Products Co Compressor lubricating system
US3767013A (en) * 1971-08-16 1973-10-23 Pennwalt Corp Start-up lubricator
IT1128947B (en) * 1980-07-18 1986-06-04 Aspera Spa IMPROVEMENTS IN HERMETIC COMPRESSORS FOR REFRIGERATING FLUIDS
US4569639A (en) * 1982-05-03 1986-02-11 Tecumseh Products Company Oil distribution system for a compressor
DE3242858A1 (en) * 1982-09-02 1984-03-08 Sanyo Electric Co., Ltd., Moriguchi, Osaka HERMETICALLY SEALED ENGINE COMPRESSOR
US4718830A (en) * 1982-09-30 1988-01-12 White Consolidated Industries, Inc. Bearing construction for refrigeration compresssor
US4576555A (en) * 1984-11-13 1986-03-18 Tecumseh Products Company Oil dispersing device
JPH0329586Y2 (en) * 1985-11-08 1991-06-24
US4834627A (en) * 1988-01-25 1989-05-30 Tecumseh Products Co. Compressor lubrication system including shaft seals
US5046930A (en) * 1990-01-18 1991-09-10 Tecumseh Products Company Connecting rod cooling and lubrication
US5038891A (en) * 1990-04-12 1991-08-13 Copeland Corporation Refrigerant compressor
US5118263A (en) * 1990-04-27 1992-06-02 Fritchman Jack F Hermetic refrigeration compressor
US5205723A (en) * 1991-01-22 1993-04-27 Matsushita Refrigeration Company Hermetically sealed compressor
US5252039A (en) * 1991-02-05 1993-10-12 Matsushita Refrigeration Co. Enclosed motor-driven compressor
US5232351A (en) * 1992-07-13 1993-08-03 Tecumseh Products Company Centrifugal oil pump booster
JPH0678582A (en) * 1992-08-21 1994-03-18 Sanyo Electric Co Ltd Controlling method for operation of compressor
US5816783A (en) * 1993-05-19 1998-10-06 Hitachi, Ltd. Electrically driven hermetic compressor
KR0143142B1 (en) * 1995-03-07 1998-08-01 김광호 Cylinder apparatus for on reciprocating canpressor
KR100190141B1 (en) * 1996-10-17 1999-06-01 윤종용 Closed type reciprocal compressor with oil inducing hole
US6102160A (en) * 1998-05-15 2000-08-15 Copeland Corporation Compressor lubrication
KR100350802B1 (en) * 1999-06-25 2002-09-09 삼성광주전자 주식회사 Hermetic compressor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307795A (en) * 2004-04-20 2005-11-04 Matsushita Electric Ind Co Ltd Compressor
JP4576870B2 (en) * 2004-04-20 2010-11-10 パナソニック株式会社 Compressor
WO2005116450A1 (en) * 2004-05-28 2005-12-08 Matsushita Electric Industrial Co., Ltd. Hermetic compressor
KR100701527B1 (en) * 2004-05-28 2007-03-29 마쯔시다덴기산교 가부시키가이샤 Hermetic compressor
CN100430598C (en) * 2004-05-28 2008-11-05 松下电器产业株式会社 Hermetic compressor
WO2006064890A1 (en) * 2004-12-14 2006-06-22 Matsushita Electric Industrial Co., Ltd. Hermetic compressor
KR100772767B1 (en) * 2004-12-14 2007-11-01 마쯔시다덴기산교 가부시키가이샤 Hermetic compressor
US8210832B2 (en) 2004-12-14 2012-07-03 Panasonic Corporation Hermetic compressor
KR101313549B1 (en) * 2006-11-06 2013-10-01 삼성전자주식회사 Hermetic type compressor
JP2009236080A (en) * 2008-03-28 2009-10-15 Panasonic Corp Hermetic compressor
KR20190052564A (en) * 2017-11-08 2019-05-16 엘지전자 주식회사 A Lubricant Oil Provider and a Compressor Using the Same
KR101991580B1 (en) * 2017-11-08 2019-06-20 엘지전자 주식회사 A Lubricant Oil Provider and a Compressor Using the Same

Also Published As

Publication number Publication date
EP1527280A1 (en) 2005-05-04
CN100379986C (en) 2008-04-09
KR100857964B1 (en) 2008-09-10
AU2003238161A1 (en) 2004-01-19
WO2004003387A1 (en) 2004-01-08
US20050265863A1 (en) 2005-12-01
CN1662744A (en) 2005-08-31
KR20050027221A (en) 2005-03-18
BR0312074A (en) 2005-03-22

Similar Documents

Publication Publication Date Title
JP2004027969A (en) Hermetically sealed compressor
US10344749B2 (en) Hermetic compressor and refrigeration device
US20090092504A1 (en) Hermetic compressor
JP2009197684A (en) Hermetic compressor and refrigerating cycle device
KR100350802B1 (en) Hermetic compressor
JP2015096699A (en) Enclosed compressor and device including enclosed compressor
KR101646044B1 (en) Hermetic compressor and refrigerator using the same
JP5045521B2 (en) Hermetic compressor
JP2003065236A (en) Hermetic electric compressor
US20100158711A1 (en) Compressor
JP3980623B2 (en) Hermetic electric compressor
JP2013057283A (en) Hermetic compressor
JP2009062954A (en) Hermetic compressor
JP2018025142A (en) Hermetic type compressor and refrigeration device using the same
JP2003293953A (en) Reciprocating hermetic motor compressor
JP4622793B2 (en) Hermetic compressor
JP2004036562A (en) Hermetic compressor
JP2012159073A (en) Hermetic compressor
JP2004156512A (en) Sealed compressor
JP2015105577A (en) Sealed compressor and refrigerating/freezing device using the same
JPH07247979A (en) Vertical rotary compressor
JP2014084715A (en) Hermetic compressor, and refrigerator
JP2013100797A (en) Hermetic compressor
JP2009203810A (en) Hermetic compressor and refrigeration cycle device
US20120301330A1 (en) Fluid Machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050617

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071002