JP2012150345A - 光ファイバ配線板及び光ファイバ電気配線複合基板 - Google Patents

光ファイバ配線板及び光ファイバ電気配線複合基板 Download PDF

Info

Publication number
JP2012150345A
JP2012150345A JP2011009882A JP2011009882A JP2012150345A JP 2012150345 A JP2012150345 A JP 2012150345A JP 2011009882 A JP2011009882 A JP 2011009882A JP 2011009882 A JP2011009882 A JP 2011009882A JP 2012150345 A JP2012150345 A JP 2012150345A
Authority
JP
Japan
Prior art keywords
optical fiber
optical
substrate
wiring board
mounting groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011009882A
Other languages
English (en)
Inventor
Daichi Sakai
大地 酒井
Tomoaki Shibata
智章 柴田
Toshihiro Kuroda
敏裕 黒田
Shigeyuki Yagi
成行 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2011009882A priority Critical patent/JP2012150345A/ja
Publication of JP2012150345A publication Critical patent/JP2012150345A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

【課題】使用する光信号の波長制約が少なく、かつ光ファイバと光導波路コアとの位置合わせが容易で、光ファイバの位置ずれ・ピッチずれがしにくく、光学素子の実装が容易であり、かつ基板の大きさの制限を受けずに光路変換ミラーを備えられる光ファイバ配線板及び光ファイバ電気配線複合基板を提供する。
【解決手段】本発明の光ファイバ配線板は、光ファイバを固定するための溝を有する光ファイバガイド部材と、クラッド層及びコアパターンを有する光導波路とが、該溝に固定された光ファイバと光信号を送受可能な位置に並設されてなる光ファイバコネクタと、前記溝に固定された光ファイバとが、第1基板上に具備されてなる。
【選択図】図3

Description

本発明は光ファイバ配線板及び光ファイバ電気配線複合基板に関し、特に、使用する光信号の波長制約が少なく、かつ光ファイバと、光導波路コアとの位置合わせが容易で、光ファイバの位置ずれがしにくく、光学素子の実装が容易であり、かつ基板の大きさの制限を受けずにミラー部を備えられる光ファイバ配線板及び光ファイバ電気配線複合基板に関する。
情報容量の増大に伴い、幹線やアクセス系といった通信分野のみならず、ルータやサーバ内の情報処理にも光信号を用いる光インターコネクション技術の開発が進められている。具体的には、ルータやサーバ装置内のボード間あるいはボード内の短距離信号伝送に光を用いるために、電気配線板に光伝送路を複合した光電気複合基板の開発がなされている。
基板上の光伝送路としては、光ファイバに比べ、配線の自由度が高く、かつ高密度化が可能であり、高精度な配線ピッチを得やすい光導波路を用いることが望ましく、中でも、加工性や経済性に優れたポリマー材料を用いた光導波路が有望である。
例えば、特許文献1に記載のようなミラー付きの光導波路と電気配線板を複合化した光電気配線板などがある。しかし、ポリマー材料の光導波路は、炭化水素基由来の吸収帯が存在するため、使用する光信号波長に制限を受け、低損失な光信号波長を選択しても数cm〜数m程度の光路長でないと、光伝搬損失が大きく光信号の伝送が困難である。また、光路変換用の斜面を形成する方法として、前述の特許文献1に記載のように、ミラー部材を光導波路中に挿入する方法や、ダイシングソーやレーザアブレーションにて形成する方法が一般的であるが、これらの方法だと大面積の基板を加工する際、大型の装置が必要であることや、極めて高歩留まりの加工技術が必要などの問題があった。
一方、光導波路よりも低損失な光ファイバは、多量の情報の高速通信が可能であることから、家庭用、産業用の情報通信に広く利用されている。また、例えば自動車には、各種電装品(例えば、カーナビゲーションシステム等)が装備されているが、それらの電装品の光通信にも採用されている。
このような光ファイバを基板に接続する光ファイバコネクタとして、特許文献2に開示されているものがある。これらの光ファイバコネクタを、基板の受発光素子間を接続するためのジャンパー線として用いることにより、低損失な光信号の送受ができる。しかし、この方法では、光ファイバコネクタと基板間に光学素子を設ける必要があるため、基板上に多数の光素子を高精度に実装する必要があると共に、光ファイバコネクタ基板とを高精度に実装する必要があった。また、このようなコネクタを光ファイバの内装配線化は極めて困難となる。さらにこの光ファイバコネクタはあくまでも基板外部接続機構であるため、光ファイバの配線部分の取りまわしが基板外となるため煩雑となる。
特開2006−284634 特開2008−275717
本発明は、前記の課題を解決するためになされたもので、使用する光信号の波長制約が少なく、かつ光ファイバと光導波路コアとの位置合わせが容易で、光ファイバの位置ずれ・ピッチずれがしにくく、光学素子の実装が容易であり、かつ基板の大きさの制限を受けずに光路変換ミラーを備えられる光ファイバ配線板及び光ファイバ電気配線複合基板を提供することを目的とする。
本発明は、以下の発明を提供するものである。
(1)光ファイバを固定するための光ファイバ搭載溝を有する光ファイバガイド部材と、クラッド層及びコアパターンを有する光導波路とが、該光ファイバ搭載溝に固定された光ファイバと光信号を送受可能な位置に並設されてなる光ファイバコネクタと、前記光ファイバ搭載溝に固定された光ファイバとが、第1基板上に具備されてなる光ファイバ配線板、
(2)光ファイバを固定するための光ファイバ搭載溝を有する光ファイバガイド部材と、光路変換ミラーを備えたミラー部材とが、該光ファイバ搭載溝に固定された光ファイバと光信号を送受可能な位置に並設されてなる光ファイバコネクタと、前記光ファイバ搭載溝に固定された光ファイバとが、第1基板上に具備されてなる光ファイバ配線板、
(3)前記光路変換用ミラーと前記光ファイバ搭載溝に固定された光ファイバの端面との間に光導波路を有することを特徴とする(2)に記載の光ファイバ配線板、
(4)前記光路変換ミラーが、前記光導波路に形成されていることを特徴とする(4)に記載の光ファイバ配線板、
(5)前記光導波路が、下部クラッド層、コアパターン、上部クラッド層からなることを特徴とする(1)〜(4)のいずれかに記載の光ファイバ配線板、
(6)前記光ファイバコネクタの光ファイバ搭載溝の深さが、光ファイバの半径以上かつ直径以下であることを特徴とする(1)〜(5)のいずれかに記載の光ファイバ配線板、
(7)前記光ファイバコネクタの光ファイバ搭載溝の両側面及び光ファイバ搭載溝の底面にて、前記光ファイバを固定することを特徴とする(1)〜(6)のいずれかに記載の光ファイバ配線板、
(8)前記第1基板が第1接着層を有する基板であることを特徴とする(1)〜(7)のいずれかに記載の光ファイバ配線板、
(9)前記第1接着層上に前記光ファイバコネクタ及び光ファイバが接着されてなる(8)に記載の光ファイバ配線板、
(10)前記第1基板と反対の前記光ファイバコネクタ上に、第2基板を具備する(1)〜(9)のいずれかに記載の光ファイバ配線板、
(11)前記第2基板が第2接着層を有する基板であることを特徴とする(10)に記載の光ファイバ配線板、
(12)前記第1基板が第1電気配線板であることを特徴とする(1)〜(11)のいずれかに記載の光ファイバ電気配線複合基板、
(13)前記第2基板が第2電気配線板であることを特徴とする(10)〜(12)のいずれかに記載の光ファイバ電気配線複合基板。
本発明の光ファイバ配線板及び光ファイバ電気配線複合基板は、光路長の大部分に光ファイバを使用するため、使用する光信号の波長制約が少なく、かつ光ファイバと光導波路コアとの位置合わせが容易で、光ファイバの位置ずれ・ピッチずれがしにくく、光学素子の実装が容易であり、かつ光路変換ミラーを光ファイバコネクタ内に備えることで、基板の大きさの制限を受けずに光路変換ミラーを備えられる。
本発明の光ファイバ配線板(光ファイバ電気配線複合基板)で用いる光ファイバコネクタの一例を示す、ファイバガイド用コアパターンのパターン並行方向断面図(a)、光信号伝達用コアパターンのパターン並行方向断面図(b)、光信号伝達用コアパターンのパターン垂直方向断面図(c)、ファイバガイド用コアパターンのパターン垂直方向断面図(d)、ファイバと光導波路の接続部分の平面図(e)である。 本発明の光ファイバ配線板(光ファイバ電気配線複合基板)で用いる光ファイバコネクタの一例を示す斜視図(f)である。 本発明の光ファイバ配線板(光ファイバ電気配線複合基板)の一例を示す断面図である。
本発明の光ファイバ配線板(光ファイバ電気配線複合基板)の具体例について図1〜3を用いて説明する。
本発明の光ファイバ配線板50(光ファイバ電気配線複合基板)を、図3を用いて説明する。図3は、第1基板1と、光ファイバコネクタ40及び光ファイバ30とが接合された光ファイバ配線板(光ファイバ電気配線複合基板)である。
本発明の光ファイバ配線板50は第1基板1上に形成された第1接着層301上に、光ファイバ30と該光ファイバ30の端部に設置された光ファイバコネクタ40とが、接着された光ファイバ配線板50であると好ましい。
本発明に用いられる光ファイバコネクタ40については、図1、2を用いて説明する。第2基板2の一部である第2下部クラッド層303上に、光ファイバ30(図1(d)−6参照)を固定するための光ファイバ導入溝8を有する光ファイバガイド用コアパターン5が形成された光ファイバガイド部材10と、第2下部クラッド層303上に形成された下部クラッド層4上に光信号伝達用コアパターン5が形成され、光信号伝達用コアパターン5上に上部クラッド層7が形成された光導波路20とが並設された光ファイバコネクタ40であって、光ファイバガイド部材10の光ファイバ搭載溝8に固定された光ファイバ30と、光導波路20の光信号伝達用コアパターン5とが、光信号を送受可能な位置に接合するように、光ファイバガイド部材10と前記光導波路20が並設されてなる。
なお、本発明において、光ファイバコネクタ40は、光ファイバ30と光導波路20とを位置合わせするための光ファイバガイド部材10とを備えた光ファイバコネクタ又は、光ファイバ30と光路変換ミラー11とを位置合わせするための光ファイバガイド部材10とを備えた光ファイバコネクタであれば、特に限定はなく、上述の構造以外の各種の光ファイバコネクタを用いることができる。
光路変換ミラー11のない光ファイバコネクタ40を用いることで、例えば光ファイバアレイの光ファイバ間ピッチを揃えることができ、第1基板端面からの光信号の入出力が容易となる。さらに、光路変換ミラー11を備えた光ファイバコネクタ40を用いると、例えば光ファイバアレイの光ファイバ間ピッチを揃えることができるとともに、第1基板に対して垂直方向からの光信号の入出力が容易となる。さらに、光路変換ミラー11を別体で、第1基板1上に設置するため、大型の光路変換用ミラー形成装置は必要なく、さらに、第2電気配線板2を備えると、光学素子の実装基板として用いることができ、光路変換ミラー11と第2電気配線203とが高精度に位置合わせされた光ファイバコネクタ40を得やすいため、光ファイバ電気配線複合基板50自体の歩留まりを向上させることが出来る。
また、第1基板1及び第2基板2はそれぞれ第1電気配線板2及び第2電気配線板2とした光ファイバ電気配線複合基板50としても良い。光路変換ミラー付きの光ファイバコネクタ40を用いる場合、第1基板1もしくは第2基板2方向のどちらに光路変換されても良いが、光学素子を第2電気配線板2表面に光路変換されると光路変換ミラー11高精度な位置合わせされた第2電気配線203を形成できるため、光学素子の高精度実装が可能となる。
また、使用する光ファイバ30に制限はないが、以下「光ファイバの直径」と表記した場合、光ファイバのクラッド外径もしくは光ファイバの被覆外径を表すこととする。
以下、本発明の光ファイバ配線板を構成する各層について説明する。まず、本発明に使用する光ファイバ30を固定するための光ファイバコネクタ40の構造は、光ファイバ30を固定するための光ファイバ搭載溝8と、光導波路20又は光路変換ミラー11を備えたミラー部材とを備える光ファイバコネクタであれば特に限定するものではなく。光導波路20に光路変換ミラー11を備えても、第1基板1と反対面に第2基板2を備えても、該第2基板2が、第2電気配線板2である光ファイバコネクタであってもよい。
また、光ファイバコネクタ40の光ファイバ搭載溝8の両側面及び光ファイバ搭載溝8の底面にて、光ファイバ30を固定すると好ましい。
以下に、光ファイバコネクタの最良の構造を記載する。
(光ファイバコネクタ)
上述したように本発明に用いられる光ファイバコネクタ40は、光ファイバ搭載溝8を形成する光ファイバガイド部材10と光導波路20又は、光ファイバ搭載溝8を形成する光ファイバガイド部材10と光路変換ミラー11を備えたミラー部材とを備えた光ファイバコネクタであれば、特に限定されるものではない。本発明に使用可能な光ファイバコネクタを、図1を用いて説明する。図1は、第2接着層302として第2下部クラッド層303を用いたものである。なお、図1(d)−6のみ、光ファイバ搭載溝8の一部に光ファイバ30を固定している状態を示す。
本発明に使用する光ファイバコネクタ40は、第2基板2の一部である第2下部クラッド層303上に、光ファイバ30(図1(d)−6参照)を固定するための光ファイバ搭載溝8を有するファイバガイド用コアパターン6が形成された光ファイバガイド部材10と、第2下部クラッド層303上に形成された下部クラッド層4上に光信号伝達用コアパターン5が形成され、光信号伝達用コアパターン5上に上部クラッド層7が形成された光導波路20とが並設された光ファイバコネクタであって、光ファイバガイド部材10の光ファイバ搭載溝8に固定された光ファイバ30と、光導波路20の光信号伝達用コアパターン5とが、光信号を送受可能な位置に接合するように、光ファイバガイド部材10と光導波路20が並設されてなる。さらに、光ファイバガイド部材10と光路変換ミラー11を有するミラー部材を備えた光ファイバコネクタ40であっても良く、図1(b)−8に示すように光路変換ミラー11と光ファイバ搭載溝8に搭載される光ファイバ30の端面との間に光導波路20を備えていてもよい。
前記光導波路30は、下部クラッド層303,4、コアパターン5、上部クラッド層7からなることが好ましい。
(下部クラッド層及び上部クラッド層)
以下、本発明で使用される下部クラッド層(第1下部クラッド層,第2下部クラッド層)303,4及び上部クラッド層7について説明する。下部クラッド層303,4及び上部クラッド層7としては、クラッド層形成用樹脂又はクラッド層形成用樹脂フィルムを用いることができる。
本発明で用いるクラッド層形成用樹脂としては、光信号伝達用コアパターン5より低屈折率で、光又は熱により硬化する樹脂組成物であれば特に限定されず、熱硬化性樹脂組成物や感光性樹脂組成物を好適に使用することができる。クラッド層形成用樹脂に用いる樹脂組成物は、下部クラッド層303,4及び上部クラッド層7において、該樹脂組成物に含有する成分が同一であっても異なっていてもよく、該樹脂組成物の屈折率が同一であっても異なっていてもよい。また、第2下部クラッド層303については、第2接着層302としての機能があれば、屈折率や光硬化性の性質は必要なく、後述の接着剤やコア形成用樹脂フィルムを用いても良い。
本発明においては、クラッド層の形成方法は特に限定されず、例えば、クラッド層形成用樹脂の塗布又はクラッド層形成用樹脂フィルムのラミネートにより形成すれば良い。
塗布による場合には、その方法は限定されず、クラッド層形成用樹脂組成物を常法により塗布すれば良い。
また、ラミネートに用いるクラッド層形成用樹脂フィルムは、例えば、クラッド層形成用樹脂組成物を溶媒に溶解して、キャリアフィルムに塗布し、溶媒を除去することにより容易に製造することができる。
下部クラッド層303,4及び上部クラッド層7の厚さに関しては、特に限定するものではないが、乾燥後の厚さで、5〜500μmの範囲が好ましい。5μm以上であると、光の閉じ込めに必要なクラッド厚さが確保でき、500μm以下であると、膜厚を均一に制御することが容易である。以上の観点から、下部クラッド層303,4及び上部クラッド層7の厚さは、さらに10〜100μmの範囲であることがより好ましい。また、第1下部クラッド層4は、光ファイバの中心と光信号伝達用コアパターン中心合わせのため、硬化後のフィルム厚みが、[(光ファイバの半径)−(第1下部クラッド層3上に形成された光信号伝達用コアパターン厚み)/2]の厚みのフィルムを用いることが更に好ましい。
具体例に、光ファイバの直径80μm、光ファイバのコア径50μmの光ファイバを用いたときの好ましい下部クラッド層4の厚みを示す。まず、光導波路20のコア径は、光ファイバ30から光信号伝達用コアパターン5へ光信号が伝搬してくる場合、光ファイバ30のコア径に外接する正方形が光損失なく伝搬できる。この場合、光導波路20のコアは50μm×50μm(コア高さ;50μm)となる。上記の式に当てはめると最適な下部クラッド層4の厚みは15μmとなる。また、上記と同一の光ファイバ30を用いて、光ファイバ30から光信号伝達用コアパターン5へ光信号が伝搬してくる場合、光ファイバ30のコア径に内接する正方形が光損失なく伝搬できる。この場合、光導波路20のコアは40μm×40μm(コア高さ;40μm)となる。上記の式に当てはめると最適な下部クラッド層4の厚みは20μmとなる。
また、光導波路20において、光信号伝達用コアパターン5を埋め込むための上部クラッド層7の厚みは、コアパターン5の厚さ以上にすることが好ましいが、第2基板2表面から上部クラッド層上面までの高さが光ファイバの直径以下になるように適宜調整すれば良い。
(コア層形成用樹脂及びコア層形成用樹脂フィルム)
本発明においては、下部クラッド層303,4に積層するコア層光信号伝達用コアパターン5、ファイバガイド用コアパターン6の形成方法は特に限定されず、例えば、コア層形成用樹脂の塗布又はコア層形成用樹脂フィルムのラミネートによりコア層を形成し、エッチングによりコアパターンを形成すれば良い。
本発明においては、光導波路20と光ファイバガイド部材10において、それぞれコア層を形成した後、同時にエッチングして光信号伝達用コアパターン5とファイバガイド用コアパターン6を同時に形成することにより、効率よく光ファイバコネクタ40を製造することができる。
コア層形成用樹脂、特に光信号伝達用コアパターン5に用いるコア層形成用樹脂は、クラッド層より高屈折率であるように設計され、活性光線によりコアバターンを形成し得る樹脂組成物を用いることができる。パターン化する前のコア層の形成方法は限定されず、前記コア層形成用樹脂組成物を常法により塗布する方法等が挙げられる。
コア層形成用樹脂フィルムの厚さについては特に限定されず、乾燥後のコア層の厚さが、通常は10〜100μmとなるように調整される。該フィルムの仕上がり後の光信号伝達用コアパターン5の厚さが10μm以上であると、光導波路形成後の受発光素子又は光ファイバとの結合において位置合わせトレランスが拡大できるという利点があり、100μm以下であると、光導波路形成後の受発光素子又は光ファイバとの結合において、結合効率が向上するという利点がある。以上の観点から、該フィルムの厚さは、さらに30〜90μmの範囲であることが好ましく、該厚みを得るために適宜フィルム厚みを調整すれば良い。
また、光信号伝達用コアパターン5の硬化後の厚みは、光ファイバ30から光信号伝達用コアパターン5へ光を伝達する場合は、光ファイバ30のコア径以上になれば光の損失が少なく、光信号伝達用コアパターン5から光ファイバ30へ光を伝達する場合は、光信号伝達用コアパターン5の厚さと幅からなる矩形が、光ファイバ30のコア径の内側になるように調整すると更に良い。
また、クラッド層形成用樹脂フィルム及びコア層形成用樹脂フィルムはキャリアフィルム上に形成すると良い。キャリアフィルムの種類としては、柔軟性及び強靭性のあるキャリアフィルムとして、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、ポリアミド、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルサルファイド、ポリアリレート、液晶ポリマー、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリイミドが好適に挙げられる。キャリアフィルムの厚さは、5〜200μmであることが好ましい。5μm以上であると、キャリアフィルムとしての強度が得やすいという利点があり、200μm以下であると、パターン形成時のマスクとのギャップが小さくなり、より微細なパターンが形成できるという利点がある。以上の観点から、キャリアフィルムの厚さは10〜100μmの範囲であることがより好ましく、15〜50μmであることが特に好ましい。
(基板)
第1基板1及び第2基板2の材質としては、特に制限はなく、例えば、ガラスエポキシ樹脂基板、セラミック基板、ガラス基板、シリコン基板、プラスチック基板、金属基板、樹脂層付き基板、金属層付き基板、プラスチックフィルム、樹脂層付きプラスチックフィルム、金属層付きプラスチックフィルムなどが挙げられる。
基板1として柔軟性及び強靭性のある基材、例えば、前記クラッド層形成用樹脂フィルム及びコア層形成用樹脂フィルムのキャリアフィルムを基板として用いることで、フレキシブルな光ファイバコネクタとしてもよい。また、第1基板1及び第2基板2を電気配線板とし、第1電気配線板1及び第2電気配線板2としてもよい。このとき第1電気配線板1及び第2電気配線板2は単層の電気配線板でも多層の電気配線板でもよい。
また、光路変換ミラー11にて光路変換された光信号が、第1基板1及び第2基板2を透過する場合には、光信号の波長に対して透明な基板を用いると良い。
(光ファイバ固定方法)
本発明において、光ファイバ30を光ファイバガイド部材10の光ファイバ搭載溝8に固定する方法としては、特に限定されないが、例えば、第1基板1と第1接着層301でファイバを抑えて光ファイバ搭載溝8に押し込み、光信号伝達用コアパターン5の中心と光ファイバ30の中心を位置合わせして、又は、光路変換ミラー11と光ファイバ30の中心を位置合わせして固定すれば良い。このとき、光ファイバ30は、あらかじめ第1基板1上に設置した第1接着層301上に布線しておいても良く(光ファイバの端部のみ固定しないで置くと更に良く)、光ファイバ30を光ファイバ搭載溝8に搭載すると同時に、該光ファイバ30を第1基板1上に設置した第1接着層301上に固定しても良い。
この際、X方向の位置合わせは光ファイバガイド部材10であるファイバガイド用コアパターン6により行える。さらに第2基板2を備える光ファイバコネクタ40であると、Z方向の位置合わせは第2基板2により行うことができる。
(光ファイバガイド部材・光ファイバ搭載溝)
光ファイバガイド部材10の第2基板2面から光導波路20の上部クラッド層7の上面までの距離が、光ファイバ30の直径以下だと、ガラスブロックで光ファイバを抑えて光ファイバ搭載溝8に押し込むなどの作業がしやすい。
また、光ファイバガイド部材10のファイバガイド用コアパターン6の高さ(厚さ:光ファイバ搭載溝8の深さ)が、光ファイバ30の半径以上であると光ファイバ30の位置ずれがしにくい。
本発明においては、具体的には、光ファイバの直径が200μm以下であればコア層形成用樹脂フィルムの膜厚が制御しやすいという観点から好ましく、125μm径や80μm径の光ファイバを用いることが更に好ましい。ファイバガイド用コアパターン5の溝8の横幅としては、光ファイバの直径以上の幅であればよく、光ファイバの実装性及びトレランスの観点から、光ファイバの直径より0.1〜10μm広い幅であると更に良い。ファイバガイド用コアパターン6の高さは光ファイバの半径以上の高さであれば良く、且つ光ファイバの直径以下であれば良い。光ファイバの半径より5μm以上高く、直径より3μm以上低いと光ファイバの実装性が良いため更に好ましい。光ファイバガイド部材10の基板面から光導波路20の上部クラッド層7の上面までの距離(第1下部クラッド層4と上部クラッド層7の厚さ合計)は光ファイバの直径以下であれば良く、光ファイバの直径未満であればより効果的に光ファイバを固定できる。
光ファイバガイド部材10は、ファイバガイド用コアパターン6の側面で光ファイバを固定できる部材であればよく、光ファイバ搭載溝8以外の部分に下部クラッド層4、上部クラッド層7が備わっていてもよい。
(接着層)
光信号伝達用コアパターン5、ファイバガイド用コアパターン6が、特に第2基板2に密着性が無い場合には、第2接着層302付きの第2基板2を用いてもよく、第2接着層が第2下部クラッド層303であっても良い。
また、第1基板1と光ファイバ及び光ファイバコネクタを接着するために第1接着層301を第1基板1上に設けても良い。
接着層2の種類としては特に限定されないが、両面テープ、UVまたは熱硬化性接着剤、プリプレグ、ビルドアップ材、電気配線板製造用途に使用される種々の接着剤が好適に挙げられる。光信号が第1基板1又は第2基板2を透過する場合には、光信号波長において透明であればよくその際には、第1基板1又は第2基板2と接着力のあるクラッド層形成用樹脂フィルム、コア層形成用樹脂フィルム、(PCT/JP2008/05465)に記載の接着層を用いて第1接着層301又は第2接着層302とするのが好ましい。
(電気配線板)
電気配線板は特に限定されるものではないが、電気配線103、203がFR−4(101)上に形成された電気配線板でもよく、金属配線103、203がポリイミドやポリアミドフィルム上に形成されたフレキシブル配線板であってもよい。なお、金属配線103、203は金属層102、202から形成することができる。
(スリット溝)
光ファイバ30と光導波路20を接続する光導波路端面の平滑化方法としては、特に限定するものではないが、例えば、ダイシングソーを用いて光導波路端面を切削し、スリット溝9を形成すると共に平滑化すればよい。この際のダイシングブレードの切削深さは、第2基板2表面以下にすると光ファイバ30が良好に実装できるため好ましい。
(光ファイバ)
本発明に用いられる光ファイバ30は、特に限定はないが、断面形状が略円形であり、光信号を導波し得る光ファイバであればよい。光導波路の各層の膜厚制御の観点から光ファイバ30の直径が200μm以下であればよく、125μmや80μmの径であるとさらによい。また、第1基板1と接合されるときの光ファイバ30は、少なくとも該光ファイバ30の端面(光ファイバ搭載用溝に搭載される光ファイバ部分)が、上述の径であれば良く、光ファイバコネクタ40に搭載されていない光ファイバ30に光ファイバ保護用の被覆を残しておいても良い。
(光信号)
本発明に用いられる光信号は特に制限はなく、主に光ファイバ30に対して低損失な光信号波長を用いることができる。このとき、光ファイバコネクタ40中の光導波路に対しての光損失は、光信号の伝達に支障がない範囲であれば良く、光導波路長を短くすることで、低損失化が可能であるため、使用波長と光導波路長とを適宜決めれば良い。
以下、本発明を実施例によりさらに詳細に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されない。
実施例1
[クラッド層形成用樹脂フィルムの作製]
[(A)ベースポリマー;(メタ)アクリルポリマー(A−1)の作製]
撹拌機、冷却管、ガス導入管、滴下ろうと、及び温度計を備えたフラスコに、プロピレングリコールモノメチルエーテルアセテート46質量部及び乳酸メチル23質量部を秤量し、窒素ガスを導入しながら撹拌を行った。液温を65℃に上昇させ、メチルメタクリレート47質量部、ブチルアクリレート33質量部、2−ヒドロキシエチルメタクリレート16質量部、メタクリル酸14質量部、2,2’−アゾビス(2,4−ジメチルバレロニトリル)3質量部、プロピレングリコールモノメチルエーテルアセテート46質量部、及び乳酸メチル23質量部の混合物を3時間かけて滴下後、65℃で3時間撹拌し、さらに95℃で1時間撹拌を続けて、(メタ)アクリルポリマー(A−1)溶液(固形分45質量%)を得た。
[重量平均分子量の測定]
(A−1)の重量平均分子量(標準ポリスチレン換算)をGPC(東ソー(株)製「SD−8022」、「DP−8020」、及び「RI−8020」)を用いて測定した結果、3.9×104であった。なお、カラムは日立化成工業(株)製「Gelpack GL−A150−S」及び「Gelpack GL−A160−S」を使用した。
[酸価の測定]
A−1の酸価を測定した結果、79mgKOH/gであった。なお、酸価はA−1溶液を中和するのに要した0.1mol/L水酸化カリウム水溶液量から算出した。このとき、指示薬として添加したフェノールフタレインが無色からピンク色に変色した点を中和点とした。
[クラッド層形成用樹脂ワニスの調合]
(A)ベースポリマーとして、前記A−1溶液(固形分45質量%)84質量部(固形分38質量部)、(B)光硬化成分として、ポリエステル骨格を有するウレタン(メタ)アクリレート(新中村化学工業(株)製「U−200AX」)33質量部、及びポリプロピレングリコール骨格を有するウレタン(メタ)アクリレート(新中村化学工業(株)製「UA−4200」)15質量部、(C)熱硬化成分として、ヘキサメチレンジイソシアネートのイソシアヌレート型三量体をメチルエチルケトンオキシムで保護した多官能ブロックイソシアネート溶液(固形分75質量%)(住化バイエルウレタン(株)製「スミジュールBL3175」)20質量部(固形分15質量部)、(D)光重合開始剤として、1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(チバ・ジャパン(株)製「イルガキュア2959」)1質量部、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキシド(チバ・ジャパン(株)製「イルガキュア819」)1質量部、及び希釈用有機溶剤としてプロピレングリコールモノメチルエーテルアセテート23質量部を攪拌しながら混合した。孔径2μmのポリフロンフィルタ(アドバンテック東洋(株)製「PF020」)を用いて加圧濾過後、減圧脱泡し、クラッド層形成用樹脂ワニスを得た。
上記で得られたクラッド層形成用樹脂組成物を、PETフィルム(東洋紡績(株)製「コスモシャインA4100」、厚み50μm)の非処理面上に、前記塗工機を用いて塗布し、100℃で20分乾燥後、保護フィルムとして表面離型処理PETフィルム(帝人デュポンフィルム(株)製「ピューレックスA31」、厚み25μm)を貼付け、クラッド層形成用樹脂フィルムを得た。このとき樹脂層の厚みは、塗工機のギャップを調節することで任意に調整可能であり、本実施例では使用した第1下部クラッド層及び第2下部クラッド層(接着層)の厚みに付いては、実施例中に記載する。また、第1下部クラッド層及び第2下部クラッド層の硬化後の膜厚と塗工後の膜厚は同一であった。本実施例で用いた上部クラッド層形成用樹脂フィルムの膜厚についても実施例中に記載する。実施例中に記載する上部クラッド層形成用樹脂フィルムの膜厚は塗工後の膜厚とする。
[コア層形成用樹脂フィルムの作製]
(A)ベースポリマーとして、フェノキシ樹脂(商品名:フェノトートYP−70、東都化成株式会社製)26質量部、(B)光重合性化合物として、9,9−ビス[4−(2−アクリロイルオキシエトキシ)フェニル]フルオレン(商品名:A−BPEF、新中村化学工業株式会社製)36質量部、及びビスフェノールA型エポキシアクリレート(商品名:EA−1020、新中村化学工業株式会社製)36質量部、(C)光重合開始剤として、ビス(2,4,6−トリメチルベンゾイル)フェニルフォスフィンオキサイド(商品名:イルガキュア819、チバ・スペシャリティ・ケミカルズ社製)1質量部、及び1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(商品名:イルガキュア2959、チバ・スペシャリティ・ケミカルズ社製)1質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を用いたこと以外は上記製造例と同様の方法及び条件でコア層形成用樹脂ワニスBを調合した。その後、上記製造例と同様の方法及び条件で加圧濾過さらに減圧脱泡した。
上記で得られたコア層形成用樹脂ワニスBを、PETフィルム(商品名:コスモシャインA1517、東洋紡績株式会社製、厚さ:16μm)の非処理面上に、上記製造例と同様な方法で塗布乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム株式会社、厚さ:25μm)を離型面が樹脂側になるように貼り付け、コア層形成用樹脂フィルムを得た。このとき樹脂層の厚みは、塗工機のギャップを調節することで任意に調整可能であり、本実施例では使用したコア層形成用樹脂フィルム厚みに付いては、実施例中に記載する。実施例中に記載するコア層形成用樹脂フィルムの膜厚は塗工後の膜厚とする。
[第1接着層の作製]
PCT/JP2008/05465に記載の接着層を作製した。すなわち、(a)エポキシ樹脂としてYDCN−703(東都化成株式会社製商品名、クレゾールノボラック型エポキシ樹脂、エポキシ当量210)55質量部、(b)硬化剤としてミレックスXLC−LL(三井化学株式会社製商品名、フェノール樹脂、水酸基当量175、吸水率1.8質量%、350℃における加熱重量減少率4%)45質量部、シランカップリング剤としてNUC A−189(日本ユニカー株式会社製商品名、γ−メルカプトプロピルトリメトキシシラン)1.7質量部とNUC A−1160(日本ユニカー株式会社製商品名、γ−ウレイドプロピルトリエトキシシラン)3.2質量部、(d)フィラーとしてアエロジルR972(シリカ表面にジメチルジクロロシランを被覆し、400℃の反応器中で加水分解させた、メチル基などの有機基を表面に有するフィラー、日本アエロジル株式会社製商品名、シリカ、平均粒径0.016μm)32質量部からなる組成物に、シクロヘキサノンを加えて攪拌混合し、更にビーズミルを用いて90分混練した。これに(c)高分子化合物としてグリシジルアクリレート又はグリシジルメタクリレート3質量%を含むアクリルゴムHTR−860P−3(ナガセケムテックス株式会社製商品名、重量平均分子量80万)を280質量部、及び(e)硬化促進剤としてキュアゾール2PZ−CN(四国化成工業株式会社製商品名、1−シアノエチル−2−フェニルイミダゾール)を0.5質量部加え、攪拌混合、真空脱気した。この接着剤ワニスを厚さ75μmの離型処理したポリエチレンテレフタレート(PET)フィルム(ピューレックスA31)上に塗布し、140℃で5分間加熱乾燥して、膜厚が12μmの塗膜を形成した。次いでカバーフィルムとして25μmの離型処理したポリエチレンテレフタレート(PET)フィルム(ピューレックスA31)を離型面が樹脂側になるように貼り付け、第1接着層301を得た。
[第2基板(第2電気配線板)の作製]
(サブトラクティブ法による電気配線形成)
金属層202として片面銅箔付きのポリイミドフィルム201((ポリイミド;ユーピレックスVT(宇部日東化成製)、厚み;25μm)、(銅箔;NA−DFF(三井金属鉱業社製))、厚み;9μm)(図1(a)−1、図1(c)−1参照)の銅箔面に感光性ドライフィルムレジスト(商品名:フォテック、日立化成工業株式会製、厚さ:25μm)をロールラミネータ(日立化成テクノプラント株式会社製、HLM−1500)を用い圧力0.4MPa、温度110℃、ラミネート速度0.4m/minの条件で貼り、次いで紫外線露光機(株式会社オーク製作所製、EXM−1172)にて感光性ドライフィルムレジスト側から幅50μmのネガ型フォトマスクを介し、紫外線(波長365nm)を120mJ/cm2照射し、未露光部分の感光性ドライフィルムレジストを35℃の0.1〜5重量%炭酸ナトリウムの希薄溶液で除去した。その後、塩化第二鉄溶液を用いて、感光性ドライフィルムレジストが除去されむき出しになった部分の銅箔をエッチングにより除去し、35℃の1〜10重量%水酸化ナトリウム水溶液を用いて、露光部分の感光性ドライフィルムレジストを除去し、L(ライン幅)/S(間隙幅)=60/190μm(光信号伝達用コアパターン5間の間隙中心の直下、及び光ファイバ搭載溝8部分のファイバガイド用コアパターン6の直下になるように間隙幅を変換している)の電気配線203を形成し、フレキシブル配線板を得た。
(Ni/Auめっきの形成)
その後、得られたフレキシブル配線板を、脱脂、ソフトエッチング、酸洗浄し、無電解Niめっき用増感剤(商品名:SA−100、日立化成工業株式会社製)に25℃で5分間浸漬後水洗し、83℃の無電解Niめっき液(奥野製薬社製、ICPニコロンGM−SD溶液、pH4.6)に8分間浸漬して3μmのNi被膜を形成し、その後、純水にて洗浄を実施した。
次に、置換金めっき液(100mL;HGS−500及び1.5g;シアン化金カリウム/Lで建浴)(商品名:HGS−500、日立化成工業株式会社製、)に85℃で8分間浸漬し、Ni被膜上に0.06μmの置換金被膜を形成した。これにより、カバーレイフィルムのない電気配線203部分が、Ni及びAuのめっきに被覆された第2電気配線板を得た(図1(a)−2、図1(c)−2参照)。
第2接着層302として上記で得られた10μm厚のクラッド層形成用樹脂フィルムを大きさ100×100mmに裁断し、保護フィルムである離型PETフィルム(ピューレックスA31)を剥離し、上記で形成したフレキシブル配線板のポリイミド面に、平板型ラミネータとして真空加圧式ラミネータ(株式会社名機製作所製、MVLP−500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度100℃、加圧時間30秒の条件にて加熱圧着して、第2下部クラッド層303付きの第2電気配線板2を形成した。紫外線露光機(株式会社オーク製作所製、EXM−1172)にてキャリアフィルム側から紫外線(波長365nm)を4J/cm2照射し、次いでキャリアフィルムを剥離し、170℃で1時間加熱処理することにより、厚さ10μmの第2下部クラッド層303付きの第2電気配線板2を形成した(図1(a)−3、図1(c)−3参照)。
[光ファイバコネクタの作製]
上記で得られた15μm厚の下部クラッド層形成用樹脂フィルムを大きさ100×100μmに裁断し、保護フィルムを剥離して、第2下部クラッド層303面側に上記と同様の条件で、真空ラミネータによって積層した。660μm×3.0mmの非露光部を有したネガ型フォトマスクを介し、紫外線露光機(株式会社オーク製作所製、EXM−1172)にてキャリアフィルム側から紫外線(波長365nm)を250mJ/cm2照射した。その後、キャリアフィルムを剥離し、現像液(1%炭酸カリウム水溶液)を用いて、第1下部クラッド層4をエッチングした。続いて、水洗浄し、170℃で1時間加熱乾燥及び硬化し、光ファイバ搭載溝形成部分に660μm×3.0mmの開口部を形成した第1下部クラッド層4付きの第2電気配線板2を作製した(図1(a)−4、図1(c)−4、図1(d)−4参照)。これにより、光導波路20形成部分には、第1下部クラッド層4が形成され、光ファイバ搭載溝8形成部分には、第1下部クラッド層4が無い状態となっている。
次に、上記の第1下部クラッド層4面にロールラミネータ(日立化成テクノプラント株式会社製、HLM−1500)を用い圧力0.4MPa、温度50℃、ラミネート速度0.2m/minの条件で、保護フィルムを剥離した50μm厚の上記コア層形成用樹脂フィルムをラミネートし、次いで上記の真空加圧式ラミネータ(株式会社名機製作所製、MVLP−500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度70℃、加圧時間30秒の条件にて加熱圧着した。その後、光信号伝達用コアパターン幅50μm(光ファイバ接続部分のパターンピッチ;125μm、光路変換ミラー形成部(光ファイバ接続部分より5mm地点)のパターンピッチ;250μm、4本)、ファイバガイド用コアパターン幅40μm(光ファイバ搭載溝ピッチ;125μm、4本、両端のファイバガイド用コアパターンのみ150μm)のネガ型フォトマスクを介し、光信号伝達用コアパターン5が第1下部クラッド層4上に、ファイバガイド用コアパターン6が第2電気配線板2(第2下部クラッド層303)上に形成されるように位置合わせをし、上記紫外線露光機にて紫外線(波長365nm)を700mJ/cm2照射し、次いで80℃で5分間露光後加熱を行った。その後、キャリアフィルムであるPETフィルムを剥離し、現像液(プロピレングリコールモノメチルエーテルアセテート/N,N−ジメチルアセトアミド=8/2、質量比)を用いて、コアパターンをエッチングした。続いて、洗浄液(イソプロパノール)を用いて洗浄し、100℃で10分間加熱乾燥し、光信号伝達用コアパターン5及びファイバガイド用コアパターン6を形成し、同時に85μm幅の光ファイバ搭載溝8が形成された。なお、ファイバガイド用コアパターン6における各パターンの大きさは、光ファイバを光ファイバ搭載溝8に固定した際に、光ファイバが光信号伝達用コアパターン5に光信号を送受可能な位置に接合するように設計されている(図1(a)−5、図1(b)−5、図1(c)−5、図1(d)−5、図1(e)参照)。
次いで、保護フィルムを剥離した52μm厚の上部クラッド層樹脂フィルムをコアパターン形成面側から上記の真空加圧式ラミネータ(株式会社名機製作所製、MVLP−500)を用い、500Pa以下に真空引きした後、圧力0.4MPa、温度110℃、加圧時間30秒の条件にて加熱圧着して、ラミネートした。さらに、第1下部クラッド層4形成の際に使用したネガ型フォトマスクを使用して紫外線(波長365nm)を150mJ/cm2照射後、キャリアフィルムを剥離し、現像液(1%炭酸カリウム水溶液)を用いて、光ファイバ搭載溝8部分の上部クラッド層形成用樹脂フィルムをエッチングした。続いて、水洗浄し、170℃で1時間加熱乾燥及び硬化し、125μmピッチ、ファイバ径80μm、4チャンネル用の光ファイバコネクタ40を作製した。
得られた光ファイバコネクタ40において、ファイバガイド用コアパターン6の光ファイバ搭載溝8の横幅は85μm、ファイバガイド用コアパターン6の高さは64μm、基板面から上部クラッド層上面までの高さは75μm、光信号伝達用コアパターン5の厚みは51μmであった(図1(a)−6、図1(b)−6、図1(c)−6、図1(d)−6、図2(f)参照)。
(スリット溝の形成)
得られた光導波路20の光ファイバ接続端面を平滑化するためにダイシングソー(DAC552、株式会社ディスコ社製)を用いて40μm幅のスリット溝9を形成した(図1(a)−7、図1(b)−7参照)。併せて、ファイバガイド用コアパターン6に対して平行に基板を切断し(光導波路端面から3mm地点)、基板端面に光ファイバ搭載溝8が現れるように外形加工(基板サイズ;光ファイバ搭載溝平行方向に10mm、光ファイバ搭載溝方向に10mm)を行った。
(光路変換ミラーの形成)
得られた光導波路20の上部クラッド層7側からダイシングソー(DAC552、株式会社ディスコ社製)を用いて45°の光路変換ミラー11を形成した(図1(a)−8、図1(b)−8参照)。次いでミラー形成部分を開口させたメタルマスクをミラー付きの光ファイバコネクタに設置し、蒸着装置(RE−0025、ファースト技研製)を用いて金属層12としてAuを0.5μm蒸着させた(図1(a)−8、図1(b)−8参照)。
[第1基板(第1電気配線板)の作製]
(サブトラクティブ法による電気配線形成)
両面に12μm厚の金属層102を備えた0.6mm厚の銅張り積層板(日立化成工業株式会社製、商品名;MCL−E−679FG、基板サイズ100mm角)の銅箔面(両面)に感光性ドライフィルムレジスト(商品名:フォテック、日立化成工業株式会製、厚さ:25μm)をロールラミネータ(日立化成テクノプラント株式会社製、HLM−1500)を用い圧力0.4MPa、温度110℃、ラミネート速度0.4m/minの条件で貼り、次いで紫外線露光機(株式会社オーク製作所製、EXM−1172)にて感光性ドライフィルムレジスト側から幅50μmのネガ型フォトマスクを介し、紫外線(波長365nm)を120mJ/cm2照射し、未露光部分の感光性ドライフィルムレジストを35℃の0.1〜5重量%炭酸ナトリウムの希薄溶液で除去した。その後、塩化第二鉄溶液を用いて、感光性ドライフィルムレジストが除去されむき出しになった部分の銅箔をエッチングにより除去し、35℃の1〜10重量%水酸化ナトリウム水溶液を用いて、露光部分の感光性ドライフィルムレジストを除去し両面に電気配線103を備えた第1電気配線板1を形成した(図3(a)−1参照)。
(第1接着層の形成)
以上のようにして得られた第1電気配線板1の片面にカバーフィルムを剥離した上記のPCT/JP2008/05465記載の第1接着層301をロールラミネータ(日立化成テクノプラント株式会社製、HLM−1500)を用い圧力0.4MPa、温度110℃、ラミネート速度0.4m/minの条件で貼り、その後、キャリアフィルム面から上記の紫外線露光機を用いて、紫外線(波長365nm)を120mJ/cm2照射し、キャリアフィルムを剥離した(図3(a)−2参照)。
(光ファイバ配線板の形成)
上記で得られた光ファイバコネクタ40の光ファイバ搭載溝8に、4本の光ファイバ30(コア径;50μm、クラッド径;80μm、光ファイバ長;7cm)を挿入しつつ、上記で得られた第1電気配線板1に形成した第1接着層301上に静置し、上記の真空ラミネータを用いて、500Pa以下に真空引きした後、圧力0.4MPa、温度110℃、加圧時間30秒の条件にて加熱圧着して接合した(光ファイバコネクタ40は光ファイバ30の両端に設置)、その後、180℃1h加熱して第1接着層301を硬化したところ、光導波路20の光信号伝達用コアパターン5の光伝達面に接合し、光ファイバ30から光信号を送受することが可能であり、かつ、光ファイバ30が位置ずれすることもなかった。
これにより、第1電気配線板1上に光ファイバ30とその両端に光ファイバコネクタ40を備えた光ファイバ電気配線複合基板50を得た。
実施例2
実施例1において4芯で125μmピッチの光ファイバ30(コア径;50μm、クラッド径;80μm、光ファイバ長;7cm)を用い、両端1.5cm部分の光ファイバ30の被覆を除去し、直径をクラッド径にした光ファイバ30を用いた以外は同様の方法で光ファイバ電気配線複合基板50を作製したところ、光ファイバ30が、光導波路20の光信号伝達用コアパターン5の光伝達面に接合し、光ファイバ30から光信号を送受することが可能であり、かつ、光ファイバ30が位置ずれすることもなかった。
実施例3
実施例1において光ファイバコネクタ40の光導波路20に光路変換ミラー11及び金属層12を形成しなかった以外は同様の方法で、光ファイバ電気配線複合基板50を作製した。得られた光ファイバ電気配線複合基板50は、光ファイバ30が、光導波路20の光信号伝達用コアパターン5の光伝達面に接合し、光ファイバ30から光信号を送受することが可能であり、かつ、光ファイバ30が位置ずれすることもなかった。得られた光ファイバ電気配線複合基板50の光導波路端面の光信号伝達用コアパターン5のピッチを測定したところ249.9〜250.1μmであった。
比較例1
実施例3において光ファイバコネクタ40を用いずに、光ファイバ30を250μmピッチで第1電気配線板上の第1接着層301上に静置し、上記と同様の条件で、第1電気配線板1と4本の光ファイバ30を接合した。得られた光ファイバのピッチを測定したところ、231.1μm〜283.5μmであった。
以上詳細に説明したように、本発明の光ファイバ配線板及び光ファイバ電気配線複合基板は、光路長の大部分に光ファイバを使用するため、使用する光信号の波長制約が少なく、かつ光ファイバと、光導波路コアとの位置合わせが容易で、光ファイバの位置ずれ・ピッチずれがしにくく、光学素子の実装が容易であり、かつ光路変換ミラーを光ファイバコネクタ内に備えることで、基板の大きさの制限を受けずに光路変換ミラーを備えられる。
このため、ボード内光電変換基板等の幅広い分野に適用可能である。
1.第1基板(第1電気配線板)
101.FR−4
102.金属層
103.第1電気配線
201.ポリイミドフィルム
2.第2基板(第2電気配線板)
202.金属層
203.第2電気配線
301.第1接着層
302.第2接着層
303.下部クラッド層(第2下部クラッド層)
4.下部クラッド層(第1下部クラッド層)
5.光信号伝達用コアパターン
6.ファイバガイド用コアパターン
7.上部クラッド層
8.光ファイバ搭載溝
9.スリット溝
10.光ファイバガイド部材
11.光路変換ミラー
12.蒸着金属層
20.光導波路
30.光ファイバ
40.光ファイバコネクタ
50.光ファイバ配線板(光ファイバ電気配線複合基板)

Claims (13)

  1. 光ファイバを固定するための光ファイバ搭載溝を有する光ファイバガイド部材と、クラッド層及びコアパターンを有する光導波路とが、該光ファイバ搭載溝に固定された光ファイバと光信号を送受可能な位置に並設されてなる光ファイバコネクタと、
    前記光ファイバ搭載溝に固定された光ファイバとが、
    第1基板上に具備されてなる光ファイバ配線板。
  2. 光ファイバを固定するための光ファイバ搭載溝を有する光ファイバガイド部材と、光路変換ミラーを備えたミラー部材とが、該光ファイバ搭載溝に固定された光ファイバと光信号を送受可能な位置に並設されてなる光ファイバコネクタと、
    前記光ファイバ搭載溝に固定された光ファイバとが、
    第1基板上に具備されてなる光ファイバ配線板。
  3. 前記光路変換用ミラーと前記光ファイバ搭載溝に固定された光ファイバの端面との間に光導波路を有することを特徴とする請求項2に記載の光ファイバ配線板。
  4. 前記光路変換ミラーが、前記光導波路に形成されていることを特徴とする請求項3に記載の光ファイバ配線板。
  5. 前記光導波路が、下部クラッド層、コアパターン、上部クラッド層からなることを特徴とする請求項1〜4のいずれかに記載の光ファイバ配線板。
  6. 前記光ファイバコネクタの光ファイバ搭載溝の深さが、光ファイバの半径以上かつ直径以下であることを特徴とする請求項1〜5のいずれかに記載の光ファイバ配線板。
  7. 前記光ファイバコネクタの光ファイバ搭載溝の両側面及び光ファイバ搭載溝の底面にて、前記光ファイバを固定することを特徴とする請求項1〜6のいずれかに記載の光ファイバ配線板。
  8. 前記第1基板が第1接着層を有する基板であることを特徴とする請求項1〜7のいずれかに記載の光ファイバ配線板。
  9. 前記第1接着層上に前記光ファイバコネクタ及び光ファイバが接着されてなる請求項8に記載の光ファイバ配線板。
  10. 前記第1基板と反対の前記光ファイバコネクタ上に、第2基板を具備する請求項1〜9のいずれかに記載の光ファイバ配線板。
  11. 前記第2基板が第2接着層を有する基板であることを特徴とする請求項10に記載の光ファイバ配線板。
  12. 前記第1基板が第1電気配線板であることを特徴とする請求項1〜11のいずれかに記載の光ファイバ電気配線複合基板。
  13. 前記第2基板が第2電気配線板であることを特徴とする請求項10〜12のいずれかに記載の光ファイバ電気配線複合基板。
JP2011009882A 2011-01-20 2011-01-20 光ファイバ配線板及び光ファイバ電気配線複合基板 Withdrawn JP2012150345A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011009882A JP2012150345A (ja) 2011-01-20 2011-01-20 光ファイバ配線板及び光ファイバ電気配線複合基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011009882A JP2012150345A (ja) 2011-01-20 2011-01-20 光ファイバ配線板及び光ファイバ電気配線複合基板

Publications (1)

Publication Number Publication Date
JP2012150345A true JP2012150345A (ja) 2012-08-09

Family

ID=46792634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011009882A Withdrawn JP2012150345A (ja) 2011-01-20 2011-01-20 光ファイバ配線板及び光ファイバ電気配線複合基板

Country Status (1)

Country Link
JP (1) JP2012150345A (ja)

Similar Documents

Publication Publication Date Title
WO2014020730A1 (ja) 光ファイバコネクタ、その製造方法、光ファイバコネクタと光ファイバの接続方法、光ファイバコネクタと光ファイバとの組立体
JP5691493B2 (ja) 光ファイバコネクタ及びその製造方法
US20170010413A1 (en) Optical waveguide and manufacturing method thereof
JP5736743B2 (ja) 光ファイバコネクタ及びその製造方法
JP5966470B2 (ja) 光導波路及びその製造方法
JP2012168207A (ja) 光ファイバコネクタ、光ファイバ配線板及びそれらの製造方法
JP5691561B2 (ja) 光ファイバコネクタ及びその製造方法
JP2012181266A (ja) 光ファイバコネクタ及びその製造方法
JP5834926B2 (ja) 光ファイバコネクタの製造方法
JP5707969B2 (ja) ミラー付き光導波路及びその製造方法、ミラー付きフレキシブル導波路及びその製造方法、ミラー付き光ファイバコネクタ及びその製造方法
JP5716416B2 (ja) 光ファイバコネクタ及びその製造方法
JP2014032255A (ja) 光ファイバコネクタ、その製造方法、光ファイバコネクタと光ファイバの接続方法、光ファイバコネクタと光ファイバとの組立体
JP2012150345A (ja) 光ファイバ配線板及び光ファイバ電気配線複合基板
JP2012150241A (ja) 光導波路基板及びその製造方法
JP5776333B2 (ja) 光ファイバコネクタ及びその製造方法
JP2012128271A (ja) 光ファイバコネクタ
JP5678699B2 (ja) ミラー付き光ファイバコネクタ及びその製造方法
JP2012133236A (ja) 光ファイバコネクタ及びその製造方法
JP2012159677A (ja) 光ファイバ配線板及び光ファイバ電気配線複合基板
JP6069836B2 (ja) 光導波路及びその製造方法
JP2015179283A (ja) 光導波路、光電気複合基板、光導波路の製造方法、及び光電気複合基板の製造方法
TWI574071B (zh) 光纖連接器及其製造方法、光纖連接器和光纖的連接方法以及光纖連接器和光纖的組裝體
JP2015004855A (ja) ミラー付き光導波路及びその製造方法
JP6048032B2 (ja) 光導波路及びその製造方法
JP2012168267A (ja) 光ファイバコネクタ及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140730

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20141110