JP3158996U - Electrolysis unit structure - Google Patents

Electrolysis unit structure Download PDF

Info

Publication number
JP3158996U
JP3158996U JP2009008550U JP2009008550U JP3158996U JP 3158996 U JP3158996 U JP 3158996U JP 2009008550 U JP2009008550 U JP 2009008550U JP 2009008550 U JP2009008550 U JP 2009008550U JP 3158996 U JP3158996 U JP 3158996U
Authority
JP
Japan
Prior art keywords
electrode
gap
electrodes
anode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009008550U
Other languages
Japanese (ja)
Inventor
島宗 孝之
孝之 島宗
Original Assignee
有限会社シーエス技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社シーエス技術研究所 filed Critical 有限会社シーエス技術研究所
Priority to JP2009008550U priority Critical patent/JP3158996U/en
Application granted granted Critical
Publication of JP3158996U publication Critical patent/JP3158996U/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

【課題】高温溶融塩電解用の電解槽に使用する電流効率を高く保持し、しかも漏洩電流を最小とする複極型電解部構造体を提供する。【解決手段】電極群と、側壁5と、上部電極枠3と、下部電極枠4とからなる。電極群は、片面を陽極とし他面を陰極とする複数の複極電極2と、電極面が陰極又は陽極のみである複数の端部電極1とが、相互に電極間距離を持って平行に配置される。側壁は電極群の側面を取り囲む。上部電極枠は電極群の上部に設置され、一端が各電極の陽極面と同一面となる。下部電極枠は電極群の下部に設置され、一端が各電極の陰極面と同一面となる。【選択図】図1The present invention provides a bipolar electrolysis unit structure that maintains high current efficiency for use in an electrolytic cell for high-temperature molten salt electrolysis and that minimizes leakage current. An electrode group includes a side wall, an upper electrode frame, and a lower electrode frame. In the electrode group, a plurality of bipolar electrodes 2 having one surface as an anode and the other surface as a cathode and a plurality of end electrodes 1 whose electrode surfaces are only a cathode or an anode are parallel to each other with an inter-electrode distance. Be placed. The side wall surrounds the side surface of the electrode group. The upper electrode frame is installed on the upper part of the electrode group, and one end is flush with the anode surface of each electrode. The lower electrode frame is installed in the lower part of the electrode group, and one end is flush with the cathode surface of each electrode. [Selection] Figure 1

Description

本考案は、電解浴中に浸漬あるいは設置して電解により、陽極からガスを陰極から溶融金属を得るための複極型電解槽用電解部構造体に関するものである。The present invention relates to an electrolytic part structure for a bipolar electrolytic cell for obtaining a gas from an anode and a molten metal from a cathode by electrolysis by being immersed or placed in an electrolytic bath.

高温溶融金属塩から電解により陽極からはガスを陰極からは溶融金属を得る電解槽では、電極部分は完全に融体中に浸漬してしまうことが必要になる。つまり高温溶融塩では溶融塩融体それ自身は加熱されあるいは融体中の良好な熱伝導並びに対流により、高温に維持されるが、融体上の気相では熱伝導が悪く、また通常は加熱もされないために融体に接している表面は別として、通常はその温度は低く、電解生成物である金属や電解質そのものが固化してしまう。そのような部分に電極部が出ていると電解により生成した金属が固化してしまい電極間がこのようにして生成した金属でつながってしまい、短絡することがしばしば見られる。これをさけるために電極部分を完全に電解浴中に浸漬する必要がある。一方電解部を小型化し、さらに電解槽を小型化して過剰な熱放散を防ぎ、消費エネルギーを低減するには、小型化でき、構造も簡単になる複極式電解槽が望ましく、その場合には漏洩電流を如何に小さくするかが関心事であった。さらに高温溶融塩電解では電極間に隔膜を入れることがほとんどできず、陽極生成物と陰極生成物が会合することによる逆反応での効率の低下が起こることがしばしば見られる。これを防ぐにはある程度大きな電極間距離を設けることが必要であった。大きな電極間距離は、通常電圧が大きくなり消費電力を大きくするという問題点はあるものの、高温に保持するようにヒータなどを使用する必要性からは、必ずしも問題ではなく、また必ずしも莫大な消費電力の増大をもたらすという結果にはならないので、実質的には電力消費と電流効率を考慮した電極間距離が必要である。In an electrolytic cell that obtains gas from the anode and molten metal from the cathode by electrolysis from the high-temperature molten metal salt, it is necessary to completely immerse the electrode portion in the melt. That is, in the high-temperature molten salt, the molten salt melt itself is heated or maintained at a high temperature by good heat conduction and convection in the melt, but the heat conduction is poor in the gas phase on the melt and is usually heated. Therefore, apart from the surface in contact with the melt, the temperature is usually low, and the metal that is the electrolytic product and the electrolyte itself are solidified. When the electrode part is protruding in such a part, the metal produced | generated by electrolysis solidifies, it connects with the metal produced | generated in this way between electrodes, and it is often seen that it short-circuits. In order to avoid this, it is necessary to completely immerse the electrode portion in the electrolytic bath. On the other hand, in order to reduce the size of the electrolysis unit and further reduce the size of the electrolytic cell to prevent excessive heat dissipation and reduce energy consumption, a bipolar electrolytic cell that can be reduced in size and simplified in structure is desirable. The concern was how to reduce the leakage current. Further, in high-temperature molten salt electrolysis, it is almost impossible to put a diaphragm between the electrodes, and it is often seen that the efficiency in the reverse reaction is reduced due to the association between the anode product and the cathode product. In order to prevent this, it is necessary to provide a certain distance between the electrodes. Although there is a problem that a large inter-electrode distance usually increases the voltage and power consumption, it is not always a problem because of the need to use a heater to keep it at a high temperature, and it does not necessarily require enormous power consumption. Therefore, the distance between the electrodes in consideration of power consumption and current efficiency is necessary.

このように、複極式電解部を液中に浸漬して使用する、更にそこでは電極間距離は出来るだけ大きくすることが必要であり、それは溶融塩電解の場合は必ずしも不利にはならないが、一方このような条件での最も大きな問題は電極間をとばして電流が生じる、いわゆる漏洩電流であり、大きな効率低下につながるという問題があった。これを如何に小さくするかが従来からの課題であった。このために本考案者らは特許文献1で、複極式電解槽の電極部の上下に電流流路を規制するための電極枠を設ける様にした。また特許文献2では漏洩電流が電解槽に供給される最大電圧によっていることから、電極配置を複極電解部の数を減らして複極の単位を多数作り、それらを並列に接続することで総電圧を低くすることに成功し小型の漏洩電流防止用の電極枠で漏洩電流を小さくすることに成功している。ただこれらにあっても電極間距離が大きくなるとそれに伴い電極枠に設けた電流流路も広がってしまい電極枠の高さを大きくする必要が生じること、また、それを防ぐために電極間距離を小さくすると今度は電解電流効率が低下してしまうという問題を有していた。In this way, the bipolar electrolysis part is used by immersing it in the liquid, and further, it is necessary to increase the distance between the electrodes as much as possible, which is not necessarily disadvantageous in the case of molten salt electrolysis, On the other hand, the biggest problem under such conditions is a so-called leakage current in which a current is generated by skipping between the electrodes, and there is a problem that the efficiency is greatly reduced. How to reduce this has been a conventional problem. For this purpose, the inventors of the present invention have provided an electrode frame for regulating the current flow path above and below the electrode part of the bipolar electrolytic cell in Patent Document 1. Further, in Patent Document 2, since the leakage current depends on the maximum voltage supplied to the electrolytic cell, the electrode arrangement is reduced by reducing the number of bipolar electrolyzing units to create a large number of bipolar units and connecting them in parallel. It has succeeded in lowering the voltage and reducing the leakage current with a small electrode frame for preventing leakage current. However, even in these cases, if the distance between the electrodes increases, the current flow path provided in the electrode frame also expands accordingly, and it becomes necessary to increase the height of the electrode frame, and in order to prevent this, the distance between the electrodes is decreased. This time, there was a problem that the electrolytic current efficiency was lowered.

特開2005−200759号公報JP 2005-200759 A 特開2008−115455号公報JP 2008-115455 A

本考案では主に高温溶融塩電解用の電解槽に使用する電流効率を高く保持し、しかも漏洩電流を最小とする複極型電解部構造体を提供することを課題とした。An object of the present invention is to provide a bipolar electrolysis part structure that maintains high current efficiency mainly used in an electrolytic cell for high-temperature molten salt electrolysis and that minimizes leakage current.

本考案は電極面がほぼ垂直となるように片面を陽極とし他面を陰極とする複数の複極電極と電極面が陰極又は陽極のみである複数の端部電極とからなり、これら電極が相互に電極間距離に相当する隙間を持って平行に配置された電極群と該電極群の側面を取り囲む側壁と該電極群の上部に設置され該電極間の各隙間に相当する位置に電極幅と同じ幅で電極間隙間より細く、その隙間の一端が陽極面と同一面となる隙間を有し高さを有する上部電極枠と、該電極群の下部に設置され該電極間の各隙間に相当する位置に電極幅と同じ幅で電極間隙間より細く、その隙間の一端が陰極面と同一面となる隙間を有し高さを有する下部電極枠とからなる、電解部構造体である。これにより、相対面する電極間の距離を陽極及び陰極電解生成物がお互いに会合することによる電流効率の低下を最小とするように広げることができ、しかも陰極生成物は陽極ガスに伴う液流があっても電極より上に上昇するのを防がれ、また陰極生成物の流下に伴う陽極生成物の落下を防いで電流効率の低下を防ぐと共に、漏洩電流が流れるべき流路を十分に狭くすることができ、漏洩電流を最小にすることができた。
更に必要に応じて、陰極生成物である、融体金属が下部に排出されるように、液流に沿った電極枠の下端の面取りをして液流をスムースに下方に落とすようにする。これは下端に角部を有すると溶融金属の表面張力により角部に融体金属がたまってしまい電極枠の隙間を塞いでしまう、或いは短絡につながる可能性があるからで、それを防ぐためである。又融体金属の下方への流れが滞ると陰極表面の金属膜が厚くなってしまい、その部分を通じての漏洩電流が増加する可能性が生じることになるので、それを防ぐためでもある。
The present invention is composed of a plurality of bipolar electrodes each having one surface as an anode and the other surface as a cathode, and a plurality of end electrodes each having only a cathode or an anode so that the electrode surfaces are substantially vertical. An electrode group disposed in parallel with a gap corresponding to the distance between the electrodes, a side wall surrounding the side surface of the electrode group, and an electrode width at a position corresponding to each gap between the electrodes disposed on the electrode group. An upper electrode frame having the same width and narrower than the gap between the electrodes, one end of the gap being flush with the anode surface and having a height, and corresponding to each gap between the electrodes installed at the lower part of the electrode group This is an electrolytic part structure comprising a lower electrode frame having a height that is the same width as the electrode width and narrower than the gap between the electrodes, and has a gap in which one end of the gap is flush with the cathode surface. As a result, the distance between the electrodes facing each other can be widened so as to minimize a decrease in current efficiency due to the anode and cathode electrolysis products meeting each other, and the cathode product is subjected to the liquid flow accompanying the anode gas. In this case, the anode product is prevented from rising above the electrode, and the anode product is prevented from falling due to the cathode product flowing down to prevent a decrease in current efficiency. It was possible to reduce the leakage current.
Further, if necessary, the lower end of the electrode frame along the liquid flow is chamfered so that the molten metal, which is a cathode product, is discharged to the lower portion, and the liquid flow is smoothly dropped downward. This is to prevent corners at the lower end because melt metal accumulates at the corners due to the surface tension of the molten metal, which may close the gaps in the electrode frame or lead to short circuits. is there. In addition, if the flow of the melt metal stagnates, the metal film on the cathode surface becomes thick, which may increase the leakage current through the portion, and this is also to prevent this.

高温溶融金属塩電解では通常陽極で陽極生成物としてガスを発生し、また陰極は融体金属を生成する。当然のことながらガスは陽極面に沿い電解液中にわずかに広がりながら上方に抜けて行き、陰極で生成した金属融体は電解浴より比重が軽く、電解浴中を上方に移動する場合もあるが通常は電極面に沿って下方に落下し、電極下端から液滴となって更に落下する。この陽極発生ガスと陰極生成金属が会合するとそこで反応して再び金属塩となってしまい見かけ上の電流効率の低下となることがある。これを防ぐためには相隣り合う電極間距離を大きくすることが必要である。つまり電解浴、あるいは電解質によって異なるが、たとえば溶融塩化亜鉛電解では3〜5mmより小さくなると電流効率の低下が顕著になるので、5〜10mm程度に保持することが望ましい。さらに陽極ガスをできるだけ陽極面から離れないようにするために陽極面を下向きとなるよう、垂直からわずかに傾けることが望ましく、その角度は0〜10度である。これより大きいとガス抜けが悪くなりガスによる電気抵抗の上昇が起こってしまう。また陰極生成物が電極面に厚く保持される様になり逆効果になることがある。In high temperature molten metal salt electrolysis, gas is usually generated at the anode as an anode product, and the cathode generates a molten metal. As a matter of course, the gas escapes upward while slightly spreading in the electrolyte along the anode surface, and the metal melt produced at the cathode is lighter in specific gravity than the electrolytic bath and may move upward in the electrolytic bath. Usually falls downward along the electrode surface, and further drops as a droplet from the lower end of the electrode. When the anode-generating gas and the cathode-generating metal associate with each other, they react therewith to form a metal salt again, which may cause a decrease in the apparent current efficiency. In order to prevent this, it is necessary to increase the distance between adjacent electrodes. That is, although it varies depending on the electrolytic bath or the electrolyte, for example, in molten zinc chloride electrolysis, if it becomes smaller than 3 to 5 mm, the current efficiency decreases significantly, so it is desirable to keep it at about 5 to 10 mm. Further, in order to keep the anode gas from separating from the anode surface as much as possible, it is desirable to slightly incline from the vertical so that the anode surface faces downward, and the angle is 0 to 10 degrees. If it is larger than this, outgassing will worsen and the electrical resistance will increase due to the gas. In addition, the cathode product may be held thick on the electrode surface, which may have an adverse effect.

一方漏洩電流は電極の上下にある電極枠の隙間とその高さとで出来る部分の液抵抗の大きさによって決まってくるので、如何に液抵抗を大きくするか、つまり電流方向の断面積を小さくし、高さを大きくするかによって決まってくる。またこの場合枠の高さを大きくするには電極とこれらの枠からなる電解部構造体が大きくなり、その結果、電解槽の深さを深くしなければならなくなるので、ここでは断面積を小さくすることが望ましい。つまりガスあるいは融体金属が流れると共に電流の流れる部分の断面積を半分にすれば、枠の高さも半分でよいことになる。また上部電極枠の片面は陽極面と同一とするので、陰極面の上面はひさし状にふさがれることになり、陰極生成物が上昇することは完全に防がれるようになる。また下部電極枠についても同じであり、陽極ガスは電極枠よりも下部に行くことはなくなって電流効率をより高く保持することができる。これらによって、電極間の隙間、並びに電極枠の隙間は電解条件電解浴によってその最適な条件は異なるが、塩化亜鉛の直接電解では、電極間距離は5mm以上が望ましく、電極枠はガス抜けを考えると2〜3mmが望ましいことがわかった。On the other hand, the leakage current is determined by the size of the liquid resistance in the part formed by the gap between the electrode frames above and below the electrode and its height, so how to increase the liquid resistance, that is, reduce the cross-sectional area in the current direction. It depends on whether the height is increased. In this case, in order to increase the height of the frame, the electrode and the electrolysis part structure composed of these frames are increased. As a result, the depth of the electrolytic cell must be increased. It is desirable to do. That is, if the gas or melt metal flows and the cross-sectional area of the current flowing portion is halved, the height of the frame can be halved. Further, since one surface of the upper electrode frame is the same as the anode surface, the upper surface of the cathode surface is blocked in an eaves shape, and the cathode product is completely prevented from rising. The same applies to the lower electrode frame, and the anode gas does not go below the electrode frame, so that the current efficiency can be kept higher. Depending on these conditions, the optimum conditions for the gap between the electrodes and the gap of the electrode frame differ depending on the electrolytic condition electrolytic bath. However, in the direct electrolysis of zinc chloride, the distance between the electrodes is preferably 5 mm or more, and the electrode frame is considered to be out of gas. 2 to 3 mm was found to be desirable.

融体金属を通して電流が漏洩する可能性があるが、それについては融体金属の下方への落下を促すように下部電極枠の陰極面側の下端の面取りを行う。或いは丸く削ることにより、融体金属の下方流れがスムースとなり、融体金属膜をより薄くすることによって防ぐことの出来る事が分かった。There is a possibility that current leaks through the melt metal, and for this, the lower end of the lower electrode frame on the cathode surface side is chamfered so as to promote the fall of the melt metal. Or it turned out that it can prevent by making a melt metal film thinner, by making the downward flow of a melt metal smooth by cutting round.

電解部構造体の立面断面図であり、図3のa−a’断面図である。FIG. 4 is an elevational sectional view of the electrolysis unit structure, and a sectional view taken along the line a-a ′ of FIG. 3. 電解部構造体の立面断面図であり、電極枠下部の面取りをした場合の図3のa−a’断面図である。FIG. 4 is an elevational cross-sectional view of the electrolysis unit structure, and is a cross-sectional view taken along line a-a ′ of FIG. 3 when the lower part of the electrode frame is chamfered. 電解部構造体の平面図である。It is a top view of an electrolysis part structure. 本願実施の電解部構造体の態様図の例である。It is an example of the mode figure of the electrolysis part structure of this-application implementation.

本考案について図1〜図4で説明する。つまりここでは電極群としているが、通電部分を有する陽極あるいは陰極のみの電極面を有する端部電極1と片面が陽極・片面が陰極として使用される複極電極2からなりそれが電極間距離の隙間を開けて面が平行になるように並び電極群を構成する。端部電極は図4に示すように電極群端部のみではなく中間に置くこともでき、機能上これも端部電極としている。図4は二つの複極電解のユニットが二つ並列に接続された構造を示した。なおここでは電極は垂直面から傾いておかれているが垂直であっても差し支えない。電極の上部には上部電極枠3が電極隙間に相当する部分に隙間6を有して取り付けられる。なお該電極枠の隙間の一端は陽極面と同一の面上となる。また下部電極枠4についても同様であり、下部に端面が陰極面と同一面となるように開けられた隙間を有する下部電極枠を有する。またこれらの電極群の周囲は側壁5によって囲まれている。以下実施例によって説明する。The present invention will be described with reference to FIGS. In other words, the electrode group here is composed of an end electrode 1 having an anode or cathode only electrode surface having a current-carrying portion and a bipolar electrode 2 having one surface serving as an anode and one surface serving as a cathode. An electrode group is formed so that the surfaces are parallel with a gap. As shown in FIG. 4, the end electrode can be placed not only at the end of the electrode group but also in the middle, and this is also an end electrode in terms of function. FIG. 4 shows a structure in which two bipolar electrolysis units are connected in parallel. Here, the electrodes are inclined from the vertical plane, but they may be vertical. The upper electrode frame 3 is attached to the upper part of the electrode with a gap 6 in a portion corresponding to the electrode gap. One end of the gap between the electrode frames is on the same surface as the anode surface. The same applies to the lower electrode frame 4. The lower electrode frame 4 has a lower electrode frame having a gap opened so that the end surface is flush with the cathode surface. These electrode groups are surrounded by side walls 5. Examples will be described below.

図4に示す様に配置された電極群を有する電解部構造体を組んだ。つまり3つの端部電極を有し、中央を陰極とし両端を陽極となるように配置した。電極は垂直に対して陽極面が下向きとなるように5度傾けた。この側面を側壁として厚さ10mmの多孔質ジルコニアにジルコニアセメントを含浸した成形体で取り囲んだ。この側壁は複極電極2を保持するための溝を有するものであり、端部電極に窒化ケイ素製のボルトにより固定された。側壁は電極群側方全体を覆うようにした。なお電極材質として高密度グラファイトに樹脂を含浸し、更に加熱処理を行って密度を特に高くしたグラファイト質炭素を使用した。ここでは複極5枚を一対として二対からなり片側6電解単位、合計12の電解単位からなる。電極間距離を10mmとし上部及び下部の電極枠の高さをそれぞれ20mmとし、電極枠部分の隙間を3mmとした。この様にして構成した電解部構造体を電解浴槽内に浸漬して、550℃の塩化亜鉛融体を電解液として電解を行ったところ、電流密度4000A/m2において発生塩素によって計測した見かけ電流効率は96%であり、十分な漏洩電流の防止ができていることがわかった。ここで電極距離と電極枠隙間を同じとした場合は見かけ電流効率が84%であり、大きな漏洩電流があるものと推定された。An electrolytic part structure having an electrode group arranged as shown in FIG. 4 was assembled. That is, it has three end electrodes and is arranged so that the center is a cathode and both ends are anodes. The electrode was tilted 5 degrees so that the anode face was downward with respect to the vertical. This side surface was used as a side wall, and it was surrounded by a molded body in which porous zirconia having a thickness of 10 mm was impregnated with zirconia cement. This side wall has a groove for holding the bipolar electrode 2, and was fixed to the end electrode by a bolt made of silicon nitride. The side wall covered the entire side of the electrode group. As the electrode material, high-density graphite impregnated with resin, and further subjected to heat treatment, graphite carbon having a particularly high density was used. Here, it consists of 5 pairs of 5 electrodes, 2 pairs, 6 electrolytic units on one side, and a total of 12 electrolytic units. The distance between the electrodes was 10 mm, the height of the upper and lower electrode frames was 20 mm, and the gap between the electrode frames was 3 mm. The electrolytic part structure thus configured was immersed in an electrolytic bath and electrolyzed using a zinc chloride melt at 550 ° C. as an electrolytic solution, and the apparent current efficiency measured by the generated chlorine at a current density of 4000 A / m 2. Was 96%, and it was found that sufficient leakage current could be prevented. Here, when the electrode distance and the electrode frame gap were the same, the apparent current efficiency was 84%, and it was estimated that there was a large leakage current.

今後大きな拡大が見込めるソーラーセル用の超高純度シリコンの製造用として注目されている亜鉛還元法では亜鉛を還元剤として使用し亜鉛は塩化亜鉛となるが、その亜鉛のリサイクルは必須であり、リサイクルは通常の化学法では不可能であるためにすべて電解で行う必要がある。それに使用する電解用として今後きわめて大きな利用が行われると考えられる。In the zinc reduction method, which is attracting attention for the production of ultra-high-purity silicon for solar cells, which is expected to expand significantly in the future, zinc is used as a reducing agent, and zinc is converted to zinc chloride. Since it is impossible with ordinary chemical methods, it is necessary to carry out all by electrolysis. In the future, it will be used very much for electrolysis.

1 端部電極
2 複極電極
3 上部電極枠
4 下部電極枠
5 側壁
6 電極枠隙間
7 電解電源・陰極
8 電解電源・陽極
DESCRIPTION OF SYMBOLS 1 End electrode 2 Bipolar electrode 3 Upper electrode frame 4 Lower electrode frame 5 Side wall 6 Electrode frame gap 7 Electrolytic power source / cathode 8 Electrolytic power source / anode

Claims (4)

電極面がほぼ垂直となるように片面を陽極とし他面を陰極とする複数の複極電極と電極面が陰極又は陽極のみである複数の端部電極とからなり、これら電極が相互に電極間距離に相当する隙間を持って平行に配置された電極群と該電極群の側面を取り囲む側壁と該電極群の上部に設置され該電極間の各隙間に相当する位置に電極幅と同じ幅で電極間隙間より細く、その隙間の一端が陽極面と同一面となる隙間を有し高さを有する上部電極枠と、該電極群の下部に設置され該電極間の各隙間に相当する位置に電極幅と同じ幅で電極間隙間より細く、その隙間の一端が陰極面と同一面となる隙間を有し高さを有する下部電極枠とからなる、電解部構造体。The electrode surface is composed of a plurality of bipolar electrodes having one surface as an anode and the other surface as a cathode, and a plurality of end electrodes each having only a cathode or an anode, and these electrodes are connected to each other. The electrode group arranged in parallel with a gap corresponding to the distance, the side wall surrounding the side surface of the electrode group, and the same width as the electrode width at a position corresponding to each gap between the electrodes installed on the electrode group An upper electrode frame that is narrower than the gap between the electrodes and has a height in which one end of the gap is flush with the anode surface, and a position corresponding to each gap between the electrodes that is installed at the bottom of the electrode group An electrolytic part structure comprising a lower electrode frame having the same width as the electrode width, narrower than the gap between the electrodes, and having a gap in which one end of the gap is flush with the cathode surface. 電極面が陽極面を下向きとなるように垂直から0から10度傾いて配置されてなることを特徴とする請求項1の電解部構造体。2. The electrolytic part structure according to claim 1, wherein the electrode surface is disposed with an inclination of 0 to 10 degrees from vertical so that the anode surface faces downward. 前記電極間距離に相当する隙間が5〜10mmであり、該隙間の上下にある電極枠の隙間が2〜5mmである請求項1の電解部構造体。The gap corresponding to the distance between the electrodes is 5 to 10 mm, and the gap between the electrode frames above and below the gap is 2 to 5 mm. 下方電極枠の陰極面と同一面となる隙間の下端が面取りをされてなることを特徴とする請求項1の電解部構造体。2. The electrolytic part structure according to claim 1, wherein the lower end of the gap that is flush with the cathode surface of the lower electrode frame is chamfered.
JP2009008550U 2009-11-11 2009-11-11 Electrolysis unit structure Expired - Fee Related JP3158996U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009008550U JP3158996U (en) 2009-11-11 2009-11-11 Electrolysis unit structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009008550U JP3158996U (en) 2009-11-11 2009-11-11 Electrolysis unit structure

Publications (1)

Publication Number Publication Date
JP3158996U true JP3158996U (en) 2010-05-06

Family

ID=54862306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009008550U Expired - Fee Related JP3158996U (en) 2009-11-11 2009-11-11 Electrolysis unit structure

Country Status (1)

Country Link
JP (1) JP3158996U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101655240B1 (en) * 2014-10-24 2016-09-08 (주) 테크윈 Apparatus for electrochemical treatment of wastewater using inclined electrode and supersonic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101655240B1 (en) * 2014-10-24 2016-09-08 (주) 테크윈 Apparatus for electrochemical treatment of wastewater using inclined electrode and supersonic

Similar Documents

Publication Publication Date Title
US6866768B2 (en) Electrolytic cell for production of aluminum from alumina
KR20090011026A (en) Electrolysis system and method
US6558525B1 (en) Anode for use in aluminum producing electrolytic cell
JP2008144274A (en) Gas evolving electrolysis system
CN104818499A (en) Electrolytic furnace group
CN105088284A (en) Electrolytic furnace
WO2006007863A1 (en) Electrolysis apparatus with solid electrolyte electrodes
JP3158996U (en) Electrolysis unit structure
US4504366A (en) Support member and electrolytic method
CN204661841U (en) A kind of electrolytic furnace group
GB2065174A (en) Cathodes for electrolytic furnaces
RU2499085C1 (en) Electrolysis unit for aluminium manufacture
RU2287026C1 (en) Multi-cell electrolyzer with bipolar electrodes for production of aluminum
DK181038B1 (en) Advanced electrolytic aluminum cell
EP3872235A1 (en) Fluorine gas production device
US6800191B2 (en) Electrolytic cell for producing aluminum employing planar anodes
KR20090074041A (en) A method and an electrolysis cell for production of a metal from a molten chloride
AU2008299528B2 (en) Control of by-pass current in multi-polar light metal reduction cells
JP4403463B2 (en) Single / bipolar electrolyzer
CA3197052A1 (en) Controlling electrode current density of an electrolytic cell
JP4557565B2 (en) Electrolyzer
JP4489520B2 (en) Electrolytic cell
RU2550683C1 (en) Electrolysis unit for aluminium making
JP2006028567A (en) Bipolar electrolytic cell
JP2023183302A (en) Anode arrangement structure, molten salt electrolysis tank, and production method of metal

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130407

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160407

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees