JP4403463B2 - Single / bipolar electrolyzer - Google Patents

Single / bipolar electrolyzer Download PDF

Info

Publication number
JP4403463B2
JP4403463B2 JP2006327534A JP2006327534A JP4403463B2 JP 4403463 B2 JP4403463 B2 JP 4403463B2 JP 2006327534 A JP2006327534 A JP 2006327534A JP 2006327534 A JP2006327534 A JP 2006327534A JP 4403463 B2 JP4403463 B2 JP 4403463B2
Authority
JP
Japan
Prior art keywords
electrolytic
electrolysis
electrolytic cell
electrode
bipolar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006327534A
Other languages
Japanese (ja)
Other versions
JP2008115455A (en
Inventor
孝之 島宗
Original Assignee
有限会社シーエス技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社シーエス技術研究所 filed Critical 有限会社シーエス技術研究所
Priority to JP2006327534A priority Critical patent/JP4403463B2/en
Publication of JP2008115455A publication Critical patent/JP2008115455A/en
Application granted granted Critical
Publication of JP4403463B2 publication Critical patent/JP4403463B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は主として電解によって陽極からガスを陰極から金属を得るための大規模な複極型溶融塩電解装置に関するものである。The present invention relates to a large-scale bipolar molten salt electrolyzer for obtaining gas from an anode and metal from a cathode mainly by electrolysis.

電解による金属採取は現在亜鉛や銅に代表される硫酸塩の水溶液電解、コバルトやニッケルのような塩化物水溶液電解が広く行われている。チタン製造ではチタン塩の還元に使用して生成した塩化マグネシウムの電解還元による金属製造が溶融塩電解で行われている。又よく知られるアルミニウムは酸化アルミニウムの高温溶融塩電解により行われる。又近年ではソーラーセル需要に伴い逼迫しているシリコンの安価な製造方法として亜鉛による四塩化ケイ素の還元による製造方法の検討がなされており、そのためには使用する亜鉛のリサイクルがプロセスを決める重要な要素となっており、塩化亜鉛の溶融塩電解が必須でありそのための検討が行われている。これらの電解ではその電解条件によって種々の電解法が条件を変えて行われている。Metal extraction by electrolysis is currently widely performed by aqueous solution electrolysis of sulfates represented by zinc and copper and aqueous solution electrolysis of chlorides such as cobalt and nickel. In titanium production, metal production by electrolytic reduction of magnesium chloride produced by using titanium salt for reduction is performed by molten salt electrolysis. Well-known aluminum is produced by high temperature molten salt electrolysis of aluminum oxide. In recent years, as a low-cost production method for silicon, which has been tightened with the demand for solar cells, a production method by reduction of silicon tetrachloride with zinc has been studied. For this purpose, the recycling of zinc used is an important factor in determining the process. It is an element, and molten salt electrolysis of zinc chloride is indispensable, and studies for that purpose are being conducted. In these electrolysis, various electrolysis methods are performed by changing the conditions depending on the electrolysis conditions.

工業用電解槽の多くは電解液槽と電極/電解部分が一体化されておりそこでは一般に電解に伴う漏洩電流についてはシステム全体で解決されている。また小型の金属採取電解装置では電解液槽内に電極/電解部分を浸漬して電解を行う様なことがしばしば行われるがほとんどの場合は複数の電極を並列に繋いで、漏洩電流のない単極式で電解が行われている。溶融塩電解の場合は通常電解槽内に陽極は複数入っている場合でも、陰極は底部のみなどと言う比較的単純な構成を取ることがおおく、又電極間距離も比較的大きいのが特徴であった。In many industrial electrolytic cells, an electrolytic solution tank and an electrode / electrolytic part are integrated, and in general, leakage current associated with electrolysis is solved in the entire system. In small metal sampling electrolyzers, it is often the case that electrolysis is performed by immersing the electrode / electrolysis part in the electrolytic bath, but in most cases a plurality of electrodes are connected in parallel, and there is no leakage current. Electrolysis is performed in a polar manner. In the case of molten salt electrolysis, even if there are usually multiple anodes in the electrolytic cell, the cathode should have a relatively simple configuration such as the bottom only, and the distance between the electrodes is also relatively large. there were.

しかしながら、化学プロセスの中に入れる電解プロセスの場合には化学プロセスそれ自身は比較的小型であるが、電解槽がどうしても大型になり場所的なアンバランスと共に、送液距離が大きくなりポンプの大型化や、特に高温溶融塩電解では送液区間の保温、ポンプ選択など大きな問題が出ており、現実にはエネルギーのロスなどが大きいが、電解は電解単独で行っており、他のプロセスと接続して連続運転をすることは行われていない。However, in the case of the electrolytic process to be put into the chemical process, the chemical process itself is relatively small, but the electrolytic cell is inevitably large and the unbalanced area is unbalanced. In particular, in hot molten salt electrolysis, there are major problems such as heat retention in the liquid feeding section and pump selection. In reality, however, energy loss is large, but electrolysis is performed by electrolysis alone and connected to other processes. Therefore, continuous operation is not performed.

本発明者らはこれらに対して溶融塩化亜鉛の電解に新たな電解方法を取り入れた複極型の電解装置を提案している。特許文献(1)ここでは複極電解槽で問題となる漏洩電流を電極周囲に電極枠を取り付けることによって防ぐと共に該電極枠が保温材となり、電解部分の温度が実質的に上昇して電解液の電解部分の液抵抗を低減すると共に、電解液表面温度を相対的に低下することによって溶融塩電解で最も問題となる電解質の蒸気とミストを最小限に抑えることが可能となった。複極型電解装置では通電体の形状が比較的簡単になる一方、電極にかかる電圧が大きくなり、漏洩電流が複極の電極数の増加に伴って、急激に増加すると言う問題点があり、それを防ぐためには必然的に電極枠が大きくなり、条件によっては電極それ自身より大きくなると言う問題を抱えることとなった。The present inventors have proposed a bipolar electrolysis apparatus that incorporates a new electrolysis method for electrolysis of molten zinc chloride. Patent Document (1) Here, leakage current which is a problem in a bipolar electrolytic cell is prevented by attaching an electrode frame around the electrode, and the electrode frame serves as a heat insulating material, so that the temperature of the electrolysis portion is substantially increased and the electrolyte solution In addition to reducing the liquid resistance of the electrolytic portion of the electrolyte, it is possible to minimize electrolyte vapor and mist, which are the most problematic in molten salt electrolysis, by relatively lowering the electrolyte surface temperature. In the bipolar electrolyzer, the shape of the current-carrying body is relatively simple, but the voltage applied to the electrodes increases, and there is a problem that the leakage current increases rapidly as the number of bipolar electrodes increases. In order to prevent this, the electrode frame inevitably becomes larger, and depending on the conditions, there is a problem that it becomes larger than the electrode itself.

このために液槽内に電極部分を浸漬するようなケースでは大きな複極式は行われなかった。特に、水溶液電解では金属電極を使用する場合が多く、給電体が比較的簡単な為に給電は複雑にはなるが、単極法が広く使われていた。一方、溶融塩電解でも通常は規模が小さいために単極法ですませる場合が多く、一部複極式があるものの、極数はせいぜい2から3であり、本格的な複極式といえるものではなかった。上記に示した本発明者等による技術として電極枠をつけることにより漏洩電流を減少させているがこれによっても漏洩電流を最小にするには電極の大きさ、電流とのかねあいがあるが、通常10段以下にしておく必要があり、そこでも両端部の電極間の電圧がしばしば30V以上になってしまい、漏洩電流を押さえるためには電極枠を大きくしなければならないという問題点があった。For this reason, in the case where the electrode portion is immersed in the liquid tank, a large bipolar system has not been performed. In particular, in aqueous solution electrolysis, metal electrodes are often used, and since the power feeding body is relatively simple, power feeding is complicated, but the monopolar method has been widely used. On the other hand, even in molten salt electrolysis, since the scale is usually small, there are many cases where a single-pole method is used. It wasn't. Although the leakage current is reduced by attaching an electrode frame as a technique by the inventors as described above, there is a trade-off between the size of the electrode and the current in order to minimize the leakage current. There is a need to keep it 10 or less, and the voltage between the electrodes at both ends is often 30 V or more, and there is a problem that the electrode frame has to be enlarged in order to suppress the leakage current.

また溶融塩電解では電解と共に発生する電解液ミストの制御が重要であり、本発明者等は特に溶融塩電解で電極が密に存在する場合について大型のミストキャッチャーを取り付けると共にそこに対応するガスの上昇速度を制御するように提案している。(特許文献2)この技術を使うことは特に重要であり、特に多数の電極を集中的におく場合には多量のガスがミストを巻き込みながら発生するためにこのような技術が必須となる。しかしながらこのようなミストキャッチャーを使うためには電極周辺、特に電極上方での導電部材を出来るだけ簡単にしておくことが必要でありそのためには電極への通電構造を簡単化する必要があっ
た。
In molten salt electrolysis, it is important to control the electrolyte mist generated along with the electrolysis, and the present inventors attach a large mist catcher particularly when the electrodes are densely present in the molten salt electrolysis and the gas corresponding to the mist catcher. Proposes to control the ascent rate. (Patent Document 2) The use of this technique is particularly important. Particularly, when a large number of electrodes are concentrated, such a technique is essential because a large amount of gas is generated while entraining mist. However, in order to use such a mist catcher, it is necessary to make the conductive member around the electrode, especially above the electrode as simple as possible, and for that purpose, it is necessary to simplify the structure for energizing the electrode.

特開2005−200759公報JP 2005-200759 A 特開2005−200758公報JP-A-2005-200758

本発明では主として電解ユニットを液中に浸漬して大規模の電解を行うための電解槽であって漏洩電流を最小限に押さえ、しかも電極上の通電構造を簡単にして電解槽を小型化すること、更に電解によって発生するミストの影響を最小限にするための電解ユニットの構造体を提供することを課題とした。In the present invention, the electrolytic cell is mainly used for performing large-scale electrolysis by immersing the electrolytic unit in the liquid, minimizing the leakage current and simplifying the current-carrying structure on the electrode, thereby reducing the size of the electrolytic cell. In addition, another object of the present invention is to provide an electrolytic unit structure for minimizing the influence of mist generated by electrolysis .

本発明は複数の複極ユニットを単極接続してなる電極群と該電極周辺の電極枠構造体からなる電解ユニットを1つの電解浴槽内に浸漬あるいは浴中に取り付けて電解を行うようにした電解処理用の電解槽であって、該電解ユニット内の電極の接続が複極に接続された複数の単位を電気的に並列に接続するようにしたとともに電極枠構造体が盲板からなる側板 と電極体の上下に設けられた電流を規制するための電極枠とからなり、漏洩電流の防止と 電解部分の保温をあわせて行うようにした単・複極型電解槽であって、導電体の接続を単純化しながら、1つの電解浴槽に複極的に多数の電極を設置した場合に問題となる漏洩電流を最小とすると共に、電解槽自身をコンパクトにし、しかも大規模な電解を可能にすることが出来た。In the present invention, electrolysis is performed by immersing an electrode group formed by connecting a plurality of multipolar units as a single electrode and an electrolytic unit composed of an electrode frame structure around the electrode in one electrolytic bath or by attaching it to a bath . a electrolytic cell for electrolytic processes, side plate electrode frame structure with connecting electrodes in the electrolytic unit is to be connected in parallel electrically a plurality of units connected to the bipolar consists blind plate And an electrode frame for regulating the current provided above and below the electrode body , which is a single / bipolar type electrolytic cell that prevents leakage current and keeps the electrolytic part warm. While simplifying the connection, the leakage current, which is a problem when a large number of electrodes are installed in one electrolytic bath, is minimized, and the electrolytic cell itself is made compact and large-scale electrolysis is possible. I was able to do it.

以下詳細に説明する。
つまり主として溶融塩電解、特に金属採取電解で生成する金属が電解浴より比重が大きい場合には、電解によって生成する金属は液中を下方に落ち、陽極で生成する気体は上方に抜けていくために電極周辺には電解生成物が全く残らない。また溶融塩の直接電解では電解浴そのものが電解質であるために、このように生成物が上下に抜けても常に電解質が供給されるために電解反応それ自身は変化しないという特徴がある。もちろん支持電解質を使用した場合は一般に液の粘性が小さくなるために電解物質の供給が非常に早くなり、電解物質の電極間への供給の問題はほとんど起こらない。また水溶液電解でもたとえば銅粉製造のような場合では陰極生成物である銅粉が、陰極表面にとどまることなく下に落ちてしまい、また陽極発生ガスは上に抜けるので溶融塩電解と同じように取り扱うことが出来る。これらについて電解を最も効率よくおこなうためには、電解電流密度を最適化し、しかも電圧を最小限にすることが必要である。そのためには電極間距離を最小とし、適正な電流密度によって電解電圧を低く保持し、しかも電解生成物の再反応を最小にして電解効率を高めることが必須になってくる。
This will be described in detail below.
In other words, when the metal produced mainly by molten salt electrolysis, especially metal extraction electrolysis, has a higher specific gravity than the electrolytic bath, the metal produced by electrolysis falls downward in the liquid and the gas produced at the anode escapes upward. In addition, no electrolytic product remains around the electrode. Further, in the direct electrolysis of molten salt, since the electrolytic bath itself is an electrolyte, the electrolytic reaction itself does not change because the electrolyte is always supplied even if the product falls vertically. Of course, when a supporting electrolyte is used, since the viscosity of the liquid is generally reduced, the supply of the electrolytic substance becomes very fast, and the problem of supply of the electrolytic substance between the electrodes hardly occurs. In addition, in the case of aqueous solution electrolysis, for example, in the case of copper powder production, the copper powder as the cathode product falls down without staying on the cathode surface, and the anode generation gas escapes upward, so that it is the same as in molten salt electrolysis. It can be handled. In order to perform electrolysis most efficiently for these, it is necessary to optimize the electrolysis current density and minimize the voltage. For this purpose, it is essential to minimize the distance between the electrodes, keep the electrolysis voltage low with an appropriate current density, and minimize the re-reaction of the electrolysis product to increase the electrolysis efficiency.

これらを達成するために本発明の電解槽では多数の小型電極を入れて電解電流密度を適正に保持すること、また電極への導電構造を最も簡単にすること、更に多くの電極を入れることによっても電解槽サイズの拡大を最小にして特に高温溶融塩電解の場合にも熱の逃げを最小限とすることを可能としてエネルギー効率の向上を図ることを目指した。また当然のことながら漏洩電流を最小として電流効率のより一層の向上を目指した。この達成のために、ここでは電極間距離を小さくした多数の電極を1つの電解槽に組み込むようにした。つまり電極の周辺の電極枠を小型としながら漏洩電流を最小とする様に電極の接続について複極段数を制限した複数の複極式接続と、該複数の複極ユニットを単極接続し、しかも1つの電解槽内に配置するようにして、簡単な導電構造とすることにより本発明の電解槽構造が完成した。In order to achieve these, the electrolytic cell of the present invention includes a large number of small electrodes to keep the electrolytic current density properly, to simplify the conductive structure to the electrodes, and to add more electrodes. The aim was to improve the energy efficiency by minimizing the expansion of the electrolytic cell size and minimizing the escape of heat, especially in the case of high-temperature molten salt electrolysis. As a matter of course, we aimed to further improve the current efficiency by minimizing the leakage current. In order to achieve this, here, a large number of electrodes with a small distance between the electrodes are incorporated in one electrolytic cell. In other words, a plurality of multipolar connections in which the number of multipolar stages is limited with respect to electrode connection so that the leakage current is minimized while miniaturizing the electrode frame around the electrodes, and the plurality of multipolar units are connected in a single pole, The electrolytic cell structure of the present invention was completed by providing a simple conductive structure so as to be arranged in one electrolytic cell.

たとえば溶融塩化亜鉛直接電解の場合で総電流が4500Aであり、1つの電極の大きさが幅10cm、高さ30cmに規制された場合を仮定する。この能力は塩素製造45トン/年に相当し、亜鉛還元法シリコン製造では、シリコン製造能力9トン/年に相当する。この時電流密度を50A/dm2とすると30段の電解が必要である。ここで、塩化亜鉛の温度が550℃では塩化亜鉛の電気抵抗が8Ωcm程度であり、電極の高さを30cm,電極間距離を5mmとした場合、電流密度が50A/dm2では電解電圧が2.5−2.7Vである。この時に10段の複極で考えると、電極の上下に隙間5mm、電極枠高さ10cm、つまり上下で合計20cmの枠を設けることによって漏洩電流を3%程度とすることが出来る。この時に全体を一体として30段の複極とした場合に同じ高さの電極枠を使うと漏洩電流が10%程度あるいはそれ以上になってしまう。この漏洩電流を10段の場合と同じにするには枠高さを上下で60cm程度と電極よりも遙かに大きな電極枠を必要とするようになり、今度は電解生成物の移動や電解浴供給に問題を有することになってしまう。
これをさけるためには電極枠を10cm程度にしなおかつ多くの電極を入れて実質的に大電流の電解をおこなうことが必要である。このためには10段からなる複極ユニットを端部の導電体を有する電極(端部電極)を共通となるように3組配置することによって問題の解決がはかれるようになる。つまりここのように30段であれば10段複極ユニットを3つ並列につなぐことによって、端部電極の二つは二つのユニットに共通するので端部電極がつまり導電体を有する電極は4つですんでしまいしかも電極枠は十分に小さくて良いと言うことになる。
一方すべてを単極とすると電極数は31であり、31個の導電体を必要とする。
また30段の複極とした場合は導電体を有する端部電極は2個であり、構造は簡単にはなるが前記のように電極枠をつけた電極体が極めて大きくなってしまい、事実上取り扱いが非常に困難になるという問題を有している。ここでは10段複極x3単極接続としたがこれは一例であって、段数、また単極への分割は必要に応じて行えばよいことは言うまでもない。
For example, it is assumed that the total current is 4500A in the case of molten zinc chloride direct electrolysis, and the size of one electrode is regulated to a width of 10 cm and a height of 30 cm. This capacity corresponds to 45 tons / year of chlorine production, and in the case of zinc reduction silicon production, it corresponds to 9 tons / year of silicon production capacity. At this time, if the current density is 50 A / dm 2, 30 stages of electrolysis are required. Here, when the temperature of the zinc chloride is 550 ° C., the electrical resistance of the zinc chloride is about 8 Ωcm, and when the electrode height is 30 cm and the distance between the electrodes is 5 mm, the electrolysis voltage is 2. at the current density of 50 A / dm2. It is 5-2.7V. Considering a 10-stage double pole at this time, the leakage current can be reduced to about 3% by providing a frame having a gap of 5 mm above and below the electrode and an electrode frame height of 10 cm, that is, a total of 20 cm above and below the electrode. At this time, when the electrode frame having the same height is used in the case where the whole is integrated into 30 stages, the leakage current becomes about 10% or more. In order to make this leakage current the same as in the case of 10 stages, the frame height is about 60 cm above and below, and an electrode frame much larger than the electrode is required. You will have problems with the supply.
In order to avoid this, it is necessary to reduce the electrode frame to about 10 cm and to conduct a large current electrolysis with a large number of electrodes. For this purpose, the problem can be solved by arranging three sets of 10- pole multipolar units so that the electrodes having the conductors at the ends (end electrodes) are shared. In other words, if there are 30 stages as shown here, by connecting three 10-stage multipolar units in parallel, two of the end electrodes are common to the two units, so the end electrodes, that is, the electrodes having a conductor are 4 In other words, the electrode frame may be sufficiently small.
On the other hand, if all are single poles, the number of electrodes is 31, and 31 conductors are required.
Also, in the case of a 30-stage double pole, there are two end electrodes having a conductor, and although the structure is simple, the electrode body with the electrode frame as described above becomes extremely large. There is a problem that handling becomes very difficult. Here, 10-stage double pole x 3 single-pole connection is used, but this is only an example, and it goes without saying that the number of stages and division into single poles may be performed as necessary.

たとえば、ここでは溶融塩化亜鉛で示したが、これにより電気抵抗の小さなアルカリを支持電解質としたような場合では漏洩電流は電気抵抗がちいさい分だけ大きくなってしまうので電極枠を大きくするか複極ユニット段数を小さくすることが必要となるが、これは使用する電解浴や電極規模によって決めれば良い。一例として塩化カリウムと塩化ナトリウムの混合体をこれに加えた場合電解浴の電気抵抗が4Ωcm程度と半減させることが出来る。この時漏洩電流を防ぐには枠の高さを2倍にするか、複極ユニット数を半分に減らす様にすれば目的が達成できる。通常の電解では電解浴抵抗の小さい方が望ましいが、このように漏洩電流という点からは適当な電気抵抗のあった方が望ましいという結果にも繋がる。
もちろんこれらは水溶液電解でも同じであり、液抵抗との関係をうまく使うことによって漏洩電流を最小とする電解が出来るようになる。
For example, in this example, molten zinc chloride is used. However, when an alkali with a small electrical resistance is used as the supporting electrolyte, the leakage current increases by a small amount corresponding to the electrical resistance. Although it is necessary to reduce the number of unit stages , this may be determined depending on the electrolytic bath used and the electrode scale. As an example, when a mixture of potassium chloride and sodium chloride is added to this, the electric resistance of the electrolytic bath can be reduced to about 4 Ωcm by half. Or double the height of the frame to prevent this case leakage current, the purpose can be achieved if as halve the number of bipolar unit stage. In normal electrolysis, it is desirable that the electrolytic bath resistance is small, but this also leads to the result that it is desirable to have an appropriate electrical resistance in terms of leakage current.
Of course, these are the same in aqueous electrolysis, and by making good use of the relationship with the liquid resistance, electrolysis can be performed with the minimum leakage current.

なおこのような接続は電極がグラファイトや導電性セラミックスのように導電性の比較的低く、導電部材が大きくて複雑になりやすい場合に特に有効である。
もちろんこのような場合でも電解単位の一つずつは通常の電解条件を満たしていることが必要であり、たとえば陽極生成ガスと陰極生成物が互いに接触して逆反応を起こすことを防ぐために陽極を上側にして電極全体を垂直から5〜10度傾けることも有用である。また電解槽上部には大型のミストキャッチャーを取り付けておき、上昇ガスに伴われる電解浴成分のガスを液化して浴に戻すと共に、発生ガスに共存するミストが外に出ないようにする。特にこれは高温溶融塩電解では重要であり、しばしば上に上がった蒸気やミストが温度低下と共に固化してガスパイプ閉塞の原因になることがある。このミストキャッチャーについては特に指定はされないが、可能であれば電解槽開口部の1/2から1/1の断面積を有する大型で電解槽の上部に被さるように直接取り付けることが望ましい。
Such connection is particularly effective when the electrode is relatively low in electrical conductivity, such as graphite or conductive ceramics, and the conductive member is large and easily complicated.
Of course, even in such a case, it is necessary for each electrolytic unit to satisfy the usual electrolysis conditions. For example, in order to prevent the anode generation gas and the cathode product from contacting each other and causing a reverse reaction, the anode must be connected. It is also useful to tilt the entire electrode 5-10 degrees from the vertical with the top side. A large mist catcher is attached to the upper part of the electrolytic cell to liquefy the electrolytic bath component gas accompanying the rising gas and return it to the bath, and to prevent the mist coexisting with the generated gas from coming out. This is particularly important in high-temperature molten salt electrolysis, and the steam and mist that rises above often solidify as the temperature drops, causing gas pipes to become clogged. The mist catcher is not particularly specified, but if possible, it is desirable to directly attach the mist catcher so as to cover the upper part of the electrolytic cell with a large size having a cross-sectional area of 1/2 to 1/1 of the electrolytic cell opening.

本発明により多くの金属採取、特に溶融塩電解による金属生成に用いられる電解浴中に電解ユニットを浸漬あるいは浴中に取り付けておこなわれる電解槽中で複極型と単極型を組みあわせることによって小型の電解槽内に多数の電極を最小の導電構造で組み込むことが出来、高効率を保持しながら最小の電解槽規模で最大の生産をおこなうことが可能となった。By combining a bipolar type and a monopolar type in an electrolytic bath in which an electrolytic unit is immersed in or attached to an electrolytic bath used for metal extraction, particularly metal generation by molten salt electrolysis, according to the present invention. A large number of electrodes can be incorporated into a small electrolytic cell with a minimum conductive structure, and maximum production can be performed with a minimum electrolytic cell scale while maintaining high efficiency.

発明の実施形態を図面により説明する。つまり図1は電解槽内においた電極の配置の一例であり、30の電解単位を有しそれを10ずつに区分けして複極ユニットとして接続、それに導電体を有する端部電極を共通にしながら3つの部分として単極型に接続した場合である。この場合単極部は3であるがこれが更に増加しても良いし、また必要に応じては複極ユニットの接続部の数を増減しても良いことは言うまでもない。ここではこの図に沿って説明する。An embodiment of the invention will be described with reference to the drawings. In other words, FIG. 1 is an example of the arrangement of electrodes placed in an electrolytic cell, having 30 electrolysis units divided into 10 units , connected as a bipolar unit , and having a common end electrode having a conductor. This is a case where the three parts are connected in a single pole type. Although this single-pole unit is 3 to which may be increased further, also it may of course be increased or decreased the number of connections bipolar units as required. Here, it demonstrates along this figure.

ここで、1は電解槽の本体を示し、この中に複数の電極を含む複極ユニットが置かれている。この電解ユニットは薄い電極群2と厚みがあり導電体5がついた端部電極3との組みあわせからなっており、薄い電極群2にはそれぞれ9枚の複極電解用電極が入っており端部電極と合わせて10段の電解の単位となり複極式に接続されている。中央の端部電極はその両面を電解用として使用しており両端にある端部電極の倍の電流が流れるために導電体5の数を増加している。Here, 1 indicates the main body of the electrolytic cell, in which a bipolar unit including a plurality of electrodes is placed. This electrolysis unit consists of a combination of a thin electrode group 2 and an end electrode 3 having a thickness and a conductor 5, and each of the thin electrode groups 2 contains nine electrodes for bipolar electrolysis. Together with the end electrodes, it becomes a unit of electrolysis of 10 stages and is connected in a bipolar manner. Since both ends of the central end electrode are used for electrolysis, the number of conductors 5 is increased because a current twice as large as that of the end electrodes at both ends flows.

ここで端部電極は相互に配線6で接続されており、それぞれ電源4に接続されている。この場合は総計で30の電解部分を有することになるが、電解電圧は電解部分10セル分に相当している。つまり1セル3Vとすれば30Vになる。このような配置にしておき、各電極に漏洩電流防止用の電極枠を取り付ける。電極枠の高さは同じ漏洩電流の場合を考えるとそのまま複極とした場合に比較して両端のみでも1/3以下にすることが出来る。しかも危険な高圧の直流を取り扱う必要が無くなる。確かに導電体の配置は複雑になるが、その程度は僅かであり許容できる範囲である。もちろんここでは10段の複極としてそれを3つ並べたモデル図としているが、電解液の液抵抗によっては複極数を増減することが出来るし、規模によって端部電極の数を増減できる。たとえば溶融塩化亜鉛の直接電解では電解液の液抵抗が8Ωcm程度で比較的大きくこのような10段程度が適当であるが、これに塩化カリウムと塩化ナトリウムの混合塩などの支持電解質を入れると格段に液抵抗が下がるので、それに合わせて複極数を減らして端部電極数を増加するあるいはより大きな電極枠をつけるなどの方法を講じる必要がある。
以下に実施例で詳細に説明する。
Here, the end electrodes are connected to each other by the wiring 6 and are connected to the power source 4. In this case, a total of 30 electrolysis parts are provided, but the electrolysis voltage corresponds to 10 cells in the electrolysis part. That is, if 1 cell is 3V, it becomes 30V. With this arrangement, an electrode frame for preventing leakage current is attached to each electrode. Considering the case of the same leakage current, the height of the electrode frame can be reduced to 1/3 or less only at both ends as compared with the case of using a double pole as it is. Moreover, it is no longer necessary to handle dangerous high-voltage direct current. Certainly, the arrangement of the conductors is complicated, but the degree is small and acceptable. Course here to be three side-by-side model view it as a bipolar 10-stage, depending on the liquid resistance of the electrolyte to be able to increase or decrease the number of bipolar stage, can increase or decrease the number of end electrodes by a scale . For example, in the direct electrolysis of molten zinc chloride, the resistance of the electrolytic solution is about 8 Ωcm, which is relatively large and about 10 steps are suitable. However, if a supporting electrolyte such as a mixed salt of potassium chloride and sodium chloride is added to this, it is markedly different. since liquid resistance drops, it is necessary to take a method such as attaching to or greater pole frame increases the number of end electrodes by reducing the number of bipolar stage accordingly.
Examples will be described in detail below.

「実施例1」
図1に示すように配置された電解槽を作製した。つまり電解槽本体は30mm厚みの緻密質のグラファイト板で作り、内部に絶縁用のムライト粉末と水ガラスを混練して作製したセラミックスセメントを塗布し、600℃で焼成して絶縁被覆とした。電解用電極にはCIP法で作製した緻密質グラファイトを加工して用いた。その大きさは高さ30cm 幅10cmとして10段の複極ユニットを端部電極を間において3つ並列に接続した。またこの電極の上下に高さ10cmで電極間距離である5mmの隙間を有する電極枠を設けた。電解浴は溶融塩化亜鉛の単味とし、温度は550℃に保持した。これについて電流密度50A/dm2で電解をおこなったところ、槽電圧は26V(10段分)であり、発生する塩素効率から漏洩電流を推定したところ、漏洩電流が約5%となることがわかった。また対比用として電極はこのままにして導電体をはずしてしまい、両端から通電をして事実上30段の複極ユニットとして電解をおこなったところ、電解電圧は78−79Vとなり、同様にして測定した漏洩電流は約30%と大きくなった。計算上はより低くなるはずであるが中間での槽数増加による漏洩と電圧上昇による漏洩が加わって大きな漏洩電流となったことが推定された。これにより適当な複極段数とそれをいくつかに分けて単極として接続することにより、導電体を簡単にしながら、また電極枠を大きくしないで十分に低い漏洩電流での電解が出来ることがわかった。
Example 1
An electrolytic cell arranged as shown in FIG. 1 was produced. That is, the electrolytic cell main body was made of a dense graphite plate having a thickness of 30 mm, coated with ceramic cement prepared by kneading mullite powder for insulation and water glass inside, and fired at 600 ° C. to form an insulating coating. Dense graphite produced by CIP method was processed and used for the electrode for electrolysis. The size was 30 cm in height and 10 cm in width, and three 10-stage bipolar units were connected in parallel with the end electrodes in between. In addition, an electrode frame having a height of 10 cm and a gap of 5 mm as the distance between the electrodes was provided above and below the electrodes. The electrolytic bath was made of molten zinc chloride and the temperature was maintained at 550 ° C. When electrolysis was performed at a current density of 50 A / dm 2, the cell voltage was 26 V (for 10 stages), and the leakage current was estimated from the generated chlorine efficiency, and it was found that the leakage current was about 5%. . For comparison, the electrode was left as it was, the conductor was removed, and electricity was applied from both ends to conduct electrolysis as a practically 30-stage multipolar unit. As a result, the electrolysis voltage was 78-79 V, which was measured in the same manner. The leakage current increased to about 30%. Although it should be lower in calculation, it was estimated that the leakage due to the increase in the number of tanks in the middle and the leakage due to the voltage increase were added, resulting in a large leakage current. As a result, it can be seen that by connecting a suitable number of multipole stages and dividing them into single poles, it is possible to perform electrolysis with a sufficiently low leakage current while simplifying the conductor and without enlarging the electrode frame. It was.

「実施例2」
塩化亜鉛に支持電解質としてKCl:NaCl=1:1(モル)の混合アルカリ塩化物を加えた電解浴を使用して電解を行った。この電解質の電気抵抗は500℃で4Ωcmであり、実施例1の条件では漏洩電流が大きくなりすぎる可能性があったために小型で10段の複極となる小型電解槽を作り漏洩電流の検討を行った。10段までの電解は実施例1と同じ条件として漏洩電流防止用の電極枠の高さを15cmとして電解をおこなった。電極は同じ大きさを用い電流密度を40A/dm2として電解をおこなった。電極間距離は5mmとした。この電解槽電流は120Aであった。槽電圧は電気抵抗が低くなった分やや低く10段で24Vであった。これについての漏洩電流は両端のみで上下各2A程度の漏洩が認められ合計では上下でこの約3倍の2x2x3=12Aで、漏洩電流が10%程度となった。これに対して中央の電極を端部電極と同じものに変え、両側に5段ずつの複極ユニットとなるように電極を配置し直したところ、電解電圧が半分となり、これに合わせて漏洩電流も低下し、約3%となった。更にここでは電極枠の高さをより低い10cmのものに交換して測定をしたが、その場合でも漏洩電流は4%程度と実用になることがわかった。
"Example 2"
Electrolysis was performed using an electrolytic bath in which mixed alkaline chloride of KCl: NaCl = 1: 1 (mol) was added to zinc chloride as a supporting electrolyte. The electric resistance of this electrolyte is 4 Ωcm at 500 ° C., and the leakage current may become too large under the conditions of Example 1. Therefore, a small electrolytic cell having a small and 10-stage double pole was created and the leakage current was examined. went. The electrolysis up to 10 stages was performed under the same conditions as in Example 1, with the height of the electrode frame for preventing leakage current being 15 cm. Electrolysis was performed using the same size electrode and a current density of 40 A / dm2. The distance between the electrodes was 5 mm. The electrolytic cell current was 120A. The cell voltage was 24 V in 10 steps because the electric resistance was low. The leakage current was about 2A in the upper and lower directions only at both ends, and the total was 2 × 2 × 3 = 12A, which is about 3 times the upper and lower, and the leakage current was about 10%. This changed to the same as the end electrodes of the central electrode relative, was relocated and the electrode such that the bipolar units of five stages on either side, the electrolytic voltage is halved, the leakage current in accordance with the this Decreased to about 3%. Further, here, the measurement was performed by replacing the electrode frame with a lower one of 10 cm, but even in that case, it was found that the leakage current was practically about 4%.

金属採取電解、特に溶融塩電解による金属採取、さらには塩化亜鉛電解による融体亜鉛と塩素ガスの採取に最も適した、小型、高効率、大容量の電解槽であり、電解での省エネルギー化を達成し、亜鉛還元法高純度シリコン製造のための亜鉛のリサイクル用として連続ライン内に接続することにより完全連続運転を達成することが出来るようになり、エネルギー問題が議論される中、広く活用されるようになると考える。This is a small, high-efficiency, large-capacity electrolytic cell that is most suitable for metal extraction electrolysis, particularly metal extraction by molten salt electrolysis, and also zinc and chlorine gas extraction by zinc chloride electrolysis. Achieved and fully connected to the continuous line for zinc recycling for the production of high-purity silicon by zinc reduction, it is possible to achieve full continuous operation, and it is widely used as energy issues are discussed. I think that it will become.

本発明の電解槽電極配置の一例で、平面の模式図である。  It is an example of the electrolytic cell electrode arrangement | positioning of this invention, and is a schematic diagram of a plane.

符号の説明Explanation of symbols

1 電解槽缶体
2 複極ユニット部分
3 端部電極(導電体付き電極)
4 電解用直流電源
5 導電体接続構造
6 電解電極と電解用電源との導電体接続構造
1 Electrolyzer can body 2 Bipolar unit part 3 End electrode (electrode with conductor)
4 DC power source for electrolysis 5 Conductor connection structure 6 Conductor connection structure of electrolysis electrode and power supply for electrolysis

Claims (8)

複数の複極ユニットを単極接続してなる電極群と該電極周辺の電極枠構造体からなる電解 ユニットを1つの電解浴槽内に浸漬あるいは浴中に取り付けて電解を行うようにした電解処理用の電解槽であって、該電解ユニット内の電極の接続が複極に接続された複数の単位を電気的に並列に接続するようにしたとともに電極枠構造体が盲板からなる側板と電極体 の上下に設けられた電流を規制するための電極枠とからなり、漏洩電流の防止と電解部分 の保温をあわせて行うようにした単・複極型電解槽。 For electrolytic treatment in which an electrode group formed by connecting a plurality of multipolar units as a single electrode and an electrolytic unit composed of an electrode frame structure around the electrodes are immersed in a single electrolytic bath or mounted in a bath for electrolysis a electrolytic cell, the side plates and the electrode body electrode frame structure with connecting electrodes in the electrolytic unit is to be connected in parallel electrically a plurality of units connected to the bipolar consists blind plate A monopolar / bipolar electrolytic cell that consists of electrode frames for regulating the current provided above and below the battery, and that is designed to prevent leakage current and keep the electrolytic part warm . 一体となった電解ユニットが電解浴槽内に固定されてなることを特徴とする請求項1の単・複極型電解槽。The single / bipolar electrolytic cell according to claim 1, wherein the integrated electrolytic unit is fixed in the electrolytic bath. 一体となった電解ユニットが電解浴槽内に浸漬されてなることを特徴とする請求項1又は の単・複極型電解槽。The single / bipolar electrolytic cell according to claim 1 or 2 , wherein the integrated electrolytic unit is immersed in an electrolytic bath. 電解槽が溶融塩電解用電解槽であることを特徴とする請求項1から3のいずれかの単・複極型電解槽。Single-bipolar type electrolytic cell of any of claims 1 to 3, wherein the electrolytic cell is an electrolytic cell for molten salt electrolysis. 隣り合う電極枠が隣り合う電極間距離と同等かそれよりやや狭くした隙間を有し、該隙間が該電極間距離と略一致するように電極の上下に置かれてなることを特徴とする請求項1から4のいずれかの単・複極型電解槽。 The adjacent electrode frame has a gap that is equal to or slightly narrower than the distance between adjacent electrodes, and the gap is placed above and below the electrodes so as to substantially match the distance between the electrodes. Item 5. A monopolar / bipolar electrolytic cell according to any one of items 1 to 4 . 電極を電極枠とともに垂直から傾けて平行に取付け陽極生成物と陰極生成物との混合を防ぐようにしたことを特徴とする請求項1から5のいずれかの単・複極型電解槽。6. The monopolar / bipolar electrolytic cell according to any one of claims 1 to 5 , wherein the electrodes are attached in parallel with the electrode frame so as to prevent mixing of the anode product and the cathode product. 電解槽電解槽上部に電解浴蒸気とミストを十分に除去できる大きさを有するミストキャッチャーを備えたことを特徴とする請求項1の単・複極型電解槽。Single-bipolar type electrolytic cell of claim 1, wherein the electrolytic cell is provided with a mist catcher having a large enough to remove the electrolytic bath vapor and mist in the electrolytic cell top. 請求項1の単・複極型電解槽を使用し溶融塩化亜鉛を電解浴として電解を行い塩素と溶融Melting with chlorine by electrolysis using molten zinc chloride as an electrolytic bath using the single / bipolar electrolytic cell of claim 1 金属亜鉛を得る電解方法。Electrolytic method for obtaining metallic zinc.
JP2006327534A 2006-11-07 2006-11-07 Single / bipolar electrolyzer Expired - Fee Related JP4403463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006327534A JP4403463B2 (en) 2006-11-07 2006-11-07 Single / bipolar electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006327534A JP4403463B2 (en) 2006-11-07 2006-11-07 Single / bipolar electrolyzer

Publications (2)

Publication Number Publication Date
JP2008115455A JP2008115455A (en) 2008-05-22
JP4403463B2 true JP4403463B2 (en) 2010-01-27

Family

ID=39501645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006327534A Expired - Fee Related JP4403463B2 (en) 2006-11-07 2006-11-07 Single / bipolar electrolyzer

Country Status (1)

Country Link
JP (1) JP4403463B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8636892B2 (en) * 2010-12-23 2014-01-28 Ge-Hitachi Nuclear Energy Americas Llc Anode-cathode power distribution systems and methods of using the same for electrochemical reduction
US8900439B2 (en) 2010-12-23 2014-12-02 Ge-Hitachi Nuclear Energy Americas Llc Modular cathode assemblies and methods of using the same for electrochemical reduction
WO2019130378A1 (en) * 2017-12-25 2019-07-04 東邦チタニウム株式会社 Molten salt electrolysis tank, method for manufacturing metal magnesium using same, and method for manufacturing sponge titanium

Also Published As

Publication number Publication date
JP2008115455A (en) 2008-05-22

Similar Documents

Publication Publication Date Title
JP4977137B2 (en) Electrolysis apparatus and method
WO2016124034A1 (en) Electrolytic furnace group
CN205062204U (en) Electrolytic furnace
CN102534663B (en) The device of generating metal magnesium by electrolyzing magnesium chloride
CN105088284A (en) Electrolytic furnace
CN104141150A (en) Method for making aluminum through low temperature electrolysis with ionic liquid and aluminum chloride as electrolytes
JP4403463B2 (en) Single / bipolar electrolyzer
CN208815125U (en) A kind of fluorination electrolytic cell
CN106835196B (en) Produce the mixing electrolysis system of tough cathode
CN204661841U (en) A kind of electrolytic furnace group
CN103540958A (en) Aluminum cell provided with suspending partition wall
CN104404591B (en) Micro-arc oxidation device for improving film thickness evenness and energy utilizing rate based on separate type compensation cathode
US4075077A (en) Electrolytic cell
UA84460U (en) magnesium chloride electrolysis apparatus
JP4315719B2 (en) High purity zinc production method and production equipment
CN201354386Y (en) Aluminum electrolysis bath energy-saving cathode block structure
CN103993332A (en) Energy-saving aluminium electrolysis tank and auxiliary pole thereof
CN101802270B (en) Control of by-pass current in multi-polar light metal reduction cells
JP4557565B2 (en) Electrolyzer
CN204198870U (en) A kind of device for ionic liquid electrodeposition
CN206666655U (en) tungsten cathode device and electrolytic cell
CN202519346U (en) Anode scrap-free series-wound electrolyzer with anode material storage tank
CN105887123A (en) Method for preparing PdCl2
CN107557818B (en) It is a kind of can continuous electrolysis production copper calcium alloy large scale industry electrolytic cell
CN206666650U (en) Produce the mixing electrolysis system of tough cathode

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121113

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151113

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees