JP2012149301A - Molten salt electrolytic cell - Google Patents

Molten salt electrolytic cell Download PDF

Info

Publication number
JP2012149301A
JP2012149301A JP2011008586A JP2011008586A JP2012149301A JP 2012149301 A JP2012149301 A JP 2012149301A JP 2011008586 A JP2011008586 A JP 2011008586A JP 2011008586 A JP2011008586 A JP 2011008586A JP 2012149301 A JP2012149301 A JP 2012149301A
Authority
JP
Japan
Prior art keywords
thickness
bipolar
molten salt
cathode
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011008586A
Other languages
Japanese (ja)
Other versions
JP5511083B2 (en
Inventor
Akira Fukui
明 福井
Yoshio Nakamura
宣雄 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2011008586A priority Critical patent/JP5511083B2/en
Publication of JP2012149301A publication Critical patent/JP2012149301A/en
Application granted granted Critical
Publication of JP5511083B2 publication Critical patent/JP5511083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably improve the current efficiency by reducing current leakage caused by the flow of a molten salt climbing over electrodes, which causes a problem in a multipolar type electrolytic cell, without being affected by the variation in current amount.SOLUTION: A multipolar type molten salt electrolytic cell has two or more multipoles 8 between a positive electrode 6 and a negative electrode 7, and a molten salt flows from the positive electrode side to the negative electrode side while climbing over the multipoles 8 during electrolytic operation. In the multipolar type molten salt electrolytic cell, the thickness of the multipole 8 provided on the outermost side and adjacent to the negative electrode 7 (negative electrode side multipole thickness Tc) is made larger than the thickness of the multipole 8 provided on the innermost side and adjacent to the positive electrode 6 (positive electrode side multipole thickness Ta). Preferably, when the negative electrode side multipole thickness Tc/positive electrode side multipole thickness Ta is defined as multipole thickness coefficient K, K satisfies 1.05≤K≤4.

Description

本発明は、金属Mgの製造等に用いられる溶融塩電解槽に関し、より詳しくは陽極と陰極の間に複数の複極を配置したマルチポーラ型の溶融塩電解槽に関する。   The present invention relates to a molten salt electrolytic cell used for production of metal Mg, and more particularly to a multipolar molten salt electrolytic cell in which a plurality of bipolar electrodes are arranged between an anode and a cathode.

金属Mgを工業的に製造する場合、MgCl2 を含む溶融塩を、Mgの融点以上の温度で電気分解する溶融塩電解方法が多用されている。また、ここで使用される電解槽としては、高効率なマルチポーラ型電解槽が注目されている。マルチポーラ型電解槽を用いた溶融塩電解方法により金属Mgを製造する方法を、図1及び図2により説明する。図1はマルチポーラ型電解槽の縦断側面図、図2は図1のA−A線矢示図で、電解室の正面図である。また、図3は操業中における電解室の主要部拡大正面である。 When industrially producing metal Mg, a molten salt electrolysis method is frequently used in which a molten salt containing MgCl 2 is electrolyzed at a temperature equal to or higher than the melting point of Mg. Further, as an electrolytic cell used here, a highly efficient multipolar electrolytic cell is attracting attention. A method for producing metal Mg by a molten salt electrolysis method using a multipolar electrolytic cell will be described with reference to FIGS. FIG. 1 is a longitudinal side view of a multipolar electrolytic cell, and FIG. 2 is a view taken along the line AA of FIG. FIG. 3 is an enlarged front view of the main part of the electrolysis chamber during operation.

図1及び図2に示すように、電解槽1は、MgCl2 を含む溶融塩2を内部に収容する。電解槽1の内部は、隔壁3によって電解室4とMg回収室5とに分離されている。電解室4には、炭素からなる平板状の陽極6と陰極7とが、ロストルレンガ9上で槽幅方向に交互に配置されており、隣接する陽極6と陰極7の間には、同じく炭素からなる平板状の複極8が電流効率向上のために配置されている。陽極6の上部は、通電のために電解室4のカバー10を貫通して上方へ突出している。 As shown in FIGS. 1 and 2, the electrolytic cell 1 containing molten salt 2 containing MgCl 2 therein. The inside of the electrolytic cell 1 is separated into an electrolytic chamber 4 and an Mg recovery chamber 5 by a partition wall 3. In the electrolysis chamber 4, flat plate-like anodes 6 and cathodes 7 made of carbon are alternately arranged on the roast brick 9 in the tank width direction, and between the adjacent anodes 6 and cathodes 7, carbon A flat plate-shaped bipolar electrode 8 is arranged for improving current efficiency. The upper part of the anode 6 projects upward through the cover 10 of the electrolysis chamber 4 for energization.

ここで、複極8の上面レベルは、陰極7の上面レベルより高く、陽極6に近づくにつれて段階的に高くなる。これは後で詳しく述べるが、溶融塩2の浴対流をスムーズにするためである。   Here, the upper surface level of the bipolar electrode 8 is higher than the upper surface level of the cathode 7, and gradually increases as the anode 6 is approached. As will be described in detail later, this is for smooth bath convection of the molten salt 2.

一方、Mg回収室5は、隔壁3に設けた上下2段の開口部11,11を通して電解室4に連通している。Mg回収室5には、底面開放容器からなる浴面レベル調節装置12が溶融塩2に浸漬して設けられている。また、溶融塩2の温度調節器13として熱交換器が浴面レベル調節装置12を取り囲むように設けられている。更に、温度計14及び浴面レベル測定器15等も設けられている。   On the other hand, the Mg recovery chamber 5 communicates with the electrolysis chamber 4 through two upper and lower openings 11, 11 provided in the partition 3. The Mg recovery chamber 5 is provided with a bath surface level adjusting device 12 composed of a bottom open container soaked in the molten salt 2. Further, a heat exchanger is provided as a temperature adjuster 13 for the molten salt 2 so as to surround the bath surface level adjuster 12. Further, a thermometer 14 and a bath surface level measuring device 15 are provided.

電解操業では、電解室4内の陽極6と陰極7の間に直流電流が流される。これにより、溶融塩2中のMgCl2 が電気分解し、金属Mgが生成される。また、この電気分解に伴って極間で塩素ガスが発生する。極間で発生した塩素ガスは上昇し、このガスリフトに伴って極間で溶融塩2が上昇する。極間を上昇した溶融塩2を陰極7の側へスムーズに排出するために、複極8の上面レベルは、陽極6から陰極7へかけて段階的に低くされており、陰極7の上面レベルは更に低く設定されている。その結果、電解操業中は、図3に示すように、極間を上昇した溶融塩2が陽極6の側から陰極7の側へ複極8の上を乗り越えて流動する。より詳しくは、溶融塩2は複極8を乗り越える度に、次の極間を上昇してきた溶融塩2と合流することにより、次第に乗り越え量を増加させながら、陽極6の側から陰極7の側へ複極8上を乗り越えて流動する。 In the electrolysis operation, a direct current flows between the anode 6 and the cathode 7 in the electrolysis chamber 4. Thus, MgCl 2 in the molten salt 2 is electrolyzed, metal Mg are generated. Further, chlorine gas is generated between the electrodes along with this electrolysis. The chlorine gas generated between the electrodes rises, and the molten salt 2 rises between the electrodes along with this gas lift. In order to smoothly discharge the molten salt 2 that has risen between the electrodes toward the cathode 7, the upper surface level of the bipolar electrode 8 is lowered stepwise from the anode 6 to the cathode 7. Is set even lower. As a result, during the electrolytic operation, as shown in FIG. 3, the molten salt 2 rising between the electrodes flows over the bipolar electrode 8 from the anode 6 side to the cathode 7 side. More specifically, every time the molten salt 2 gets over the bipolar electrode 8, it merges with the molten salt 2 that has risen between the next electrodes, thereby gradually increasing the amount of overcoming, while moving from the anode 6 side to the cathode 7 side. Flows over the double pole 8 and flows.

電解室4で生成された金属Mgは、溶融塩2の循環対流によってMg回収室5に運ばれ、Mg回収室5内の溶融塩2上に浮上してMg層16を形成する。   Metal Mg produced in the electrolysis chamber 4 is carried to the Mg recovery chamber 5 by circulating convection of the molten salt 2 and floats on the molten salt 2 in the Mg recovery chamber 5 to form the Mg layer 16.

電解室4における溶融塩2の非通電時の浴面レベルは、図2に示すように、陰極7の上面レベルに概ね一致する。   The bath surface level when the molten salt 2 is not energized in the electrolysis chamber 4 substantially matches the upper surface level of the cathode 7 as shown in FIG.

このようなマルチポーラ型電解槽を用いた溶融塩電解方法における問題点の一つは、電解室4において溶融塩2が複極8及び陰極7の上を乗り越えて流れることによる溶融塩経由のカレントリークである。この問題を図3により詳しく説明する。図3中の破線は溶融塩2の流れ、実線は電気の流れを表している。   One of the problems in the molten salt electrolysis method using such a multipolar electrolytic cell is that the molten salt 2 flows over the bipolar electrode 8 and the cathode 7 in the electrolytic chamber 4 and flows through the molten salt. It is a leak. This problem will be described in detail with reference to FIG. The broken line in FIG. 3 represents the flow of the molten salt 2, and the solid line represents the flow of electricity.

マルチポーラ型電解槽における電流は、本来は陽極6から複極8及び極間の溶融塩2を経て陰極7へ流れて溶融塩2の電解に寄与するが、複極8及び陰極7の上に溶融塩2の乗り越え流が発生すると、この溶融塩2の乗り越え流を介して陽極6から陰極7へ電流が直接的に流れる。この電流は、複極8及び極間の溶融塩2を経由しないために溶融塩2の電解に寄与しないリーク電流となり、電流効率を低下させる原因になる。このため、溶融塩2の乗り越え流を通過するリーク電流を低減する工夫が色々と講じられており、その一つが特許文献1に記載された溶融塩2の浴面レベル操作である。   The current in the multipolar electrolytic cell flows from the anode 6 to the cathode 7 through the bipolar electrode 8 and the molten salt 2 between the electrodes, and contributes to the electrolysis of the molten salt 2. When a flow over the molten salt 2 is generated, a current flows directly from the anode 6 to the cathode 7 through the flow over the molten salt 2. Since this current does not pass through the double electrode 8 and the molten salt 2 between the electrodes, it becomes a leakage current that does not contribute to the electrolysis of the molten salt 2 and causes a reduction in current efficiency. For this reason, various devices have been devised to reduce the leakage current passing over the overflow flow of the molten salt 2, one of which is the bath surface level operation of the molten salt 2 described in Patent Document 1.

この対策は、電解のための通電量に応じて乗り越え流の高さH1,H2が変化することに着目したもので、乗り越え流の高さH1,H2が大きくなる大電流通電時に溶融塩2の浴面レベルを下げ、乗り越え流の高さH1,H2が小さくなる小電流通電時に溶融塩2の浴面レベルを上げることにより、通電量にかかわらず乗り越え流の高さH1,H2を適正に保ち、溶融塩2の乗り越え流を通過するリーク電流を低減する。ちなみに、溶融塩2の浴面レベルを画一的に下げた場合は、通電量が多いときは乗り越え流の高さH1,H2が適正に管理されるが、通電量が少ないときは乗り越え流が発生せず、発生しても高さH1,H2が小さいために極間にMgが滞留する。そうなるとMgによるリークが発生し、電流効率の顕著な低下が生じる。   This measure focuses on the fact that the heights H1 and H2 of the overcoming flow change according to the energization amount for electrolysis. By reducing the bath level and increasing the bath surface level of the molten salt 2 when energizing a small current, the heights H1 and H2 of the overpass flow are reduced. The leakage current passing through the flow over the molten salt 2 is reduced. By the way, when the bath surface level of the molten salt 2 is lowered uniformly, the height H1 and H2 of the overcoming flow are properly controlled when the energization amount is large, but the overcoming flow is generated when the energization amount is small. Even if it occurs, Mg stays between the electrodes because the heights H1 and H2 are small. If this happens, leakage due to Mg occurs and the current efficiency is significantly reduced.

この通電量に応じた浴面レベル操作は、特許文献1にも記載されているとおり、通常時間帯と深夜とで通電量を大きく変化させている場合には有効である。通常時間帯の通電量を90kA、深夜を150kAとする場合、一日の平均通電量は120kAとなり、この平均通電量からの変位は通常時間帯、深夜ともに25%と大きなものとなる。このような場合は、特許文献1に記載された対策は有効なのである。   This bath level operation according to the energization amount is effective when the energization amount is greatly changed between the normal time zone and midnight as described in Patent Document 1. When the energization amount in the normal time zone is 90 kA and midnight is 150 kA, the average daily energization amount is 120 kA, and the displacement from this average energization amount is as large as 25% in both the normal time zone and midnight. In such a case, the countermeasure described in Patent Document 1 is effective.

しかしながら、通電量の変化が小さい場合は、特許文献1に記載された対策の効果は小さい。例えば、一日の90%以上の時間を一日の平均通電量の±10%以下の範囲内で電解を行うような場合には、特許文献1に記載された対策の効果は小さいのである。いうならば、特許文献1に記載された対策は、電流効率を高める技術というよりも、通電量の変化による電流効率の低下を最小限に抑制する技術である。   However, when the change in the energization amount is small, the effect of the countermeasure described in Patent Document 1 is small. For example, in the case where electrolysis is performed within 90% or more of the time within a range of ± 10% or less of the average daily energization amount, the effect of the countermeasure described in Patent Document 1 is small. In other words, the countermeasure described in Patent Document 1 is a technique for minimizing a decrease in current efficiency due to a change in energization amount, rather than a technique for increasing current efficiency.

特開2002−317293号公報JP 2002-317293 A

本発明の目的は、マルチポーラ型電解槽で問題となる溶融塩の電極乗り越え流に起因するカレントリークを、電流量の変化に影響されることなく少なくして、電流効率の安定的な向上を可能とする溶融塩電解槽を提供することにある。   The object of the present invention is to reduce current leakage caused by the flow of molten salt over the electrode, which is a problem in a multipolar electrolytic cell, without being affected by changes in the amount of current, and to stably improve current efficiency. An object of the present invention is to provide a molten salt electrolyzer that can be used.

上記目的を達成するために、本発明者らは、引用文献1に記載された対策の問題点の原因について検討した。その結果、引用文献1に記載された対策の問題点の原因の一つは、溶融塩の浴面レベルを昇降させるという操作を伴う点にあるとの結論に達し、電解槽の槽構造により問題点の解決を図ることを企画し、更なる検討を重ねた。その結果として得た知見を図3により説明する。   In order to achieve the above object, the present inventors examined the cause of the problem of the countermeasure described in the cited document 1. As a result, it was concluded that one of the causes of the problem described in the cited document 1 involves the operation of raising and lowering the bath surface level of the molten salt. We planned to solve the problem and repeated further studies. The knowledge obtained as a result will be described with reference to FIG.

図3においては、陽極6と陰極7との間に2つの複極8が配置されており、陽極6から陰極7へ向けて各極の上面レベルが段階的に低くなっている。電解操業中はバブルリフトのために、陽極6と陽極側の複極8との間で溶融塩2が上昇する。上昇した溶融塩2は、陽極側の複極8上を乗り越え、更に陰極側の複極8上を乗り越えて陰極7上へ向かう。同時に、陽極側の複極8と陰極側の複極8との間でも溶融塩2が上昇する。この溶融塩2は、陰極側の複極8上を乗り越えて陰極7上へ向かう。更には、陰極側の複極8と陰極7との間でも溶融塩2が上昇する。この溶融塩2は直接に陰極7上へ向かう。これらの結果、複極8を乗り越える溶融塩2の流量は、陽極側の複極8上、陰極側の複極8上の順に多くなる。   In FIG. 3, two double poles 8 are arranged between the anode 6 and the cathode 7, and the upper surface level of each pole is gradually lowered from the anode 6 toward the cathode 7. During the electrolytic operation, the molten salt 2 rises between the anode 6 and the anode-side bipolar 8 due to bubble lift. The molten salt 2 that has risen travels over the anode 8 on the anode side, and further travels over the cathode 8 on the cathode 7 and heads onto the cathode 7. At the same time, the molten salt 2 rises between the anode-side bipolar 8 and the cathode-side bipolar 8. The molten salt 2 travels over the cathode 8 on the cathode 8 and toward the cathode 7. Furthermore, the molten salt 2 also rises between the cathode 8 and the cathode 7. This molten salt 2 goes directly onto the cathode 7. As a result, the flow rate of the molten salt 2 over the bipolar electrode 8 increases in the order on the bipolar electrode 8 on the anode side and on the bipolar electrode 8 on the cathode side.

ここでカレントリークは、厳密には陽極側の複極8を経由しない陽極6から陰極側の複極8へのカレントリークL1と、陰極側の複極8を経由しない陽極側の複極8から陰極7へのカレントリークL2とに大別される。そして、前者のカレントリーク量に影響するのは、陽極側の複極8上における乗り越え流の高さH1であり、後者のカレントリーク量に影響するのは、陰極側の複極8上における乗り越え流の高さH2であり、高さの高い後者の乗り越え流の方が、高さの低い前者の乗り越え流よりも、低抵抗となるため、カレントリーク量は多く、全体のカレントリークへの影響度も大きくなる。   Strictly speaking, the current leak is from the current leak L1 from the anode 6 not passing through the anode-side bipolar 8 to the cathode-side bipolar 8 and from the anode-side bipolar 8 not passing through the cathode-side bipolar 8. It is roughly divided into a current leak L2 to the cathode 7. The former current leakage amount affects the height H1 of the overflow on the anode-side bipolar 8 and the latter influences the cathode-side bipolar 8 on the cathode-side bipolar 8. Since the latter overpass flow, which has a flow height of H2, has a lower resistance than the lower overpass flow, the amount of current leak is large, and this affects the overall current leak. The degree also increases.

そこで、本発明者はカレントリーク量が多く、全体のカレントリークへの影響度が大きい陽極側の複極8から陰極側の複極8上を経由して陰極7へ至るカレントリークL2の量を少なくするのが、全体のカレントリークを少なくするのに効果的であると考え、その具体的方策について様々な角度から検討した。その結果、陰極側の複極8の厚みを大きくするのが有効であることが判明した。   Therefore, the present inventor has determined the amount of current leak L2 from the anode side bipolar 8 having a large current leak amount and a large influence on the entire current leak to the cathode 7 via the cathode side bipolar 8. We thought that reducing it would be effective in reducing the overall current leak, and we examined its specific measures from various angles. As a result, it has been found effective to increase the thickness of the cathode-side bipolar 8.

すなわち、陰極側の複極8の厚みを大きくすると、陰極側の複極8上を乗り越える溶融塩2の流動方向における流長が増大し、乗り越え流の電気抵抗が増大することにより、カレントリークL2が減少する。また、通電は陽極6の上から行われるが、陰極側の複極8の厚さが大きいと、この複極8における縦方向の電流量が増加する。その結果、陰極側の複極8と陰極7との間での電流密度が平準化され、この間の電気抵抗が小さくなり、陰極側の複極8上における乗り越え流を経由するカレントリークL2が相対的に減少する。   That is, when the thickness of the cathode-side bipolar 8 is increased, the flow length of the molten salt 2 that crosses over the cathode-side bipolar 8 increases in the flow direction, and the electrical resistance of the overflow increases, thereby increasing the current leak L2. Decrease. The energization is performed from above the anode 6, but if the thickness of the cathode-side bipolar 8 is large, the amount of current in the vertical direction at the bipolar 8 increases. As a result, the current density between the cathode-side bipolar 8 and the cathode 7 is leveled, the electrical resistance therebetween decreases, and the current leak L2 via the overpass flow on the cathode-side bipolar 8 is relative. Decrease.

本発明の溶融塩電解槽は、かかる知見を基礎として完成されたものであり、陽極と陰極との間に2枚以上の複極を有し、電解操業中にこれらの複極を乗り越えて陽極側から陰極側へ溶融塩が流動する溶融塩電解槽であって、陰極に隣接する最外側複極の厚さを陰極側複極厚Tc、陽極に隣接する最内側複極の厚さを陽極側複極厚Taとし、陰極側複極厚Tc/陽極側複極厚Ta=複極厚係数Kとするとき、複極厚係数K>1を満足するものである。   The molten salt electrolytic cell of the present invention has been completed on the basis of such knowledge, and has two or more bipolar electrodes between the anode and the cathode, and these anodes are overcome during the electrolytic operation. A molten salt electrolytic cell in which molten salt flows from the cathode side to the cathode side, wherein the thickness of the outermost bipolar electrode adjacent to the cathode is the cathode-side bipolar electrode thickness Tc, and the thickness of the innermost bipolar electrode adjacent to the anode is the anode When the side bipolar thickness is Ta and the cathode side bipolar thickness Tc / the anode side bipolar thickness Ta = the bipolar thickness factor K, the bipolar thickness factor K> 1 is satisfied.

本発明の溶融塩電解槽においては、複極厚係数K>1が満足され、陰極側複極厚Tcが陽極側複極厚Taより大きくされていることにより、複極上の乗り越え流の高さHが最も大きくなる陰極に隣接する最外側複極上の溶融塩の流動方向における電気抵抗が大きくなる。また、この最外側複極における縦方向の電流量が増加することにより陰極との間で電流密度が平準化され、陰極との間の電気抵抗が小さくなる。これらにより、全体のカレントリークに最も大きな影響を及ぼす陰極に隣接する最外側複極上を経由するカレントリークが減少し、電流効率が効率的に高まる。   In the molten salt electrolytic cell of the present invention, the bipolar electrode thickness coefficient K> 1 is satisfied, and the cathode-side bipolar electrode thickness Tc is larger than the anode-side bipolar electrode thickness Ta. The electric resistance in the flowing direction of the molten salt on the outermost bipolar electrode adjacent to the cathode having the largest H increases. In addition, when the amount of current in the vertical direction in the outermost bipolar electrode increases, the current density is leveled with the cathode, and the electrical resistance with the cathode is reduced. As a result, the current leak that passes over the outermost double pole adjacent to the cathode that has the greatest influence on the overall current leak is reduced, and the current efficiency is efficiently increased.

この技術は、電極乗り越え流量が多く、乗り越え流の高さH1,H2が大きくなる通電量が大きい操業ほど有効であり、具体的には、陰極に隣接する最外側複極における単位幅当たりの電流量×複極数=通電係数Aとするとき、A≧40kA/m以上の操業に特に有効であり、その有効性はA≧60kA/m以上の操業で更に高く、A≧80kA/m以上の操業でより更に高い。なお、複極の幅方向とは、図6に示すように、電流の流れ方向に垂直な水平方向であり、単位幅当たりとは、この幅方向における単位長さ当たりという意味である。   This technique is more effective for operations with a larger energization amount in which the flow rate over the electrode is larger and the flow heights H1 and H2 are larger, specifically, the current per unit width in the outermost bipolar electrode adjacent to the cathode. When the quantity x the number of multiple poles = the conduction coefficient A, it is particularly effective for the operation of A ≧ 40 kA / m or more, and the effectiveness is even higher in the operation of A ≧ 60 kA / m or more, and A ≧ 80 kA / m or more. Higher than in operation. As shown in FIG. 6, the width direction of the double pole is a horizontal direction perpendicular to the direction of current flow, and per unit width means per unit length in the width direction.

前記複極厚係数Kは、複極上の乗り越え流の高さH1,H2が最も大きくなる陰極に隣接する最外側複極上の溶融塩の流動方向における電気抵抗を小さくし、この最外側複極における縦方向の電流量を大きくする点からは大きい方が望ましいが、陽極と陰極との間での電極間距離が規定されており、大きくし過ぎると最外側複極以外の複極の厚みが小さくなり、操業における強度面で問題になる。このため、複極厚係数Kは1.05以上、4以下が望ましく、1.1以上、3以下が更に望ましく、1.3以上、2.5以下が特に望ましい。   The bipolar pole thickness coefficient K reduces the electric resistance in the flow direction of the molten salt on the outermost bipolar pole adjacent to the cathode where the heights H1 and H2 of the overflow flow on the bipolar pole are the largest, A larger value is desirable from the viewpoint of increasing the amount of current in the vertical direction, but the distance between the anode and the cathode is specified, and if it is too large, the thickness of the bipolar electrode other than the outermost bipolar electrode will be small. This is a problem in terms of strength in operation. For this reason, the bipolar thickness coefficient K is preferably 1.05 or more and 4 or less, more preferably 1.1 or more and 3 or less, and particularly preferably 1.3 or more and 2.5 or less.

陰極に隣接する最外側複極以外の複極厚に関しては、前述したように、陽極と陰極との間での電極間距離が規定されている関係から、複極総厚も規定されており、そのために最外側複極を厚くした分、他の複極の厚みを小さくする必要がある。複極枚数が2の場合は選択の余地がないが、複極枚数が3以上になると、最外側複極以外の複極数が2以上となり、それらの厚みを考慮する必要性が生じる。通常は同じ厚みとするが、乗り越え流の高さに応じて陽極側から陰極側へ段階的に厚くしてもよい。いずれにしても、最外側複極厚Tcを最大、若しくは最大厚グループの一つ、最内側複極厚Taを最小、若しくは最小厚グループの一つとすることは重要である。   As for the bipolar thickness other than the outermost bipolar electrode adjacent to the cathode, as described above, since the interelectrode distance between the anode and the cathode is specified, the total thickness of the bipolar electrodes is also specified. Therefore, it is necessary to reduce the thickness of the other bipolar electrode by increasing the thickness of the outermost bipolar electrode. When the number of bipolar poles is 2, there is no room for selection. However, when the number of bipolar poles is 3 or more, the number of bipolar poles other than the outermost bipolar pole is 2 or more, and it is necessary to consider their thickness. Usually, the thickness is the same, but the thickness may be increased stepwise from the anode side to the cathode side depending on the height of the overflow. In any case, it is important to set the outermost double pole thickness Tc to the maximum or one of the maximum thickness groups and the innermost double pole thickness Ta to the minimum or one of the minimum thickness groups.

複極の枚数は2枚以上であればよく、特にその枚数を問わないが、多すぎると電解槽における電極構造が複雑化するので5枚以下が好ましい。   The number of bipolar electrodes may be two or more, and the number is not particularly limited. However, if the number is too large, the electrode structure in the electrolytic cell becomes complicated.

本発明の溶融塩電解槽は、陰極に隣接する最外側複極の厚さ(陰極側複極厚Tc)を、陽極に隣接する最内側複極の厚さ(陽極側複極厚Ta)より大きくしたことにより、電極乗り越え流に起因する全体のカレントリークに大きな影響を与える最外側複極乗り越え流によるカレントリークを効果的に低減するので、電流効率を効率的に高めることができる。しかも、実施が容易であり、電解槽における電極構造の大型化、複雑化も回避することができ、経済性に優れる。   In the molten salt electrolytic cell of the present invention, the thickness of the outermost bipolar electrode adjacent to the cathode (cathode-side bipolar thickness Tc) is greater than the thickness of the innermost bipolar electrode adjacent to the anode (anode-side bipolar thickness Ta). By making it large, current leakage due to the outermost bipolar crossover flow that has a large effect on the overall current leakage due to the flow over the electrode is effectively reduced, so that the current efficiency can be increased efficiently. In addition, it is easy to implement, can avoid an increase in size and complexity of the electrode structure in the electrolytic cell, and is excellent in economic efficiency.

マルチポーラ型電解槽の縦断側面図である。It is a vertical side view of a multipolar electrolytic cell. 図1のA−A線矢示図で、電解室の正面図である。It is an AA line arrow figure of FIG. 1, and is a front view of an electrolysis chamber. 複極上での溶融塩の盛り上がりに起因するカレントリークの説明図で、電解室における電極構造の詳細を示す正面図である。It is explanatory drawing of the current leak resulting from the rise of the molten salt on a double pole, and is a front view which shows the detail of the electrode structure in an electrolysis chamber. 本発明の溶融塩電解槽における主要部の構造を説明するための、図3に対応する電極構造の詳細説明図である。It is a detailed explanatory view of the electrode structure corresponding to FIG. 3 for explaining the structure of the main part in the molten salt electrolyzer of the present invention. 本発明の溶融塩電解槽における主要部の他の構造を説明するための、図3に対応する電極構造の詳細説明図である。FIG. 4 is a detailed explanatory view of an electrode structure corresponding to FIG. 3 for explaining another structure of a main part in the molten salt electrolytic cell of the present invention. 電極幅方向を示す模式図である。It is a schematic diagram which shows an electrode width direction.

以下に本発明の実施形態を、図4を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to FIG.

本実施形態の溶融塩電解槽の基本構造は、図1及び図2に示した溶融塩電解槽と実質同一である。図1及び図2に示した溶融塩電解槽と相違するのは、電解槽の電解室における電極構造である。その電極の基本構造は、図1及び図2に示した溶融塩電解槽と実質同一であり、図4に示すように、電解槽の電解室内の横幅方向に陽極6と陰極7とを交互に配置すると共に、陽極と陰極7との各間に2枚以上、ここでは3枚の複極8をそれぞれ配置したマルチポーラ型式となっている。   The basic structure of the molten salt electrolytic cell of this embodiment is substantially the same as that of the molten salt electrolytic cell shown in FIGS. What is different from the molten salt electrolytic cell shown in FIGS. 1 and 2 is an electrode structure in an electrolytic chamber of the electrolytic cell. The basic structure of the electrode is substantially the same as that of the molten salt electrolytic cell shown in FIGS. 1 and 2, and as shown in FIG. 4, the anode 6 and the cathode 7 are alternately arranged in the lateral width direction in the electrolytic chamber of the electrolytic cell. In addition to the arrangement, it is a multipolar type in which two or more, here three, bipolar electrodes 8 are respectively arranged between the anode and the cathode 7.

陽極6は給電のために電解室のカバーを貫通してカバー上に突出している(図2参照)。陰極7の上面レベルは最も低く、3枚の複極8の上面レベルは陰極7に向かって段階的に低くなっている。これは前述したとおり、操業中にガスリフトによって極間を上昇する溶融塩2を側方へスムーズに流動、排出させるためである。そして、図1及び図2に示した溶融塩電解槽と決定的に相違するのは、図1及び図2に示した溶融塩電解槽では2枚以上の複極8の厚みTが同じであるのに対し(図3参照)、本実施形態の溶融塩電解槽では3枚の複極8のうち、陰極7に隣接する最外側の複極8の厚さ(陰極側複極厚Tc)が他の2枚の複極8の厚さより大とされている点である。   The anode 6 projects through the cover of the electrolysis chamber for power supply (see FIG. 2). The upper surface level of the cathode 7 is the lowest, and the upper surface levels of the three bipolar electrodes 8 are gradually lowered toward the cathode 7. This is because, as described above, the molten salt 2 that rises between the electrodes by the gas lift during operation smoothly flows and discharges to the side. The difference between the molten salt electrolytic cell shown in FIGS. 1 and 2 is that the thickness T of two or more bipolar electrodes 8 is the same in the molten salt electrolytic cell shown in FIGS. On the other hand (see FIG. 3), in the molten salt electrolytic cell of this embodiment, the thickness of the outermost bipolar electrode 8 adjacent to the cathode 7 (cathode-side bipolar thickness Tc) out of the three bipolar electrodes 8 is the same. The thickness is larger than the thickness of the other two bipolar electrodes 8.

より具体的に説明すると、同一基本構造を有する溶融塩電解槽の場合と比べて、3枚の複極8の合計厚は同じであり、最外側の複極8の厚さ(陰極側複極厚Tc)を大きくした分、残る2枚の複極8の合計厚を小さくし、その合計厚を残る2枚の複極8間で等分したものとなっている。これにより、陽極6と陰極7の離間距離を変えずに、また、極間距離を変えずに、最外側の複極8の厚さ(陰極側複極厚Tc)が、残る2枚の複極8の各厚さより大きくなり、その結果として最外側の複極8の厚さ(陰極側複極厚Tc)が、陽極6に隣接する最内側の複極8の厚さ(陰極側複極厚Ta)より大となっている。   More specifically, the total thickness of the three bipolar electrodes 8 is the same as that of the molten salt electrolytic cell having the same basic structure, and the thickness of the outermost bipolar electrode 8 (the cathode-side bipolar electrode). As the thickness Tc) is increased, the total thickness of the remaining two bipolar poles 8 is reduced, and the total thickness is equally divided between the remaining two bipolar poles 8. As a result, the thickness of the outermost bipolar electrode 8 (cathode-side dual electrode thickness Tc) is maintained without changing the distance between the anode 6 and the cathode 7 and without changing the distance between the electrodes. As a result, the thickness of the outermost bipolar electrode 8 (cathode-side bipolar thickness Tc) becomes larger than the thickness of the innermost bipolar electrode 8 adjacent to the anode 6 (cathode-side bipolar). It is larger than the thickness Ta).

すなわち、陰極側複極厚Tc/陽極側複極厚Ta=複極厚係数Kとするとき、複極厚係数K>1となる。この複極厚係数Kは1.05以上、4以下が望ましく、1.1以上、3以下が更に望ましく、1.3以上、2.5以下が特に望ましいことは前述したとおりである。   That is, when the cathode-side bipolar thickness Tc / the anode-side bipolar thickness Ta = the bipolar thickness coefficient K, the bipolar thickness coefficient K> 1. As described above, the multipole thickness coefficient K is preferably 1.05 or more and 4 or less, more preferably 1.1 or more and 3 or less, and particularly preferably 1.3 or more and 2.5 or less.

本実施形態の溶融塩電解槽では、陰極7に隣接する最外側の複極8を除く2枚の複極8の厚さが同じとされているが、図5に示すように、陽極6に隣接する最内側の複極8の厚さ(陰極側複極厚Ta)を中間の陰極8の厚さより薄くし、陽極6に隣接する最内側の複極8から、陰極7に隣接する最外側の複極8にかけて厚さを段階的に小さくしてもよい。要は、陽極6に隣接する最内側の複極8の厚さ(陰極側複極厚Ta)が最小、若しくは最小厚グループの一つ、陰極7に隣接する最外側の複極8の厚さ(陰極側複極厚Tc)が最大、若しくは最大厚グループの一つとされているのである。   In the molten salt electrolytic cell of the present embodiment, the thickness of the two bipolar electrodes 8 excluding the outermost bipolar electrode 8 adjacent to the cathode 7 is the same, but as shown in FIG. The thickness of the adjacent innermost bipolar electrode 8 (cathode-side bipolar thickness Ta) is made thinner than the thickness of the intermediate cathode 8, and the outermost electrode adjacent to the cathode 7 from the innermost bipolar electrode 8 adjacent to the anode 6. The thickness may be reduced stepwise over the double pole 8. In short, the thickness of the innermost bipolar electrode 8 adjacent to the anode 6 (cathode-side bipolar thickness Ta) is the smallest or one of the minimum thickness groups, and the thickness of the outermost bipolar electrode 8 adjacent to the cathode 7. (Cathode side double pole thickness Tc) is the maximum or one of the maximum thickness groups.

ここにおいても、複極厚係数Kは1.05以上、4以下が望ましく、1.1以上、3以下が更に望ましく、1.3以上、2.5以下が特に望ましいことは前述したとおりである。   Also in this case, the bipolar pole thickness coefficient K is preferably 1.05 or more and 4 or less, more preferably 1.1 or more and 3 or less, and particularly preferably 1.3 or more and 2.5 or less. .

電解操業中は、溶融塩6から3枚の複極8を介して陰極7へ電解電流が流れ、極間で溶融塩(MgCl2 )が電気分解される。電気分解と伴って極間ではガス(塩素ガス)が発生して上昇し、このバブルリフトのために極間で溶融塩2が上昇する。陽極6と陽極6に隣接する最内側の複極8との間を上昇した溶融塩2は、最内側の複極8上、中間の複極8上、陰極7に隣接する最外側の複極8上を乗り越えて陰極7上に至る。最外側の複極8と中間の複極8との間を上昇した溶融塩2は、中間の複極8上、陰極7に隣接する最外側の複極8上を乗り越えて陰極7上に至る。中間の複極8と最外側の複極8との間を上昇した溶融塩2は、最外側の複極8上を乗り越えて陰極7上に至る。最外側の複極8と陰極7との間を上昇した溶融塩2は、直接、陰極7上に至る。 During the electrolytic operation, an electrolytic current flows from the molten salt 6 to the cathode 7 through the three bipolar electrodes 8, and the molten salt (MgCl 2 ) is electrolyzed between the electrodes. Along with the electrolysis, gas (chlorine gas) is generated and rises between the electrodes, and the molten salt 2 rises between the electrodes due to this bubble lift. The molten salt 2 rising between the anode 6 and the innermost bipolar electrode 8 adjacent to the anode 6 is on the innermost bipolar electrode 8, on the intermediate bipolar electrode 8, and on the outermost bipolar electrode adjacent to the cathode 7. Over 8 and over to the cathode 7. The molten salt 2 rising between the outermost bipolar electrode 8 and the intermediate bipolar electrode 8 passes over the intermediate bipolar electrode 8 and the outermost bipolar electrode 8 adjacent to the cathode 7 to reach the cathode 7. . The molten salt 2 that has risen between the middle bipolar electrode 8 and the outermost bipolar electrode 8 gets over the outermost bipolar electrode 8 and reaches the cathode 7. The molten salt 2 rising between the outermost bipolar electrode 8 and the cathode 7 reaches the cathode 7 directly.

これらの結果、複極8を乗り越える溶融塩2の流量は、最内側の複極8上、中間の複極8上、最外側の陰極8上の順に多くなる。   As a result, the flow rate of the molten salt 2 over the bipolar electrode 8 increases in order on the innermost bipolar electrode 8, on the intermediate bipolar electrode 8, and on the outermost cathode 8.

そして、全体のカレントリークに最も大きな影響を与えるのは、乗り越え流量が多くて高さが大きくなり、その結果として電気抵抗が最小となる最外側の陰極8上の溶融塩を経由するカレントリークとなるが、本実施形態の溶融塩電解槽では、最外側の複極8の厚さ(陰極側複極厚Tc)を他の複極8の厚みより大きくして最大としているため、第1に、最外側の複極8上を乗り越える溶融塩2の流動方向における長さが増大し、乗り越え流の電気抵抗が増大する。第2に、通電は陽極6の上から行われるが、最外側の複極8の厚さ(陰極側複極厚Tc)が大きいと、この複極8における縦方向の電流量が増加する結果、最外側の複極8とこれに対向する陰極7との間での電流密度が平準化され、この間の電気抵抗が小さくなる。これらの結果、全体のカレントリークに最も大きな影響を与える最外側の複極8上における乗り越え流を経由するカレントリークが減少し、全体のカレントリークが減少することにより電流効率が上がる。   The most significant influence on the overall current leak is that the current flow through the molten salt on the outermost cathode 8 where the flow-over flow rate is large and the height is increased, and as a result, the electric resistance is minimized. However, in the molten salt electrolytic cell of the present embodiment, the thickness of the outermost bipolar electrode 8 (cathode side bipolar electrode thickness Tc) is made larger than the thickness of the other bipolar electrode 8, so The length in the flow direction of the molten salt 2 over the outermost bipolar electrode 8 is increased, and the electric resistance of the flow over is increased. Secondly, energization is performed from above the anode 6, but if the thickness of the outermost bipolar 8 (cathode-side bipolar thickness Tc) is large, the amount of current in the vertical direction at this bipolar 8 increases. The current density between the outermost bipolar electrode 8 and the cathode 7 opposed to the outermost bipolar electrode 8 is leveled, and the electric resistance therebetween is reduced. As a result, the current leak via the crossover flow on the outermost bipolar 8 that has the greatest influence on the overall current leak is reduced, and the current efficiency is increased by reducing the overall current leak.

図4に示す電極構造を備えた溶融塩電解槽を用いてMgCl2 から金属Mgを製造した。その際、溶融塩6と陰極7と間に配置された3枚の複極8の厚みを変更した。具体的には、3枚の複極8の厚さが全て70mmの場合(総厚210mm)を従来例として、総厚を従来例から変えることなく、陰極7と接する最外側の複極8の厚さ(陰極側複極厚Tc)を大きくし、その分、中間の複極8の厚さ及び陽極6と接する最内側の複極8の厚さ(陽極側複極厚Ta)を小さくした。中間の複極8の厚さと、陽極6と接する最内側の複極8の厚さ(陽極側複極厚Ta)とは同じとした。 Metal Mg was produced from MgCl 2 using a molten salt electrolytic cell having the electrode structure shown in FIG. At that time, the thickness of the three bipolar electrodes 8 arranged between the molten salt 6 and the cathode 7 was changed. Specifically, the case where the thicknesses of the three bipolar electrodes 8 are all 70 mm (total thickness 210 mm) is a conventional example, and the outermost bipolar electrode 8 in contact with the cathode 7 is not changed without changing the total thickness from the conventional example. The thickness (cathode-side bipolar thickness Tc) was increased, and the thickness of the intermediate bipolar electrode 8 and the thickness of the innermost bipolar electrode 8 in contact with the anode 6 (anode-side bipolar thickness Ta) were reduced accordingly. . The thickness of the intermediate bipolar 8 and the thickness of the innermost bipolar 8 in contact with the anode 6 (anode-side bipolar thickness Ta) were the same.

各電解操業での電極構造(複極厚さ及び複極厚係数K)並びに電流効率を表1に示す。電流効率は、従来例における電流効率を100としたときの比率で表した。   Table 1 shows the electrode structure (bipolar thickness and multipolar thickness coefficient K) and current efficiency in each electrolytic operation. The current efficiency was expressed as a ratio when the current efficiency in the conventional example was 100.

Figure 2012149301
Figure 2012149301

表1からわかるように、陰極7と接する最外側の複極8の厚さ(陰極側複極厚Tc)を他の複極8の厚さより大きくして、接する最内側の複極8の厚さ(陽極側複極厚Ta)との比率である複極厚係数Kを1超とすることにより電流効率が上がる。複極厚係数Kが大きいほど電流効率が上がる傾向を示すが、複極厚係数Kを大きくし過ぎると機械強度の面から問題が生じ制約を受けることは前述したとおりである。好ましい複極8の厚さ条件は、前述したとおり、複極厚係数Kで表して1.05以上、4以下であり、更に望ましくは1.1以上、3以下であり、特に望ましくは1.3以上、2.5以下である。   As can be seen from Table 1, the thickness of the outermost bipolar electrode 8 in contact with the cathode 7 (cathode-side bipolar thickness Tc) is larger than the thickness of the other bipolar electrode 8, and the thickness of the innermost bipolar electrode 8 in contact with it. The current efficiency is increased by setting the bipolar thickness coefficient K, which is a ratio to the thickness (anode-side bipolar thickness Ta), to more than 1. Although the current efficiency tends to increase as the double pole thickness coefficient K increases, as described above, if the double pole thickness coefficient K is excessively increased, a problem arises in terms of mechanical strength and is restricted. As described above, the preferable thickness condition of the bipolar electrode 8 is 1.05 or more and 4 or less, more preferably 1.1 or more and 3 or less, and particularly preferably 1. 3 or more and 2.5 or less.

上述の実施形態では、中間の複極8の厚さと、陽極6と接する最内側の複極8の厚さ(陽極側複極厚Ta)を同じとしたが、図5に示すように、陽極6の側から陰極7の側へ複極8の厚さが段階的に小さくなるように中間の複極8の厚さを大きく、陽極6と接する最内側の複極8の厚さ(陽極側複極厚Ta)を小さくしてもよい。   In the above-described embodiment, the thickness of the intermediate bipolar electrode 8 and the thickness of the innermost bipolar electrode 8 in contact with the anode 6 (anode-side bipolar thickness Ta) are the same. However, as shown in FIG. The thickness of the intermediate bipolar electrode 8 is increased so that the thickness of the bipolar electrode 8 is gradually reduced from the side of the cathode 6 to the side of the cathode 7, and the thickness of the innermost bipolar electrode 8 in contact with the anode 6 (the anode side) The double pole thickness Ta) may be reduced.

また、溶融塩電解槽におけるマルチポーラ型電極構造は、上述の実施形態では平板状の電極板を並列配置したものであるが、円柱状又は円筒状の陽極の周囲に円筒状の複極及び陰極を同心円状に配置した電極アセンブリを電解室内に横並びとしたものでもよい。   Further, the multipolar electrode structure in the molten salt electrolytic cell is a flat electrode plate arranged in parallel in the above-described embodiment, but a cylindrical bipolar electrode and a cathode around a cylindrical or cylindrical anode. The electrode assemblies arranged in a concentric manner may be arranged side by side in the electrolytic chamber.

Claims (3)

陽極と陰極との間に2枚以上の複極を有し、電解操業中にこれらの複極を乗り越えて陽極側から陰極側へ溶融塩が流動する溶融塩電解槽であって、陰極に隣接する最外側複極の厚さを陰極側複極厚Tc、陽極に隣接する最内側複極の厚さを陽極側複極厚Taとし、陰極側複極厚Tc/陽極側複極厚Ta=複極厚係数Kとするとき、複極厚係数Kが1超である溶融塩電解槽。   A molten salt electrolytic cell that has two or more bipolar electrodes between an anode and a cathode, and over which these molten electrodes flow during electrolytic operation, the molten salt flows from the anode side to the cathode side, adjacent to the cathode The thickness of the outermost bipolar electrode is the cathode-side bipolar thickness Tc, the thickness of the innermost bipolar electrode adjacent to the anode is the anode-side bipolar thickness Ta, and the cathode-side bipolar thickness Tc / the anode-side bipolar thickness Ta = A molten salt electrolytic cell having a bipolar electrode thickness coefficient K of more than 1 when the bipolar electrode thickness coefficient K is used. 請求項1に記載の溶融塩電解槽において、複極厚係数Kが1.05以上、4以下である溶融塩電解槽。   The molten salt electrolyzer according to claim 1, wherein the bipolar electrode thickness coefficient K is 1.05 or more and 4 or less. 請求項1又は2に記載の溶融塩電解槽において、陰極に隣接する最外側複極における単位幅当たりの電流量×複極数=通電係数Aとするとき、A≧40kA/m以上の電解操業に使用される溶融塩電解槽。   3. The molten salt electrolysis cell according to claim 1 or 2, wherein A ≧ 40 kA / m or more of electrolytic operation when the amount of current per unit width in the outermost bipolar electrode adjacent to the cathode × the number of bipolar electrodes = conduction coefficient A Molten salt electrolyzer used for
JP2011008586A 2011-01-19 2011-01-19 Molten salt electrolytic cell Active JP5511083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011008586A JP5511083B2 (en) 2011-01-19 2011-01-19 Molten salt electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011008586A JP5511083B2 (en) 2011-01-19 2011-01-19 Molten salt electrolytic cell

Publications (2)

Publication Number Publication Date
JP2012149301A true JP2012149301A (en) 2012-08-09
JP5511083B2 JP5511083B2 (en) 2014-06-04

Family

ID=46791824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011008586A Active JP5511083B2 (en) 2011-01-19 2011-01-19 Molten salt electrolytic cell

Country Status (1)

Country Link
JP (1) JP5511083B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10837084B2 (en) 2015-07-28 2020-11-17 Toho Titanium Co., Ltd. Molten salt electrolyzer, and method for producing metal magnesium using the same and method for producing a titanium sponge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11503794A (en) * 1995-04-21 1999-03-30 アルキャン・インターナショナル・リミテッド Multi-electrode cell for metal recovery by electrolysis of molten electrolyte.
JP2002317293A (en) * 2001-04-18 2002-10-31 Sumitomo Titanium Corp Method of electrolyzing fused salt
JP2006028567A (en) * 2004-07-14 2006-02-02 Sumitomo Titanium Corp Bipolar electrolytic cell
JP2006028570A (en) * 2004-07-14 2006-02-02 Sumitomo Titanium Corp Electrolytic cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11503794A (en) * 1995-04-21 1999-03-30 アルキャン・インターナショナル・リミテッド Multi-electrode cell for metal recovery by electrolysis of molten electrolyte.
JP2002317293A (en) * 2001-04-18 2002-10-31 Sumitomo Titanium Corp Method of electrolyzing fused salt
JP2006028567A (en) * 2004-07-14 2006-02-02 Sumitomo Titanium Corp Bipolar electrolytic cell
JP2006028570A (en) * 2004-07-14 2006-02-02 Sumitomo Titanium Corp Electrolytic cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10837084B2 (en) 2015-07-28 2020-11-17 Toho Titanium Co., Ltd. Molten salt electrolyzer, and method for producing metal magnesium using the same and method for producing a titanium sponge

Also Published As

Publication number Publication date
JP5511083B2 (en) 2014-06-04

Similar Documents

Publication Publication Date Title
WO2016082726A1 (en) Electrolysis furnace
WO2016124034A1 (en) Electrolytic furnace group
CN205062204U (en) Electrolytic furnace
CN105256337A (en) Novel rare-earth electrolytic bath
JP5511083B2 (en) Molten salt electrolytic cell
RU2287026C1 (en) Multi-cell electrolyzer with bipolar electrodes for production of aluminum
CN204661841U (en) A kind of electrolytic furnace group
DK202370308A1 (en) Controlling electrode current density of an electrolytic cell
CN208136345U (en) A kind of hypochlorite production system
CN208136346U (en) A kind of hypochlorite generator
CN208136347U (en) A kind of electrolytic cell of hypochlorite generator
JP4403463B2 (en) Single / bipolar electrolyzer
CN103422121A (en) Method for decreasing level current of electrolytic cell
AU2017292865B2 (en) Advanced aluminum electrolysis cell
RU2017101726A (en) NON-SEPARATED CELL FOR NARROW ELECTROLYSIS
CN101985762A (en) Continuous-anode vertical V-shaped double-bevel aluminum electrolytic tank
JPS6011113B2 (en) electrolytic cell
CN201924084U (en) Aluminum electrolysis cell cathode provided with longitudinal partition wall
AU2008299528B2 (en) Control of by-pass current in multi-polar light metal reduction cells
CN204898099U (en) Wrap -around compartment aluminium cell of positive pole
JP7076296B2 (en) Method of manufacturing molten metal and molten salt electrolytic cell
JP3865044B2 (en) Molten salt electrolysis method
JP4489520B2 (en) Electrolytic cell
JP4411155B2 (en) Bipolar electrolytic cell
JP4342522B2 (en) Method for homogenizing electrolyte concentration and electrolytic cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140324

R150 Certificate of patent or registration of utility model

Ref document number: 5511083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250