JP2006028567A - Bipolar electrolytic cell - Google Patents

Bipolar electrolytic cell Download PDF

Info

Publication number
JP2006028567A
JP2006028567A JP2004207413A JP2004207413A JP2006028567A JP 2006028567 A JP2006028567 A JP 2006028567A JP 2004207413 A JP2004207413 A JP 2004207413A JP 2004207413 A JP2004207413 A JP 2004207413A JP 2006028567 A JP2006028567 A JP 2006028567A
Authority
JP
Japan
Prior art keywords
bipolar
electrolytic cell
refractory
bipolar electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004207413A
Other languages
Japanese (ja)
Other versions
JP4411155B2 (en
Inventor
Yoshio Nakamura
宣雄 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2004207413A priority Critical patent/JP4411155B2/en
Publication of JP2006028567A publication Critical patent/JP2006028567A/en
Application granted granted Critical
Publication of JP4411155B2 publication Critical patent/JP4411155B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bipolar electrolytic cell where bipoles and refractory mounts supporting the bipoles have engaged structure so as to prevent the positional deviation of the bipoles from the refractory mounts supporting the bipoles. <P>SOLUTION: (1) Regarding the electrolytic cell for molten magnesium chloride having bipoles, the lower parts of the bipoles and the upper parts of refractory mounts supporting them have engaged structure. (2) Regarding the bipolar electrolytic cell in the above (1), the lower parts of the bipoles are provided with recessed grooves, and the upper parts of the refractory mounts are provided with projecting bulged parts. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、溶融塩化マグネシウムの電解槽に関し、さらに詳しくは、溶融塩化マグネシウムを電気分解し、金属マグネシウムおよび塩素ガスを回収する複極式電解槽の構造に関するものである。   The present invention relates to an electrolytic cell for molten magnesium chloride, and more particularly to a structure of a bipolar electrolytic cell that electrolyzes molten magnesium chloride and recovers metallic magnesium and chlorine gas.

四塩化チタンと金属マグネシウム(Mg)を還元反応させて金属チタンを製造する際に、副生物として溶融塩化マグネシウムが生成される。生成された溶融塩化マグネシウムは、電解槽に装入され、CaCl2、NaCl、およびMgF2などと混合され溶融塩を形成し、電気分解によって電解槽のアノード(陽極)で生成する塩素ガスおよびカソード(陰極)で生成するMgに分離される。通常、回収された塩素ガスは、再度四塩化チタンの製造に使用され、Mgは再度金属チタンの製造に使用される。 When titanium tetrachloride and metal magnesium (Mg) are subjected to a reduction reaction to produce metal titanium, molten magnesium chloride is generated as a by-product. The produced molten magnesium chloride is charged into an electrolytic cell and mixed with CaCl 2 , NaCl, MgF 2, etc. to form a molten salt, and chlorine gas and cathode generated by electrolysis at the anode of the electrolytic cell It is separated into Mg produced at (cathode). Usually, the recovered chlorine gas is used again for the production of titanium tetrachloride, and Mg is used for the production of titanium metal again.

複極式電解槽は、アノードとカソード間に複極を配置することによって、上記の電気分解に際し、Mg、塩素ガスを生成する電極としての極数を増加させるので生産性を改善できることから、広く使用されている。   The bipolar electrolyzer can improve productivity because it increases the number of electrodes as electrodes that generate Mg and chlorine gas during the above electrolysis by arranging a bipolar electrode between the anode and the cathode. in use.

複極式電解槽は、後述する図1および図2に示すように、電解室2と金属集積室3に区分され、これらの間に耐火物の壁4およびカーテンウォール5が設けられ、蓋6で密封された構造となっている。電解室2には、アノード7とカソード8がそれぞれ内側を耐火物で構成される炉壁9と蓋6に電気的に絶縁されたシール構造を通じて固定され、これらの炉内側にあるアノード7とカソード8の電極部が耐火物台座10、11に載せられる。   As shown in FIGS. 1 and 2, which will be described later, the bipolar electrolytic cell is divided into an electrolysis chamber 2 and a metal accumulation chamber 3, and a refractory wall 4 and a curtain wall 5 are provided therebetween, and a lid 6 It has a sealed structure. In the electrolysis chamber 2, the anode 7 and the cathode 8 are respectively fixed to the furnace wall 9 and the lid 6 made of refractory through an electrically insulated seal structure. Eight electrode portions are placed on the refractory bases 10 and 11.

また、アノード7とカソード8の電極部の間に、この構造例では2枚の複極12、13が所定の間隔、例えば、5〜25mmの間隔をおいて耐火物台座14、15に載せられている。そして、これら耐火物台座10、11、14および15は、炉壁9と耐火物の壁4に設けられた棚16、17にそれぞれ所定の幅の絶縁ブロック18によって固定されている。   Further, in this structural example, two bipolar electrodes 12 and 13 are placed on the refractory bases 14 and 15 at a predetermined interval, for example, 5 to 25 mm, between the electrode portions of the anode 7 and the cathode 8. ing. These refractory pedestals 10, 11, 14 and 15 are fixed to shelves 16 and 17 provided on the furnace wall 9 and the refractory wall 4 by insulating blocks 18 having a predetermined width, respectively.

さらに、これら複極12、13は、それぞれに埋め込まれたスペーサー19によって、アノード7およびカソード8並びに複極12、13のそれぞれの電極間を所定間隔に保持される構造となっている。   Further, the bipolar electrodes 12 and 13 have a structure in which the electrodes 7 of the anode 7 and the cathode 8 and the bipolar electrodes 12 and 13 are held at predetermined intervals by spacers 19 embedded therein.

そして、アノード7とカソード8は、外部の直流電源に接続されている。また、電解槽における溶融塩の液面は、カソード8と複極の大部分がこの溶融塩に浸漬し、カーテンウォール5の上部と下部の間の位置とする。さらに、この液面高さが、一定になるよう、図示しないが、金属集積室3には液面調整装置が設けられ、液面高さが制御されるようにしている。   The anode 7 and the cathode 8 are connected to an external DC power source. The liquid surface of the molten salt in the electrolytic cell is located between the upper part and the lower part of the curtain wall 5 by immersing most of the cathode 8 and the bipolar electrode in the molten salt. Further, although not shown so that the liquid level is constant, the metal accumulation chamber 3 is provided with a liquid level adjusting device so that the liquid level is controlled.

このような電解槽を使用し、外部の直流電源によってアノード7とカソード8間に通電することにより、電流がアノード7から複極12、13を通じてカソード8に流れる。この電流によって、アノード7と複極12、13のカソード8側の表面で塩素ガスが生成し、カソード8と複極12、13のアノード7側の表面でMgが生成する。生成する塩素ガスとMgは溶融塩より比重が小さいため、アノード7およびカソード8並びに複極のそれぞれの電極間で上昇流を生じ、電解室2の液面が上昇する。   By using such an electrolytic cell and energizing between the anode 7 and the cathode 8 by an external DC power source, a current flows from the anode 7 to the cathode 8 through the bipolar electrodes 12 and 13. With this current, chlorine gas is generated on the surface of the anode 7 and the bipolar electrodes 12 and 13 on the cathode 8 side, and Mg is generated on the surface of the cathode 8 and the bipolar electrodes 12 and 13 on the anode 7 side. Since the generated chlorine gas and Mg have a specific gravity smaller than that of the molten salt, an upward flow is generated between each of the anode 7 and the cathode 8 and the bipolar electrode, and the liquid level in the electrolytic chamber 2 rises.

上昇した塩素ガスは、電解室2の上部の空間に溜まり、圧力調整され導管20を通じて外部に取り出される。また、電解室2で上昇したMgと溶融塩が耐火物の壁4およびカーテンウォール5の間を金属集積室3に矢印Bで示すように流入する。   The raised chlorine gas is accumulated in the upper space of the electrolysis chamber 2, the pressure is adjusted, and the outside is taken out through the conduit 20. Further, Mg and molten salt that have risen in the electrolysis chamber 2 flow into the metal accumulation chamber 3 between the refractory wall 4 and the curtain wall 5 as indicated by an arrow B.

そして、金属集積室3では、流入したMgが比重差によって矢印Cで示すように浮上して上部に溜まり、溶融塩は矢印Dで示すように流れ、再び耐火物の壁4の下部を経由して矢印Eで示すように電解室2に流れる。   Then, in the metal accumulation chamber 3, the inflowed Mg floats as shown by the arrow C due to the difference in specific gravity and accumulates at the upper part, and the molten salt flows as shown by the arrow D, and again passes through the lower part of the refractory wall 4. And flows into the electrolysis chamber 2 as indicated by an arrow E.

このように、電解槽では、電気分解によって塩素ガスとMgに分離されるが、一方、溶融塩が電解室2と金属集積室3を循環する。   Thus, in the electrolytic cell, the chlorine gas and Mg are separated by electrolysis, while the molten salt circulates through the electrolytic chamber 2 and the metal accumulation chamber 3.

ところが、電解槽を長期使用する間に、溶融塩に含まれるスラッジが蓄積し電極と耐火物の間に堆積したり、耐火物が高温かつ溶融塩や塩素ガス雰囲気で劣化・破損してスラッジを生成したり、またスラッジが溶融塩とともに電解室2と金属集積室3を循環してスペーサー19および耐火物台座10、11、14および15などを摩耗させる。さらに、溶融塩の浴対流やMgOとの反応で複極12、13やアノード7が摩耗し、これらの摩耗が大きくなると、複極は前述のような電極間の所定間隔を維持できず、位置ずれを起こすことがある。   However, the sludge contained in the molten salt accumulates and accumulates between the electrode and the refractory during long-term use of the electrolytic cell, or the refractory is deteriorated or damaged in a molten salt or chlorine gas atmosphere at a high temperature and the sludge is removed. The sludge is circulated through the electrolytic chamber 2 and the metal accumulation chamber 3 together with the molten salt to wear the spacer 19 and the refractory pedestals 10, 11, 14 and 15. Furthermore, when the bipolar electrodes 12 and 13 and the anode 7 are worn due to bath convection of molten salt or reaction with MgO, and the wear increases, the bipolar electrode cannot maintain the predetermined interval between the electrodes as described above. Deviation may occur.

複極の位置がずれて電極間の所定間隔を維持できなくなると、アノード7およびカソード8並びに複極のそれぞれの電極間で塩素ガスおよびMg並びに溶融塩の上昇流が乱れることになり、これら電極間に流れる電流の密度が、それぞれの電極面内で徐々に不均一となる。そして、電流ロスが増加し、電流効率が悪化していく。   When the position of the bipolar electrode is shifted and the predetermined distance between the electrodes cannot be maintained, the upward flow of chlorine gas, Mg, and molten salt is disturbed between the anode 7 and the cathode 8 and the respective electrodes of the bipolar electrode. The density of the current flowing between them gradually becomes nonuniform within each electrode surface. And current loss increases and current efficiency deteriorates.

複極式電解槽における電流効率は、上記のような電気分解の安定性の良否に伴う電流ロスがある。また、この電流ロス以外に、電極間で互いに接触するスペーサーや耐火物台座を通じて電流が洩れること、または耐火物台座などに堆積したスラッジを通じて電流が洩れることに起因する電流ロス(以下、「リーク電流によるロス」という)があり、さらに複極式多極電解槽(以下、「バイポーラ型電解槽」という)を用いる場合の複数のカソード間で炉壁耐火物を通じて電流が洩れることに起因するバイパス電流によるロスなどに区分できる。   The current efficiency in the bipolar electrolytic cell has a current loss due to the above-described electrolysis stability. In addition to this current loss, current loss due to leakage of current through spacers and refractory pedestals that are in contact with each other between electrodes, or leakage of current through sludge accumulated on refractory pedestals (hereinafter referred to as “leakage current”). And a bypass current caused by leakage of current through the furnace wall refractory between a plurality of cathodes when using a bipolar multipolar electrolytic cell (hereinafter referred to as “bipolar electrolytic cell”). Can be categorized as loss.

前述の電気分解の安定性の良否に伴う電流ロスは、例えば、アノードやカソードの変形、または複極の位置ずれに起因するものであり、リーク電流によるロスまたはバイパス電流によるロスは電解槽に使用する耐火物材料等の材質や電解槽の操業条件によるものである。   The above-mentioned current loss due to the stability of electrolysis is caused by, for example, deformation of the anode or cathode, or misalignment of the bipolar electrode, and loss due to leakage current or loss due to bypass current is used in the electrolytic cell. This depends on the refractory material to be used and the operating conditions of the electrolytic cell.

また、前述の複極が位置ずれを起こした場合には、上昇流の乱れが原因となり、複極の下部などに流れが滞留することがあり、このような場合に、スラッジが堆積し、そのスラッジ中に金属Mg粒が増加し、スラッジを通じて電流が洩れることに起因する電流ロスが生じ、さらに電流効率を悪化させる。また、上昇流の乱れにより、アノードおよび複極に偏摩耗が生じた場合は、更なる効率の悪化を招く。   In addition, when the above-mentioned double pole is displaced, the upward flow may be disturbed, and the flow may stay in the lower part of the double pole.In such a case, sludge accumulates, Metal Mg grains increase in the sludge, current loss is caused by current leaking through the sludge, and current efficiency is further deteriorated. In addition, when uneven wear occurs in the anode and the bipolar electrode due to turbulence in the upward flow, the efficiency is further deteriorated.

このため、電力を多量に使用する電解槽では、電流効率が悪化することによって電力費が増大し、さらに複極や複極を支持する耐火物台座、スペーサーなどが摩耗したり、また損傷が生じ電解槽の寿命が短くなることから、これらの改善が求められている。   For this reason, in electrolyzers that use a large amount of electric power, the power efficiency increases due to the deterioration of current efficiency, and the refractory pedestals and spacers that support the double pole and the double pole are worn or damaged. These improvements are required because the life of the electrolytic cell is shortened.

このような状況に鑑み、複極式電解槽における電流効率を維持するため、従来から複極の形状、複極の固定方法、電解槽の構造などに関し種々の提案がなされている。例えば、特許文献1では、複極の上部に樋状の溝を設ける電解槽の構造が提案され、使用に際し、上昇流の速度を高め、生成したMgを電解室から金属集積室に流れ易くし、アノードおよびカソード並びに複極のそれぞれの電極間で生成する塩素ガスとMgが電解室の上部で再結合しない構成にしている。しかし、上昇流の速度を高めることにより生産性は向上するが、塩素ガスとMgが電解室の上部で再結合を防ぐのが困難であり、さらに複極の上部に設けた樋状の溝を通じてMgを金属集積室に流れ易くするために電解室と金属集積室の間の耐火物の壁の構造が複雑となり、電流効率の改善が図れず、また上昇流の速度が高くなり複極や耐火物などの摩耗が増加するため、場合によっては寿命が短くなることがある。   In view of such a situation, in order to maintain the current efficiency in the bipolar electrode electrolytic cell, various proposals have been made regarding the shape of the bipolar electrode, the method of fixing the bipolar electrode, the structure of the electrolytic cell, and the like. For example, Patent Document 1 proposes a structure of an electrolytic cell in which a bowl-shaped groove is provided on the upper part of a bipolar electrode. In use, the rate of upward flow is increased, and the generated Mg can easily flow from the electrolytic chamber to the metal accumulation chamber. The chlorine gas and Mg generated between the anode, cathode and bipolar electrodes are not recombined in the upper part of the electrolysis chamber. However, productivity is improved by increasing the speed of the upward flow, but it is difficult to prevent recombination of chlorine gas and Mg at the upper part of the electrolysis chamber, and further through a bowl-shaped groove provided at the upper part of the double pole. In order to facilitate the flow of Mg into the metal accumulation chamber, the structure of the refractory wall between the electrolysis chamber and the metal accumulation chamber becomes complicated, the current efficiency cannot be improved, and the speed of the upward flow is increased to increase the bipolar and fire resistance. In some cases, the service life may be shortened due to increased wear of objects.

また、特許文献2では、双極電極(複極と同意)を使用するバイポーラ型電解槽において、アノードおよびカソード並びに双極電極の下部を支持する耐火物台座の両端を、炉壁、および電解室と金属集積室の間の耐火物の壁に設けた棚に固定するために、この棚の幅に合わせた断面三角形状の絶縁ブロックを用いた電解槽が提案されている。このような構造にすることで、この棚において溶融塩の澱みを防止するようにしている。このようにして、MgOを主成分とし、金属Mg粒が混在するスラッジの堆積を防止して、アノードおよびカソード並びに複極のそれぞれの電極間で発生するリーク電流によるロスを低減できるとしている。しかし、複極や耐火物の摩耗を抑制できず、複極の位置ずれが起こる場合があり、電気分解の安定性の良否に伴う電流ロスが増加する。   Further, in Patent Document 2, in a bipolar electrolytic cell using bipolar electrodes (agreeing with bipolar), both ends of the refractory pedestal supporting the anode and the cathode and the lower part of the bipolar electrode are connected to the furnace wall, the electrolytic chamber and the metal. In order to fix to the shelf provided in the wall of the refractory material between the accumulation chambers, an electrolytic cell using an insulating block having a triangular cross section corresponding to the width of the shelf has been proposed. By adopting such a structure, molten salt stagnation is prevented in this shelf. In this way, the accumulation of sludge containing MgO as a main component and metallic Mg particles is prevented, and loss due to leakage currents generated between the anode, cathode and bipolar electrodes can be reduced. However, the wear of the bipolar electrode and the refractory cannot be suppressed, and the positional deviation of the bipolar electrode may occur, resulting in an increase in current loss due to the stability of electrolysis.

さらに、特許文献3では、複極式電解槽においてリーク電流を低減して電流効率の低下を防止するために、複極を含む電極の周端の一部またはすべてに絶縁体を被覆する電解槽が提案されている。提案の電解槽では、電極がチタン等を基板とし、白金、イリジウム、ルテニウム等の単体または酸化物を含む電極としている。また、用いるスペーサーは、非導電性の樹脂を使用している。これによって、電流が電極の周端に集中するのを抑制することができるとしている。しかしながら、この複極式電解槽は、使用例として記載されているような腐食性の高い次亜塩素酸溶液を得るための電解槽であり、溶融塩や塩素ガス雰囲気の660〜670℃というような高温で使用する溶融塩化マグネシウムの電気分解に適用することができない。   Furthermore, in Patent Document 3, an electrolytic cell in which a part or all of the peripheral edge of an electrode including a bipolar electrode is covered with an insulator in order to reduce leakage current and prevent a decrease in current efficiency in the bipolar electrolytic cell. Has been proposed. In the proposed electrolytic cell, the electrode is made of titanium or the like as a substrate, and is an electrode containing a simple substance such as platinum, iridium or ruthenium or an oxide. The spacer used is a non-conductive resin. As a result, the current can be prevented from concentrating on the peripheral edge of the electrode. However, this bipolar electrolytic cell is an electrolytic cell for obtaining a highly corrosive hypochlorous acid solution as described as an example of use, such as 660 to 670 ° C. in a molten salt or chlorine gas atmosphere. It cannot be applied to the electrolysis of molten magnesium chloride used at high temperatures.

特開昭59−6389号公報JP 59-6389

特許第2772954号Japanese Patent No. 2772954 特開2002−186970号公報JP 2002-186970 A

前述の通り、従来の複極式電解槽では、長期使用する際に、複極や耐火物の摩耗速度を抑制できず、複極の位置ずれに伴い電流効率の悪化が避けられず、また寿命が短くなる場合がある。また、電極(複極も含む)の周端の一部またはすべてに絶縁体を被覆するにしても、過酷な条件で使用する際に、被覆する絶縁体を耐久性のある材料とするには設備費用が多大となる。   As described above, the conventional bipolar electrode cell cannot suppress the wear rate of the bipolar electrode and the refractory when used for a long period of time, and the deterioration of the current efficiency due to the positional deviation of the bipolar electrode cannot be avoided. May become shorter. In addition, even if a part or all of the peripheral edge of an electrode (including multiple electrodes) is covered with an insulator, the insulator to be covered should be a durable material when used under severe conditions. Equipment costs are significant.

本発明は、上述した問題点に鑑みてなされたものであり、電解槽を長期使用するとき、溶融塩とともに電解槽内を循環するスラッジによって複極や複極を支持する耐火物台座などが摩耗しても、複極の位置ずれが起こらないようにして、電流効率を維持することができる複極式電解槽を提供することを目的としている。   The present invention has been made in view of the above-mentioned problems, and when using an electrolytic cell for a long period of time, the refractory pedestal supporting the bipolar electrode or the bipolar electrode is worn by sludge circulating in the electrolytic cell together with the molten salt. Even so, it is an object of the present invention to provide a bipolar electrolytic cell capable of maintaining current efficiency without causing misalignment of the bipolar electrodes.

本発明者は、上記の課題を解決するため、従来の複極式電解槽について種々の検討を加えた結果、複極が複極を支持する耐火物台座から位置ずれを起こさなければ、スペーサーや耐火物が多少摩耗しても、電極間の所定間隔を維持でき、電流効率を維持できることを知見した。   In order to solve the above problems, the present inventor has made various studies on the conventional bipolar electrode electrolytic cell, and as a result, if the bipolar electrode does not shift from the refractory pedestal supporting the bipolar electrode, the spacer or It has been found that even if the refractory is somewhat worn, the predetermined interval between the electrodes can be maintained and the current efficiency can be maintained.

本発明は、上記の知見に基づいて完成されたものであり、下記(1)、(2)の複極式電解槽を要旨としている。   The present invention has been completed on the basis of the above findings, and the gist thereof is the bipolar electrolytic cell of the following (1) and (2).

(1)複極を有する溶融塩化マグネシウムの電解槽において、前記複極の下部とそれを支持する耐火物台座の上部とが嵌め合わせ構造であることを特徴とする複極式電解槽である。   (1) An electrolytic cell of molten magnesium chloride having a bipolar electrode, wherein the lower part of the bipolar electrode and the upper part of a refractory pedestal supporting the same are fitted together.

(2)前記複極の下部に凹形状の溝を設け、前記耐火物台座の上部に凸形状の張出部を設けることを特徴とする前記(1)の複極式電解槽である。   (2) The bipolar electrolytic cell according to (1), wherein a concave groove is provided at a lower portion of the bipolar electrode, and a protruding protrusion is provided at an upper portion of the refractory base.

本発明で規定する「嵌め合わせ構造」とは、複極の下部と複極を支持する耐火物台座の上部とが、例えば、一方に凹形状の溝が設けられ、他方に凸形状の張出部が設けられ、これらが多少の遊びをもって嵌め合わせできるような構造に加工され、組み立てられることを意味する。   The “fitting structure” defined in the present invention means that the lower part of the double pole and the upper part of the refractory pedestal that supports the double pole are provided with, for example, a concave groove on one side and a convex protrusion on the other side. This means that parts are provided and processed into a structure that can be fitted together with some play.

本発明の複極式電解槽によれば、複極と複極を支持する耐火物台座を嵌め合わせ構造にすることで、長期間の使用で複極や耐火物などが摩耗しても、複極の位置ずれが生じないので、電流効率が悪化せず、電力費の増加を抑制できる。さらに、電解室での上昇流の乱れが少なくなるので、複極や耐火物などの摩耗速度を低減でき、電解槽の寿命を延長できる。   According to the bipolar electrolytic cell of the present invention, the refractory pedestal supporting the bipolar electrode and the bipolar electrode is fitted with a structure so that even if the bipolar electrode or the refractory wears out over a long period of use, Since no pole misalignment occurs, current efficiency does not deteriorate and an increase in power cost can be suppressed. Furthermore, since the turbulence of the upward flow in the electrolysis chamber is reduced, the wear rate of the bipolar electrode and the refractory can be reduced, and the life of the electrolytic cell can be extended.

本発明の複極式電解槽は、前述のように、複極の下部と複極を支持する耐火物台座の上部を嵌め合わせ構造にすることを特徴としており、その内容を説明する。   As described above, the bipolar electrolytic cell of the present invention is characterized in that the lower part of the bipolar electrode and the upper part of the refractory pedestal that supports the bipolar electrode are fitted together, and the contents thereof will be described.

図1は、本発明の複極式電解槽の構造例を示す図である。前述のように、複極式電解槽1は、電解室2と金属集積室3に耐火物の壁4およびカーテンウォール5によって区分され、蓋6で密封された構造となっている。   FIG. 1 is a diagram showing an example of the structure of a bipolar electrolytic cell of the present invention. As described above, the bipolar electrolytic cell 1 is divided into the electrolytic chamber 2 and the metal accumulation chamber 3 by the refractory wall 4 and the curtain wall 5 and sealed by the lid 6.

図2は、前記図1に示す構造例のA−A矢視による正面断面図であり、複極がスペーサーによって保持される状況を示す図である。図2に示すように、複極12、13は、アノード7およびそれぞれの複極に埋め込まれたスペーサー19によって、所定間隔に保持される。また、それらの下部とそれらを支持する耐火物台座14、15の上部とは嵌め合わせ構造にしている。   FIG. 2 is a front cross-sectional view of the structural example shown in FIG. 1 as viewed from the direction of arrows AA, and shows a state in which the double pole is held by a spacer. As shown in FIG. 2, the bipolar electrodes 12 and 13 are held at a predetermined interval by the anode 7 and a spacer 19 embedded in each of the bipolar electrodes. Moreover, the lower part of these and the upper part of the refractory bases 14 and 15 which support them are made into the fitting structure.

図3は、前記図2で点線Fで示す嵌め合わせ構造の部分詳細断面図であり、(a)は複極または耐火物台座が各々凹凸の形状をもつことで嵌め合わせ構造とする一例を示し、(b)は複極または耐火物台座が各々凹凸の形状においてアリ溝方式の嵌め合わせ構造とする一例を示し、また(c)はこれらの両方が凹形状の溝を持ち、さらに耐火物またはセラミックス製の棒またはブロックを挟み込むことで嵌め合わせ構造とする例を示す。   FIG. 3 is a partial detailed cross-sectional view of the fitting structure indicated by the dotted line F in FIG. 2, and (a) shows an example of a fitting structure in which the bipolar or refractory pedestal has an uneven shape. , (B) shows an example of a dovetail-type fitting structure in which each of the bipolar or refractory pedestals has an uneven shape, and (c) both have concave grooves, and further refractory or An example of a fitting structure by sandwiching a ceramic rod or block is shown.

図3(a)では、複極13の凹形状の溝21aと耐火物台座15の凸形状の張出部22aを嵌め合わす構造を示すものであり、それぞれ多少の遊びをもって嵌め合わす構造としている。凹形状の溝および凸形状の張出部並びに遊びは複極の厚さに応じて選定され、張出部の高さが3mm以上とするのが望ましい。3mm未満であると、位置ずれ防止の効果が小さくなる。   FIG. 3A shows a structure in which the concave groove 21a of the bipolar electrode 13 and the convex protruding portion 22a of the refractory pedestal 15 are fitted together, and each has a structure of fitting with some play. The concave groove, the convex overhanging portion, and the play are selected according to the thickness of the bipolar electrode, and the height of the overhanging portion is preferably 3 mm or more. If it is less than 3 mm, the effect of preventing displacement is reduced.

図3(b)は、複極13の凹形状の溝21bと耐火物台座15の凸形状の張出部22bをより強固に嵌め合わす構造を示すものであり、アリ溝による嵌め合わせを採用している。こうすることによって、複極13は、電極間方向だけでなく、上下方向にも移動しないのでより安定した電気分解ができる。   FIG. 3 (b) shows a structure in which the concave groove 21b of the bipolar electrode 13 and the convex overhanging portion 22b of the refractory base 15 are fitted more firmly. ing. By doing so, the bipolar electrode 13 does not move not only in the inter-electrode direction but also in the vertical direction, so that more stable electrolysis can be performed.

図3(a)および(b)は、複極が凹形状の溝を有し、耐火物台座が凸形状の張出部を有する「上に凸の嵌め合わせ」とする構造としているが、複極に凸形状の張出部を設け耐火物台座に凹形状の溝を設けた「下に凸の嵌め合わせ」であっても良い。この場合、「上に凸の嵌め合わせ」は「下に凸の嵌め合わせ」より嵌め合わせ構造として望ましい。その理由は、「上に凸の嵌め合わせ」での耐火物台座の凸形状の張出部は、電気伝導度の高い複極の溝に囲まれているので、この張出部のどの部分でも電位差が小さくなるため、電食の作用が少なくなるためである。また、「下に凸の嵌め合わせ」の構造は、複極と耐火物台座の間にスラッジが堆積し易いのでリーク電流が流れ易く、そのために耐火物台座がさらに電食を起こしやすいと考えられる。   3 (a) and 3 (b) have a structure in which the double pole has a concave groove and the refractory pedestal has a convex overhanging portion that is a “convex fit”. The projecting may be a “bottom convex fitting” in which a convex protrusion is provided on the pole and a concave groove is provided on the refractory base. In this case, “upward convex fitting” is more desirable as a fitting structure than “lower convex fitting”. The reason is that the protruding portion of the refractory pedestal in the “upwardly convex fitting” is surrounded by a multipolar groove with high electrical conductivity. This is because the potential difference is reduced and the action of electrolytic corrosion is reduced. In addition, the structure of the “convex fitting downward” is likely to cause leakage current because sludge easily accumulates between the bipolar electrode and the refractory pedestal, and therefore the refractory pedestal is more likely to cause electrolytic corrosion. .

また、図3(c)は、複極13と耐火物台座15の両方に凹形状の溝23を設け、その凹形状の溝23を重ね合わせた空間に耐火物またはセラミックス製の棒またはブロック24を多少の遊びをもって挟み込んだ構造としている。この場合に、凹形状の溝23の寸法および遊びは、前述と同様に複極の厚さに応じて選定され、溝の深さがそれぞれ3mm以上とするのが望ましい。   Further, FIG. 3C shows that a concave groove 23 is provided in both the bipolar electrode 13 and the refractory pedestal 15, and a refractory or ceramic rod or block 24 is formed in the space where the concave grooves 23 are overlapped. The structure is sandwiched with some play. In this case, the size and play of the concave groove 23 are selected according to the thickness of the bipolar electrode as described above, and it is desirable that the depth of the groove is 3 mm or more.

さらに、凹形状の溝および凸形状の張出部は、複極の幅の全長にわたるのが望ましいが、複極または耐火物台座の成形上部分的に嵌め合わせる構造とすることもできる。   Furthermore, it is desirable that the concave groove and the projecting protruding portion extend over the entire length of the width of the bipolar electrode, but it is also possible to adopt a structure in which the bipolar electrode or the refractory pedestal is partly fitted.

また、前記図1および図2には、電極としてアノードおよびカソード並びに2枚の複極を例示したが、複極式電解槽を設置する際に、Mgの分離回収の生産性の改善を図るため、複極の枚数をさらに増やしたり、1つの電解槽にアノードおよびカソード並びに複極の組合せを複数組み備えたりするバイポーラ型電解槽とすることができる。   1 and 2 exemplify an anode and a cathode and two bipolar electrodes as electrodes, but in order to improve the productivity of separation and recovery of Mg when installing a bipolar electrolytic cell. Further, a bipolar electrolytic cell in which the number of bipolar electrodes is further increased or a plurality of combinations of anodes, cathodes, and bipolar electrodes are provided in one electrolytic cell can be provided.

なお、以上では、アノードおよびカソード並びに複極が板状のものを例示したが、これらが円柱や円筒状のものを同心円状に配置する場合にも、同様にして、複極と耐火物台座に嵌め合わせ構造を適用できる。   In the above, the anode, the cathode, and the bipolar electrode are illustrated as plate-like. However, in the case where the cylinder and the cylindrical electrode are arranged concentrically, the bipolar electrode and the refractory base are similarly formed. A fitting structure can be applied.

本発明の効果を確認するため、前記図1、図2および図3(a)に示すような嵌め合わせ構造とした複極式電解槽を用いて、溶融塩を電解した。   In order to confirm the effect of the present invention, the molten salt was electrolyzed using a bipolar electrolytic cell having a fitting structure as shown in FIGS. 1, 2, and 3 (a).

本発明の効果を評価する方法は、複極の下部と耐火物台座の上部が嵌め合わせ構造でない従来の平面構造の複極式電解槽での平均電流効率および電解槽の寿命をそれぞれ100とし、本発明でのそれらを電流効率比および寿命比とする相対比(%)で比較する。また、電解槽の寿命は、操業中の電流効率が所定の電流効率に低下するまでの期間の長さとした。なお、平均電流効率は、電解槽の操業開始から寿命で停止するまでの電流効率を平均したものである。   The method of evaluating the effect of the present invention is that the average current efficiency and the life of the electrolytic cell in a conventional multi-electrode electrolytic cell having a conventional planar structure in which the lower part of the bipolar electrode and the upper part of the refractory pedestal are not fitted are 100 Those in the present invention are compared in terms of relative ratios (%) that make the current efficiency ratio and life ratio. The life of the electrolytic cell is the length of the period until the current efficiency during operation decreases to a predetermined current efficiency. The average current efficiency is the average of the current efficiency from the start of operation of the electrolytic cell until it stops at the end of its life.

表1は、上記の従来の平面構造、並びに「上に凸の嵌め合わせ」および「下に凸の嵌め合わせ」について、電流効率と電解槽の寿命の相対比(%)を表にしたもので、本発明の嵌め合わせ構造が従来の平面構造と比較して電流効率と電解槽の寿命ともに向上していることが分かる。   Table 1 shows the relative ratio (%) between the current efficiency and the life of the electrolytic cell for the above-described conventional planar structure and “upward convex fitting” and “downward convex fitting”. It can be seen that the fitting structure of the present invention improves both the current efficiency and the life of the electrolytic cell as compared with the conventional planar structure.

また、スペーサーの材質を窒化珪素セラミックス製にすると、スペーサーの摩耗や損傷が低減するとともにリーク電流によるロスが低減するので、上記の電流効率と電解槽の寿命がさらに向上する。   Further, if the spacer is made of silicon nitride ceramics, the wear and damage of the spacer are reduced and the loss due to the leakage current is reduced, so that the current efficiency and the life of the electrolytic cell are further improved.

Figure 2006028567
Figure 2006028567

本発明の複極式電解槽によれば、長期間の操業において複極や耐火物などが摩耗しても、複極の位置ずれがなく、電極間の所定間隔を維持して電気分解を安定させることができ、電流効率が悪化しないので、電力費の増加を抑制できる。さらに、電解時の上昇流の乱れが少なくなるので、複極や耐火物などの摩耗速度を抑制し、電解槽の寿命を延長できるので、溶融塩の複極式電解槽として、広く採用される。   According to the bipolar electrolytic cell of the present invention, even if the bipolar electrode or the refractory is worn during a long-term operation, there is no misalignment of the bipolar electrode, and the predetermined interval between the electrodes is maintained and the electrolysis is stabilized. Since the current efficiency does not deteriorate, an increase in power cost can be suppressed. Furthermore, since the turbulence of the upward flow during electrolysis is reduced, the wear rate of bipolar electrodes and refractories can be suppressed, and the life of the electrolytic cell can be extended, so it is widely adopted as a bipolar salt electrolytic cell for molten salt. .

本発明の複極式電解槽の構造例を示す図である。It is a figure which shows the structural example of the bipolar electrolytic cell of this invention. 前記図1に示す構造例のA−A矢視による正面断面図である。It is front sectional drawing by the AA arrow of the structural example shown in the said FIG. 図3は、前記図2で点線Fで示す嵌め合わせ構造の部分詳細断面図であり、(a)は複極または耐火物台座が各々凹凸の形状をもつことで嵌め合わせ構造とする一例を示し、(b)は複極または耐火物台座が各々凹凸の形状においてアリ溝方式の嵌め合わせ構造とする一例を示し、また(c)はこれらの両方が凹形状の溝を持ち、さらに耐火物またはセラミックス製の棒またはブロックを挟み込むことで嵌め合わせ構造とする例を示す。FIG. 3 is a partial detailed cross-sectional view of the fitting structure indicated by the dotted line F in FIG. 2, and (a) shows an example of a fitting structure in which the bipolar or refractory pedestal has an uneven shape. , (B) shows an example of a dovetail-type fitting structure in which each of the bipolar or refractory pedestals has an uneven shape, and (c) both have concave grooves, and further refractory or An example of a fitting structure by sandwiching a ceramic rod or block is shown.

符号の説明Explanation of symbols

1:複極式電解槽、 2:電解室、 3:金属集積室、 4:耐火物の壁
5:カーテンウォール、 6:蓋、 7:アノード、 8:カソード、 9:炉壁
10、11:耐火物台座、 12、13:複極、 14、15:耐火物台座
16、17:棚、 18:絶縁ブロック、 19:スペーサー
20:導管、 21a、21b:凹形状の溝、 22a、22b:張出部
23:凹形状の溝、 24:耐火物またはセラミックス製の棒またはブロック
1: Bipolar electrolytic cell, 2: Electrolytic chamber, 3: Metal accumulation chamber, 4: Refractory wall 5: Curtain wall, 6: Lid, 7: Anode, 8: Cathode, 9: Furnace wall 10, 11: Refractory pedestal, 12, 13: Bipolar, 14, 15: Refractory pedestal 16, 17: Shelf, 18: Insulating block, 19: Spacer 20: Conduit, 21a, 21b: Concave groove, 22a, 22b: Tension Protruding portion 23: concave groove, 24: refractory or ceramic rod or block

Claims (2)

複極を有する溶融塩化マグネシウムの電解槽において、前記複極の下部とそれを支持する耐火物台座の上部とが嵌め合わせ構造であることを特徴とする複極式電解槽。   An electrolytic cell of molten magnesium chloride having a bipolar electrode, wherein a lower part of the bipolar electrode and an upper part of a refractory pedestal supporting the same are fitted together. 前記複極の下部に凹形状の溝を設け、前記耐火物台座の上部に凸形状の張出部を設けることを特徴とする請求項1に記載の複極式電解槽。
2. The bipolar electrolytic cell according to claim 1, wherein a concave groove is provided at a lower portion of the bipolar electrode, and a protruding protrusion is provided at an upper portion of the refractory base.
JP2004207413A 2004-07-14 2004-07-14 Bipolar electrolytic cell Expired - Lifetime JP4411155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004207413A JP4411155B2 (en) 2004-07-14 2004-07-14 Bipolar electrolytic cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004207413A JP4411155B2 (en) 2004-07-14 2004-07-14 Bipolar electrolytic cell

Publications (2)

Publication Number Publication Date
JP2006028567A true JP2006028567A (en) 2006-02-02
JP4411155B2 JP4411155B2 (en) 2010-02-10

Family

ID=35895275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004207413A Expired - Lifetime JP4411155B2 (en) 2004-07-14 2004-07-14 Bipolar electrolytic cell

Country Status (1)

Country Link
JP (1) JP4411155B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004602A1 (en) * 2006-07-07 2008-01-10 Kinotech Solar Energy Corporation Electrolysis system and method
JP2012149301A (en) * 2011-01-19 2012-08-09 Osaka Titanium Technologies Co Ltd Molten salt electrolytic cell
CN107858710A (en) * 2018-01-06 2018-03-30 韶关市键宇电极技术有限公司 A kind of electrolytic zinc anode plate and its manufacturing process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004602A1 (en) * 2006-07-07 2008-01-10 Kinotech Solar Energy Corporation Electrolysis system and method
JP4977137B2 (en) * 2006-07-07 2012-07-18 旭硝子株式会社 Electrolysis apparatus and method
US8608914B2 (en) 2006-07-07 2013-12-17 Asahi Glass Co. Ltd. Electrolysis system and method
JP2012149301A (en) * 2011-01-19 2012-08-09 Osaka Titanium Technologies Co Ltd Molten salt electrolytic cell
CN107858710A (en) * 2018-01-06 2018-03-30 韶关市键宇电极技术有限公司 A kind of electrolytic zinc anode plate and its manufacturing process

Also Published As

Publication number Publication date
JP4411155B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
US3591483A (en) Diaphragm-type electrolytic cells
KR101060208B1 (en) Electrolytic Device and Method
WO2016082726A1 (en) Electrolysis furnace
JP2008144274A (en) Gas evolving electrolysis system
WO2016124034A1 (en) Electrolytic furnace group
CA1044175A (en) Electrolytic process for the production of metals in molten halide systems
CN105088284A (en) Electrolytic furnace
JP4411155B2 (en) Bipolar electrolytic cell
US3803016A (en) Electrolytic cell having adjustable anode sections
JP4489520B2 (en) Electrolytic cell
DE60009455D1 (en) ALUMINUM ELECTRIC PRODUCTION CELL WITH OXYGEN DEVELOPING ANODES
JP4403463B2 (en) Single / bipolar electrolyzer
US3796648A (en) Electrolytic cell having self-aligning anodes
AU2008299528B2 (en) Control of by-pass current in multi-polar light metal reduction cells
US4119519A (en) Bipolar electrode for use in an electrolytic cell
US20190169761A1 (en) Advanced aluminum electrolysis cell
TW200825209A (en) A method and an electrolysis cell for production of a metal from a molten chloride
JP7076296B2 (en) Method of manufacturing molten metal and molten salt electrolytic cell
JP4557565B2 (en) Electrolyzer
US6863788B2 (en) Interlocking wettable ceramic tiles
JP5511083B2 (en) Molten salt electrolytic cell
JP3158996U (en) Electrolysis unit structure
US1092369A (en) Process of making chlorates and apparatus therefor.
KR100288862B1 (en) Improved Process for Preapring Fluorine
JP2018511709A (en) Parts, assemblies and methods for distributing current in an electrolytic cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4411155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250